ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-09-08
    Description: Recently we reported that antibodies can generate hydrogen peroxide (H2O2) from singlet molecular oxygen (1O2*). We now show that this process is catalytic, and we identify the electron source for a quasi-unlimited generation of H2O2. Antibodies produce up to 500 mole equivalents of H2O2 from 1O2*, without a reduction in rate, and we have excluded metals or Cl- as the electron source. On the basis of isotope incorporation experiments and kinetic data, we propose that antibodies use H2O as an electron source, facilitating its addition to 1O2* to form H2O3 as the first intermediate in a reaction cascade that eventually leads to H2O2. X-ray crystallographic studies with xenon point to putative conserved oxygen binding sites within the antibody fold where this chemistry could be initiated. Our findings suggest a protective function of immunoglobulins against 1O2* and raise the question of whether the need to detoxify 1O2* has played a decisive role in the evolution of the immunoglobulin fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wentworth , P Jr -- Jones, L H -- Wentworth, A D -- Zhu, X -- Larsen, N A -- Wilson, I A -- Xu, X -- Goddard , W A 3rd -- Janda, K D -- Eschenmoser, A -- Lerner, R A -- CA27489/CA/NCI NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- HD 36385/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1806-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546867" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/chemistry/*metabolism ; Binding Sites ; Catalysis ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Peroxide/*metabolism ; Kinetics ; Models, Molecular ; Oxidants/chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Protein Conformation ; Singlet Oxygen ; Spectrometry, Mass, Electrospray Ionization ; Thermodynamics ; Tryptophan/metabolism ; Ultraviolet Rays ; Water/*chemistry/*metabolism ; Xenon/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-10-13
    Description: The forte of catalytic antibodies has resided in the control of the ground-state reaction coordinate. A principle and method are now described in which antibodies can direct the outcome of photophysical and photochemical events that take place on excited-state potential energy surfaces. The key component is a chemically reactive optical sensor that provides a direct report of the dynamic interplay between protein and ligand at the active site. To illustrate the concept, we used a trans-stilbene hapten to elicit a panel of monoclonal antibodies that displayed a range of fluorescent spectral behavior when bound to a trans-stilbene substrate. Several antibodies yielded a blue fluorescence indicative of an excited-state complex or "exciplex" between trans-stilbene and the antibody. The antibodies controlled the isomerization coordinate of trans-stilbene and dynamically coupled this manifold with an active-site residue. A step was taken toward the use of antibody-based photochemical sensors for diagnostic and clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simeonov, A -- Matsushita, M -- Juban, E A -- Thompson, E H -- Hoffman, T Z -- Beuscher, A E 4th -- Taylor, M J -- Wirsching, P -- Rettig, W -- McCusker, J K -- Stevens, R C -- Millar, D P -- Schultz, P G -- Lerner, R A -- Janda, K D -- AI39089/AI/NIAID NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- P01CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):307-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute and the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030644" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry ; Antibodies, Monoclonal/*chemistry ; Binding Sites ; Binding Sites, Antibody ; Chemistry, Physical ; Crystallography, X-Ray ; *Fluorescence ; Haptens ; Ligands ; Microscopy, Fluorescence ; Models, Chemical ; Models, Molecular ; Photochemistry ; Physicochemical Phenomena ; Spectrometry, Fluorescence ; Stereoisomerism ; Stilbenes/*chemistry/*immunology ; Temperature ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-02-14
    Description: For the past decade the immune system has been exploited as a rich source of de novo catalysts. Catalytic antibodies have been shown to have chemoselectivity, enantioselectivity, large rate accelerations, and even an ability to reroute chemical reactions. In many instances catalysts have been made for reactions for which there are no known natural or man-made enzymes. Yet, the full power of this combinatorial system can only be exploited if there was a system that allows for the direct selection of a particular function. A method that allows for the direct chemical selection for catalysis from antibody libraries was so devised, whereby the positive aspects of hybridoma technology were preserved and re-formatted in the filamentous phage system to allow direct selection of catalysis. This methodology is based on a purely chemical selection process, making it more general than biologically based selection systems because it is not limited to reaction products that perturb cellular machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Lo, L C -- Lo, C H -- Sim, M M -- Wang, R -- Wong, C H -- Lerner, R A -- GM-43858/GM/NIGMS NIH HHS/ -- GM-44154/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):945-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020070" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies, Catalytic/genetics/metabolism ; Catalysis ; Cloning, Molecular ; Coliphages ; Dithiothreitol ; Enzyme-Linked Immunosorbent Assay ; Escherichia coli/genetics/metabolism ; Galactosides/metabolism ; Haptens ; Hybridomas ; Immunoglobulin Fab Fragments/genetics/metabolism ; Indoles/metabolism ; Isopropyl Thiogalactoside/metabolism ; Mice ; Nitrophenylgalactosides/metabolism ; *Peptide Library ; Polymerase Chain Reaction ; Serum Albumin, Bovine ; Transformation, Bacterial ; beta-Galactosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-28
    Description: The specific hydrolysis of unactivated esters bearing an R or S enantiomeric alcohol has been achieved by two separate classes of catalytic antibodies induced to bind either the R or S substrates. The antibodies exhibit rate accelerations (10(3) to 10(5] above background hydrolysis that, coupled with their antipodal specificity, provide a novel set of reagents for use in synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Apr 28;244(4903):437-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2717936" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies, Monoclonal/immunology ; Antibody Specificity ; Antigens/immunology ; Benzyl Alcohols/metabolism ; *Catalysis ; Esters/metabolism ; Haptens ; Hemocyanin/immunology ; Hydrolysis ; Immunization ; Kinetics ; Lipase/*metabolism ; Mice ; Mice, Inbred A ; Molecular Structure ; Organophosphonates/immunology ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-04-16
    Description: A highly specific Diels-Alder protein catalyst was made by manipulating the antibody repertoire of the immune system. The catalytic antibody 13G5 catalyzes a disfavored exo Diels-Alder transformation in a reaction for which there is no natural enzyme counterpart and that yields a single regioisomer in high enantiomeric excess. The crystal structure of the antibody Fab in complex with a ferrocenyl inhibitor containing the essential haptenic core that elicited 13G5 was determined at 1.95 angstrom resolution. Three key antibody residues appear to be responsible for the observed catalysis and product control. Tyrosine-L36 acts as a Lewis acid activating the dienophile for nucleophilic attack, and asparagine-L91 and aspartic acid-H50 form hydrogen bonds to the carboxylate side chain that substitutes for the carbamate diene substrate. This hydrogen-bonding scheme leads to rate acceleration and also pronounced stereoselectivity. Docking experiments with the four possible ortho transition states of the reaction explain the specific exo effect and suggest that the (3R,4R)-exo stereoisomer is the preferred product.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heine, A -- Stura, E A -- Yli-Kauhaluoma, J T -- Gao, C -- Deng, Q -- Beno, B R -- Houk, K N -- Janda, K D -- Wilson, I A -- CA27489/CA/NCI NIH HHS/ -- GM-43858/GM/NIGMS NIH HHS/ -- P01 CA27489/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1934-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute of Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506943" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/immunology/metabolism ; Catalysis ; Chemistry, Organic ; Crystallography, X-Ray ; Ferrous Compounds/*chemistry/immunology/metabolism ; Haptens/chemistry/immunology ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Immunoglobulin Fab Fragments/chemistry ; Models, Molecular ; Organic Chemistry Phenomena ; Stereoisomerism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-05-03
    Description: A transition state analogue was used to produce a mouse antibody that catalyzes transesterification in water. The antibody behaves as a highly efficient catalyst with a covalent intermediate and the characteristic of induced fit. While some features of the catalytic pathway were programmed when the hapten was designed and reflect favorable substrate-antibody interactions, other features are a manifestation of the chemical potential of antibody diversity. The fact that antibodies recapitulate mechanisms and pathways previously thought to be a characteristic of highly evolved enzymes suggests that once an appropriate binding cavity is achieved, reaction pathways commensurate with the intrinsic chemical potential of proteins ensue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wirsching, P -- Ashley, J A -- Benkovic, S J -- Janda, K D -- Lerner, R A -- GM43858-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):680-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2024120" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Alcohols/metabolism ; Animals ; Antibodies, Monoclonal/immunology/*metabolism ; Antibody Specificity ; Binding Sites, Antibody ; *Catalysis ; Enzymes/metabolism ; Esterification ; Haptens ; Kinetics ; Mice ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-11-23
    Description: Detailed kinetic investigations of a catalytic antibody that promotes the hydrolyses of an anilide and phenyl ester show that this catalyst uses a multistep kinetic sequence resembling that found in serine proteases to hydrolyze its substrates, although antibody was elicited to a single transition-state analog. Like the serine proteases the antibody catalyzes the hydrolysis reactions through a putative covalent intermediate, but unlike the enzymes it may use hydroxide ion to cleave the intermediates. Nevertheless, the antibody is a potent catalyst with turnover at higher pH values rivaling that of chymotrypsin. This analysis also reveals that turnover by the antibody is ultimately limited by product desorption, suggesting that improvements in catalytic efficiency may be achieved by judicious changes in the structure of the substrate, so that it is not superimposable on that of the eliciting hapten.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benkovic, S J -- Adams, J A -- Borders, C L Jr -- Janda, K D -- Lerner, R A -- GM4385801/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 23;250(4984):1135-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pennsylvania State University, Department of Chemistry, University Park 16802.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2251500" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Aniline Compounds/metabolism ; Antibodies/*metabolism ; Catalysis ; Enzymes/*metabolism ; Hydrogen-Ion Concentration ; Hydrolysis ; Kinetics ; Nitrophenols/metabolism ; Spectrometry, Fluorescence ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-03-01
    Description: The blue-emissive antibody EP2-19G2 that has been elicited against trans-stilbene has unprecedented ability to produce bright luminescence and has been used as a biosensor in various applications. We show that the prolonged luminescence is not stilbene fluorescence. Instead, the emissive species is a charge-transfer excited complex of an anionic stilbene and a cationic, parallel pi-stacked tryptophan. Upon charge recombination, this complex generates exceptionally bright blue light. Complex formation is enabled by a deeply penetrating ligand-binding pocket, which in turn results from a noncanonical interface between the two variable domains of the antibody.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Debler, Erik W -- Kaufmann, Gunnar F -- Meijler, Michael M -- Heine, Andreas -- Mee, Jenny M -- Pljevaljcic, Goran -- Di Bilio, Angel J -- Schultz, Peter G -- Millar, David P -- Janda, Kim D -- Wilson, Ian A -- Gray, Harry B -- Lerner, Richard A -- DK19038/DK/NIDDK NIH HHS/ -- GM38273/GM/NIGMS NIH HHS/ -- GM56528/GM/NIGMS NIH HHS/ -- R01 GM038273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1232-5. doi: 10.1126/science.1153445.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309081" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/*chemistry/genetics/immunology ; Antigen-Antibody Complex ; Binding Sites, Antibody ; Crystallization ; Crystallography, X-Ray ; *Electrons ; Fluorescence ; Fluorescence Polarization ; Haptens/chemistry/immunology ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Variable Region/*chemistry/immunology ; Ligands ; Luminescence ; Mutation ; Oxidation-Reduction ; Protein Structure, Tertiary ; Spectrometry, Fluorescence ; Spectrum Analysis ; Stilbenes/*chemistry/immunology ; Tryptophan/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-06-21
    Description: The control of innate immune responses through activation of the nuclear transcription factor NF-kappaB is essential for the elimination of invading microbial pathogens. We showed that the bacterial N-(3-oxo-dodecanoyl) homoserine lactone (C12) selectively impairs the regulation of NF-kappaB functions in activated mammalian cells. The consequence is specific repression of stimulus-mediated induction of NF-kappaB-responsive genes encoding inflammatory cytokines and other immune regulators. These findings uncover a strategy by which C12-producing opportunistic pathogens, such as Pseudomonas aeruginosa, attenuate the innate immune system to establish and maintain local persistent infection in humans, for example, in cystic fibrosis patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kravchenko, Vladimir V -- Kaufmann, Gunnar F -- Mathison, John C -- Scott, David A -- Katz, Alexander Z -- Grauer, David C -- Lehmann, Mandy -- Meijler, Michael M -- Janda, Kim D -- Ulevitch, Richard J -- New York, N.Y. -- Science. 2008 Jul 11;321(5886):259-63. doi: 10.1126/science.1156499. Epub 2008 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Sciences, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18566250" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/*analogs & derivatives/physiology ; Adult ; Animals ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cystic Fibrosis/microbiology ; Female ; *Gene Expression Regulation ; Homoserine/*analogs & derivatives/physiology ; Humans ; I-kappa B Kinase/metabolism ; I-kappa B Proteins/metabolism ; Immunity, Innate ; Interferon-gamma/immunology ; Lipopolysaccharides/immunology ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Middle Aged ; NF-kappa B/*metabolism ; Phosphorylation ; Pseudomonas Infections/immunology/microbiology ; Pseudomonas aeruginosa/immunology/*pathogenicity/physiology ; *Signal Transduction ; Toll-Like Receptors/metabolism ; Transcription Factor RelA/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-11-08
    Description: Here, we report evidence for the production of ozone in human disease. Signature products unique to cholesterol ozonolysis are present within atherosclerotic tissue at the time of carotid endarterectomy, suggesting that ozone production occurred during lesion development. Furthermore, advanced atherosclerotic plaques generate ozone when the leukocytes within the diseased arteries are activated in vitro. The steroids produced by cholesterol ozonolysis cause effects that are thought to be critical to the pathogenesis of atherosclerosis, including cytotoxicity, lipid-loading in macrophages, and deformation of the apolipoprotein B-100 secondary structure. We propose the trivial designation "atheronals" for this previously unrecognized class of steroids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wentworth, Paul Jr -- Nieva, Jorge -- Takeuchi, Cindy -- Galve, Roger -- Wentworth, Anita D -- Dilley, Ralph B -- DeLaria, Giacomo A -- Saven, Alan -- Babior, Bernard M -- Janda, Kim D -- Eschenmoser, Albert -- Lerner, Richard A -- 5T32AI07606/AI/NIAID NIH HHS/ -- GM 43858/GM/NIGMS NIH HHS/ -- P01CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1053-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605372" target="_blank"〉PubMed〈/a〉
    Keywords: Arteriosclerosis/*metabolism ; Carotid Arteries/*metabolism ; Cholestanes/blood/*metabolism/pharmacology ; Cholesterol/*metabolism ; Dimethyl Sulfoxide/pharmacology ; Endarterectomy, Carotid ; Foam Cells/drug effects/physiology ; Humans ; Hydrazones/metabolism ; Indigo Carmine/metabolism ; Inflammation ; Leukocytes/metabolism ; Lipoproteins, LDL/metabolism/pharmacology ; Norsteroids/blood/*metabolism/pharmacology ; Oxidation-Reduction ; Ozone/*metabolism ; Singlet Oxygen/metabolism ; Sterols/blood/*metabolism/pharmacology ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...