ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-15
    Description: Author(s): T. Nomura, Y. H. Matsuda, S. Takeyama, A. Matsuo, K. Kindo, and T. C. Kobayashi The phase diagram of solid oxygen in the magnetic-field-temperature ( B − T ) plane is revealed by magnetization and magnetotransmission measurements. The high-field phase of solid oxygen, which we term the θ phase, is induced at the temperature below 42 K. The transition fields at the α − θ and β − θ trans… [Phys. Rev. B 92, 064109] Published Thu Aug 13, 2015
    Keywords: Structure, structural phase transitions, mechanical properties, defects
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-30
    Description: Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La 2 CuO 4 and La 2– x Sr x CuO 4 . Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-15
    Description: Author(s): T. Nomura, Y. Harada, H. Niwa, K. Ishii, M. Ishikado, S. Shamoto, and I. Jarrige Low-energy electron excitation spectra were measured on a single crystal of a typical iron-based superconductor PrFeAsO 0.7 using resonant inelastic x-ray scattering (RIXS) at the Fe − L 3 edge. Characteristic RIXS features are clearly observed around 0.5, 1–1.5, and 2–3 eV energy losses. These excitati… [Phys. Rev. B 94, 035134] Published Thu Jul 14, 2016
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-11
    Description: Author(s): H. Gretarsson, T. Nomura, I. Jarrige, A. Lupascu, M. H. Upton, Jungho Kim, D. Casa, T. Gog, R. H. Yuan, Z. G. Chen, N.-L. Wang, and Young-June Kim We report an Fe K -edge resonant inelastic x-ray scattering study of K 0.83 Fe 1.53 Se 2 . This material is an insulator, unlike many parent compounds of iron-based superconductors. We found a sharp excitation around 1 eV, which is resonantly enhanced when the incident photon energy is tuned near the pre-e... [Phys. Rev. B 91, 245118] Published Tue Jun 09, 2015
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-14
    Description: Author(s): S. Nonoguchi, T. Nomura, and T. Kimura Spin absorption effects for the longitudinal and transverse spin currents in a Permalloy nanowire have been examined by using a lateral spin valve consisting of a V-shaped ferromagnetic injector and detector. The reduction of the nonlocal spin signal due to spin absorption for the transverse spin cu... [Phys. Rev. B 86, 104417] Published Thu Sep 13, 2012
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-05-30
    Description: The common marmoset (Callithrix jacchus) is increasingly attractive for use as a non-human primate animal model in biomedical research. It has a relatively high reproduction rate for a primate, making it potentially suitable for transgenic modification. Although several attempts have been made to produce non-human transgenic primates, transgene expression in the somatic tissues of live infants has not been demonstrated by objective analyses such as polymerase chain reaction with reverse transcription or western blots. Here we show that the injection of a self-inactivating lentiviral vector in sucrose solution into marmoset embryos results in transgenic common marmosets that expressed the transgene in several organs. Notably, we achieved germline transmission of the transgene, and the transgenic offspring developed normally. The successful creation of transgenic marmosets provides a new animal model for human disease that has the great advantage of a close genetic relationship with humans. This model will be valuable to many fields of biomedical research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Erika -- Suemizu, Hiroshi -- Shimada, Akiko -- Hanazawa, Kisaburo -- Oiwa, Ryo -- Kamioka, Michiko -- Tomioka, Ikuo -- Sotomaru, Yusuke -- Hirakawa, Reiko -- Eto, Tomoo -- Shiozawa, Seiji -- Maeda, Takuji -- Ito, Mamoru -- Ito, Ryoji -- Kito, Chika -- Yagihashi, Chie -- Kawai, Kenji -- Miyoshi, Hiroyuki -- Tanioka, Yoshikuni -- Tamaoki, Norikazu -- Habu, Sonoko -- Okano, Hideyuki -- Nomura, Tatsuji -- England -- Nature. 2009 May 28;459(7246):523-7. doi: 10.1038/nature08090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki, Kanagawa 216-0001, Japan. esasaki@ciea.or.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478777" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified/*genetics ; Animals, Newborn ; Callithrix/embryology/*genetics ; *Disease Models, Animal ; Gene Expression Profiling ; Germ Cells/*metabolism ; Green Fluorescent Proteins/genetics ; Heredity/*genetics ; Humans ; Transcription, Genetic ; Transgenes/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-10-11
    Description: Naturally occurring Foxp3+CD4+ regulatory T cells (Tregs) are essential for maintaining immunological self-tolerance and immune homeostasis. Here, we show that a specific deficiency of cytotoxic T lymphocyte antigen 4 (CTLA-4) in Tregs results in spontaneous development of systemic lymphoproliferation, fatal T cell-mediated autoimmune disease, and hyperproduction of immunoglobulin E in mice, and it also produces potent tumor immunity. Treg-specific CTLA-4 deficiency impairs in vivo and in vitro suppressive function of Tregs-in particular, Treg-mediated down-regulation of CD80 and CD86 expression on dendritic cells. Thus, natural Tregs may critically require CTLA-4 to suppress immune responses by affecting the potency of antigen-presenting cells to activate other T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wing, Kajsa -- Onishi, Yasushi -- Prieto-Martin, Paz -- Yamaguchi, Tomoyuki -- Miyara, Makoto -- Fehervari, Zoltan -- Nomura, Takashi -- Sakaguchi, Shimon -- New York, N.Y. -- Science. 2008 Oct 10;322(5899):271-5. doi: 10.1126/science.1160062.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18845758" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD/genetics/immunology/*metabolism ; Antigens, CD80/metabolism ; Antigens, CD86/metabolism ; Autoimmune Diseases/immunology ; *Autoimmunity ; CD8-Positive T-Lymphocytes/immunology ; CTLA-4 Antigen ; Dendritic Cells/immunology ; Down-Regulation ; Female ; Forkhead Transcription Factors/genetics/metabolism ; *Immune Tolerance ; Immunoglobulin E/blood ; Immunoglobulin G/blood ; Leukemia/immunology ; Lymphocyte Activation ; Lymphocytes/immunology ; Male ; Mice ; Mice, Inbred BALB C ; T-Lymphocytes, Regulatory/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-01-11
    Description: Regulatory T cells engage in the maintenance of immunological self-tolerance by actively suppressing self-reactive lymphocytes. Little is known, however, about the molecular mechanism of their development. Here we show that Foxp3, which encodes a transcription factor that is genetically defective in an autoimmune and inflammatory syndrome in humans and mice, is specifically expressed in naturally arising CD4+ regulatory T cells. Furthermore, retroviral gene transfer of Foxp3 converts naive T cells toward a regulatory T cell phenotype similar to that of naturally occurring CD4+ regulatory T cells. Thus, Foxp3 is a key regulatory gene for the development of regulatory T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hori, Shohei -- Nomura, Takashi -- Sakaguchi, Shimon -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1057-61. Epub 2003 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunopathology, Research Center for Allergy and Immunology, Institute for Physical and Chemical Research, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/analysis ; Autoimmune Diseases/immunology/prevention & control ; CD4-Positive T-Lymphocytes/immunology ; Cytokines/biosynthesis ; DNA-Binding Proteins/genetics/*metabolism ; Forkhead Transcription Factors ; Gastritis/immunology/prevention & control ; *Immune Tolerance ; Inflammatory Bowel Diseases/immunology/prevention & control ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, SCID ; Mice, Transgenic ; Mutation ; Receptors, Antigen, T-Cell/immunology ; Receptors, Interleukin-2/analysis ; Recombinant Fusion Proteins/metabolism ; Self Tolerance ; T-Lymphocyte Subsets/cytology/immunology ; T-Lymphocytes/immunology ; T-Lymphocytes, Regulatory/*immunology/*metabolism ; Thymus Gland/cytology/metabolism ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-04-05
    Description: Ultraviolet light (UV)-induced DNA damage can be repaired by DNA photolyase in a light-dependent manner. Two types of photolyase are known, one specific for cyclobutane pyrimidine dimers (CPD photolyase) and another specific for pyrimidine (6-4) pyrimidone photoproducts[(6-4)photolyase]. In contrast to the CPD photolyase, which has been detected in a wide variety of organisms, the (6-4)photolyase has been found only in Drosophila melanogaster. In the present study a gene encoding the Drosophila(6-4)photolyase ws cloned, and the deduced amino acid sequence of the product was found to be similar to the CPD photolyase and to the blue-light photoreceptor of plants. A homolog of the Drosophila (6-4)photolyase gene was also cloned from human cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todo, T -- Ryo, H -- Yamamoto, K -- Toh, H -- Inui, T -- Ayaki, H -- Nomura, T -- Ikenaga, M -- New York, N.Y. -- Science. 1996 Apr 5;272(5258):109-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Radiation Biology Center, Kyoto University, Kyoto, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8600518" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; DNA Repair ; DNA, Complementary/genetics ; Deoxyribodipyrimidine Photo-Lyase/*chemistry/genetics/metabolism ; Drosophila melanogaster/*enzymology/genetics ; Flavin-Adenine Dinucleotide/metabolism ; Genes, Insect ; Humans ; Light ; Molecular Sequence Data ; Photoreceptor Cells, Invertebrate/*chemistry ; Plant Proteins/*chemistry ; Recombinant Proteins/chemistry/metabolism ; Sequence Alignment ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-18
    Description: T cells that mediate autoimmune diseases such as rheumatoid arthritis (RA) are difficult to characterize because they are likely to be deleted or inactivated in the thymus if the self antigens they recognize are ubiquitously expressed. One way to obtain and analyze these autoimmune T cells is to alter T cell receptor (TCR) signaling in developing T cells to change their sensitivity to thymic negative selection, thereby allowing their thymic production. From mice thus engineered to generate T cells mediating autoimmune arthritis, we isolated arthritogenic TCRs and characterized the self antigens they recognized. One of them was the ubiquitously expressed 60S ribosomal protein L23a (RPL23A), with which T cells and autoantibodies from RA patients reacted. This strategy may improve our understanding of the underlying drivers of autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Yoshinaga -- Hashimoto, Motomu -- Hirota, Keiji -- Ohkura, Naganari -- Morikawa, Hiromasa -- Nishikawa, Hiroyoshi -- Tanaka, Atsushi -- Furu, Moritoshi -- Ito, Hiromu -- Fujii, Takao -- Nomura, Takashi -- Yamazaki, Sayuri -- Morita, Akimichi -- Vignali, Dario A A -- Kappler, John W -- Matsuda, Shuichi -- Mimori, Tsuneyo -- Sakaguchi, Noriko -- Sakaguchi, Shimon -- R01 DK089125/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):363-8. doi: 10.1126/science.1259077.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. ; Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. ; Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Osaka University, Osaka 565-0871, Japan. ; Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan. ; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. ; Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA. Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA. ; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0075, Japan. shimon@ifrec.osaka-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis, Rheumatoid/genetics/*immunology ; Autoantigens/*immunology ; Autoimmunity/*immunology ; DNA-Binding Proteins/genetics ; Gene Expression Regulation ; Genes, T-Cell Receptor beta ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Mutant Strains ; Receptors, Antigen, T-Cell/*immunology ; Ribosomal Proteins/genetics/*immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...