ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-12
    Description: RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y' messenger RNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a previously unknown class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drinnenberg, Ines A -- Weinberg, David E -- Xie, Kathleen T -- Mower, Jeffrey P -- Wolfe, Kenneth H -- Fink, Gerald R -- Bartel, David P -- GM0305010/GM/NIGMS NIH HHS/ -- GM040266/GM/NIGMS NIH HHS/ -- GM067031/GM/NIGMS NIH HHS/ -- R01 GM067031/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):544-50. doi: 10.1126/science.1176945. Epub 2009 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745116" target="_blank"〉PubMed〈/a〉
    Keywords: Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; Genes, Fungal ; Genetic Loci ; Mutation ; Open Reading Frames ; *RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Small Interfering/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Ribonuclease III/genetics/metabolism ; Saccharomyces/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Saccharomycetales/*genetics/metabolism ; Sequence Analysis, RNA ; Transcription, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-24
    Description: The differentiation of patient-derived induced pluripotent stem cells (iPSCs) to committed fates such as neurons, muscle and liver is a powerful approach for understanding key parameters of human development and disease. Whether undifferentiated iPSCs themselves can be used to probe disease mechanisms is uncertain. Dyskeratosis congenita is characterized by defective maintenance of blood, pulmonary tissue and epidermal tissues and is caused by mutations in genes controlling telomere homeostasis. Short telomeres, a hallmark of dyskeratosis congenita, impair tissue stem cell function in mouse models, indicating that a tissue stem cell defect may underlie the pathophysiology of dyskeratosis congenita. Here we show that even in the undifferentiated state, iPSCs from dyskeratosis congenita patients harbour the precise biochemical defects characteristic of each form of the disease and that the magnitude of the telomere maintenance defect in iPSCs correlates with clinical severity. In iPSCs from patients with heterozygous mutations in TERT, the telomerase reverse transcriptase, a 50% reduction in telomerase levels blunts the natural telomere elongation that accompanies reprogramming. In contrast, mutation of dyskerin (DKC1) in X-linked dyskeratosis congenita severely impairs telomerase activity by blocking telomerase assembly and disrupts telomere elongation during reprogramming. In iPSCs from a form of dyskeratosis congenita caused by mutations in TCAB1 (also known as WRAP53), telomerase catalytic activity is unperturbed, yet the ability of telomerase to lengthen telomeres is abrogated, because telomerase mislocalizes from Cajal bodies to nucleoli within the iPSCs. Extended culture of DKC1-mutant iPSCs leads to progressive telomere shortening and eventual loss of self-renewal, indicating that a similar process occurs in tissue stem cells in dyskeratosis congenita patients. These findings in iPSCs from dyskeratosis congenita patients reveal that undifferentiated iPSCs accurately recapitulate features of a human stem cell disease and may serve as a cell-culture-based system for the development of targeted therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155806/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155806/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Batista, Luis F Z -- Pech, Matthew F -- Zhong, Franklin L -- Nguyen, Ha Nam -- Xie, Kathleen T -- Zaug, Arthur J -- Crary, Sharon M -- Choi, Jinkuk -- Sebastiano, Vittorio -- Cherry, Athena -- Giri, Neelam -- Wernig, Marius -- Alter, Blanche P -- Cech, Thomas R -- Savage, Sharon A -- Reijo Pera, Renee A -- Artandi, Steven E -- R01 AG033747/AG/NIA NIH HHS/ -- R01 AG033747-02/AG/NIA NIH HHS/ -- R01 CA111691/CA/NCI NIH HHS/ -- R01 CA111691-05/CA/NCI NIH HHS/ -- R01 CA125453/CA/NCI NIH HHS/ -- R01 CA125453-05/CA/NCI NIH HHS/ -- RC1 HL100361/HL/NHLBI NIH HHS/ -- RC1 HL100361-01/HL/NHLBI NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2011 May 22;474(7351):399-402. doi: 10.1038/nature10084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21602826" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/genetics/metabolism ; Cell Division ; Cellular Reprogramming ; Dyskeratosis Congenita/*genetics/*pathology ; Fibroblasts ; Gene Expression Regulation ; Humans ; Induced Pluripotent Stem Cells/*metabolism/*pathology ; Nuclear Proteins/genetics/metabolism ; RNA/genetics ; Telomerase/genetics/metabolism ; Telomere/enzymology/genetics/metabolism/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Evolution generates a remarkable breadth of living forms, but many traits evolve repeatedly, by mechanisms that are still poorly understood. A classic example of repeated evolution is the loss of pelvic hindfins in stickleback fish (〈i〉Gasterosteus aculeatus〈/i〉). Repeated pelvic loss maps to recurrent deletions of a pelvic enhancer of the 〈i〉Pitx1〈/i〉 gene. Here, we identify molecular features contributing to these recurrent deletions. 〈i〉Pitx1〈/i〉 enhancer sequences form alternative DNA structures in vitro and increase double-strand breaks and deletions in vivo. Enhancer mutability depends on DNA replication direction and is caused by TG-dinucleotide repeats. Modeling shows that elevated mutation rates can influence evolution under demographic conditions relevant for sticklebacks and humans. DNA fragility may thus help explain why the same loci are often used repeatedly during parallel adaptive evolution.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...