ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-06
    Description: A high-fat diet causes activation of the regulatory protein c-Jun NH2-terminal kinase 1 (JNK1) and triggers development of insulin resistance. JNK1 is therefore a potential target for therapeutic treatment of metabolic syndrome. We explored the mechanism of JNK1 signaling by engineering mice in which the Jnk1 gene was ablated selectively in adipose tissue. JNK1 deficiency in adipose tissue suppressed high-fat diet-induced insulin resistance in the liver. JNK1-dependent secretion of the inflammatory cytokine interleukin-6 by adipose tissue caused increased expression of liver SOCS3, a protein that induces hepatic insulin resistance. Thus, JNK1 activation in adipose tissue can cause insulin resistance in the liver.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabio, Guadalupe -- Das, Madhumita -- Mora, Alfonso -- Zhang, Zhiyou -- Jun, John Y -- Ko, Hwi Jin -- Barrett, Tamera -- Kim, Jason K -- Davis, Roger J -- DK52530/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 CA065861-14/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1539-43. doi: 10.1126/science.1160794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056984" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/metabolism ; Animals ; Dietary Fats/administration & dosage ; Enzyme Activation ; Glucose/metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins/metabolism ; *Insulin Resistance ; Interleukin-6/administration & dosage/metabolism ; Liver/*metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; *Signal Transduction ; *Stress, Physiological ; Suppressor of Cytokine Signaling Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...