ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-12
    Description: RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y' messenger RNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a previously unknown class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drinnenberg, Ines A -- Weinberg, David E -- Xie, Kathleen T -- Mower, Jeffrey P -- Wolfe, Kenneth H -- Fink, Gerald R -- Bartel, David P -- GM0305010/GM/NIGMS NIH HHS/ -- GM040266/GM/NIGMS NIH HHS/ -- GM067031/GM/NIGMS NIH HHS/ -- R01 GM067031/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):544-50. doi: 10.1126/science.1176945. Epub 2009 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745116" target="_blank"〉PubMed〈/a〉
    Keywords: Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; Genes, Fungal ; Genetic Loci ; Mutation ; Open Reading Frames ; *RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Small Interfering/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Ribonuclease III/genetics/metabolism ; Saccharomyces/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Saccharomycetales/*genetics/metabolism ; Sequence Analysis, RNA ; Transcription, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-17
    Description: The RNA interference (RNAi) pathway is found in most eukaryotic lineages but curiously is absent in others, including that of Saccharomyces cerevisiae. We show that reconstituting RNAi in S. cerevisiae causes loss of a beneficial double-stranded RNA virus known as killer virus. Incompatibility between RNAi and killer viruses extends to other fungal species in that RNAi is absent in all species known to possess double-stranded RNA killer viruses, whereas killer viruses are absent in closely related species that retained RNAi. Thus, the advantage imparted by acquiring and retaining killer viruses explains the persistence of RNAi-deficient species during fungal evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790311/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790311/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drinnenberg, Ines A -- Fink, Gerald R -- Bartel, David P -- GM0305010/GM/NIGMS NIH HHS/ -- GM040266/GM/NIGMS NIH HHS/ -- GM061835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- R37 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1592. doi: 10.1126/science.1209575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921191" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Fungi/genetics/virology ; Genes, Fungal ; Phylogeny ; *RNA Interference ; RNA Viruses/*physiology ; Saccharomyces cerevisiae/*genetics/physiology/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-12-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-12
    Description: The generation of mature functional RNAs from nascent transcripts requires the precise and coordinated action of numerous RNAs and proteins. One such protein family, the ribonuclease III (RNase III) endonucleases, includes Rnt1, which functions in fungal ribosome and spliceosome biogenesis, and Dicer, which generates the siRNAs of the RNAi pathway. The recent discovery of small RNAs in Candida albicans led us to investigate the function of C. albicans Dicer (CaDcr1). CaDcr1 is capable of generating siRNAs in vitro and is required for siRNA generation in vivo. In addition, CaDCR1 complements a Dicer knockout in Saccharomyces castellii, restoring RNAi-mediated gene repression. Unexpectedly, deletion of the C. albicans CaDCR1 results in a severe slow-growth phenotype, whereas deletion of another core component of the RNAi pathway (CaAGO1) has little effect on growth, suggesting that CaDCR1 may have an essential function in addition to producing siRNAs. Indeed CaDcr1, the sole functional RNase III enzyme in C. albicans, has additional functions: it is required for cleavage of the 3′ external transcribed spacer from unprocessed pre-rRNA and for processing the 3′ tail of snRNA U4. Our results suggest two models whereby the RNase III enzymes of a fungal ancestor, containing both a canonical Dicer and Rnt1, evolved through a series of gene-duplication and gene-loss events to generate the variety of RNase III enzymes found in modern-day budding yeasts.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...