ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-06-24
    Description: During neurotransmitter release at the synapse, influx of calcium ions stimulates the release of neurotransmitter. However, the mechanism by which synaptic vesicle fusion is coupled to calcium has been unclear, despite the identification of both the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal calcium sensor (synaptotagmin). Here, we describe what may represent a basic principle of the coupling mechanism: a reversible clamping protein (complexin) that can freeze the SNAREpin, an assembled fusion-competent intermediate en route to fusion. When calcium binds to the calcium sensor synaptotagmin, the clamp would then be released. SNARE proteins, and key regulators like synaptotagmin and complexin, can be ectopically expressed on the cell surface. Cells expressing such "flipped" synaptic SNAREs fuse constitutively, but when we coexpressed complexin, fusion was blocked. Adding back calcium triggered fusion from this intermediate in the presence of synaptotagmin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giraudo, Claudio G -- Eng, William S -- Melia, Thomas J -- Rothman, James E -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):676-80. Epub 2006 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794037" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Animals ; Calcium/metabolism ; Cell Membrane/metabolism ; *Exocytosis ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Nerve Tissue Proteins/*metabolism ; Rats ; Recombinant Proteins/metabolism ; SNARE Proteins/*metabolism ; Synaptotagmin I/metabolism ; Synaptotagmins/metabolism ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-01-24
    Description: Membrane fusion between vesicles and target membranes involves the zippering of a four-helix bundle generated by constituent helices derived from target- and vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). In neurons, the protein complexin clamps otherwise spontaneous fusion by SNARE proteins, allowing neurotransmitters and other mediators to be secreted when and where they are needed as this clamp is released. The membrane-proximal accessory helix of complexin is necessary for clamping, but its mechanism of action is unknown. Here, we present experiments using a reconstituted fusion system that suggest a simple model in which the complexin accessory helix forms an alternative four-helix bundle with the target-SNARE near the membrane, preventing the vesicle-SNARE from completing its zippering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736854/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736854/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giraudo, Claudio G -- Garcia-Diaz, Alejandro -- Eng, William S -- Chen, Yuhang -- Hendrickson, Wayne A -- Melia, Thomas J -- Rothman, James E -- R01 GM071458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 23;323(5913):512-6. doi: 10.1126/science.1166500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Building, Room 520, New York, NY 10032, USA. claudio.giraudo@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164750" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Sequence ; HeLa Cells ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Recombinant Fusion Proteins/chemistry/metabolism ; SNARE Proteins/*chemistry/*metabolism ; Vesicle-Associated Membrane Protein 2/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-02-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...