ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (239)
  • American Association for the Advancement of Science (AAAS)  (239)
  • 2005-2009  (223)
  • 1980-1984  (16)
  • 2009  (82)
  • 2005  (141)
  • 1983  (11)
  • 1981  (5)
Collection
Publisher
Years
  • 2005-2009  (223)
  • 1980-1984  (16)
Year
  • 1
    Publication Date: 2009-08-29
    Description: Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin-2, fibroblast growth factor-5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cadieu, Edouard -- Neff, Mark W -- Quignon, Pascale -- Walsh, Kari -- Chase, Kevin -- Parker, Heidi G -- Vonholdt, Bridgett M -- Rhue, Alison -- Boyko, Adam -- Byers, Alexandra -- Wong, Aaron -- Mosher, Dana S -- Elkahloun, Abdel G -- Spady, Tyrone C -- Andre, Catherine -- Lark, K Gordon -- Cargill, Michelle -- Bustamante, Carlos D -- Wayne, Robert K -- Ostrander, Elaine A -- 1R01GM83606/GM/NIGMS NIH HHS/ -- GM063056/GM/NIGMS NIH HHS/ -- R01 GM063056/GM/NIGMS NIH HHS/ -- R01 GM063056-09/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):150-3. doi: 10.1126/science.1177808. Epub 2009 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713490" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Dogs/*genetics ; Fibroblast Growth Factor 5/*genetics ; Genome-Wide Association Study ; *Hair/anatomy & histology/growth & development ; Haplotypes ; Keratins, Hair-Specific/*genetics ; Lod Score ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; *Polymorphism, Single Nucleotide ; Sequence Analysis, DNA ; Thrombospondins/*genetics ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-12
    Description: RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y' messenger RNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a previously unknown class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drinnenberg, Ines A -- Weinberg, David E -- Xie, Kathleen T -- Mower, Jeffrey P -- Wolfe, Kenneth H -- Fink, Gerald R -- Bartel, David P -- GM0305010/GM/NIGMS NIH HHS/ -- GM040266/GM/NIGMS NIH HHS/ -- GM067031/GM/NIGMS NIH HHS/ -- R01 GM067031/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):544-50. doi: 10.1126/science.1176945. Epub 2009 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745116" target="_blank"〉PubMed〈/a〉
    Keywords: Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; Genes, Fungal ; Genetic Loci ; Mutation ; Open Reading Frames ; *RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Small Interfering/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Ribonuclease III/genetics/metabolism ; Saccharomyces/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Saccharomycetales/*genetics/metabolism ; Sequence Analysis, RNA ; Transcription, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-02-07
    Description: Prabhakar et al. (Reports, 5 September 2008, p. 1346) argued that the conserved noncoding sequence HACNS1 has undergone positive selection and contributed to human adaptation. However, the pattern of substitution in HACNS1 is more consistent with the neutral process of biased gene conversion (BGC). The reported human-specific gain of function is likely due to the accumulation of deleterious mutations driven by BGC, not positive selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duret, Laurent -- Galtier, Nicolas -- New York, N.Y. -- Science. 2009 Feb 6;323(5915):714; author reply 714. doi: 10.1126/science.1165848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite de Lyon, Universite Lyon 1, CNRS, UMR5558, Laboratoire de Biometrie et Biologie Evolutive, F-69622, Villeurbanne, France. duret@biomserv.univ-lyon1.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19197042" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conserved Sequence ; *Enhancer Elements, Genetic ; Evolution, Molecular ; *Gene Conversion ; Humans ; Mutation ; Recombination, Genetic ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-09-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alberts, Bruce -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1319. doi: 10.1126/science.1181224.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745119" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; *Biomedical Research ; DNA Repair ; Drug Discovery ; Humans ; Mutation ; *Neoplasms/drug therapy/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-08
    Description: Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edwards, Marcus J -- Flatman, Ruth H -- Mitchenall, Lesley A -- Stevenson, Clare E M -- Le, Tung B K -- Clarke, Thomas A -- McKay, Adam R -- Fiedler, Hans-Peter -- Buttner, Mark J -- Lawson, David M -- Maxwell, Anthony -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1415-8. doi: 10.1126/science.1179123.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965760" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/chemistry/metabolism/pharmacology ; Binding Sites ; Coumarins/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; DNA Gyrase/*chemistry/genetics/*metabolism ; DNA, Bacterial/metabolism ; Drug Resistance, Bacterial ; Escherichia coli/drug effects/*enzymology/genetics ; Glycosides/chemistry/metabolism/pharmacology ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutagenesis, Site-Directed ; Mutation ; Protein Multimerization ; Protein Structure, Tertiary ; Topoisomerase II Inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-02-07
    Description: Biodiversity hotspots, representing regions with high species endemism and conservation threat, have been mapped globally. Yet, biodiversity distribution data from within hotspots are too sparse for effective conservation in the face of rapid environmental change. Using frogs as indicators, ecological niche models under paleoclimates, and simultaneous Bayesian analyses of multispecies molecular data, we compare alternative hypotheses of assemblage-scale response to late Quaternary climate change. This reveals a hotspot within the Brazilian Atlantic forest hotspot. We show that the southern Atlantic forest was climatically unstable relative to the central region, which served as a large climatic refugium for neotropical species in the late Pleistocene. This sets new priorities for conservation in Brazil and establishes a validated approach to biodiversity prediction in other understudied, species-rich regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carnaval, Ana Carolina -- Hickerson, Michael J -- Haddad, Celio F B -- Rodrigues, Miguel T -- Moritz, Craig -- New York, N.Y. -- Science. 2009 Feb 6;323(5915):785-9. doi: 10.1126/science.1166955.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720-3160, USA. carnaval@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19197066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura/classification/*genetics ; Bayes Theorem ; *Biodiversity ; Brazil ; Conservation of Natural Resources ; DNA, Mitochondrial/genetics ; Demography ; *Ecosystem ; Geography ; Molecular Sequence Data ; Mutation ; Phylogeny ; Population Dynamics ; Time ; *Trees ; *Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-11
    Description: Rapid antigenic evolution in the influenza A virus hemagglutinin precludes effective vaccination with existing vaccines. To understand this phenomenon, we passaged virus in mice immunized with influenza vaccine. Neutralizing antibodies selected mutants with single-amino acid hemagglutinin substitutions that increased virus binding to cell surface glycan receptors. Passaging these high-avidity binding mutants in naive mice, but not immune mice, selected for additional hemagglutinin substitutions that decreased cellular receptor binding avidity. Analyzing a panel of monoclonal antibody hemagglutinin escape mutants revealed a positive correlation between receptor binding avidity and escape from polyclonal antibodies. We propose that in response to variation in neutralizing antibody pressure between individuals, influenza A virus evolves by adjusting receptor binding avidity via amino acid substitutions throughout the hemagglutinin globular domain, many of which simultaneously alter antigenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hensley, Scott E -- Das, Suman R -- Bailey, Adam L -- Schmidt, Loren M -- Hickman, Heather D -- Jayaraman, Akila -- Viswanathan, Karthik -- Raman, Rahul -- Sasisekharan, Ram -- Bennink, Jack R -- Yewdell, Jonathan W -- GM 57073/GM/NIGMS NIH HHS/ -- U54 GM62116/GM/NIGMS NIH HHS/ -- Z01 AI001014-01/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 30;326(5953):734-6. doi: 10.1126/science.1178258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology ; Antibodies, Viral/immunology ; Antigenic Variation/genetics/*immunology ; Cell Line ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/immunology/*metabolism ; Influenza A Virus, H1N1 Subtype/genetics/*immunology ; Influenza Vaccines/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Models, Immunological ; Mutation ; Receptors, Virus/*metabolism ; Serial Passage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-06-13
    Description: Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca2+) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca2+ sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoki, Scott T -- Settembre, Ethan C -- Trask, Shane D -- Greenberg, Harry B -- Harrison, Stephen C -- Dormitzer, Philip R -- AI-21362/AI/NIAID NIH HHS/ -- CA-13202/CA/NCI NIH HHS/ -- DK-56339/DK/NIDDK NIH HHS/ -- R37 CA013202/CA/NCI NIH HHS/ -- R37 CA013202-38/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jun 12;324(5933):1444-7. doi: 10.1126/science.1170481.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520960" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibodies, Viral/chemistry/*immunology/metabolism ; Antigens, Viral/*chemistry/genetics/*immunology/metabolism ; Binding Sites ; Binding Sites, Antibody ; Calcium/metabolism ; Capsid Proteins/*chemistry/genetics/*immunology/metabolism ; Crystallography, X-Ray ; Epitopes/immunology ; Immunoglobulin Fab Fragments/chemistry/*immunology/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Protein Folding ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits ; Recombinant Proteins/chemistry ; Rotavirus/*chemistry/immunology ; Serotyping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1612. doi: 10.1126/science.326.5960.1612.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20019263" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; DNA-Binding Proteins/genetics/physiology ; Drosophila Proteins/genetics/physiology ; Drosophila melanogaster/*genetics/growth & development/physiology ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Developmental ; Mutation ; Paired Box Transcription Factors/genetics ; Pigmentation/genetics ; Regulatory Sequences, Nucleic Acid ; Smegmamorpha/anatomy & histology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-04-18
    Description: Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijsing, Sebastiaan H -- Pufall, Miles A -- So, Alex Y -- Bates, Darren L -- Chen, Lin -- Yamamoto, Keith R -- GM08537/GM/NIGMS NIH HHS/ -- R01 CA020535/CA/NCI NIH HHS/ -- R01 CA020535-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):407-10. doi: 10.1126/science.1164265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line, Tumor ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2009-04-11
    Description: Synonymous mutations do not alter the encoded protein, but they can influence gene expression. To investigate how, we engineered a synthetic library of 154 genes that varied randomly at synonymous sites, but all encoded the same green fluorescent protein (GFP). When expressed in Escherichia coli, GFP protein levels varied 250-fold across the library. GFP messenger RNA (mRNA) levels, mRNA degradation patterns, and bacterial growth rates also varied, but codon bias did not correlate with gene expression. Rather, the stability of mRNA folding near the ribosomal binding site explained more than half the variation in protein levels. In our analysis, mRNA folding and associated rates of translation initiation play a predominant role in shaping expression levels of individual genes, whereas codon bias influences global translation efficiency and cellular fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902468/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902468/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kudla, Grzegorz -- Murray, Andrew W -- Tollervey, David -- Plotkin, Joshua B -- BB/D019621/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/DO19621/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/DO19621/1/Wellcome Trust/United Kingdom -- P50 GM068763/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):255-8. doi: 10.1126/science.1170160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Program in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359587" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Base Composition ; Cloning, Molecular ; *Codon ; Escherichia coli/*genetics/growth & development/metabolism ; *Gene Expression ; Gene Library ; Genes, Synthetic ; Green Fluorescent Proteins/*genetics/metabolism ; Mutation ; Nucleic Acid Conformation ; Protein Biosynthesis ; RNA Stability ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2009-04-18
    Description: Oxygen deprivation is rapidly deleterious for most organisms. However, Caenorhabditis elegans has developed the ability to survive anoxia for at least 48 hours. Mutations in the DAF-2/DAF-16 insulin-like signaling pathway promote such survival. We describe a pathway involving the HYL-2 ceramide synthase that acts independently of DAF-2. Loss of the ceramide synthase gene hyl-2 results in increased sensitivity of C. elegans to anoxia. C. elegans has two ceramide synthases, hyl-1 and hyl-2, that participate in ceramide biogenesis and affect its ability to survive anoxic conditions. In contrast to hyl-2(lf) mutants, hyl-1(lf) mutants are more resistant to anoxia than normal animals. HYL-1 and HYL-2 have complementary specificities for fatty acyl chains. These data indicate that specific ceramides produced by HYL-2 confer resistance to anoxia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menuz, Vincent -- Howell, Kate S -- Gentina, Sebastien -- Epstein, Sharon -- Riezman, Isabelle -- Fornallaz-Mulhauser, Monique -- Hengartner, Michael O -- Gomez, Marie -- Riezman, Howard -- Martinou, Jean-Claude -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):381-4. doi: 10.1126/science.1168532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372430" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Caenorhabditis elegans/cytology/genetics/*physiology ; Caenorhabditis elegans Proteins/*genetics/*metabolism ; *Cell Hypoxia ; Ceramides/biosynthesis/*physiology ; Gene Deletion ; Genes, Helminth ; Mutation ; Oxidoreductases/*genetics/*metabolism ; Oxygen/*physiology ; Receptor, Insulin/genetics/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/physiology ; Sphingomyelins/biosynthesis/physiology ; Substrate Specificity ; Transformation, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1196-9. doi: 10.1126/science.325_1196.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19729633" target="_blank"〉PubMed〈/a〉
    Keywords: Altruism ; Animals ; Bacteriophages/physiology ; *Biological Evolution ; Competitive Behavior ; *Cooperative Behavior ; Dictyostelium/physiology ; Family ; Game Theory ; Games, Experimental ; Humans ; Mutation ; Pseudomonas aeruginosa/physiology ; Punishment ; Quorum Sensing ; Reward ; Selection, Genetic ; *Social Behavior ; Warfare
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2009-03-17
    Description: The YODA (YDA) mitogen-activated protein kinase pathway promotes elongation of the Arabidopsis zygote and development of its basal daughter cell into the extra-embryonic suspensor. Here, we show that the interleukin-1 receptor-associated kinase (IRAK)/Pelle-like kinase gene SHORT SUSPENSOR (SSP) regulates this pathway through a previously unknown parent-of-origin effect. SSP transcripts are produced in mature pollen but do not appear to be translated. Instead, they are delivered via the sperm cells to the zygote and the endosperm, where SSP protein transiently accumulates. Ectopic expression of SSP protein in the leaf epidermis is sufficient to activate YDA-dependent signaling. We propose that SSP protein produced from paternal transcripts upon fertilization triggers zygotic YDA activity, providing an essential temporal cue for the regulation of the asymmetric first division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bayer, Martin -- Nawy, Tal -- Giglione, Carmela -- Galli, Mary -- Meinnel, Thierry -- Lukowitz, Wolfgang -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1485-8. doi: 10.1126/science.1167784.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286558" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Arabidopsis/*embryology/*genetics/metabolism ; Arabidopsis Proteins/*metabolism ; Biocatalysis ; Catalytic Domain ; Cell Division ; Crosses, Genetic ; *Gene Expression Regulation, Plant ; Genomic Imprinting ; Interleukin-1 Receptor-Associated Kinases/chemistry/*genetics/*metabolism ; MAP Kinase Kinase Kinases/*metabolism ; MAP Kinase Signaling System ; Mutation ; Plants, Genetically Modified ; Pollen/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins ; Seeds/growth & development/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-01-10
    Description: Histone deacetylase 4 (HDAC4) shuttles between the nucleus and cytoplasm and serves as a nuclear co-repressor that regulates bone and muscle development. We report that HDAC4 regulates the survival of retinal neurons in the mouse in normal and pathological conditions. Reduction in HDAC4 expression during normal retinal development led to apoptosis of rod photoreceptors and bipolar (BP) interneurons, whereas overexpression reduced naturally occurring cell death of the BP cells. HDAC4 overexpression in a mouse model of retinal degeneration prolonged photoreceptor survival. The survival effect was due to the activity of HDAC4 in the cytoplasm and relied at least partly on the activity of hypoxia-inducible factor 1alpha (HIF1alpha). These data provide evidence that HDAC4 plays an important role in promoting the survival of retinal neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339762/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339762/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Bo -- Cepko, Constance L -- EYO 14466/PHS HHS/ -- R01 EY014466/EY/NEI NIH HHS/ -- R01 EY014466-05/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jan 9;323(5911):256-9. doi: 10.1126/science.1166226.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. bochen@genetics.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131628" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Apoptosis ; Cell Nucleus/enzymology ; Cell Survival ; Cytoplasm/enzymology ; Electroporation ; Histone Deacetylases/genetics/*metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Mice ; Mutation ; Retina/cytology/*enzymology ; Retinal Degeneration/*enzymology/pathology ; Retinal Neurons/enzymology/*physiology ; Retinal Rod Photoreceptor Cells/enzymology/*physiology ; Rhodopsin/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2009-03-28
    Description: Precise wiring of the nervous system depends on coordinating the action of conserved families of proteins that direct axons to their appropriate targets. Slit-roundabout repulsion and netrin-deleted in colorectal cancer (DCC) (frazzled) attraction must be tightly regulated to control midline axon guidance in vertebrates and invertebrates, but the mechanism mediating this regulation is poorly defined. Here, we show that the Fra receptor has two genetically separable functions in regulating midline guidance in Drosophila. First, Fra mediates canonical chemoattraction in response to netrin, and, second, it functions independently of netrin to activate commissureless transcription, allowing attraction to be coupled to the down-regulation of repulsion in precrossing commissural axons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078765/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078765/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Long -- Garbe, David S -- Bashaw, Greg J -- NS046333/NS/NINDS NIH HHS/ -- NS054739/NS/NINDS NIH HHS/ -- R01 NS046333/NS/NINDS NIH HHS/ -- R01 NS046333-07/NS/NINDS NIH HHS/ -- R01 NS054739/NS/NINDS NIH HHS/ -- R01 NS054739-03/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):944-7. doi: 10.1126/science.1171320. Epub 2009 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, University of Pennsylvania School of Medicine, 1113 BRB2/3, 421 Curie Boulevard, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325078" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; *Gene Expression Regulation, Developmental ; Membrane Proteins/*genetics/metabolism ; Mutation ; Nerve Growth Factors/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Nervous System/embryology/growth & development ; Neurons/*physiology ; RNA, Messenger/genetics/metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Receptors, Immunologic/genetics ; Signal Transduction ; Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2009-04-04
    Description: Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide-induced pathological fission remains unclear. We found that nitric oxide produced in response to beta-amyloid protein, thought to be a key mediator of Alzheimer's disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimer's disease patients and may thus contribute to the pathogenesis of neurodegeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823371/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823371/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Dong-Hyung -- Nakamura, Tomohiro -- Fang, Jianguo -- Cieplak, Piotr -- Godzik, Adam -- Gu, Zezong -- Lipton, Stuart A -- P01 ES016738/ES/NIEHS NIH HHS/ -- P01 ES016738-01/ES/NIEHS NIH HHS/ -- P01 ES016738-010003/ES/NIEHS NIH HHS/ -- P01 ES016738-02/ES/NIEHS NIH HHS/ -- P01 ES016738-020003/ES/NIEHS NIH HHS/ -- P01 HD029587/HD/NICHD NIH HHS/ -- P01 HD029587-16/HD/NICHD NIH HHS/ -- P01 HD29587/HD/NICHD NIH HHS/ -- P30 NS057096/NS/NINDS NIH HHS/ -- P30 NS057096-04/NS/NINDS NIH HHS/ -- R01 EY005477/EY/NEI NIH HHS/ -- R01 EY005477-25/EY/NEI NIH HHS/ -- R01 EY05477/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 3;324(5923):102-5. doi: 10.1126/science.1171091.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342591" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism/pathology ; Amino Acid Motifs ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Cell Line ; Cell Line, Tumor ; Cerebral Cortex/cytology ; Cysteine/analogs & derivatives/genetics/metabolism/pharmacology ; Female ; GTP Phosphohydrolases/chemistry/*metabolism ; Humans ; Male ; Mice ; Mice, Transgenic ; Microtubule-Associated Proteins/chemistry/*metabolism ; Mitochondria/drug effects/physiology/*ultrastructure ; Mitochondrial Proteins/chemistry/*metabolism ; Models, Molecular ; Mutation ; Neurons/drug effects/*ultrastructure ; Nitric Oxide/*metabolism ; Peptide Fragments/metabolism/pharmacology ; Protein Multimerization ; Protein Structure, Tertiary ; S-Nitrosothiols/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wijnen, Herman -- R01 GM078339/GM/NIGMS NIH HHS/ -- R01 GM078339-03/GM/NIGMS NIH HHS/ -- R01 GM78839/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 1;324(5927):598-9. doi: 10.1126/science.1174132.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Virginia, Charlottesville, VA 22904, USA. hw9u@virginai.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19407188" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Acetylation ; Acrylamides/pharmacology ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; *Biological Clocks ; CLOCK Proteins ; *Circadian Rhythm ; Cytokines/antagonists & inhibitors/genetics/*metabolism ; *Feedback, Physiological ; Gene Expression Regulation ; Mice ; Mutation ; NAD/*metabolism ; Nicotinamide Phosphoribosyltransferase/antagonists & ; inhibitors/genetics/*metabolism ; Piperidines/pharmacology ; Sirtuin 1 ; Sirtuins/*metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2009-01-20
    Description: Like many species, the model plant Arabidopsis thaliana exhibits multiple different life histories in natural environments. We grew mutants impaired in different signaling pathways in field experiments across the species' native European range in order to dissect the mechanisms underlying this variation. Unexpectedly, mutational loss at loci implicated in the cold requirement for flowering had little effect on life history except in late-summer cohorts. A genetically informed photothermal model of progression toward flowering explained most of the observed variation and predicted an abrupt transition from autumn flowering to spring flowering in late-summer germinants. Environmental signals control the timing of this transition, creating a critical window of acute sensitivity to genetic and climatic change that may be common for seasonally regulated life history traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilczek, Amity M -- Roe, Judith L -- Knapp, Mary C -- Cooper, Martha D -- Lopez-Gallego, Cristina -- Martin, Laura J -- Muir, Christopher D -- Sim, Sheina -- Walker, Alexis -- Anderson, Jillian -- Egan, J Franklin -- Moyers, Brook T -- Petipas, Renee -- Giakountis, Antonis -- Charbit, Erika -- Coupland, George -- Welch, Stephen M -- Schmitt, Johanna -- New York, N.Y. -- Science. 2009 Feb 13;323(5916):930-4. doi: 10.1126/science.1165826. Epub 2009 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150810" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Arabidopsis/*genetics/*growth & development ; Environment ; Flowers/growth & development ; Mutation ; Photoperiod ; Seasons ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2009-12-19
    Description: The evolution of cis regulatory elements (enhancers) of developmentally regulated genes plays a large role in the evolution of animal morphology. However, the mutational path of enhancer evolution--the number, origin, effect, and order of mutations that alter enhancer function--has not been elucidated. Here, we localized a suite of substitutions in a modular enhancer of the ebony locus responsible for adaptive melanism in a Ugandan Drosophila population. We show that at least five mutations with varied effects arose recently from a combination of standing variation and new mutations and combined to create an allele of large phenotypic effect. We underscore how enhancers are distinct macromolecular entities, subject to fundamentally different, and generally more relaxed, functional constraints relative to protein sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3363996/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3363996/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rebeiz, Mark -- Pool, John E -- Kassner, Victoria A -- Aquadro, Charles F -- Carroll, Sean B -- F32GM78972/GM/NIGMS NIH HHS/ -- F32HG004182/HG/NHGRI NIH HHS/ -- GM036431/GM/NIGMS NIH HHS/ -- R01 GM036431/GM/NIGMS NIH HHS/ -- R01 GM036431-22/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1663-7. doi: 10.1126/science.1178357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20019281" target="_blank"〉PubMed〈/a〉
    Keywords: Abdomen ; Adaptation, Biological ; Alleles ; Animals ; Animals, Genetically Modified ; *Biological Evolution ; DNA-Binding Proteins/*genetics ; Drosophila Proteins/*genetics ; Drosophila melanogaster/*genetics/growth & development/physiology ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Gene Expression Regulation, Developmental ; Haplotypes ; Molecular Sequence Data ; Mutation ; Pigmentation/*genetics ; Polymorphism, Genetic ; Uganda
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2009-01-20
    Description: The nematode Caenorhabditis elegans responds to pathogenic bacteria with conserved innate immune responses and pathogen avoidance behaviors. We investigated natural variation in C. elegans resistance to pathogen infection. With the use of quantitative genetic analysis, we determined that the pathogen susceptibility difference between the laboratory wild-type strain N2 and the wild isolate CB4856 is caused by a polymorphism in the npr-1 gene, which encodes a homolog of the mammalian neuropeptide Y receptor. We show that the mechanism of NPR-1-mediated pathogen resistance is through oxygen-dependent behavioral avoidance rather than direct regulation of innate immunity. For C. elegans, bacteria represent food but also a potential source of infection. Our data underscore the importance of behavioral responses to oxygen levels in finding an optimal balance between these potentially conflicting cues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748219/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748219/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Kirthi C -- Andersen, Erik C -- Kruglyak, Leonid -- Kim, Dennis H -- GM071508/GM/NIGMS NIH HHS/ -- GM084477/GM/NIGMS NIH HHS/ -- HG004321/HG/NHGRI NIH HHS/ -- R01 GM084477/GM/NIGMS NIH HHS/ -- R01 GM084477-02/GM/NIGMS NIH HHS/ -- R01 HG004321/HG/NHGRI NIH HHS/ -- R01 HG004321-02/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):382-4. doi: 10.1126/science.1166527.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150845" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; Caenorhabditis elegans/*genetics/immunology/*microbiology/physiology ; Caenorhabditis elegans Proteins/*genetics/*physiology ; Cues ; Genes, Helminth ; Immunity, Innate ; Movement ; Mutation ; Oxygen/physiology ; Polymorphism, Genetic ; Pseudomonas aeruginosa/*pathogenicity/physiology ; Receptors, Neuropeptide Y/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2009-11-07
    Description: The LKB1 tumor suppressor is a protein kinase that controls the activity of adenosine monophosphate-activated protein kinase (AMPK). LKB1 activity is regulated by the pseudokinase STRADalpha and the scaffolding protein MO25alpha through an unknown, phosphorylation-independent, mechanism. We describe the structure of the core heterotrimeric LKB1-STRADalpha-MO25alpha complex, revealing an unusual allosteric mechanism of LKB1 activation. STRADalpha adopts a closed conformation typical of active protein kinases and binds LKB1 as a pseudosubstrate. STRADalpha and MO25alpha promote the active conformation of LKB1, which is stabilized by MO25alpha interacting with the LKB1 activation loop. This previously undescribed mechanism of kinase activation may be relevant to understanding the evolution of other pseudokinases. The structure also reveals how mutations found in Peutz-Jeghers syndrome and in various sporadic cancers impair LKB1 function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeqiraj, Elton -- Filippi, Beatrice Maria -- Deak, Maria -- Alessi, Dario R -- van Aalten, Daan M F -- 087590/Wellcome Trust/United Kingdom -- C33794/A10969/Cancer Research UK/United Kingdom -- G0900138/Medical Research Council/United Kingdom -- MC_U127070193/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1707-11. doi: 10.1126/science.1178377. Epub 2009 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892943" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/metabolism ; Adaptor Proteins, Vesicular Transport/*chemistry/metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Binding Sites ; Calcium-Binding Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Mutant Proteins/chemistry/metabolism ; Mutation ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2009-04-04
    Description: Plants possess inducible systemic defense responses when locally infected by pathogens. Bacterial infection results in the increased accumulation of the mobile metabolite azelaic acid, a nine-carbon dicarboxylic acid, in the vascular sap of Arabidopsis that confers local and systemic resistance against the pathogen Pseudomonas syringae. Azelaic acid primes plants to accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of the AZELAIC ACID INDUCED 1 (AZI1) gene, which is induced by azelaic acid, results in the specific loss of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in plants. Furthermore, the predicted secreted protein AZI1 is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 are components of plant systemic immunity involved in priming defenses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jung, Ho Won -- Tschaplinski, Timothy J -- Wang, Lin -- Glazebrook, Jane -- Greenberg, Jean T -- New York, N.Y. -- Science. 2009 Apr 3;324(5923):89-91. doi: 10.1126/science.1170025.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 East 57th Street EBC410, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342588" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*immunology/metabolism/*microbiology ; Arabidopsis Proteins/*genetics/physiology ; Dicarboxylic Acids/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Immunity, Innate ; Mutation ; Oligonucleotide Array Sequence Analysis ; Plant Diseases/*immunology ; Plant Leaves/immunology/metabolism ; Pseudomonas syringae/growth & development/*immunology/pathogenicity ; Salicylic Acid/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2009-03-03
    Description: Mammals have single-rowed dentitions, whereas many nonmammalian vertebrates have teeth in multiple rows. Neither the molecular mechanism regulating iterative tooth initiation nor that restricting mammalian tooth development in one row is known. We found that mice lacking the transcription factor odd-skipped related-2 (Osr2) develop supernumerary teeth lingual to their molars because of expansion of the odontogenic field. Osr2 was expressed in a lingual-to-buccal gradient and restricted expression of bone morphogenetic protein 4 (Bmp4), an essential odontogenic signal, in the developing tooth mesenchyme. Expansion of odontogenic field in Osr2-deficient mice required Msx1, a feedback activator of Bmp4 expression. These findings suggest that the Bmp4-Msx1 pathway propagates mesenchymal activation for sequential tooth induction and that spatial modulation of this pathway provides a mechanism for patterning vertebrate dentition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Zunyi -- Lan, Yu -- Chai, Yang -- Jiang, Rulang -- R01 DE013681/DE/NIDCR NIH HHS/ -- R01 DE013681-06/DE/NIDCR NIH HHS/ -- R01 DE013681-07/DE/NIDCR NIH HHS/ -- R01 DE013681-08/DE/NIDCR NIH HHS/ -- R01 DE013681-09/DE/NIDCR NIH HHS/ -- R01DE013681/DE/NIDCR NIH HHS/ -- T32DE007202/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1232-4. doi: 10.1126/science.1167418.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Oral Biology and Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein 4/metabolism ; Dentition ; Epithelium/embryology/metabolism ; Gene Expression ; Gene Expression Profiling ; MSX1 Transcription Factor/genetics/*metabolism ; Mesoderm/embryology/metabolism ; Mice ; Molar/embryology ; Morphogenesis ; Mutation ; *Odontogenesis ; Tooth Germ/embryology/metabolism ; Tooth, Supernumerary/*embryology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2009-04-25
    Description: The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735092/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735092/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bovine HapMap Consortium -- Gibbs, Richard A -- Taylor, Jeremy F -- Van Tassell, Curtis P -- Barendse, William -- Eversole, Kellye A -- Gill, Clare A -- Green, Ronnie D -- Hamernik, Debora L -- Kappes, Steven M -- Lien, Sigbjorn -- Matukumalli, Lakshmi K -- McEwan, John C -- Nazareth, Lynne V -- Schnabel, Robert D -- Weinstock, George M -- Wheeler, David A -- Ajmone-Marsan, Paolo -- Boettcher, Paul J -- Caetano, Alexandre R -- Garcia, Jose Fernando -- Hanotte, Olivier -- Mariani, Paola -- Skow, Loren C -- Sonstegard, Tad S -- Williams, John L -- Diallo, Boubacar -- Hailemariam, Lemecha -- Martinez, Mario L -- Morris, Chris A -- Silva, Luiz O C -- Spelman, Richard J -- Mulatu, Woudyalew -- Zhao, Keyan -- Abbey, Colette A -- Agaba, Morris -- Araujo, Flabio R -- Bunch, Rowan J -- Burton, James -- Gorni, Chiara -- Olivier, Hanotte -- Harrison, Blair E -- Luff, Bill -- Machado, Marco A -- Mwakaya, Joel -- Plastow, Graham -- Sim, Warren -- Smith, Timothy -- Thomas, Merle B -- Valentini, Alessio -- Williams, Paul -- Womack, James -- Woolliams, John A -- Liu, Yue -- Qin, Xiang -- Worley, Kim C -- Gao, Chuan -- Jiang, Huaiyang -- Moore, Stephen S -- Ren, Yanru -- Song, Xing-Zhi -- Bustamante, Carlos D -- Hernandez, Ryan D -- Muzny, Donna M -- Patil, Shobha -- San Lucas, Anthony -- Fu, Qing -- Kent, Matthew P -- Vega, Richard -- Matukumalli, Aruna -- McWilliam, Sean -- Sclep, Gert -- Bryc, Katarzyna -- Choi, Jungwoo -- Gao, Hong -- Grefenstette, John J -- Murdoch, Brenda -- Stella, Alessandra -- Villa-Angulo, Rafael -- Wright, Mark -- Aerts, Jan -- Jann, Oliver -- Negrini, Riccardo -- Goddard, Mike E -- Hayes, Ben J -- Bradley, Daniel G -- Barbosa da Silva, Marcos -- Lau, Lilian P L -- Liu, George E -- Lynn, David J -- Panzitta, Francesca -- Dodds, Ken G -- R01 GM083606/GM/NIGMS NIH HHS/ -- R01 GM083606-02/GM/NIGMS NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 24;324(5926):528-32. doi: 10.1126/science.1167936.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19390050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breeding ; Cattle/*genetics ; Female ; Gene Frequency ; *Genetic Variation ; *Genome ; Male ; Molecular Sequence Data ; Mutation ; *Polymorphism, Single Nucleotide ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmer, Carl -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1334-6. doi: 10.1126/science.326.5958.1334.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965730" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; Climate Change ; Cultural Evolution ; Ecosystem ; Evolution, Planetary ; Extinction, Biological ; Genetic Engineering ; *Genome, Human ; Human Activities ; Humans ; Mutation ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1156-7. doi: 10.1126/science.323.5918.1156.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251598" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/*pharmacology/therapeutic use ; Biotechnology/legislation & jurisprudence ; California ; Databases, Factual/*legislation & jurisprudence ; *Drug Resistance, Viral/genetics ; HIV/*drug effects/genetics ; HIV Infections/drug therapy/virology ; Humans ; Internet ; Luxembourg ; Mutation ; Patents as Topic/*legislation & jurisprudence ; Universities/legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2009-03-28
    Description: Temperature affects the physiology, behavior, and evolution of organisms. We conducted mutagenesis and screens for mutants with altered temperature preference in Drosophila melanogaster and identified a cryophilic (cold-seeking) mutant, named atsugari (atu). Reduced expression of the Drosophila ortholog of dystroglycan (DmDG) induced tolerance to cold as well as preference for the low temperature. A sustained increase in mitochondrial oxidative metabolism caused by the reduced expression of DmDG accounted for the cryophilic phenotype of the atu mutant. Although most ectothermic animals do not use metabolically produced heat to regulate body temperature, our results indicate that their thermoregulatory behavior is closely linked to rates of mitochondrial oxidative metabolism and that a mutation in a single gene can induce a sustained change in energy homeostasis and the thermal responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeuchi, Ken-Ichi -- Nakano, Yoshiro -- Kato, Utako -- Kaneda, Mizuho -- Aizu, Masako -- Awano, Wakae -- Yonemura, Shigenobu -- Kiyonaka, Shigeki -- Mori, Yasuo -- Yamamoto, Daisuke -- Umeda, Masato -- New York, N.Y. -- Science. 2009 Mar 27;323(5922):1740-3. doi: 10.1126/science.1165712.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325118" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Animals, Genetically Modified ; Body Temperature Regulation ; Calcium/metabolism ; *Cold Temperature ; Drosophila Proteins/genetics/*physiology ; Drosophila melanogaster/genetics/*physiology ; Dystroglycans/genetics/*physiology ; *Energy Metabolism ; Homeostasis ; Mitochondria/metabolism ; Mutant Proteins ; Mutation ; Oxygen Consumption ; Phenotype ; Pyruvate Dehydrogenase Complex/metabolism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2009-06-06
    Description: Knowing when and where a given protein is activated within intact animals assists in elucidating its in vivo function. With the use of a genetically encoded A-probe (activation bioprobe), we revealed that Cdc42 guanosine triphosphatase (GTPase) remains inactive within Drosophila embryos during the first two-thirds of embryogenesis. Within the central nervous system where Cdc42 activity first becomes up-regulated, individual neurons display patterns restricted to specific subcellular compartments. At both organismal and cellular levels, Cdc42's endogenous activation patterns in the wild type allow predictions of where loss-of-function phenotypes will emerge in cdc42/cdc42 mutants. Genetic tests support the importance of suppressing endogenous Cdc42 activities until needed. Thus, bioprobe-assisted analysis uncovers how ubiquitously expressed signaling proteins control cellular events through continual regulation of their activities within animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729367/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729367/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kamiyama, Daichi -- Chiba, Akira -- R01 MH068650-01A2/MH/NIMH NIH HHS/ -- R01 MH079432-01A1/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 5;324(5932):1338-40. doi: 10.1126/science.1170615.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Miami Institute of Molecular Imaging and Computation, University of Miami, Coral Gables, FL 33146, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19498173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/ultrastructure ; Central Nervous System/embryology/enzymology ; Dendrites/ultrastructure ; Drosophila/*embryology/enzymology/genetics ; Drosophila Proteins/genetics/*metabolism ; Embryo, Nonmammalian/*enzymology ; Embryonic Development ; Enzyme Activation ; Fluorescence Resonance Energy Transfer ; Molecular Probe Techniques ; Motor Neurons/cytology/*enzymology ; Mutation ; Organogenesis ; Phenotype ; cdc42 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2009-07-11
    Description: John Nash showed that within a complex system, individuals are best off if they make the best decision that they can, taking into account the decisions of the other individuals. Here, we investigate whether similar principles influence the evolution of signaling networks in multicellular animals. Specifically, by analyzing a set of metazoan species we observed a striking negative correlation of genomically encoded tyrosine content with biological complexity (as measured by the number of cell types in each organism). We discuss how this observed tyrosine loss correlates with the expansion of tyrosine kinases in the evolution of the metazoan lineage and how it may relate to the optimization of signaling systems in multicellular animals. We propose that this phenomenon illustrates genome-wide adaptive evolution to accommodate beneficial genetic perturbation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Chris Soon Heng -- Pasculescu, Adrian -- Lim, Wendell A -- Pawson, Tony -- Bader, Gary D -- Linding, Rune -- R01 GM055040/GM/NIGMS NIH HHS/ -- R01 GM055040-11/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 25;325(5948):1686-8. doi: 10.1126/science.1174301. Epub 2009 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19589966" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; *Evolution, Molecular ; Fungal Proteins/chemistry/metabolism ; Glycosylation ; Humans ; Methylation ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/*metabolism ; Proteins/*chemistry/*metabolism ; *Selection, Genetic ; *Signal Transduction ; Substrate Specificity ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2009-02-07
    Description: Speciation often involves the evolution of incompatible gene interactions that cause sterility or lethality in hybrids between populations. These so-called hybrid incompatibilities occur between two or more functionally divergent loci. We show that the nucleoporin 160kDa (Nup160) gene of the fruitfly Drosophila simulans is incompatible with one or more factors on the D. melanogaster X chromosome, causing hybrid lethality. Nup160 encodes a nuclear pore complex protein and shows evidence of adaptive evolution. Furthermore, the protein encoded by Nup160 directly interacts with that of another hybrid lethality gene, Nup96, indicating that at least two lethal hybrid incompatibility genes have evolved as byproducts of divergent coevolution among interacting components of the Drosophila nuclear pore complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Shanwu -- Presgraves, Daven C -- R01 GM079543/GM/NIGMS NIH HHS/ -- R01 GM079543-01A1/GM/NIGMS NIH HHS/ -- R01-GM079543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 6;323(5915):779-82. doi: 10.1126/science.1169123.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, Rochester, NY 14627, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19197064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Crosses, Genetic ; Drosophila/*genetics/*physiology ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/genetics/*physiology ; *Evolution, Molecular ; Female ; Genes, Insect ; *Genetic Speciation ; Hybridization, Genetic ; Male ; Molecular Sequence Data ; Mutation ; Nuclear Pore Complex Proteins/*genetics/metabolism ; Selection, Genetic ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2009-01-24
    Description: Membrane fusion between vesicles and target membranes involves the zippering of a four-helix bundle generated by constituent helices derived from target- and vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). In neurons, the protein complexin clamps otherwise spontaneous fusion by SNARE proteins, allowing neurotransmitters and other mediators to be secreted when and where they are needed as this clamp is released. The membrane-proximal accessory helix of complexin is necessary for clamping, but its mechanism of action is unknown. Here, we present experiments using a reconstituted fusion system that suggest a simple model in which the complexin accessory helix forms an alternative four-helix bundle with the target-SNARE near the membrane, preventing the vesicle-SNARE from completing its zippering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736854/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736854/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giraudo, Claudio G -- Garcia-Diaz, Alejandro -- Eng, William S -- Chen, Yuhang -- Hendrickson, Wayne A -- Melia, Thomas J -- Rothman, James E -- R01 GM071458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 23;323(5913):512-6. doi: 10.1126/science.1166500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Building, Room 520, New York, NY 10032, USA. claudio.giraudo@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164750" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Sequence ; HeLa Cells ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Recombinant Fusion Proteins/chemistry/metabolism ; SNARE Proteins/*chemistry/*metabolism ; Vesicle-Associated Membrane Protein 2/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2009-08-08
    Description: The catalytic engine of RNA interference (RNAi) is the RNA-induced silencing complex (RISC), wherein the endoribonuclease Argonaute and single-stranded small interfering RNA (siRNA) direct target mRNA cleavage. We reconstituted long double-stranded RNA- and duplex siRNA-initiated RISC activities with the use of recombinant Drosophila Dicer-2, R2D2, and Ago2 proteins. We used this core reconstitution system to purify an RNAi regulator that we term C3PO (component 3 promoter of RISC), a complex of Translin and Trax. C3PO is a Mg2+-dependent endoribonuclease that promotes RISC activation by removing siRNA passenger strand cleavage products. These studies establish an in vitro RNAi reconstitution system and identify C3PO as a key activator of the core RNAi machinery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ying -- Ye, Xuecheng -- Jiang, Feng -- Liang, Chunyang -- Chen, Dongmei -- Peng, Junmin -- Kinch, Lisa N -- Grishin, Nick V -- Liu, Qinghua -- AG025688/AG/NIA NIH HHS/ -- GM078163/GM/NIGMS NIH HHS/ -- GM084010/GM/NIGMS NIH HHS/ -- R01 GM078163/GM/NIGMS NIH HHS/ -- R01 GM078163-03/GM/NIGMS NIH HHS/ -- R01 GM084010/GM/NIGMS NIH HHS/ -- R01 GM084010-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):750-3. doi: 10.1126/science.1176325.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661431" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Carrier Proteins/chemistry/genetics/isolation & purification/*metabolism ; Catalytic Domain ; Drosophila Proteins/chemistry/genetics/isolation & purification/*metabolism ; Drosophila melanogaster/chemistry/enzymology/*genetics ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; RNA Helicases/genetics/metabolism ; *RNA Interference ; RNA, Double-Stranded/chemistry/metabolism ; RNA, Small Interfering/chemistry/metabolism ; RNA-Binding Proteins/genetics/metabolism ; RNA-Induced Silencing Complex/genetics/*metabolism ; Recombinant Proteins/metabolism ; Ribonuclease III/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2009-09-12
    Description: Bacterial nitric oxide synthases (bNOS) are present in many Gram-positive species and have been demonstrated to synthesize NO from arginine in vitro and in vivo. However, the physiological role of bNOS remains largely unknown. We show that NO generated by bNOS increases the resistance of bacteria to a broad spectrum of antibiotics, enabling the bacteria to survive and share habitats with antibiotic-producing microorganisms. NO-mediated resistance is achieved through both the chemical modification of toxic compounds and the alleviation of the oxidative stress imposed by many antibiotics. Our results suggest that the inhibition of NOS activity may increase the effectiveness of antimicrobial therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929644/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929644/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gusarov, Ivan -- Shatalin, Konstantin -- Starodubtseva, Marina -- Nudler, Evgeny -- DP1 OD000799/OD/NIH HHS/ -- DP1 OD000799-02/OD/NIH HHS/ -- DP1 OD000799-03/OD/NIH HHS/ -- DP1 OD000799-04/OD/NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1380-4. doi: 10.1126/science.1175439.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745150" target="_blank"〉PubMed〈/a〉
    Keywords: Acriflavine/metabolism/pharmacology ; Anti-Bacterial Agents/metabolism/*pharmacology ; Antibiosis ; Bacillus anthracis/drug effects/genetics/growth & development/metabolism ; Bacillus subtilis/drug effects/genetics/growth & development/metabolism ; Bacteria/*drug effects/genetics/growth & development/*metabolism ; Cefuroxime/pharmacology ; Mutation ; Nitric Oxide/*metabolism/pharmacology ; Nitric Oxide Synthase/genetics/*metabolism ; Oxidative Stress ; Pseudomonas aeruginosa/growth & development/metabolism ; Pyocyanine/metabolism/pharmacology ; Reactive Oxygen Species/metabolism ; Soil Microbiology ; Staphylococcus aureus/drug effects/genetics/growth & development/metabolism ; Superoxide Dismutase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-04-11
    Description: The traditional view that proteins possess absolute functional specificity and a single, fixed structure conflicts with their marked ability to adapt and evolve new functions and structures. We consider an alternative, "avant-garde view" in which proteins are conformationally dynamic and exhibit functional promiscuity. We surmise that these properties are the foundation stones of protein evolvability; they facilitate the divergence of new functions within existing folds and the evolution of entirely new folds. Packing modes of proteins also affect their evolvability, and poorly packed, disordered, and conformationally diverse proteins may exhibit high evolvability. This dynamic view of protein structure, function, and evolvability is extrapolated to describe hypothetical scenarios for the evolution of the early proteins and future research directions in the area of protein dynamism and evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tokuriki, Nobuhiko -- Tawfik, Dan S -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):203-7. doi: 10.1126/science.1169375.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359577" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; *Evolution, Molecular ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Folding ; Proteins/*chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kidd, Thomas -- New York, N.Y. -- Science. 2009 May 15;324(5929):893-4. doi: 10.1126/science.1174216.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Nevada, Reno, NV 89557, USA. tkidd@unr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443775" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Adhesion Molecules/metabolism ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/*genetics/growth & development/metabolism ; *Gene Expression Regulation, Developmental ; Membrane Proteins/*genetics/metabolism ; Mutation ; Nerve Growth Factors/metabolism ; Nerve Tissue Proteins/*genetics/metabolism ; Nervous System/growth & development ; Neurons/*physiology ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grossniklaus, Ueli -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1439-40. doi: 10.1126/science.1171412.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland. grossnik@botinst.uzh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286544" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Arabidopsis/embryology/*genetics/*growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Cell Division ; *Gene Expression Regulation, Plant ; Genomic Imprinting ; Interleukin-1 Receptor-Associated Kinases/chemistry/*genetics/*metabolism ; MAP Kinase Kinase Kinases/metabolism ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Seeds/growth & development/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2009-02-21
    Description: Aging induces gradual yet massive cell death in higher organisms, including annual plants. Even so, the underlying regulatory mechanisms are barely known, despite the long-standing interest in this topic. Here, we demonstrate that ORE1, which is a NAC (NAM, ATAF, and CUC) transcription factor, positively regulates aging-induced cell death in Arabidopsis leaves. ORE1 expression is up-regulated concurrently with leaf aging by EIN2 but is negatively regulated by miR164. miR164 expression gradually decreases with aging through negative regulation by EIN2, which leads to the elaborate up-regulation of ORE1 expression. However, EIN2 still contributes to aging-induced cell death in the absence of ORE1. The trifurcate feed-forward pathway involving ORE1, miR164, and EIN2 provides a highly robust regulation to ensure that aging induces cell death in Arabidopsis leaves.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jin Hee -- Woo, Hye Ryun -- Kim, Jeongsik -- Lim, Pyung Ok -- Lee, In Chul -- Choi, Seung Hee -- Hwang, Daehee -- Nam, Hong Gil -- New York, N.Y. -- Science. 2009 Feb 20;323(5917):1053-7. doi: 10.1126/science.1166386.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Life Sciences, Pohang University of Science and Technology, Hyoja-dong, Pohang, Kyungbuk, 790-784, Republic of Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19229035" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; *Apoptosis ; Arabidopsis/cytology/genetics/*physiology ; Arabidopsis Proteins/genetics/*physiology ; Down-Regulation ; Gene Expression Regulation, Plant ; Genes, Plant ; MicroRNAs/genetics/*physiology ; Mutation ; Plant Leaves/cytology/*physiology ; Plants, Genetically Modified ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/*physiology ; Receptors, Cell Surface/genetics/*physiology ; Signal Transduction ; Transcription Factors/genetics/*physiology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2009-01-24
    Description: Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 mitogen-activated protein (MAP) kinase pathway is essential for regeneration in Caenorhabditis elegans motor neurons. Loss of this pathway eliminates regeneration, whereas activating it improves regeneration. Further, these proteins also regulate the later step of growth cone migration. We conclude that after axon injury, activation of this MAP kinase cascade is required to switch the mature neuron from an aplastic state to a state capable of growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729122/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729122/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammarlund, Marc -- Nix, Paola -- Hauth, Linda -- Jorgensen, Erik M -- Bastiani, Michael -- 1R21NS060275/NS/NINDS NIH HHS/ -- NS034307/NS/NINDS NIH HHS/ -- R21 NS060275-02/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 6;323(5915):802-6. doi: 10.1126/science.1165527. Epub 2009 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164707" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Axons/*physiology/ultrastructure ; Axotomy ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Growth Cones/physiology ; MAP Kinase Kinase 4/genetics/metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/genetics/metabolism ; Models, Biological ; Motor Neurons/*physiology ; Mutation ; Nerve Regeneration/physiology ; RNA Interference ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2009-12-08
    Description: The molecular mechanisms that achieve homeostatic stabilization of neural function remain largely unknown. To better understand how neural function is stabilized during development and throughout life, we used an electrophysiology-based forward genetic screen and assessed the function of more than 250 neuronally expressed genes for a role in the homeostatic modulation of synaptic transmission in Drosophila. This screen ruled out the involvement of numerous synaptic proteins and identified a critical function for dysbindin, a gene linked to schizophrenia in humans. We found that dysbindin is required presynaptically for the retrograde, homeostatic modulation of neurotransmission, and functions in a dose-dependent manner downstream or independently of calcium influx. Thus, dysbindin is essential for adaptive neural plasticity and may link altered homeostatic signaling with a complex neurological disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickman, Dion K -- Davis, Graeme W -- NS39313/NS/NINDS NIH HHS/ -- R01 NS039313/NS/NINDS NIH HHS/ -- R01 NS039313-12/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1127-30. doi: 10.1126/science.1179685.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/genetics/metabolism ; Carrier Proteins/genetics ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*genetics/*physiology ; Dystrophin-Associated Proteins ; Genes, Insect ; Glutamic Acid/metabolism ; Homeostasis ; Humans ; Mutation ; Neuromuscular Junction/physiology ; Neuronal Plasticity ; Schizophrenia/genetics ; Synapses/*physiology/ultrastructure ; *Synaptic Transmission ; Synaptic Vesicles/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, David G -- Kashi, Yechezkel -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):229-30. doi: 10.1126/science.326_229.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Southern Illinois University, Carbondale, IL 62901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA/chemistry/*genetics ; Evolution, Molecular ; Mutation ; *Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2009-10-03
    Description: Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Kyuhyung -- Sato, Koji -- Shibuya, Mayumi -- Zeiger, Danna M -- Butcher, Rebecca A -- Ragains, Justin R -- Clardy, Jon -- Touhara, Kazushige -- Sengupta, Piali -- F32 GM077943/GM/NIGMS NIH HHS/ -- P30 NS045713/NS/NINDS NIH HHS/ -- P30 NS45713/NS/NINDS NIH HHS/ -- R01 CA024487/CA/NCI NIH HHS/ -- R01 CA24487/CA/NCI NIH HHS/ -- R01 GM056223/GM/NIGMS NIH HHS/ -- R01 GM56223/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):994-8. doi: 10.1126/science.1176331. Epub 2009 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/*growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Calcium/metabolism ; Cell Line ; Chemoreceptor Cells/metabolism ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/physiology ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Guanylate Cyclase/antagonists & inhibitors/metabolism ; Hexoses/chemistry/physiology ; Humans ; Mutation ; Pheromones/*physiology ; Receptors, G-Protein-Coupled ; Reproduction ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Semple, Colin A M -- Taylor, Martin S -- GR078968/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):347-8. doi: 10.1126/science.1169408.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK. colins@hgu.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150834" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/*physiology/ultrastructure ; DNA/*genetics ; *Genetic Variation ; *Genome ; INDEL Mutation ; Mutation ; Nucleosomes/*physiology ; Oryzias/*genetics ; Promoter Regions, Genetic ; Selection, Genetic ; *Transcription Initiation Site
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2009-05-30
    Description: Relative to most regions of the genome, tandemly repeated DNA sequences display a greater propensity to mutate. A search for tandem repeats in the Saccharomyces cerevisiae genome revealed that the nucleosome-free region directly upstream of genes (the promoter region) is enriched in repeats. As many as 25% of all gene promoters contain tandem repeat sequences. Genes driven by these repeat-containing promoters show significantly higher rates of transcriptional divergence. Variations in repeat length result in changes in expression and local nucleosome positioning. Tandem repeats are variable elements in promoters that may facilitate evolutionary tuning of gene expression by affecting local chromatin structure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132887/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132887/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinces, Marcelo D -- Legendre, Matthieu -- Caldara, Marina -- Hagihara, Masaki -- Verstrepen, Kevin J -- P50 GM068763/GM/NIGMS NIH HHS/ -- P50 GM068763-06/GM/NIGMS NIH HHS/ -- P50GM068763/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 29;324(5931):1213-6. doi: 10.1126/science.1170097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478187" target="_blank"〉PubMed〈/a〉
    Keywords: *Evolution, Molecular ; *Gene Expression Regulation, Fungal ; Genome, Fungal ; Mutation ; Nucleosomes/metabolism/ultrastructure ; *Promoter Regions, Genetic ; Saccharomyces cerevisiae/*genetics ; *Tandem Repeat Sequences ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2009-12-17
    Description: The molecular mechanisms underlying major phenotypic changes that have evolved repeatedly in nature are generally unknown. Pelvic loss in different natural populations of threespine stickleback fish has occurred through regulatory mutations deleting a tissue-specific enhancer of the Pituitary homeobox transcription factor 1 (Pitx1) gene. The high prevalence of deletion mutations at Pitx1 may be influenced by inherent structural features of the locus. Although Pitx1 null mutations are lethal in laboratory animals, Pitx1 regulatory mutations show molecular signatures of positive selection in pelvic-reduced populations. These studies illustrate how major expression and morphological changes can arise from single mutational leaps in natural populations, producing new adaptive alleles via recurrent regulatory alterations in a key developmental control gene.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, Yingguang Frank -- Marks, Melissa E -- Jones, Felicity C -- Villarreal, Guadalupe Jr -- Shapiro, Michael D -- Brady, Shannon D -- Southwick, Audrey M -- Absher, Devin M -- Grimwood, Jane -- Schmutz, Jeremy -- Myers, Richard M -- Petrov, Dmitri -- Jonsson, Bjarni -- Schluter, Dolph -- Bell, Michael A -- Kingsley, David M -- P50 HG002568/HG/NHGRI NIH HHS/ -- P50 HG002568-09/HG/NHGRI NIH HHS/ -- P50 HG02568/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):302-5. doi: 10.1126/science.1182213. Epub 2009 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007865" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Biological Evolution ; Chromosome Fragile Sites ; Chromosome Mapping ; Crosses, Genetic ; DNA, Intergenic ; *Enhancer Elements, Genetic ; Fish Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Paired Box Transcription Factors/*genetics ; Pelvis/anatomy & histology ; Selection, Genetic ; *Sequence Deletion ; Smegmamorpha/*anatomy & histology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2005-01-08
    Description: Chromosome alignment on the mitotic spindle is monitored by the spindle checkpoint. We identify Sgo1, a protein involved in meiotic chromosome cohesion, as a spindle checkpoint component. Budding yeast cells with mutations in SGO1 respond normally to microtubule depolymerization but not to lack of tension at the kinetochore, and they have difficulty attaching sister chromatids to opposite poles of the spindle. Sgo1 is thus required for sensing tension between sister chromatids during mitosis, and its degradation when they separate may prevent cell cycle arrest and chromosome loss in anaphase, a time when sister chromatids are no longer under tension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Indjeian, Vahan B -- Stern, Bodo M -- Murray, Andrew W -- GM043987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):130-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637284" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Chromatids/physiology ; Chromosomal Proteins, Non-Histone ; Chromosome Segregation ; Chromosomes, Fungal/*physiology ; Kinetochores/physiology ; *Mitosis ; Mutation ; Nuclear Proteins/genetics/metabolism/*physiology ; Phosphoproteins/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Saccharomyces cerevisiae/genetics/*physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism/*physiology ; Spindle Apparatus/*physiology ; Ubiquitin-Protein Ligase Complexes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-10-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2005 Oct 7;310(5745):43-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16210515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; Brain-Derived Neurotrophic Factor/metabolism ; Cells, Cultured ; Clinical Trials as Topic ; Corpus Striatum/pathology ; Disease Models, Animal ; Gene Expression Regulation ; Humans ; Huntington Disease/*drug therapy/genetics/pathology/*physiopathology ; Mice ; Mitochondria/metabolism ; Mutation ; Nerve Tissue Proteins/chemistry/*genetics/metabolism/*physiology ; Neurons/*physiology ; Nuclear Proteins/chemistry/*genetics/metabolism/*physiology ; Peptides ; Transcription Factors/metabolism ; Trinucleotide Repeat Expansion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez Arias, Alfonso -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1284-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. ama11@hermes.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311322" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Nucleus/metabolism ; Drosophila Proteins/chemistry/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Endocytosis ; Frizzled Receptors ; Models, Neurological ; Mutation ; Neuromuscular Junction/*metabolism ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/*metabolism ; Receptors, G-Protein-Coupled ; Receptors, Neurotransmitter/chemistry/*metabolism ; *Signal Transduction ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sawa, Akira -- Snyder, Solomon H -- New York, N.Y. -- Science. 2005 Nov 18;310(5751):1128-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA. asawa1@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16293746" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/*genetics/physiology ; Affective Disorders, Psychotic/enzymology/*genetics ; Carrier Proteins/physiology ; Cyclic AMP/metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 4 ; Enzyme Activation ; Humans ; Mutation ; Nerve Tissue Proteins/*genetics/physiology ; Protein Binding ; Schizophrenia/*genetics ; Signal Transduction ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2005-12-17
    Description: Translesion synthesis (TLS) is the major pathway by which mammalian cells replicate across DNA lesions. Upon DNA damage, ubiquitination of proliferating cell nuclear antigen (PCNA) induces bypass of the lesion by directing the replication machinery into the TLS pathway. Yet, how this modification is recognized and interpreted in the cell remains unclear. Here we describe the identification of two ubiquitin (Ub)-binding domains (UBM and UBZ), which are evolutionarily conserved in all Y-family TLS polymerases (pols). These domains are required for binding of poleta and poliota to ubiquitin, their accumulation in replication factories, and their interaction with monoubiquitinated PCNA. Moreover, the UBZ domain of poleta is essential to efficiently restore a normal response to ultraviolet irradiation in xeroderma pigmentosum variant (XP-V) fibroblasts. Our results indicate that Ub-binding domains of Y-family polymerases play crucial regulatory roles in TLS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bienko, Marzena -- Green, Catherine M -- Crosetto, Nicola -- Rudolf, Fabian -- Zapart, Grzegorz -- Coull, Barry -- Kannouche, Patricia -- Wider, Gerhard -- Peter, Matthias -- Lehmann, Alan R -- Hofmann, Kay -- Dikic, Ivan -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357261" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Computational Biology ; DNA/*biosynthesis ; *DNA Damage ; DNA Repair ; DNA Replication ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Point Mutation ; Proliferating Cell Nuclear Antigen/metabolism ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Transfection ; Ubiquitin/*metabolism ; Xeroderma Pigmentosum/genetics ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2005-04-23
    Description: The CLOCK transcription factor is a key component of the molecular circadian clock within pacemaker neurons of the hypothalamic suprachiasmatic nucleus. We found that homozygous Clock mutant mice have a greatly attenuated diurnal feeding rhythm, are hyperphagic and obese, and develop a metabolic syndrome of hyperleptinemia, hyperlipidemia, hepatic steatosis, hyperglycemia, and hypoinsulinemia. Expression of transcripts encoding selected hypothalamic peptides associated with energy balance was attenuated in the Clock mutant mice. These results suggest that the circadian clock gene network plays an important role in mammalian energy balance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764501/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764501/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turek, Fred W -- Joshu, Corinne -- Kohsaka, Akira -- Lin, Emily -- Ivanova, Ganka -- McDearmon, Erin -- Laposky, Aaron -- Losee-Olson, Sue -- Easton, Amy -- Jensen, Dalan R -- Eckel, Robert H -- Takahashi, Joseph S -- Bass, Joseph -- AG11412/AG/NIA NIH HHS/ -- AG18200/AG/NIA NIH HHS/ -- DK02675/DK/NIDDK NIH HHS/ -- DK26356/DK/NIDDK NIH HHS/ -- HL59598/HL/NHLBI NIH HHS/ -- HL75029/HL/NHLBI NIH HHS/ -- K08 DK002675/DK/NIDDK NIH HHS/ -- P01 AG011412/AG/NIA NIH HHS/ -- R01 AG018200/AG/NIA NIH HHS/ -- R01 DK026356/DK/NIDDK NIH HHS/ -- R01 HL059598/HL/NHLBI NIH HHS/ -- R01 HL075029/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2005 May 13;308(5724):1043-5. Epub 2005 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845877" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/pathology ; Animals ; Body Weight ; Brain/metabolism ; CLOCK Proteins ; *Circadian Rhythm ; Dietary Fats/administration & dosage ; Energy Intake ; *Energy Metabolism ; *Feeding Behavior ; Hepatocytes/pathology ; Hyperglycemia ; Hyperlipidemias ; Insulin/blood ; Leptin/blood ; Metabolic Syndrome X/genetics/*physiopathology ; Mice ; Mice, Inbred C57BL ; Motor Activity ; Mutation ; Neuropeptides/genetics/metabolism ; Obesity/genetics/*physiopathology ; Trans-Activators/*genetics/*physiology ; Weight Gain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2005-10-01
    Description: Monocular deprivation normally alters ocular dominance in the visual cortex only during a postnatal critical period (20 to 32 days postnatal in mice). We find that mutations in the Nogo-66 receptor (NgR) affect cessation of ocular dominance plasticity. In NgR-/- mice, plasticity during the critical period is normal, but it continues abnormally such that ocular dominance at 45 or 120 days postnatal is subject to the same plasticity as at juvenile ages. Thus, physiological NgR signaling from myelin-derived Nogo, MAG, and OMgp consolidates the neural circuitry established during experience-dependent plasticity. After pathological trauma, similar NgR signaling limits functional recovery and axonal regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856689/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856689/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGee, Aaron W -- Yang, Yupeng -- Fischer, Quentin S -- Daw, Nigel W -- Strittmatter, Stephen M -- R01 NS039962/NS/NINDS NIH HHS/ -- R01 NS039962-10/NS/NINDS NIH HHS/ -- R01 NS042304/NS/NINDS NIH HHS/ -- R01 NS042304-08/NS/NINDS NIH HHS/ -- R01 NS056485/NS/NINDS NIH HHS/ -- R01 NS056485-04/NS/NINDS NIH HHS/ -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-15/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2222-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195464" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chondroitin Sulfate Proteoglycans/metabolism ; Darkness ; Dominance, Ocular/*physiology ; Electrophysiology ; GPI-Linked Proteins ; Gene Targeting ; Mice ; Mice, Inbred C57BL ; Mutation ; Myelin Basic Protein/metabolism ; Myelin Proteins/genetics/metabolism/*physiology ; Myelin Sheath/*physiology ; Myelin-Associated Glycoprotein/metabolism ; Neurites/physiology ; Neuronal Plasticity/*physiology ; Neurons/*physiology ; Photic Stimulation ; Receptors, Cell Surface/genetics/*physiology ; Signal Transduction ; Visual Cortex/cytology/growth & development/*physiology ; gamma-Aminobutyric Acid/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1310-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16123271" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Animals ; Blood Glucose/analysis ; Female ; Glucuronidase ; Insulin/blood/metabolism ; Insulin Resistance ; Insulin-Like Growth Factor I/metabolism ; Longevity/*genetics ; Male ; Membrane Proteins/blood/*genetics/*physiology ; Mice ; Mutation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):551-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/physiology ; Circadian Rhythm ; Female ; Gonadotropin-Releasing Hormone/physiology/secretion ; Humans ; Hypogonadism/genetics ; Kisspeptins ; Leptin/genetics/physiology ; Male ; Mutation ; Neurons/physiology ; Proteins/genetics/*physiology ; Puberty/*physiology ; Receptors, Cell Surface/genetics/metabolism ; Receptors, G-Protein-Coupled ; Receptors, Leptin ; Receptors, Neuropeptide/genetics/*physiology ; Reproduction ; Signal Transduction ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2005-08-16
    Description: Stem cells reside in specialized niches that provide signals required for their maintenance and division. Tissue-extrinsic signals can also modify stem cell activity, although this is poorly understood. Here, we report that neural-derived Drosophila insulin-like peptides (DILPs) directly regulate germline stem cell division rate, demonstrating that signals mediating the ovarian response to nutritional input can modify stem cell activity in a niche-independent manner. We also reveal a crucial direct role of DILPs in controlling germline cyst growth and vitellogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉LaFever, Leesa -- Drummond-Barbosa, Daniela -- GM 069875/GM/NIGMS NIH HHS/ -- R01 GM069875/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1071-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4120B Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099985" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Proliferation ; Drosophila/cytology/genetics/*physiology ; Drosophila Proteins/genetics/*physiology ; Female ; Food ; Germ Cells/*cytology ; Insulin/*physiology ; Mutation ; Ovarian Follicle/cytology/physiology ; Ovary/cytology/physiology ; Peptides/physiology ; Receptor Protein-Tyrosine Kinases/genetics/physiology ; *Signal Transduction ; Stem Cells/*cytology ; Vitellogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2005-12-17
    Description: Lighter variations of pigmentation in humans are associated with diminished number, size, and density of melanosomes, the pigmented organelles of melanocytes. Here we show that zebrafish golden mutants share these melanosomal changes and that golden encodes a putative cation exchanger slc24a5 (nckx5) that localizes to an intracellular membrane, likely the melanosome or its precursor. The human ortholog is highly similar in sequence and functional in zebrafish. The evolutionarily conserved ancestral allele of a human coding polymorphism predominates in African and East Asian populations. In contrast, the variant allele is nearly fixed in European populations, is associated with a substantial reduction in regional heterozygosity, and correlates with lighter skin pigmentation in admixed populations, suggesting a key role for the SLC24A5 gene in human pigmentation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamason, Rebecca L -- Mohideen, Manzoor-Ali P K -- Mest, Jason R -- Wong, Andrew C -- Norton, Heather L -- Aros, Michele C -- Jurynec, Michael J -- Mao, Xianyun -- Humphreville, Vanessa R -- Humbert, Jasper E -- Sinha, Soniya -- Moore, Jessica L -- Jagadeeswaran, Pudur -- Zhao, Wei -- Ning, Gang -- Makalowska, Izabela -- McKeigue, Paul M -- O'donnell, David -- Kittles, Rick -- Parra, Esteban J -- Mangini, Nancy J -- Grunwald, David J -- Shriver, Mark D -- Canfield, Victor A -- Cheng, Keith C -- CA73935/CA/NCI NIH HHS/ -- EY11308/EY/NEI NIH HHS/ -- HD37572/HD/NICHD NIH HHS/ -- HD40179/HD/NICHD NIH HHS/ -- HG002154/HG/NHGRI NIH HHS/ -- HL077910/HL/NHLBI NIH HHS/ -- RR017441/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1782-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jake Gittlen Cancer Research Foundation, Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357253" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; African Continental Ancestry Group/genetics ; Alanine/genetics ; Alleles ; Amino Acid Sequence ; Animals ; Antiporters/chemistry/*genetics/physiology ; Asian Continental Ancestry Group/genetics ; Biological Evolution ; Calcium/metabolism ; European Continental Ancestry Group/genetics ; Gene Frequency ; Genes ; Genetic Variation ; Haplotypes ; Heterozygote ; Humans ; Ion Transport ; Melanins/analysis ; Melanosomes/chemistry/ultrastructure ; Mice ; Molecular Sequence Data ; Multifactorial Inheritance ; Mutation ; Pigment Epithelium of Eye/chemistry/ultrastructure ; Polymorphism, Single Nucleotide ; Selection, Genetic ; Skin Pigmentation/*genetics ; Threonine/genetics ; Zebrafish/embryology/*genetics/metabolism ; Zebrafish Proteins/chemistry/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2005-08-16
    Description: FLOWERING LOCUS T (FT) is a conserved promoter of flowering that acts downstream of various regulatory pathways, including one that mediates photoperiodic induction through CONSTANS (CO), and is expressed in the vasculature of cotyledons and leaves. A bZIP transcription factor, FD, preferentially expressed in the shoot apex is required for FT to promote flowering. FD and FT are interdependent partners through protein interaction and act at the shoot apex to promote floral transition and to initiate floral development through transcriptional activation of a floral meristem identity gene, APETALA1 (AP1). FT may represent a long-distance signal in flowering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abe, Mitsutomo -- Kobayashi, Yasushi -- Yamamoto, Sumiko -- Daimon, Yasufumi -- Yamaguchi, Ayako -- Ikeda, Yoko -- Ichinoki, Harutaka -- Notaguchi, Michitaka -- Goto, Koji -- Araki, Takashi -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1052-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099979" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Nucleus/metabolism ; Cotyledon/metabolism ; Flowers/*growth & development ; Gene Expression ; Gene Expression Regulation, Plant ; Genes, Plant ; Homeodomain Proteins/genetics/metabolism ; MADS Domain Proteins ; Meristem/genetics/metabolism ; Morphogenesis ; Mutation ; Phenotype ; Plant Leaves/metabolism ; Plant Proteins/genetics/metabolism ; Plant Shoots/metabolism ; Protein Interaction Mapping ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Heijne, Gunnar -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):709-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden. gunnar@dbb.su.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051774" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/chemistry ; Amino Acid Substitution ; Antigens, Bacterial/*chemistry/genetics/*metabolism ; Bacillus anthracis/*chemistry/metabolism ; Bacterial Toxins/*chemistry/genetics/*metabolism ; Cell Membrane/*metabolism ; Cytosol/metabolism ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Mutation ; Onium Compounds/metabolism ; Organophosphorus Compounds/metabolism ; Phenylalanine/*chemistry ; Protein Conformation ; Protein Folding ; Quaternary Ammonium Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2005-04-09
    Description: The Wnt-Wingless (Wg) pathway is one of a core set of evolutionarily conserved signaling pathways that regulates many aspects of metazoan development. Aberrant Wnt signaling has been linked to human disease. In the present study, we used a genomewide RNA interference (RNAi) screen in Drosophila cells to screen for regulators of the Wnt pathway. We identified 238 potential regulators, which include known pathway components, genes with functions not previously linked to this pathway, and genes with no previously assigned functions. Reciprocal-Best-Blast analyses reveal that 50% of the genes identified in the screen have human orthologs, of which approximately 18% are associated with human disease. Functional assays of selected genes from the cell-based screen in Drosophila, mammalian cells, and zebrafish embryos demonstrated that these genes have evolutionarily conserved functions in Wnt signaling. High-throughput RNAi screens in cultured cells, followed by functional analyses in model organisms, prove to be a rapid means of identifying regulators of signaling pathways implicated in development and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DasGupta, Ramanuj -- Kaykas, Ajamete -- Moon, Randall T -- Perrimon, Norbert -- New York, N.Y. -- Science. 2005 May 6;308(5723):826-33. Epub 2005 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Howard Hughes Medical Institute (HHMI), Harvard Medical School, New Research Building, No. 339, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. rdasgupt@genetics.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15817814" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Cloning, Molecular ; Computational Biology ; Cytoskeletal Proteins/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/*genetics/metabolism ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Epistasis, Genetic ; *Gene Expression Regulation ; Genes, Insect ; Genes, Reporter ; *Genomics ; Mutation ; Phenotype ; Phosphorylation ; Protein Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; *RNA Interference ; *Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; Transfection ; Wnt Proteins ; Wnt1 Protein ; Wnt3 Protein ; Zebrafish ; Zebrafish Proteins ; beta Catenin ; rab5 GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2005-11-19
    Description: Interleukin-2 (IL-2) is an immunoregulatory cytokine that acts through a quaternary receptor signaling complex containing alpha (IL-2Ralpha), beta (IL-2Rbeta), and common gamma chain (gc) receptors. In the structure of the quaternary ectodomain complex as visualized at a resolution of 2.3 angstroms, the binding of IL-2Ralpha to IL-2 stabilizes a secondary binding site for presentation to IL-2Rbeta. gammac is then recruited to the composite surface formed by the IL-2/IL-2Rbeta complex. Consistent with its role as a shared receptor for IL-4, IL-7, IL-9, IL-15, and IL-21, gammac forms degenerate contacts with IL-2. The structure of gammac provides a rationale for loss-of-function mutations found in patients with X-linked severe combined immunodeficiency diseases (X-SCID). This complex structure provides a framework for other gammac-dependent cytokine-receptor interactions and for the engineering of improved IL-2 therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xinquan -- Rickert, Mathias -- Garcia, K Christopher -- AI51321/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 18;310(5751):1159-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D319, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16293754" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Interleukin Receptor Common gamma Subunit ; Interleukin-2/*chemistry/metabolism/therapeutic use ; Interleukin-2 Receptor alpha Subunit ; Interleukin-2 Receptor beta Subunit ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation ; Receptors, Interleukin/*chemistry/metabolism ; Receptors, Interleukin-2/*chemistry/genetics/metabolism ; Recombinant Proteins/therapeutic use ; Severe Combined Immunodeficiency/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2005-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altshuler, David -- Clark, Andrew G -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1052-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology, and Massachusetts General Hospital, Boston, MA 02114, USA. altshuler@molbio.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15718454" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/*genetics ; Asian Continental Ancestry Group/*genetics ; Chromosome Mapping ; Databases, Genetic ; European Continental Ancestry Group/*genetics ; Evolution, Molecular ; Female ; Gene Frequency ; Genetic Markers ; *Genetic Predisposition to Disease ; Genetic Variation ; *Genome, Human ; Genotype ; Haplotypes ; Humans ; Linkage Disequilibrium ; Male ; *Multifactorial Inheritance ; Mutation ; *Polymorphism, Single Nucleotide ; Recombination, Genetic ; Risk Factors ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2005-06-18
    Description: Rhizobial bacteria enter a symbiotic interaction with legumes, activating diverse responses in roots through the lipochito oligosaccharide signaling molecule Nod factor. Here, we show that NSP2 from Medicago truncatula encodes a GRAS protein essential for Nod-factor signaling. NSP2 functions downstream of Nod-factor-induced calcium spiking and a calcium/calmodulin-dependent protein kinase. We show that NSP2-GFP expressed from a constitutive promoter is localized to the endoplasmic reticulum/nuclear envelope and relocalizes to the nucleus after Nod-factor elicitation. This work provides evidence that a GRAS protein transduces calcium signals in plants and provides a possible regulator of Nod-factor-inducible gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalo, Peter -- Gleason, Cynthia -- Edwards, Anne -- Marsh, John -- Mitra, Raka M -- Hirsch, Sibylle -- Jakab, Julia -- Sims, Sarah -- Long, Sharon R -- Rogers, Jane -- Kiss, Gyorgy B -- Downie, J Allan -- Oldroyd, Giles E D -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Disease and Stress Biology and Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961668" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Nucleus/metabolism ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/*metabolism ; Medicago/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Peas/genetics/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Sinorhizobium meliloti/*physiology ; Symbiosis ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2005-08-20
    Description: The molecular machinery that governs circadian rhythmicity is based on clock proteins organized in regulatory feedback loops. Although posttranslational modification of clock proteins is likely to finely control their circadian functions, only limited information is available to date. Here, we show that BMAL1, an essential transcription factor component of the clock mechanism, is SUMOylated on a highly conserved lysine residue (Lys259) in vivo. BMAL1 shows a circadian pattern of SUMOylation that parallels its activation in the mouse liver. SUMOylation of BMAL1 requires and is induced by CLOCK, the heterodimerization partner of BMAL1. Ectopic expression of a SUMO-deficient BMAL1 demonstrates that SUMOylation plays an important role in BMAL1 circadian expression and clock rhythmicity. This reveals an additional level of regulation within the core mechanism of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardone, Luca -- Hirayama, Jun -- Giordano, Francesca -- Tamaru, Teruya -- Palvimo, Jorma J -- Sassone-Corsi, Paolo -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1390-4. Epub 2005 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109848" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; CLOCK Proteins ; COS Cells ; Cell Cycle Proteins ; Cell Line ; *Circadian Rhythm ; Dimerization ; Ethylmaleimide/pharmacology ; Gene Expression Regulation ; Liver/metabolism ; Lysine/metabolism ; Mice ; Mutation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; SUMO-1 Protein/*metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2005-07-30
    Description: To study adaptation, it is essential to identify multiple adaptive mutations and to characterize their molecular, phenotypic, selective, and ecological consequences. Here we describe a genomic screen for adaptive insertions of transposable elements in Drosophila. Using a pilot application of this screen, we have identified an adaptive transposable element insertion, which truncates a gene and apparently generates a functional protein in the process. The insertion of this transposable element confers increased resistance to an organophosphate pesticide and has spread in D. melanogaster recently.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aminetzach, Yael T -- Macpherson, J Michael -- Petrov, Dmitri A -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):764-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051794" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Alleles ; Amino Acid Substitution ; Animals ; Azinphosmethyl/pharmacology ; Base Sequence ; Choline/metabolism ; Crosses, Genetic ; *DNA Transposable Elements ; Drosophila/drug effects/genetics/physiology ; Drosophila Proteins/chemistry/*genetics/physiology ; Drosophila melanogaster/drug effects/*genetics/physiology ; *Evolution, Molecular ; Exons ; Female ; Gene Expression ; *Genes, Insect ; Haplotypes ; Insecticide Resistance/*genetics ; Insecticides/pharmacology ; Introns ; Long Interspersed Nucleotide Elements ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Recombination, Genetic ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2005-07-26
    Description: Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dodd, Antony N -- Salathia, Neeraj -- Hall, Anthony -- Kevei, Eva -- Toth, Reka -- Nagy, Ferenc -- Hibberd, Julian M -- Millar, Andrew J -- Webb, Alex A R -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):630-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040710" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/*physiology ; Arabidopsis Proteins/genetics/metabolism ; Biological Clocks/*physiology ; Biomass ; Carbon Dioxide/metabolism ; Chlorophyll/metabolism ; Circadian Rhythm/*physiology ; Darkness ; Gene Expression Regulation, Plant ; Genotype ; Light ; Mutation ; *Photosynthesis ; Plant Leaves/metabolism ; Seeds/growth & development ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2005-09-24
    Description: Mammalian tooth crowns have precise functional requirements but cannot be substantially remodeled after eruption. In developing teeth, epithelial signaling centers, the enamel knots, form at future cusp positions and are the first signs of cusp patterns that distinguish species. We report that ectodin, a secreted bone morphogenetic protein (BMP) inhibitor, is expressed as a "negative" image of mouse enamel knots. Furthermore, we show that ectodin-deficient mice have enlarged enamel knots, highly altered cusp patterns, and extra teeth. Unlike in normal teeth, excess BMP accelerates patterning in ectodin-deficient teeth. We propose that ectodin is critical for robust spatial delineation of enamel knots and cusps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kassai, Yoshiaki -- Munne, Pauliina -- Hotta, Yuhei -- Penttila, Enni -- Kavanagh, Kathryn -- Ohbayashi, Norihiko -- Takada, Shinji -- Thesleff, Irma -- Jernvall, Jukka -- Itoh, Nobuyuki -- New York, N.Y. -- Science. 2005 Sep 23;309(5743):2067-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16179481" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic ; Proteins/biosynthesis/genetics/metabolism/pharmacology/*physiology ; Cell Cycle Proteins/biosynthesis/genetics/physiology ; Chimera ; Cyclin-Dependent Kinase Inhibitor p21 ; Dental Enamel/embryology ; Gene Expression Regulation, Developmental ; Hedgehog Proteins ; Heterozygote ; Mice ; Mice, Inbred C57BL ; Microscopy, Confocal ; Molar/embryology/metabolism ; Mutation ; *Odontogenesis ; Organ Culture Techniques ; Tooth Crown/*embryology ; Trans-Activators/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2005-12-24
    Description: Epimorphic regeneration requires the presence or creation of pluripotent cells capable of reproducing lost organs. Zebrafish fin regeneration is mediated by the creation of blastema cells. Here, we characterize the devoid of blastema (dob) mutant that fails fin regeneration during initial steps, forms abnormal regeneration epithelium, and does not form blastema. This mutation has no impact on embryonic survival. Dob results from an fgf20a null mutation, Y148S. Fgf20a is expressed during initiation of fin regeneration at the epithelial-mesenchymal boundary and later overlaps with the blastema marker msxb. Thus, fgf20a has a regeneration-specific requirement, initiating fin regeneration, and controlling blastema formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitehead, Geoffrey G -- Makino, Shinji -- Lien, Ching-Ling -- Keating, Mark T -- New York, N.Y. -- Science. 2005 Dec 23;310(5756):1957-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Department of Cardiology, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16373575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Extremities ; Fibroblast Growth Factors/*physiology ; Homeodomain Proteins/biosynthesis ; Male ; Mesoderm ; Mutation ; Regeneration/genetics/*physiology ; Temperature ; Wound Healing ; Zebrafish ; Zebrafish Proteins/biosynthesis/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2005-08-20
    Description: Bacteria have developed mechanisms to communicate and compete with each other for limited environmental resources. We found that certain Escherichia coli, including uropathogenic strains, contained a bacterial growth-inhibition system that uses direct cell-to-cell contact. Inhibition was conditional, dependent upon the growth state of the inhibitory cell and the pili expression state of the target cell. Both a large cell-surface protein designated Contact-dependent inhibitor A (CdiA) and two-partner secretion family member CdiB were required for growth inhibition. The CdiAB system may function to regulate the growth of specific cells within a differentiated bacterial population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoki, Stephanie K -- Pamma, Rupinderjit -- Hernday, Aaron D -- Bickham, Jessica E -- Braaten, Bruce A -- Low, David A -- AI23348/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara (UCSB), Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109881" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Computational Biology ; Contact Inhibition ; Culture Media, Conditioned ; Escherichia coli/genetics/*growth & development/pathogenicity/physiology ; Escherichia coli K12/genetics/*growth & development/physiology ; Escherichia coli Proteins/chemistry/genetics/*physiology ; Fimbriae, Bacterial/metabolism ; Genes, Bacterial ; Genetic Complementation Test ; Genomic Islands ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2005-08-16
    Description: Flowering of Arabidopsis is regulated by several environmental and endogenous signals. An important integrator of these inputs is the FLOWERING LOCUS T (FT) gene, which encodes a small, possibly mobile protein. A primary response to floral induction is the activation of FT RNA expression in leaves. Because flowers form at a distant site, the shoot apex, these data suggest that FT primarily controls the timing of flowering. Integration of temporal and spatial information is mediated in part by the bZIP transcription factor FD, which is already expressed at the shoot apex before floral induction. A complex of FT and FD proteins in turn can activate floral identity genes such as APETALA1 (AP1).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wigge, Philip A -- Kim, Min Chul -- Jaeger, Katja E -- Busch, Wolfgang -- Schmid, Markus -- Lohmann, Jan U -- Weigel, Detlef -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1056-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany. philip.wigge@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099980" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/genetics/metabolism ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Homeodomain Proteins/genetics/metabolism ; MADS Domain Proteins ; Models, Biological ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Leaves/metabolism ; Plant Proteins/genetics/metabolism ; Plant Shoots/metabolism ; Protein Interaction Mapping ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Time Factors ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2005-09-17
    Description: The spike protein (S) of SARS coronavirus (SARS-CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The crystal structure at 2.9 angstrom resolution of the RBD bound with the peptidase domain of human ACE2 shows that the RBD presents a gently concave surface, which cradles the N-terminal lobe of the peptidase. The atomic details at the interface between the two proteins clarify the importance of residue changes that facilitate efficient cross-species infection and human-to-human transmission. The structure of the RBD suggests ways to make truncated disulfide-stabilized RBD variants for use in the design of coronavirus vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fang -- Li, Wenhui -- Farzan, Michael -- Harrison, Stephen C -- AI061601/AI/NIAID NIH HHS/ -- CA13202/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1864-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Laboratory of Molecular Medicine, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166518" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Viral/immunology ; Binding Sites ; Carboxypeptidases/*chemistry/metabolism ; Cell Line ; Crystallography, X-Ray ; Disease Outbreaks ; Epitopes ; Glycosylation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Membrane Glycoproteins/*chemistry/genetics/immunology/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptidyl-Dipeptidase A ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*chemistry/metabolism ; SARS Virus/*chemistry/genetics/physiology ; Severe Acute Respiratory Syndrome/transmission/*virology ; Species Specificity ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/*chemistry/genetics/immunology/*metabolism ; Viral Vaccines ; Viverridae/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-03-26
    Description: The intestinal epithelium follows the paradigms of stem cell biology established for other self-renewing tissues. With a unique topology, it constitutes a two-dimensional structure folded into valleys and hills: the proliferative crypts and the differentiated villi. Its unprecedented self-renewal rate appears reflected in a high susceptibility to malignant transformation. The molecular mechanisms that control homeostatic self-renewal and those that underlie colorectal cancer are remarkably symmetrical. Here, we discuss the biology of the intestinal epithelium, emphasizing the roles played by Wnt, bone morphogenic protein, and Notch signaling cascades in epithelial self-renewal and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Radtke, Freddy -- Clevers, Hans -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1904-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin de Boveresses 155, CH-1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790842" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/genetics/metabolism/pathology ; Animals ; Bone Morphogenetic Proteins/metabolism ; Cell Transformation, Neoplastic ; Colorectal Neoplasms/*etiology/genetics/pathology/physiopathology ; Colorectal Neoplasms, Hereditary Nonpolyposis/genetics/metabolism/pathology ; Helix-Loop-Helix Motifs ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Intestinal Mucosa/*cytology/embryology/*physiology ; Membrane Proteins/metabolism ; Mutation ; Receptors, Notch ; Signal Transduction ; Stem Cells/cytology/physiology ; Wnt Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2005-10-22
    Description: Blood calcium concentration is maintained within a narrow range despite large variations in dietary input and body demand. The Transient Receptor Potential ion channel TRPV5 has been implicated in this process. We report here that TRPV5 is stimulated by the mammalian hormone klotho. Klotho, a beta-glucuronidase, hydrolyzes extracellular sugar residues on TRPV5, entrapping the channel in the plasma membrane. This maintains durable calcium channel activity and membrane calcium permeability in kidney. Thus, klotho activates a cell surface channel by hydrolysis of its extracellular N-linked oligosaccharides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Q -- Hoefs, S -- van der Kemp, A W -- Topala, C N -- Bindels, R J -- Hoenderop, J G -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):490-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16239475" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Glucuronidase/antagonists & inhibitors/metabolism ; Glycosylation ; Humans ; Hydrolysis ; Kidney/cytology/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Patch-Clamp Techniques ; Protein Transport ; Rabbits ; Sodium/metabolism ; TRPV Cation Channels/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2005-03-26
    Description: Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rappas, Mathieu -- Schumacher, Jorg -- Beuron, Fabienne -- Niwa, Hajime -- Bordes, Patricia -- Wigneshweraraj, Sivaramesh -- Keetch, Catherine A -- Robinson, Carol V -- Buck, Martin -- Zhang, Xiaodong -- B17129/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1972-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790859" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; PII Nitrogen Regulatory Proteins ; *Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase Sigma 54 ; Sigma Factor/chemistry/metabolism ; Trans-Activators/*chemistry/*metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-10-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heitman, Joseph -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2175-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA. heitm001@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195450" target="_blank"〉PubMed〈/a〉
    Keywords: Antifungal Agents/pharmacology ; Aspergillus/drug effects/genetics ; Benzoquinones ; Biological Evolution ; Calcineurin/*physiology ; Calcineurin Inhibitors ; Candida albicans/drug effects/genetics ; Cyclosporine/pharmacology/therapeutic use ; *Drug Resistance, Fungal ; Drug Therapy, Combination ; Ergosterol/metabolism ; HSP90 Heat-Shock Proteins/antagonists & inhibitors/*physiology ; Humans ; Lactams, Macrocyclic ; Mutation ; Mycoses/drug therapy/microbiology ; Phenotype ; Quinones/pharmacology/therapeutic use ; Saccharomyces cerevisiae/*drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/antagonists & inhibitors/*physiology ; Tacrolimus/pharmacology/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2005-02-05
    Description: Mitochondrial DNA (mtDNA) is essential for cells to maintain respiratory competency and is inherited as a protein-DNA complex called the nucleoid. We have identified 22 mtDNA-associated proteins in yeast, among which is mitochondrial aconitase (Aco1p). We show that this Krebs-cycle enzyme is essential for mtDNA maintenance independent of its catalytic activity. Regulation of ACO1 expression by the HAP and retrograde metabolic signaling pathways directly affects mtDNA maintenance. When constitutively expressed, Aco1p can replace the mtDNA packaging function of the high-mobility-group protein Abf2p. Thus, Aco1p may integrate metabolic signals and mtDNA maintenance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xin Jie -- Wang, Xiaowen -- Kaufman, Brett A -- Butow, Ronald A -- GM22525/GM/NIGMS NIH HHS/ -- GM33510/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 4;307(5710):714-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692048" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; CCAAT-Binding Factor/genetics/metabolism ; DNA, Fungal/*metabolism ; DNA, Mitochondrial/*metabolism ; DNA-Binding Proteins/genetics/metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Glucose/metabolism ; Iron Regulatory Protein 1/genetics/*metabolism ; Mutation ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae/enzymology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Signal Transduction ; Spores, Fungal/physiology ; Transcription Factors/genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2005-02-05
    Description: Plants encode subunits for a fourth RNA polymerase (Pol IV) in addition to the well-known DNA-dependent RNA polymerases I, II, and III. By mutation of the two largest subunits (NRPD1a and NRPD2), we show that Pol IV silences certain transposons and repetitive DNA in a short interfering RNA pathway involving RNA-dependent RNA polymerase 2 and Dicer-like 3. The existence of this distinct silencing polymerase may explain the paradoxical involvement of an RNA silencing pathway in maintenance of transcriptional silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herr, A J -- Jensen, M B -- Dalmay, T -- Baulcombe, D C -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):118-20. Epub 2005 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692015" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/chemistry/genetics/metabolism ; Base Sequence ; Chromatin/metabolism ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/*genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Gene Silencing ; Genes, Plant ; Genetic Complementation Test ; Green Fluorescent Proteins/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Oryza/enzymology/genetics ; Plants, Genetically Modified ; Protein Subunits/chemistry/genetics/metabolism ; RNA Interference ; RNA Polymerase II/metabolism ; RNA, Plant/metabolism ; RNA, Small Interfering/metabolism ; Repetitive Sequences, Nucleic Acid ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2005-01-08
    Description: The P1 lysozyme Lyz is secreted to the periplasm of Escherichia coli and accumulates in an inactive membrane-tethered form. Genetic and biochemical experiments show that, when released from the bilayer, Lyz is activated by an intramolecular thiol-disulfide isomerization, which requires a cysteine in its N-terminal SAR (signal-arrest-release) domain. Crystal structures confirm the alternative disulfide linkages in the two forms of Lyz and reveal dramatic conformational differences in the catalytic domain. Thus, the exported P1 endolysin is kept inactive by three levels of control-topological, conformational, and covalent-until its release from the membrane is triggered by the P1 holin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Min -- Arulandu, Arockiasamy -- Struck, Douglas K -- Swanson, Stephanie -- Sacchettini, James C -- Young, Ry -- GM27099/GM/NIGMS NIH HHS/ -- GM62410/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):113-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637279" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage P1/*enzymology ; Binding Sites ; Catalytic Domain ; Cell Membrane/enzymology ; Chemistry, Physical ; Crystallography, X-Ray ; Cysteine/chemistry ; Enzyme Activation ; Escherichia coli/enzymology/virology ; Isomerism ; Lipid Bilayers ; Models, Molecular ; Molecular Sequence Data ; Muramidase/*chemistry/genetics/*metabolism ; Mutation ; Physicochemical Phenomena ; Protein Conformation ; Protein Sorting Signals ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lowe, John B -- 1P01CA71932/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1570-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2216, USA. johnlowe@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15761143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Cell Membrane/*metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Endoplasmic Reticulum/enzymology/metabolism ; Fucose/metabolism ; Fucosyltransferases/chemistry/genetics/*metabolism ; Guanosine Diphosphate Fucose/metabolism ; Ligands ; Membrane Proteins/*metabolism ; Molecular Chaperones/chemistry/genetics/*metabolism ; Mutation ; Protein Folding ; Protein Transport ; RNA Interference ; Receptors, Cell Surface/*metabolism ; Receptors, Notch ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuspa, Stuart H -- Epstein, Ervin H Jr -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1727-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. sy12j@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774745" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinoma, Squamous Cell/etiology/genetics/pathology/*physiopathology ; Cell Adhesion Molecules/metabolism ; Cell Transformation, Neoplastic ; Collagen Type VII/chemistry/*genetics/*physiology ; Disease Susceptibility ; Epidermolysis Bullosa Dystrophica/complications/*genetics/metabolism/pathology ; Genes, ras ; Humans ; I-kappa B Proteins/genetics/metabolism ; Keratinocytes/*metabolism/pathology ; Mice ; Mutation ; Neoplasm Invasiveness ; Protein Structure, Tertiary ; Skin Neoplasms/etiology/genetics/pathology/*physiopathology ; Transduction, Genetic ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2005-01-18
    Description: Upon cytokine treatment, members of the signal transducers and activators of transcription (STAT) family of proteins are phosphorylated on tyrosine and serine sites within the carboxyl-terminal region in cells. We show that in response to cytokine treatment, Stat3 is also acetylated on a single lysine residue, Lys685. Histone acetyltransferase p300-mediated Stat3 acetylation on Lys685 was reversible by type I histone deacetylase (HDAC). Use of a prostate cancer cell line (PC3) that lacks Stat3 and PC3 cells expressing wild-type Stat3 or a Stat3 mutant containing a Lys685-to-Arg substitution revealed that Lys685 acetylation was critical for Stat3 to form stable dimers required for cytokine-stimulated DNA binding and transcriptional regulation, to enhance transcription of cell growth-related genes, and to promote cell cycle progression in response to treatment with oncostatin M.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Zheng-Long -- Guan, Ying-Jie -- Chatterjee, Devasis -- Chin, Y Eugene -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):269-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Brown University Medical School-Rhode Island Hospital, Providence, RI 02903, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653507" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/metabolism ; Arginine/chemistry/metabolism ; Cell Cycle ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cyclin D1/metabolism ; Cytokines/pharmacology/*physiology ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dimerization ; HeLa Cells ; Histone Acetyltransferases ; Histone Deacetylases/metabolism ; Humans ; Interferon-alpha/pharmacology ; Lysine/*metabolism ; Mutation ; Nuclear Proteins/metabolism ; Oncostatin M ; Peptides/pharmacology ; Phosphorylation ; Protein Structure, Secondary ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Proto-Oncogene Proteins c-myc/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/chemistry/genetics/*metabolism ; Transcriptional Activation ; bcl-X Protein ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2005-05-21
    Description: beta-Catenin is a multifunctional protein that mediates Wnt signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of beta-catenin with FOXO transcription factors, which are regulated by insulin and oxidative stress signaling. beta-Catenin binds directly to FOXO and enhances FOXO transcriptional activity in mammalian cells. In Caenorhabditis elegans, loss of the beta-catenin BAR-1 reduces the activity of the FOXO ortholog DAF-16 in dauer formation and life span. Association of beta-catenin with FOXO was enhanced in cells exposed to oxidative stress. Furthermore, BAR-1 was required for the oxidative stress-induced expression of the DAF-16 target gene sod-3 and for resistance to oxidative damage. These results demonstrate a role for beta-catenin in regulating FOXO function that is particularly important under conditions of oxidative stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Essers, Marieke A G -- de Vries-Smits, Lydia M M -- Barker, Nick -- Polderman, Paulien E -- Burgering, Boudewijn M T -- Korswagen, Hendrik C -- New York, N.Y. -- Science. 2005 May 20;308(5725):1181-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry and Center for Biomedical Genetics, University Medical Center, Universiteitsweg 100, 3584 CG Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15905404" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/genetics/*metabolism/physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Cyclin-Dependent Kinase Inhibitor p27 ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; DNA-Binding Proteins/metabolism ; Forkhead Transcription Factors ; Humans ; Hydrogen Peroxide/pharmacology ; Immunoprecipitation ; Insulin/pharmacology ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Lithium Chloride/pharmacology ; Longevity ; Mice ; Mutation ; *Oxidative Stress ; Receptor, Insulin/genetics/metabolism ; *Signal Transduction ; Superoxide Dismutase/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/*metabolism ; Transfection ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2005-01-22
    Description: Photosynthetic light harvesting in excess light is regulated by a process known as feedback deexcitation. Femtosecond transient absorption measurements on thylakoid membranes show selective formation of a carotenoid radical cation upon excitation of chlorophyll under conditions of maximum, steady-state feedback deexcitation. Studies on transgenic Arabidopsis thaliana plants confirmed that this carotenoid radical cation formation is correlated with feedback deexcitation and requires the presence of zeaxanthin, the specific carotenoid synthesized during high light exposure. These results indicate that energy transfer from chlorophyll molecules to a chlorophyllzeaxanthin heterodimer, which then undergoes charge separation, is the mechanism for excess energy dissipation during feedback deexcitation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holt, Nancy E -- Zigmantas, Donatas -- Valkunas, Leonas -- Li, Xiao-Ping -- Niyogi, Krishna K -- Fleming, Graham R -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):433-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662017" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/metabolism ; Cations/metabolism ; Chlorophyll/*metabolism ; Feedback, Physiological ; Free Radicals ; Hydrogen-Ion Concentration ; Light ; Light-Harvesting Protein Complexes ; Mutation ; *Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/metabolism ; Photosystem II Protein Complex/metabolism ; Plants, Genetically Modified ; Spectrometry, Fluorescence ; Spectrum Analysis ; Spinacia oleracea ; Thylakoids/*metabolism ; Xanthophylls ; Zeaxanthins ; beta Carotene/*analogs & derivatives/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2005-06-25
    Description: Pathogen recognition by the plant immune system is governed by structurally related, polymorphic products of disease resistance (R) genes. RAR1 and/or SGT1b mediate the function of many R proteins. RAR1 controls preactivation R protein accumulation by an unknown mechanism. We demonstrate that Arabidopsis SGT1b has two distinct, genetically separable functions in the plant immune system: SGT1b antagonizes RAR1 to negatively regulate R protein accumulation before infection, and SGT1b has a RAR1-independent function that regulates programmed cell death during infection. The balanced activities of RAR1 and SGT1, in concert with cytosolic HSP90, modulate preactivation R protein accumulation and signaling competence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holt, Ben F 3rd -- Belkhadir, Youssef -- Dangl, Jeffery L -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):929-32. Epub 2005 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15976272" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; Arabidopsis/*immunology/microbiology ; Arabidopsis Proteins/genetics/immunology/*physiology ; Carrier Proteins/antagonists & inhibitors/immunology/*physiology ; Cell Cycle Proteins/immunology/*physiology ; Genes, Plant ; HSP90 Heat-Shock Proteins/immunology/physiology ; Mutation ; Peronospora/physiology ; Plant Diseases/microbiology ; Plant Proteins/antagonists & inhibitors/immunology/*physiology ; Plants, Genetically Modified ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2005-03-05
    Description: Innate immunity in higher plants invokes a sophisticated surveillance system capable of recognizing bacterial effector proteins. In Arabidopsis, resistance to infection by strains of Pseudomonas syringae expressing the effector AvrRpt2 requires the plant resistance protein RPS2. AvrRpt2 was identified as a putative cysteine protease that results in the elimination of the Arabidopsis protein RIN4. RIN4 cleavage serves as a signal to activate RPS2-mediated resistance. AvrRpt2 is delivered into the plant cell, where it is activated by a eukaryotic factor that we identify as cyclophilin. This activation of AvrRpt2 is necessary for protease activity. Active AvrRpt2 can then directly cleave RIN4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coaker, Gitta -- Falick, Arnold -- Staskawicz, Brian -- R01-FM069680-01/PHS HHS/ -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):548-50. Epub 2005 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15746386" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/*metabolism/microbiology ; Arabidopsis Proteins/genetics/*metabolism ; Bacterial Proteins/chemistry/*metabolism ; Carrier Proteins/genetics/*metabolism ; Cyclophilins/*metabolism ; Cyclosporine/pharmacology ; Cysteine Endopeptidases/metabolism ; Enzyme Activation ; Escherichia coli ; Mass Spectrometry ; Mutation ; Peptide Mapping ; Plant Diseases ; Pseudomonas syringae/*metabolism/pathogenicity ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Sirolimus/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2005-07-05
    Description: Myxococcus xanthus cells can glide forward by retracting type IV pili. Tgl, an outer membrane lipoprotein, is necessary to assemble pili. Tgl mutants can be transiently "stimulated" if brought into end-to-end contact with tgl+ donor cells. By separating the stimulated recipient cells from donor cells, we found that Tgl protein was transferred from the donors to the rescued recipient cells. Mutants lacking CglB lipoprotein, which is part of a second gliding engine, could also be stimulated, and CglB protein was transferred from donor to recipient cells. The high transfer efficiency of Tgl and CglB proteins suggests that donor and recipient cells briefly fuse their outer membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nudleman, Eric -- Wall, Daniel -- Kaiser, Dale -- GM23441/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):125-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Developmental Biology and Biochemistry, Stanford University School of Medicine, B300 Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994555" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Bacterial/genetics/*metabolism ; Bacterial Proteins/genetics/*metabolism ; Cell Membrane/physiology ; Fimbriae Proteins/metabolism ; Flow Cytometry ; Green Fluorescent Proteins/genetics/metabolism ; Immunoblotting ; Lipoproteins/genetics/*metabolism ; Membrane Fusion ; Membrane Proteins/genetics/*metabolism ; Microscopy, Fluorescence ; Microscopy, Phase-Contrast ; Movement ; Mutation ; Myxococcus xanthus/genetics/*metabolism/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2005-05-14
    Description: The origin of the Andaman "Negrito" and Nicobar "Mongoloid" populations has been ambiguous. Our analyses of complete mitochondrial DNA sequences from Onges and Great Andaman populations revealed two deeply branching clades that share their most recent common ancestor in founder haplogroup M, with lineages spread among India, Africa, East Asia, New Guinea, and Australia. This distribution suggests that these two clades have likely survived in genetic isolation since the initial settlement of the islands during an out-of-Africa migration by anatomically modern humans. In contrast, Nicobarese sequences illustrate a close genetic relationship with populations from Southeast Asia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thangaraj, Kumarasamy -- Chaubey, Gyaneshwer -- Kivisild, Toomas -- Reddy, Alla G -- Singh, Vijay Kumar -- Rasalkar, Avinash A -- Singh, Lalji -- New York, N.Y. -- Science. 2005 May 13;308(5724):996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cellular and Molecular Biology, Hyderabad-500 007, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890876" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Asia ; Asia, Southeastern ; Chromosomes, Human, Y/genetics ; DNA, Mitochondrial/*genetics ; Emigration and Immigration ; Ethnic Groups/*genetics ; Founder Effect ; Genetic Drift ; Genetics, Population ; Geography ; Haplotypes ; Humans ; India ; Mutation ; Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2005-01-22
    Description: Cell lineage specification depends on both gene activation and gene silencing, and in the differentiation of T helper progenitors to Th1 or Th2 effector cells, this requires the action of two opposing transcription factors, T-bet and GATA-3. T-bet is essential for the development of Th1 cells, and GATA-3 performs an equivalent role in Th2 development. We report that T-bet represses Th2 lineage commitment through tyrosine kinase-mediated interaction between the two transcription factors that interferes with the binding of GATA-3 to its target DNA. These results provide a novel function for tyrosine phosphorylation of a transcription factor in specifying alternate fates of a common progenitor cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Eun Sook -- Szabo, Susanne J -- Schwartzberg, Pamela L -- Glimcher, Laurie H -- AI48126/AI/NIAID NIH HHS/ -- AI56296/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):430-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cytokines/pharmacology/physiology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; GATA3 Transcription Factor ; Interleukin-5/genetics ; Mice ; Mice, Inbred BALB C ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; T-Box Domain Proteins ; T-Lymphocytes, Helper-Inducer/cytology/*physiology ; Th1 Cells/cytology/physiology ; Th2 Cells/cytology/*physiology ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-06-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1539-41.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947152" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Genes, Viral ; Hepacivirus/*genetics/*growth & development/isolation & purification ; Hepatitis C/virology ; Humans ; Liver ; Mutation ; RNA, Viral/genetics ; *Replicon ; Transfection ; Viral Nonstructural Proteins/genetics ; Virus Cultivation/*methods ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2005-12-13
    Description: We report the discovery of a checkpoint that monitors synapsis between homologous chromosomes to ensure accurate meiotic segregation. Oocytes containing unsynapsed chromosomes selectively undergo apoptosis even if a germline DNA damage checkpoint is inactivated. This culling mechanism is specifically activated by unsynapsed pairing centers, cis-acting chromosome sites that are also required to promote synapsis in Caenorhabditis elegans. Apoptosis due to synaptic failure also requires the C. elegans homolog of PCH2, a budding yeast pachytene checkpoint gene, which suggests that this surveillance mechanism is widely conserved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhalla, Needhi -- Dernburg, Abby F -- 1 F32 GM67408-01A1/GM/NIGMS NIH HHS/ -- 1 R01 GM/CA655591-01/GM/NIGMS NIH HHS/ -- F32 GM067408/GM/NIGMS NIH HHS/ -- F32 GM067408-01A1/GM/NIGMS NIH HHS/ -- F32 GM067408-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1683-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16339446" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Chromosome Pairing/*physiology ; Chromosome Segregation ; Disorders of Sex Development ; Female ; Genes, Helminth ; Male ; *Meiosis ; Mutation ; Oocytes/physiology ; Recombination, Genetic ; Transgenes ; X Chromosome/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2005-04-16
    Description: The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ting, Stephen B -- Caddy, Jacinta -- Hislop, Nikki -- Wilanowski, Tomasz -- Auden, Alana -- Zhao, Lin-Lin -- Ellis, Sarah -- Kaur, Pritinder -- Uchida, Yoshikazu -- Holleran, Walter M -- Elias, Peter M -- Cunningham, John M -- Jane, Stephen M -- P01 HL53749-03/HL/NHLBI NIH HHS/ -- P01-AR39448/AR/NIAMS NIH HHS/ -- P30 CA 21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):411-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, Victoria, Australia 3050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15831758" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Biological Evolution ; DNA-Binding Proteins/*genetics/metabolism/*physiology ; Embryo, Mammalian/physiology ; Embryonic Development ; Epidermis/*embryology/*physiology ; Epithelium/physiology ; Gene Expression ; Kruppel-Like Transcription Factors ; Mice ; Mutation ; Permeability ; Transcription Factors/*genetics/metabolism/*physiology ; Transglutaminases/genetics/metabolism ; Wound Healing/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2005-03-26
    Description: Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colosimo, Pamela F -- Hosemann, Kim E -- Balabhadra, Sarita -- Villarreal, Guadalupe Jr -- Dickson, Mark -- Grimwood, Jane -- Schmutz, Jeremy -- Myers, Richard M -- Schluter, Dolph -- Kingsley, David M -- 1P50HG02568/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1928-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790847" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; *Biological Evolution ; Body Patterning ; Chromosome Walking ; Cloning, Molecular ; Ectodysplasins ; Fresh Water ; Gene Frequency ; Genetic Variation ; Haplotypes ; Linkage Disequilibrium ; Membrane Proteins/*genetics/physiology ; Molecular Sequence Data ; Mutation ; Phenotype ; Phylogeny ; Polymorphism, Single Nucleotide ; Seawater ; Selection, Genetic ; Sequence Analysis, DNA ; Signal Transduction ; Smegmamorpha/*anatomy & histology/classification/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2005-03-19
    Description: Type VII collagen defects cause recessive dystrophic epidermolysis bullosa (RDEB), a blistering skin disorder often accompanied by epidermal cancers. To study the role of collagen VII in these cancers, we examined Ras-driven tumorigenesis in RDEB keratinocytes. Cells devoid of collagen VII did not form tumors in mice, whereas those retaining a specific collagen VII fragment (the amino-terminal noncollagenous domain NC1) were tumorigenic. Forced NC1 expression restored tumorigenicity to collagen VII-null epidermis in a non-cell-autonomous fashion. Fibronectin-like sequences within NC1 (FNC1) promoted tumor cell invasion in a laminin 5-dependent manner and were required for tumorigenesis. Tumor-stroma interactions mediated by collagen VII thus promote neoplasia, and retention of NC1 sequences in a subset of RDEB patients may contribute to their increased susceptibility to squamous cell carcinoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ortiz-Urda, Susana -- Garcia, John -- Green, Cheryl L -- Chen, Lei -- Lin, Qun -- Veitch, Dallas P -- Sakai, Lynn Y -- Lee, Hyangkyu -- Marinkovich, M Peter -- Khavari, Paul A -- AR43799/AR/NIAMS NIH HHS/ -- AR44012/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1773-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774758" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antibodies/immunology ; Apoptosis ; Carcinoma, Squamous Cell/etiology/*physiopathology ; Cell Adhesion Molecules/immunology/metabolism ; Cell Proliferation ; Cell Transformation, Neoplastic ; Child ; Collagen Type VII/chemistry/*genetics/immunology/*physiology ; Disease Susceptibility ; Epidermolysis Bullosa Dystrophica/complications/*genetics/metabolism/pathology ; Female ; *Genes, ras ; Humans ; I-kappa B Proteins/genetics/metabolism ; Keratinocytes/*metabolism/pathology ; Male ; Mice ; Mice, SCID ; Middle Aged ; Mutation ; Neoplasm Invasiveness ; Protein Structure, Tertiary ; Skin Neoplasms/etiology/pathology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2005-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, John J -- Kanno, Yuka -- Chen, Xiaomin -- Levy, David E -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):217-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653493" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/metabolism ; Active Transport, Cell Nucleus ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytokines/*physiology ; Cytoplasm/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dimerization ; Histone Acetyltransferases ; Histone Deacetylases/metabolism ; Lysine/*metabolism ; Mutation ; NF-kappa B/metabolism ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/chemistry/genetics/*metabolism ; Transcriptional Activation ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2005-11-15
    Description: Plants commonly use photoperiod (day length) to control the timing of flowering during the year, and variation in photoperiod response has been selected in many crops to provide adaptation to different environments and farming practices. Positional cloning identified Ppd-H1, the major determinant of barley photoperiod response, as a pseudo-response regulator, a class of genes involved in circadian clock function. Reduced photoperiod responsiveness of the ppd-H1 mutant, which is highly advantageous in spring-sown varieties, is explained by altered circadian expression of the photoperiod pathway gene CONSTANS and reduced expression of its downstream target, FT, a key regulator of flowering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, Adrian -- Beales, James -- Faure, Sebastien -- Dunford, Roy P -- Laurie, David A -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1031-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284181" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Circadian Rhythm ; Cloning, Molecular ; Crosses, Genetic ; Flowers/physiology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; *Genes, Plant ; Hordeum/genetics/*physiology ; Molecular Sequence Data ; Mutation ; *Photoperiod ; Plant Proteins/chemistry/genetics/*physiology ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-02-19
    Description: Genetic information can be altered through the enzymatic modification of nucleotide sequences. This process, known as editing, was originally identified in the mitochondrial RNA of trypanosomes and later found to condition events as diverse as neurotransmission and lipid metabolism in mammals. Recent evidence reveals that editing enzymes may fulfill one of their most essential roles in the defense against infectious agents: first, as the mediators of antibody diversification, a step crucial for building adaptive immunity, and second, as potent intracellular poisons for the replication of viruses. Exciting questions are raised, which take us to the depth of the intimate relations between vertebrates and the microbial underworld.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turelli, Priscilla -- Trono, Didier -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1061-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15718460" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytidine/metabolism ; Cytidine Deaminase/*metabolism ; DNA, Viral/*metabolism ; Deamination ; Evolution, Molecular ; Hepatitis B virus/genetics/physiology ; Humans ; *Immunity, Active ; *Immunity, Innate ; Mutation ; *RNA Editing ; RNA, Viral/metabolism ; Retroelements ; Retroviridae/pathogenicity/physiology ; Virus Diseases/*immunology/metabolism/virology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulze-Lefert, Paul -- Bieri, Stephane -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):506-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Microbe Interactions, Max-Planck-Institut fur Zuchtungsforschung, D-50829 Koln, Germany. schlef@mpiz-koeln.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845841" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/metabolism/microbiology ; Arabidopsis Proteins/metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/metabolism ; Cladosporium/immunology/metabolism ; Cyclophilins/metabolism ; Fungal Proteins/*metabolism ; Leucine ; Lycopersicon esculentum/*immunology/metabolism/microbiology ; Models, Immunological ; Mutation ; Peptide Hydrolases/genetics/metabolism ; Plant Diseases ; Plant Proteins/chemistry/genetics/*metabolism ; Protein Conformation ; Pseudomonas syringae/immunology/metabolism ; Recombinant Proteins/metabolism ; Repetitive Sequences, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2005-03-19
    Description: The mammalian intestine harbors a beneficial microbiota numbering approximately 10(12) organisms per gram of colonic content. The host tolerates this tremendous bacterial load while maintaining the ability to efficiently respond to pathogenic organisms. In this study, we show that the Bacteroides use a mammalian-like pathway to decorate numerous surface capsular polysaccharides and glycoproteins with l-fucose, an abundant surface molecule of intestinal epithelial cells, resulting in the coordinated expression of this surface molecule by host and symbiont. A Bacteroides mutant deficient in the ability to cover its surface with L-fucose is defective in colonizing the mammalian intestine under competitive conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coyne, Michael J -- Reinap, Barbara -- Lee, Martin M -- Comstock, Laurie E -- AI44193/AI/NIAID NIH HHS/ -- AI53694/AI/NIAID NIH HHS/ -- R01 AI044193/AI/NIAID NIH HHS/ -- R01 AI044193-07/AI/NIAID NIH HHS/ -- R01 AI053694/AI/NIAID NIH HHS/ -- R01 AI053694-03/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1778-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774760" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Bacterial Capsules/biosynthesis/chemistry/*metabolism ; Bacterial Proteins/biosynthesis/metabolism ; Bacteroides fragilis/enzymology/genetics/growth & development/*metabolism ; Culture Media ; Feces/microbiology ; Fucose/*metabolism ; Gene Deletion ; Genes, Bacterial ; Glycoproteins/biosynthesis/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Hydro-Lyases/genetics/metabolism ; Intestinal Mucosa/metabolism ; Intestines/*microbiology ; Mice ; Molecular Mimicry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2005-03-19
    Description: During animal development, epithelial cell fates are specified according to spatial position by extracellular signaling pathways. Among these, the transforming growth factor beta/bone morphogenetic protein (TGF-beta/BMP) pathways are evolutionarily conserved and play crucial roles in the development and homeostasis of a wide range of multicellular tissues. Here we show that in the developing Drosophila wing imaginal epithelium, cell clones deprived of the BMP-like ligand Decapentaplegic (DPP) do not die as previously thought but rather extrude from the cell layer as viable cysts exhibiting marked abnormalities in cell shape and cytoskeletal organization. We propose that in addition to assigning cell fates, a crucial developmental function of DPP/BMP signaling is the position-specific control of epithelial architecture.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Matthew C -- Perrimon, Norbert -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1785-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774762" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/analysis ; Alleles ; Animals ; Apoptosis ; Body Patterning ; Cell Death ; Cell Shape ; Clone Cells/cytology/physiology/ultrastructure ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*cytology/genetics/growth & development/physiology ; Epithelial Cells/cytology/*physiology/ultrastructure ; Ethyl Methanesulfonate ; JNK Mitogen-Activated Protein Kinases/metabolism ; Microtubules/ultrastructure ; Morphogenesis ; Mutagens ; Mutation ; Phenotype ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Receptors, Cell Surface/genetics/metabolism ; *Signal Transduction ; Transforming Growth Factor beta/metabolism ; Wings, Animal/*cytology/embryology/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2005-12-17
    Description: The mosaic-structured Vibrio cholerae genome points to the importance of horizontal gene transfer (HGT) in the evolution of this human pathogen. We showed that V. cholerae can acquire new genetic material by natural transformation during growth on chitin, a biopolymer that is abundant in aquatic habitats (e.g., from crustacean exoskeletons), where it lives as an autochthonous microbe. Transformation competence was found to require a type IV pilus assembly complex, a putative DNA binding protein, and three convergent regulatory cascades, which are activated by chitin, increasing cell density, and nutrient limitation, a decline in growth rate, or stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meibom, Karin L -- Blokesch, Melanie -- Dolganov, Nadia A -- Wu, Cheng-Yen -- Schoolnik, Gary K -- AI053706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1824-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, and Stanford Institute for the Environment, Stanford University, Stanford, CA 94305, USA. kmeibom@necker.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357262" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics/metabolism/physiology ; Biofilms/growth & development ; Brachyura/microbiology ; Chitin/metabolism/*physiology ; Culture Media ; DNA-Binding Proteins/genetics/metabolism ; Fimbriae Proteins/biosynthesis/genetics ; Fimbriae, Bacterial/metabolism ; Frameshift Mutation ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Models, Biological ; Mutation ; Phenotype ; Regulon ; Sigma Factor/metabolism ; *Transformation, Bacterial ; Vibrio cholerae/*genetics/growth & development/metabolism/physiology ; Vibrio cholerae O1/*genetics/growth & development/metabolism/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culotta, Elizabeth -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior ; *Biological Evolution ; Brain/physiology ; Forecasting ; Genome ; *Genome, Human ; Hominidae/*genetics ; Humans ; Mutation ; Primates/*genetics ; Selection, Genetic ; Speech
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...