ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (83)
  • Signal Transduction
  • American Association for the Advancement of Science (AAAS)  (99)
  • American Chemical Society (ACS)
  • 2010-2014
  • 1990-1994  (99)
  • 1993  (99)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (99)
  • American Chemical Society (ACS)
Years
  • 2010-2014
  • 1990-1994  (99)
Year
  • 1
    Publication Date: 1993-10-22
    Description: Glycogen storage disease (GSD) type 1a is caused by the deficiency of D-glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high incidence and morbidity, the molecular mechanisms underlying this deficiency have eluded characterization. In the present study, the molecular and biochemical characterization of the human G6Pase complementary DNA, its gene, and the expressed protein, which is indistinguishable from human microsomal G6Pase, are reported. Several mutations in the G6Pase gene of affected individuals that completely inactivate the enzyme have been identified. These results establish the molecular basis of this disease and open the way for future gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lei, K J -- Shelly, L L -- Pan, C J -- Sidbury, J B -- Chou, J Y -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):580-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA, Complementary/genetics ; Exons ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/enzymology/*genetics ; Glycosylation ; Humans ; Liver/enzymology ; Mice ; Molecular Sequence Data ; *Mutation ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-03-12
    Description: Glucagon and the glucagon receptor are a primary source of control over blood glucose concentrations and are especially important to studies of diabetes in which the loss of control over blood glucose concentrations clinically defines the disease. A complementary DNA clone for the glucagon receptor was isolated by an expression cloning strategy, and the receptor protein was expressed in several kidney cell lines. The cloned receptor bound glucagon and caused an increase in the intracellular concentration of adenosine 3', 5'-monophosphate (cAMP). The cloned glucagon receptor also transduced a signal that led to an increased concentration of intracellular calcium. The glucagon receptor is similar to the calcitonin and parathyroid hormone receptors. It can transduce signals leading to the accumulation of two different second messengers, cAMP and calcium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jelinek, L J -- Lok, S -- Rosenberg, G B -- Smith, R A -- Grant, F J -- Biggs, S -- Bensch, P A -- Kuijper, J L -- Sheppard, P O -- Sprecher, C A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1614-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ZymoGenetics Inc., Seattle, WA 98105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384375" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/pharmacology ; Cell Line ; Cloning, Molecular ; Cricetinae ; Cyclic AMP/metabolism ; Glucagon/metabolism/*pharmacology ; Kidney ; Kinetics ; Liver/*metabolism ; Molecular Sequence Data ; Rats ; Receptors, Gastrointestinal Hormone/genetics/metabolism/*physiology ; Receptors, Glucagon ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-12
    Description: Activation of the Raf and extracellular signal-regulated kinases (ERKs) (or mitogen-activated protein kinases) are key events in mitogenic signalling, but little is known about interactions with other signaling pathways. Agents that raise levels of intracellular cyclic adenosine 3',5'-monophosphate (cAMP) blocked DNA synthesis and signal transduction in Rat1 cells exposed to epidermal growth factor (EGF) or lysophosphatidic acid. In the case of EGF, receptor tyrosine kinase activity and association with the signaling molecules Grb2 and Shc were unaffected by cAMP. Likewise, EGF-dependent accumulation of the guanosine 5'-triphosphate-bound form of Ras was unaffected. In contrast, activation of Raf-1 and ERK kinases was inhibited. Thus, cAMP appears to inhibit signal transmission from Ras by preventing Ras-dependent activation of Raf-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, S J -- McCormick, F -- UO1 CA51992-03/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1069-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, Richmond, CA 94806.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694367" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; Animals ; Bucladesine/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cholera Toxin/pharmacology ; Cyclic AMP/*pharmacology ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Interphase ; Lysophospholipids/pharmacology ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Rats ; Receptor, Epidermal Growth Factor/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-09-17
    Description: The bcl-2 proto-oncogene can prevent the death of many cell types. Mice were generated that were chimeric for the homozygous inactivation of bcl-2. Lymphocytes without Bcl-2 differentiated into phenotypically mature cells. However, in vitro, the mature T cells that lacked Bcl-2 had shorter life-spans and increased sensitivity to glucocorticoids and gamma-irradiation. In contrast, stimulation of CD3 inhibited the death of these cells. T and B cells with no Bcl-2 disappeared from the bone marrow, thymus, and periphery by 4 weeks of age. Thus, Bcl-2 was dispensable for lymphocyte maturation, but was required for a stable immune system after birth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakayama, K -- Negishi, I -- Kuida, K -- Shinkai, Y -- Louie, M C -- Fields, L E -- Lucas, P J -- Stewart, V -- Alt, F W -- AI 15322/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 17;261(5128):1584-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8372353" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD3/immunology ; Apoptosis ; B-Lymphocytes/cytology/*immunology ; Base Sequence ; Bone Marrow/immunology ; Bone Marrow Cells ; Cell Line ; Chimera ; Homozygote ; Humans ; Lymphoid Tissue/cytology/immunology ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-bcl-2 ; Proto-Oncogenes ; Receptors, Antigen, T-Cell/immunology ; T-Lymphocytes/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-02-12
    Description: Upon activation, B lymphocytes can change the class of the antibody they express by immunoglobulin class switch recombination. Cytokines can direct this recombination to distinct classes by the specific activation of repetitive recombinogenic DNA sequences, the switch regions. Recombination to a particular switch region (s gamma 1) was abolished in mice that were altered to lack sequences that are 5' to the s gamma 1 region. This result directly implicates the functional importance of 5' switch region flanking sequences in the control of class switch recombination. Mutant mice exhibit a selective agammaglobulinemia and may be useful in the assessment of the biological importance of immunoglobulin G1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jung, S -- Rajewsky, K -- Radbruch, A -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):984-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetics, University of Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8438159" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Chimera ; Drug Resistance/genetics ; Embryo, Mammalian ; *Gene Deletion ; Immunoglobulin G/genetics ; Immunoglobulin Heavy Chains/genetics ; Immunoglobulin Switch Region/*genetics ; Interleukin-4/pharmacology ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutagenesis ; Neomycin ; *Recombination, Genetic ; Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-11-05
    Description: B7 delivers a costimulatory signal through CD28, resulting in interleukin-2 secretion and T cell proliferation. Blockade of this pathway results in T cell anergy. The in vivo role of B7 was evaluated with B7-deficient mice. These mice had a 70 percent decrease in costimulation of the response to alloantigen. Despite lacking B7 expression, activated B cells from these mice bound CTLA-4 and GL1 monoclonal antibody, demonstrating that alternative CTLA-4 ligand or ligands exist. These receptors are functionally important because the residual allogenic mixed lymphocyte responses were blocked by CTLA4Ig. Characterization of these CTLA-4 ligands should lead to strategies for manipulating the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freeman, G J -- Borriello, F -- Hodes, R J -- Reiser, H -- Hathcock, K S -- Laszlo, G -- McKnight, A J -- Kim, J -- Du, L -- Lombard, D B -- CA 40216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):907-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694362" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antigens, CD ; Antigens, CD80/genetics/*immunology/metabolism ; Antigens, Differentiation/immunology/*metabolism ; B-Lymphocytes/*immunology ; Base Sequence ; CTLA-4 Antigen ; Cell Line ; *Immunoconjugates ; Interleukin-2/secretion ; Isoantigens/immunology ; Lymphocyte Activation ; Lymphocyte Culture Test, Mixed ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-11-05
    Description: Although presentation of antigen to the T cell receptor is necessary for the initiation of an immune response, additional molecules expressed on antigen-presenting cells deliver essential costimulatory signals. T cell activation, in the absence of costimulation, results in T cell anergy. The B7-1 protein is a costimulator molecule that regulates interleukin-2 (IL-2) secretion by signaling through the pathway that uses CD28 and CTLA-4 (hereafter referred to as the CD28 pathway). We have cloned a counter-receptor of CD28 and CTLA-4, termed B7-2. Although only 26 percent identical to B7-1, B7-2 also costimulates IL-2 production and T cell proliferation. Unlike B7-1, B7-2 messenger RNA is constitutively expressed in unstimulated B cells. It is likely that B7-2 provides a critical early costimulatory signal determining if the T cell will contribute to an immune response or become anergic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freeman, G J -- Gribben, J G -- Boussiotis, V A -- Ng, J W -- Restivo, V A Jr -- Lombard, L A -- Gray, G S -- Nadler, L M -- CA 40216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):909-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematologic Malignancies, Dana-Farber Cancer Institute.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694363" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Amino Acid Sequence ; Animals ; *Antigens, CD ; Antigens, CD28/metabolism ; Antigens, CD80/chemistry/genetics/*immunology/metabolism ; Antigens, CD86 ; Antigens, Differentiation/*metabolism ; B-Lymphocytes/*immunology/metabolism ; CTLA-4 Antigen ; Cell Line ; *Cloning, Molecular ; DNA, Complementary/genetics ; Humans ; *Immunoconjugates ; *Lymphocyte Activation ; *Membrane Glycoproteins ; Molecular Sequence Data ; Sequence Alignment ; Signal Transduction ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-06-25
    Description: CD4+ T cells play a major role in protective immunity against the blood stage of malaria, but the mechanism of protection is unclear. By adoptive transfer of cloned T cell lines, direct evidence is provided that both TH1 and TH2 subsets of CD4+ T cells can protect mice against Plasmodium chabaudi chabaudi infection. TH1 cells protect by a nitric oxide-dependent mechanism, whereas TH2 cells protect by the enhancement and accelerated production of specific immunoglobulin G1 antibody.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor-Robinson, A W -- Phillips, R S -- Severn, A -- Moncada, S -- Liew, F Y -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1931-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Laboratories for Experimental Parasitology, University of Glasgow, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8100366" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Protozoan/biosynthesis ; Arginine/analogs & derivatives/pharmacology ; CD4-Positive T-Lymphocytes/*immunology ; Cell Line ; Female ; Immunoglobulin G/*biosynthesis ; Lymphocyte Depletion ; Malaria/*immunology ; Mice ; Mice, Inbred Strains ; Nitrates/blood ; Nitric Oxide/*metabolism ; Plasmodium chabaudi/*immunology ; T-Lymphocyte Subsets/*immunology ; omega-N-Methylarginine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-01-15
    Description: Nerve growth factor (NGF) is essential for the survival of both peripheral ganglion cells and central cholinergic neurons of the basal forebrain. The accelerated loss of central cholinergic neurons during Alzheimer's disease may be a determinant of dementia in these patients and may therefore suggest a therapeutic role for NGF. However, NGF does not significantly penetrate the blood-brain barrier, which makes its clinical utility dependent on invasive neurosurgical procedures. When conjugated to an antibody to the transferrin receptor, however, NGF crossed the blood-brain barrier after peripheral injection. This conjugated NGF increased the survival of both cholinergic and noncholinergic neurons of the medial septal nucleus that had been transplanted into the anterior chamber of the rat eye. This approach may prove useful for the treatment of Alzheimer's disease and other neurological disorders that are amenable to treatment by proteins that do not readily cross the blood-brain barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friden, P M -- Walus, L R -- Watson, P -- Doctrow, S R -- Kozarich, J W -- Backman, C -- Bergman, H -- Hoffer, B -- Bloom, F -- Granholm, A C -- NS29601-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 15;259(5093):373-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alkermes, Inc., Cambridge, MA 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8420006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Chamber/metabolism ; Antibodies/*metabolism ; *Blood-Brain Barrier ; Brain/blood supply/metabolism ; Capillaries ; Cell Line ; Cross-Linking Reagents ; Dose-Response Relationship, Drug ; Drug Carriers ; Immunohistochemistry ; Nerve Growth Factors/administration & dosage/*pharmacokinetics/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Transferrin/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-05-21
    Description: The cytotoxicity of human natural killer (NK) cells is modulated by the major histocompatibility complex human leukocyte antigen (HLA)-C molecules on the surface of the target cell. Alloreactive NK cells specific for the NK-1 alloantigen could be reproducibly generated from individuals that were homozygous for HLA-C with asparagine at residue 77 and lysine at residue 80 [HLA-C(Asn77,Lys80)] by stimulation with target cells that were homozygous for HLA-C(Ser77,Asn80); the reciprocal stimulation yielded NK cells specific for the NK-2 alloantigen. However, neither homozygous target cell stimulated the generation of alloreactive NK cells from heterozygous individuals. Thus, these data reveal an unanticipated difference between human NK alloreactivity defined by this system and murine "hybrid resistance."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colonna, M -- Brooks, E G -- Falco, M -- Ferrara, G B -- Strominger, J L -- CA 47554/CA/NCI NIH HHS/ -- KO8 AI01064/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 May 21;260(5111):1121-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunogenetics, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493555" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Cell Line ; *Cytotoxicity, Immunologic ; Genotype ; HLA-C Antigens/genetics/*immunology ; Heterozygote ; Homozygote ; Humans ; Isoantigens/*immunology ; Killer Cells, Natural/*immunology ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Polymorphism, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1993-08-06
    Description: Major histocompatibility complex (MHC) class I molecules present peptides derived from nuclear and cytosolic proteins to CD8+ T cells. These peptides are translocated into the lumen of the endoplasmic reticulum (ER) to associate with class I molecules. Two MHC-encoded putative transporter proteins, TAP1 and TAP2, are required for efficient assembly of class I molecules and presentation of endogenous peptides. Expression of TAP1 and TAP2 in a mutant cell line resulted in the delivery of an 11-amino acid oligomer model peptide to the ER. Peptide translocation depended on the sequence of the peptide, was adenosine triphosphate (ATP)-dependent, required ATP hydrolysis, and was inhibited in a concentration-dependent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neefjes, J J -- Momburg, F -- Hammerling, G J -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):769-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Netherlands Cancer Institute, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342042" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/*metabolism ; Amino Acid Sequence ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Cell Line ; Cell Membrane Permeability ; Endoplasmic Reticulum/metabolism ; Glycosylation ; Histocompatibility Antigens Class II/*metabolism ; Molecular Sequence Data ; Oligopeptides/*metabolism ; Rats ; T-Lymphocytes, Cytotoxic/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1993-04-02
    Description: The VPS34 gene product (Vps34p) is required for protein sorting to the lysosome-like vacuole of the yeast Saccharomyces cerevisiae. Vps34p shares significant sequence similarity with the catalytic subunit of bovine phosphatidylinositol (PI) 3-kinase [the 110-kilodalton (p110) subunit of PI 3-kinase], which is known to interact with activated cell surface receptor tyrosine kinases. Yeast strains deleted for the VPS34 gene or carrying vps34 point mutations lacked detectable PI 3-kinase activity and exhibited severe defects in vacuolar protein sorting. Overexpression of Vps34p resulted in an increase in PI 3-kinase activity, and this activity was specifically precipitated with antisera to Vps34p. VPS34 encodes a yeast PI 3-kinase, and this enzyme appears to regulate intracellular protein trafficking decisions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schu, P V -- Takegawa, K -- Fry, M J -- Stack, J H -- Waterfield, M D -- Emr, S D -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):88-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8385367" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/enzymology ; Cattle ; Chromatography, High Pressure Liquid ; Fungal Proteins/*metabolism ; Gene Deletion ; Gene Expression ; *Genes, Fungal ; Lysosomes/metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphatidylinositol 3-Kinases ; Phosphotransferases/chemistry/*genetics/metabolism ; Point Mutation ; Saccharomyces cerevisiae/enzymology/*genetics ; Sequence Homology, Amino Acid ; Signal Transduction ; Vacuoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1993-12-10
    Description: Mutations in the human APC gene are linked to familial adenomatous polyposis and to the progression of sporadic colorectal and gastric tumors. To gain insight into APC function, APC-associated proteins were identified by immunoprecipitation experiments. Antibodies to APC precipitated a 95-kilodalton protein that was purified and identified by sequencing as beta-catenin, a protein that binds to the cell adhesion molecule E-cadherin. An antibody specific to beta-catenin also recognized the 95-kilodalton protein in the immunoprecipitates. These results suggest that APC is involved in cell adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubinfeld, B -- Souza, B -- Albert, I -- Muller, O -- Chamberlain, S H -- Masiarz, F R -- Munemitsu, S -- Polakis, P -- New York, N.Y. -- Science. 1993 Dec 10;262(5140):1731-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, Richmond, CA 94806.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8259518" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Antibodies ; Cadherins/*metabolism ; Cell Adhesion ; Cell Line ; Colonic Neoplasms/genetics/*metabolism ; Cytoskeletal Proteins/chemistry/isolation & purification/*metabolism ; *Genes, APC ; Humans ; Molecular Sequence Data ; Neoplasm Proteins/genetics/immunology/*metabolism ; Precipitin Tests ; *Trans-Activators ; Tumor Cells, Cultured ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1993-10-29
    Description: The molecular pathogenesis of diffuse large-cell lymphoma (DLCL), the most frequent and clinically relevant type of lymphoma, is unknown. A gene was cloned from chromosomal translocations affecting band 3q27, which are common in DLCL. This gene, BCL-6, codes for a 79-kilodalton protein that is homologous with zinc finger-transcription factors. In 33 percent (13 of 39) of DLCL samples, but not in other types of lymphoid malignancies, the BCL-6 gene is truncated within its 5' noncoding sequences, suggesting that its expression is deregulated. Thus, BCL-6 may be a proto-oncogene specifically involved in the pathogenesis of DLCL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, B H -- Lista, F -- Lo Coco, F -- Knowles, D M -- Offit, K -- Chaganti, R S -- Dalla-Favera, R -- CA 44029/CA/NCI NIH HHS/ -- CA 48236/CA/NCI NIH HHS/ -- EY 06337/EY/NEI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Oct 29;262(5134):747-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235596" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Chromosomes, Human, Pair 3 ; DNA, Complementary ; DNA-Binding Proteins/genetics ; Exons ; Gene Rearrangement ; Humans ; Introns ; Lymphoma, Large B-Cell, Diffuse/*genetics ; Molecular Sequence Data ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins c-bcl-6 ; Proto-Oncogenes/*genetics ; Sequence Homology, Amino Acid ; Transcription Factors/genetics ; Translocation, Genetic ; Zinc Fingers/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-16
    Description: Fertilization is accompanied by a transient increase in the concentration of intracellular Ca2+, which serves as a signal for initiating development. Some of the Ca2+ appears to be released from intracellular stores by the binding of inositol trisphosphate (IP3) to its receptor. However, in sea urchin eggs, other mechanisms appear to participate. Cyclic adenosine diphosphate--ribose (cADPR), a naturally occurring metabolite of nicotinamide adenine dinucleotide, is as potent as IP3 in mobilizing Ca2+ in sea urchin eggs. Experiments with antagonists of the cADPR and IP3 receptors revealed that both Ca2+ mobilizing systems were activated during fertilization. Blockage of either of the systems alone was not sufficient to prevent the sperm-induced Ca2+ transient. This study provides direct evidence for a physiological role of cADPR in the Ca2+ signaling process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, H C -- Aarhus, R -- Walseth, T F -- HD17484/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Minnesota, Minneapolis 55455.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8392749" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/analogs & derivatives/pharmacology ; Animals ; Calcium/*metabolism ; *Calcium Channels ; Cyclic ADP-Ribose ; Cyclic AMP/analogs & derivatives/pharmacology ; Female ; *Fertilization ; Heparin/pharmacology ; Inositol 1,4,5-Trisphosphate/pharmacology ; Inositol 1,4,5-Trisphosphate Receptors ; Ovum/*metabolism ; Receptors, Cell Surface/*physiology ; *Receptors, Cytoplasmic and Nuclear ; Sea Urchins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-09
    Description: Evidence suggests that both alpha and beta gamma subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) inhibit adenylyl cyclase. Although type I adenylyl cyclase is inhibited directly by exogenous beta gamma, inhibition of adenylyl cyclase by Gi alpha has not been convincingly demonstrated in vitro. Concentration-dependent inhibition of adenylyl cyclases by purified Gi alpha subunits is described. Activated Gi alpha but not G(o) alpha was effective, and myristoylation of Gi alpha was required. The characteristics of the inhibitory effect were dependent on the type of adenylyl cyclase and the nature of the activator of the enzyme. The concentrations of Gi alpha required to inhibit adenylyl cyclase were substantially higher than those normally thought to be relevant physiologically. However, analysis indicates that these concentrations may be relevant and reasonable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taussig, R -- Iniguez-Lluhi, J A -- Gilman, A G -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 9;261(5118):218-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8327893" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/metabolism ; Animals ; Calmodulin/pharmacology ; Cell Line ; Colforsin/pharmacology ; Dose-Response Relationship, Drug ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Guanosine Triphosphate/metabolism ; Moths ; Myristic Acid ; Myristic Acids/metabolism ; Recombinant Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1993-09-10
    Description: Activated autoreactive T cells are potentially pathogenic and regulated by clonotypic networks. Experimental autoimmune diseases can be treated by inoculation with autoreactive T cells (T cell vaccination). In the present study, patients with multiple sclerosis were inoculated with irradiated myelin basic protein (MBP)-reactive T cells. T cell responses to the inoculates were induced to deplete circulating MBP-reactive T cells in the recipients. Regulatory T cell lines isolated from the recipients inhibited T cells used for vaccination. The cytotoxicity of the CD8+ T cell lines was restricted by major histocompatibility antigens. Thus, clonotypic interactions regulating autoreactive T cells in humans can be induced by T cell vaccination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, J -- Medaer, R -- Stinissen, P -- Hafler, D -- Raus, J -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1451-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Multiple Sclerosis Research Unit, Dr. L. Willems Instituut, Diepenbeek, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690157" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antigens, CD4/analysis ; Antigens, CD8/analysis ; Cell Line ; Epitopes/immunology ; Female ; Humans ; *Immunotherapy, Adoptive ; Lymphocyte Activation ; Male ; Middle Aged ; Multiple Sclerosis/immunology/*therapy ; Myelin Basic Protein/*immunology ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; T-Lymphocytes/*immunology ; Vaccination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1993-05-21
    Description: A potent neurotrophic factor that enhances survival of midbrain dopaminergic neurons was purified and cloned. Glial cell line-derived neurotrophic factor (GDNF) is a glycosylated, disulfide-bonded homodimer that is a distantly related member of the transforming growth factor-beta superfamily. In embryonic midbrain cultures, recombinant human GDNF promoted the survival and morphological differentiation of dopaminergic neurons and increased their high-affinity dopamine uptake. These effects were relatively specific; GDNF did not increase total neuron or astrocyte numbers nor did it increase transmitter uptake by gamma-aminobutyric-containing and serotonergic neurons. GDNF may have utility in the treatment of Parkinson's disease, which is marked by progressive degeneration of midbrain dopaminergic neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, L F -- Doherty, D H -- Lile, J D -- Bektesh, S -- Collins, F -- New York, N.Y. -- Science. 1993 May 21;260(5111):1130-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Synergen, Inc., Boulder, CO 80301.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493557" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Astrocytes/cytology/drug effects ; Base Sequence ; Cell Differentiation/drug effects ; Cell Line ; Cell Survival/drug effects ; Cells, Cultured ; Cloning, Molecular ; Dopamine/*biosynthesis ; Glial Cell Line-Derived Neurotrophic Factor ; Humans ; Mesencephalon/cytology/*drug effects/metabolism ; Molecular Sequence Data ; Molecular Weight ; *Nerve Growth Factors ; Nerve Tissue Proteins/chemistry/genetics/isolation & purification/*pharmacology ; Neuroglia/*metabolism ; Neurons/cytology/*drug effects/metabolism ; Parkinson Disease/drug therapy ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1993-08-27
    Description: Better characterization of human immunodeficiency virus-type 1 (HIV-1) in patients with primary infection has important implications for the development of an acquired immunodeficiency syndrome (AIDS) vaccine because vaccine strategies should target viral isolates with the properties of transmitted viruses. In five HIV-1 seroconverters, the viral phenotype was found to be uniformly macrophage-tropic and non-syncytium-inducing. Furthermore, the viruses were genotypically homogeneous within each patient, but a common signature sequence was not discernible among transmitted viruses. In the two cases where the sexual partners were also studied, the sequences of the transmitted viruses matched best with minor variants in the blood of the transmitters. There was also a stronger pressure to conserve sequences in gp120 than in gp41, nef, and p17, suggesting that a selective mechanism is involved in transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, T -- Mo, H -- Wang, N -- Nam, D S -- Cao, Y -- Koup, R A -- Ho, D D -- AI24030/AI/NIAID NIH HHS/ -- AI25541/AI/NIAID NIH HHS/ -- AI27742/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Aug 27;261(5125):1179-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, New York University School of Medicine, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8356453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Female ; Gene Products, gag/chemistry/genetics ; Genes, Viral ; Genotype ; Giant Cells/physiology ; HIV Antigens/chemistry/genetics ; HIV Envelope Protein gp120/chemistry/*genetics ; HIV Envelope Protein gp41/chemistry/genetics ; HIV Infections/*microbiology/transmission ; HIV Seropositivity/microbiology ; HIV-1/chemistry/*genetics/*physiology ; Humans ; Macrophages ; Male ; Molecular Sequence Data ; Phenotype ; Sequence Alignment ; Sexual Partners ; *Viral Proteins ; Virus Replication ; gag Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-18
    Description: Mammalian apolipoprotein B (apo B) exists in two forms, each the product of a single gene. The shorter form, apo B48, arises by posttranscriptional RNA editing whereby cytidine deamination produces a UAA termination codon. A full-length complementary DNA clone encoding an apo B messenger RNA editing protein (REPR) was isolated from rat small intestine. The 229-residue protein contains consensus phosphorylation sites and leucine zipper domains. HepG2 cell extracts acquire editing activity when mixed with REPR from oocyte extracts. REPR is essential for apo B messenger RNA editing, and the isolation and characterization of REPR may lead to the identification of other eukaryotic RNA editing proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teng, B -- Burant, C F -- Davidson, N O -- DK-42086/DK/NIDDK NIH HHS/ -- HL-38180/HL/NHLBI NIH HHS/ -- KO-4 HL-02166/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1816-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511591" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apolipoproteins B/*genetics ; Base Sequence ; Cell Line ; *Cloning, Molecular ; Cytidine Deaminase/chemistry/*genetics ; Humans ; Intestine, Small/chemistry ; Leucine Zippers ; Molecular Sequence Data ; Molecular Weight ; Open Reading Frames ; Phosphorylation ; *RNA Editing ; Rats ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1993-07-16
    Description: Propagating Ca2+ waves are a characteristic feature of Ca(2+)-linked signal transduction pathways. Intracellular Ca2+ waves are formed by regenerative stimulation of Ca2+ release from intracellular stores by Ca2+ itself. Mechanisms that rely on either inositol trisphosphate or ryanodine receptor channels have been proposed to account for Ca2+ waves in various cell types. Both channel types contributed to the Ca2+ wave during fertilization of sea urchin eggs. Alternative mechanisms of Ca2+ release imply redundancy but may also allow for modulation and diversity in the generation of Ca2+ waves.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galione, A -- McDougall, A -- Busa, W B -- Willmott, N -- Gillot, I -- Whitaker, M -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):348-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Oxford University, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8392748" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/analogs & derivatives/pharmacology ; Adenosine Triphosphate/metabolism ; Animals ; Caffeine/pharmacology ; Calcium/*metabolism/pharmacology ; *Calcium Channels ; Cyclic ADP-Ribose ; Female ; *Fertilization ; Heparin/pharmacology ; Inositol 1,4,5-Trisphosphate/pharmacology ; Inositol 1,4,5-Trisphosphate Receptors ; Muscle Proteins/drug effects/*physiology ; Ovum/drug effects/*metabolism ; Receptors, Cell Surface/drug effects/*physiology ; *Receptors, Cytoplasmic and Nuclear ; Ryanodine/pharmacology ; Ryanodine Receptor Calcium Release Channel ; Sea Urchins ; Signal Transduction ; Thimerosal/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-06
    Description: Endonuclease G (Endo G) is widely distributed among animals and cleaves DNA at double-stranded (dG)n.(dC)n and at single-stranded (dC)n tracts. Endo G is synthesized as a propeptide with an amino-terminal presequence that targets the nuclease to mitochondria. Endo G can also be detected in extranucleolar chromatin. In addition to deoxyribonuclease activities, Endo G also has ribonuclease (RNase) and RNase H activities and specifically cleaves mouse mitochondrial RNA and DNA-RNA substrates containing the origin of heavy-strand DNA replication (OH). The cleavage sites match those found in vivo, indicating that Endo G is capable of generating the RNA primers required by DNA polymerase gamma to initiate replication of mitochondrial DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cote, J -- Ruiz-Carrillo, A -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):765-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research Center, Medical School of Laval University, L'Hotel-Dieu de Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7688144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Nucleus/enzymology ; DNA/genetics ; *DNA Replication ; DNA, Mitochondrial/*metabolism ; Endodeoxyribonucleases/chemistry/genetics/*metabolism ; Genetic Vectors ; Mitochondria/enzymology ; Molecular Sequence Data ; RNA/*metabolism ; Ribonuclease H/metabolism ; Ribonucleases/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montminy, M -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1694-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8397444" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/*metabolism ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Growth Substances/*metabolism ; Interferon-gamma/pharmacology ; Phosphorylation ; Receptors, Cell Surface/*metabolism ; STAT1 Transcription Factor ; *Signal Transduction ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1993-12-17
    Description: The interleukin-2 (IL-2) receptor gamma chain (IL-2R gamma) is an essential component of high- and intermediate-affinity IL-2 receptors. IL-2R gamma was demonstrated to be a component of the IL-4 receptor on the basis of chemical cross-linking data, the ability of IL-2R gamma to augment IL-4 binding affinity, and the requirement for IL-2R gamma in IL-4-mediated phosphorylation of insulin receptor substrate-1. The observation that IL-2R gamma is a functional component of the IL-4 receptor, together with the finding that IL-2R gamma associates with the IL-7 receptor, begins to elucidate why deficiency of this common gamma chain (gamma c) has a profound effect on lymphoid function and development, as seen in X-linked severe combined immunodeficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, S M -- Keegan, A D -- Harada, N -- Nakamura, Y -- Noguchi, M -- Leland, P -- Friedmann, M C -- Miyajima, A -- Puri, R K -- Paul, W E -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1880-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Pulmonary and Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266078" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Line, Transformed ; Genetic Linkage ; Humans ; Insulin Receptor Substrate Proteins ; Interleukin-4/metabolism ; L Cells (Cell Line) ; Mice ; Molecular Sequence Data ; Phosphoproteins/metabolism ; Phosphorylation ; Receptors, Interleukin-2/chemistry/genetics/*metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/chemistry/genetics/*metabolism ; Severe Combined Immunodeficiency/genetics/immunology ; Signal Transduction ; Transfection ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-14
    Description: Antigen receptor genes are assembled by site-specific DNA rearrangement. The recombination activator genes RAG-1 and RAG-2 are essential for this process, termed V(D)J rearrangement. The activity and stability of the RAG-2 protein have now been shown to be regulated by phosphorylation. In fibroblasts RAG-2 was phosphorylated predominantly at two serine residues, one of which affected RAG-2 activity in vivo. The threonine at residue 490 was phosphorylated by p34cdc2 kinase in vitro; phosphorylation at this site in vivo was associated with rapid degradation of RAG-2. Instability was transferred to chimeric proteins by a 90-residue portion of RAG-2. Mutation of the p34cdc2 phosphorylation site of the tumor suppressor protein p53 conferred a similar phenotype, suggesting that this association between phosphorylation and degradation is a general mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, W C -- Desiderio, S -- CA16519/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 May 14;260(5110):953-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493533" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/metabolism ; Cell Line ; *DNA-Binding Proteins ; *Gene Rearrangement ; Humans ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins ; Phosphorylation ; Proteins/chemistry/genetics/*metabolism ; Receptors, Antigen/*genetics ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zurzolo, C -- Rodriguez-Boulan, E -- GM 34107/GM/NIGMS NIH HHS/ -- R01 GM034107/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):550-2; author reply 554-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8386394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*enzymology ; *Cell Polarity ; Epithelial Cells ; Rats ; *Sodium-Potassium-Exchanging ATPase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1993-07-02
    Description: The enhancer for the immunoglobulin mu heavy chain gene (IgH) activates a heterologous gene at the pre-B cell stage of B lymphocyte differentiation. A lymphoid-specific element, microB, is necessary for enhancer function in pre-B cells. A microB binding protein is encoded by the PU.1/Spi-1 proto-oncogene. Another sequence element, microA, was identified in the mu enhancer that binds the product of the ets-1 proto-oncogene. The microA motif was required for microB-dependent enhancer activity, which suggests that a minimal B cell-specific enhancer is composed of both the PU.1 and Ets-1 binding sites. Co-expression of both PU.1 and Ets-1 in nonlymphoid cells trans-activated reporter plasmids that contained the minimal mu enhancer. These results implicate two members of the Ets family in the activation of IgH gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelsen, B -- Tian, G -- Erman, B -- Gregoire, J -- Maki, R -- Graves, B -- Sen, R -- 1K04GM00563/GM/NIGMS NIH HHS/ -- GM38663/GM/NIGMS NIH HHS/ -- GM38925/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 2;261(5117):82-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosenstiel Research Center, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/cytology/*metabolism ; Base Sequence ; Binding Sites ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/*genetics/metabolism ; *Enhancer Elements, Genetic ; Female ; Genes, Immunoglobulin ; Humans ; Immunoglobulin mu-Chains/*genetics ; Molecular Sequence Data ; Mutation ; Proto-Oncogene Protein c-ets-1 ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-ets ; Retroviridae Proteins, Oncogenic ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-02
    Description: The diversity of the T cell receptor repertoire is generated by rearrangement of gene elements in immature thymocytes. To identify a thymic signal that induces this rearrangement, a variety of agents were tested for their ability to induce rearrangement of the T cell receptor beta gene in suspensions of thymocytes from mouse embryos at day 14 of gestation. Of 16 agents tested, only interleukin-7 (IL-7) induced V(D)J gene rearrangement and sustained expression of the RAG-1 and RAG-2 genes, which are known to control rearrangement. These data implicate IL-7, a cytokine that is abundantly expressed in embryonic thymus, in driving gene rearrangement during early T cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muegge, K -- Vila, M P -- Durum, S K -- New York, N.Y. -- Science. 1993 Jul 2;261(5117):93-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biological Carcinogenesis and Development Program, Program Resources Inc./Dyncorp, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7686307" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Survival/drug effects ; Cells, Cultured ; *DNA-Binding Proteins ; Gene Expression ; *Gene Rearrangement, beta-Chain T-Cell Antigen Receptor ; Genes, RAG-1 ; Hematopoietic Cell Growth Factors/pharmacology ; Interleukin-7/*pharmacology ; Ionomycin/pharmacology ; Mice ; Molecular Sequence Data ; Organ Culture Techniques ; Proteins/genetics ; Stem Cell Factor ; T-Lymphocytes/cytology/*immunology ; Tetradecanoylphorbol Acetate/pharmacology ; Thymus Gland/embryology/immunology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1993-12-17
    Description: The interleukin-2 receptor gamma chain (IL-2R gamma) is a necessary component of functional IL-2 receptors. IL-2R gamma mutations result in X-linked severe combined immunodeficiency (XSCID) in humans, a disease characterized by the presence of few or no T cells. In contrast, SCID patients with IL-2 deficiency and IL-2-deficient mice have normal numbers of T cells, suggesting that IL-2R gamma is part of more than one cytokine receptor. By using chemical cross-linking, IL-2R gamma was shown to be physically associated with the IL-7 receptor. The presence of IL-2R gamma augmented both IL-7 binding affinity and the efficiency of internalization of IL-7. These findings may help explain the defects of XSCID. Given its role in more than one cytokine receptor system, the common gamma chain (gamma c) is proposed as the designation for IL-2R gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noguchi, M -- Nakamura, Y -- Russell, S M -- Ziegler, S F -- Tsang, M -- Cao, X -- Leonard, W J -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1877-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Pulmonary and Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266077" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Cell Line ; Genetic Linkage ; Interleukin-7/*metabolism ; L Cells (Cell Line) ; Mice ; Receptors, Interleukin/chemistry/genetics/*metabolism ; Receptors, Interleukin-2/chemistry/genetics/*metabolism ; Receptors, Interleukin-7 ; Severe Combined Immunodeficiency/genetics/immunology ; T-Lymphocytes/immunology ; Transfection ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1993-11-19
    Description: The proto-oncogene bcl-2 inhibits apoptotic and necrotic neural cell death. Expression of Bcl-2 in the GT1-7 neural cell line prevented death as a result of glutathione depletion. Intracellular reactive oxygen species and lipid peroxides rose rapidly in control cells depleted of glutathione, whereas cells expressing Bcl-2 displayed a blunted increase and complete survival. Modulation of the increase in reactive oxygen species influenced the degree of cell death. Yeast mutants null for superoxide dismutase were partially rescued by expression of Bcl-2. Thus, Bcl-2 prevents cell death by decreasing the net cellular generation of reactive oxygen species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kane, D J -- Sarafian, T A -- Anton, R -- Hahn, H -- Gralla, E B -- Valentine, J S -- Ord, T -- Bredesen, D E -- GM 28222/GM/NIGMS NIH HHS/ -- NS27812/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1274-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antioxidants/pharmacology ; Buthionine Sulfoximine ; *Cell Death ; Cell Line ; Glutathione/metabolism ; Hydroxyl Radical/metabolism ; Iron/metabolism ; Lipid Peroxidation ; Methionine Sulfoximine/analogs & derivatives/pharmacology ; Neurons/*cytology/metabolism ; Proto-Oncogene Proteins/*physiology ; Proto-Oncogene Proteins c-bcl-2 ; Reactive Oxygen Species/*metabolism ; Saccharomyces cerevisiae/growth & development/metabolism ; Superoxide Dismutase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-09
    Description: The regulation of transcription requires complex interactions between proteins bound to DNA sequences that are often separated by hundreds of base pairs. As demonstrated by a nuclear ligation assay, the distal enhancer and the proximal promoter regions of the rat prolactin gene were found to be juxtaposed. By acting through its receptor bound to the distal enhancer, estrogen stimulated the interaction between the distal and proximal regulatory regions two- to threefold compared to control values. Thus, the chromatin structure of the prolactin gene may facilitate the occurrence of protein-protein interactions between transcription factors bound to widely separated regulatory elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cullen, K E -- Kladde, M P -- Seyfred, M A -- DK42731/DK/NIDDK NIH HHS/ -- T32HD07048/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 9;261(5118):203-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8327891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Chromatin/*chemistry/metabolism ; DNA/chemistry/metabolism ; Deoxyribonucleases, Type II Site-Specific ; *Enhancer Elements, Genetic ; Estrogens/metabolism ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction ; Prolactin/*genetics ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Rats ; Receptors, Estrogen/metabolism ; Regulatory Sequences, Nucleic Acid ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1993-03-05
    Description: The actions of many hormones and neurotransmitters are mediated by the members of a superfamily of receptors coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins). These receptors are characterized by a highly conserved topographical arrangement in which seven transmembrane domains are connected by intracellular and extracellular loops. The interaction between these receptors and G proteins is mediated in large part by the third intracellular loop of the receptor. Coexpression of the third intracellular loop of the alpha 1B-adrenergic receptor with its parent receptor inhibited receptor-mediated activation of phospholipase C. The inhibition extended to the closely related alpha 1C-adrenergic receptor subtype, but not the phospholipase C-coupled M1 muscarinic acetylcholine receptor nor the adenylate cyclase-coupled D1A dopamine receptor. These results suggest that the receptor-G protein interface may represent a target for receptor antagonist drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luttrell, L M -- Ostrowski, J -- Cotecchia, S -- Kendall, H -- Lefkowitz, R J -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1453-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8383880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cloning, Molecular ; Cyclic AMP/metabolism ; Cytoplasm/metabolism ; GTP-Binding Proteins/*metabolism ; Globins/genetics ; Glutathione Transferase/genetics/metabolism ; Humans ; Inositol Phosphates/metabolism ; Kinetics ; Molecular Sequence Data ; Muscarinic Antagonists ; Oligodeoxyribonucleotides ; Plasmids ; Protein Structure, Secondary ; Receptors, Adrenergic, alpha/genetics/*metabolism ; Receptors, Dopamine D1/antagonists & inhibitors/genetics/*metabolism ; Receptors, Muscarinic/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1993-09-10
    Description: Interferons (IFNs) induce antiviral activity in many cell types. The ability of IFN-gamma to inhibit replication of ectromelia, vaccinia, and herpes simplex-1 viruses in mouse macrophages correlated with the cells' production of nitric oxide (NO). Viral replication was restored in IFN-gamma-treated macrophages exposed to inhibitors of NO synthase. Conversely, epithelial cells with no detectable NO synthesis restricted viral replication when transfected with a complementary DNA encoding inducible NO synthase or treated with organic compounds that generate NO. In mice, an inhibitor of NO synthase converted resolving ectromelia virus infection into fulminant mousepox. Thus, induction of NO synthase can be necessary and sufficient for a substantial antiviral effect of IFN-gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karupiah, G -- Xie, Q W -- Buller, R M -- Nathan, C -- Duarte, C -- MacMicking, J D -- CA43610/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1445-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/*biosynthesis/metabolism ; Animals ; Arginine/analogs & derivatives/pharmacology ; Cell Line ; Cells, Cultured ; Ectromelia virus/drug effects/*physiology ; Ectromelia, Infectious/microbiology ; Enzyme Induction ; Female ; Humans ; Interferon-gamma/*pharmacology ; Macrophages/*microbiology ; Mice ; Mice, Inbred C57BL ; Nitric Oxide/metabolism/pharmacology ; Nitric Oxide Synthase ; Simplexvirus/drug effects/physiology ; Transfection ; Vaccinia virus/drug effects/physiology ; *Virus Replication/drug effects ; omega-N-Methylarginine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1993-10-01
    Description: The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, M A -- Rothenberg, S -- Landen, C N -- Bellinger, D A -- Leland, F -- Toman, C -- Finegold, M -- Thompson, A R -- Read, M S -- Brinkhous, K M -- DK 44080/DK/NIDDK NIH HHS/ -- HL 40162/HL/NHLBI NIH HHS/ -- HL-01648-46/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Oct 1;262(5130):117-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211118" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Dogs ; Factor IX/analysis/biosynthesis/*genetics ; Gene Transfer Techniques ; *Genetic Therapy ; Genetic Vectors ; Hemophilia B/blood/genetics/*therapy ; Hepatectomy ; Liver/*metabolism ; Partial Thromboplastin Time ; Retroviridae/genetics ; Whole Blood Coagulation Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: Most members of the guanosine triphosphatase (GTPase) superfamily hydrolyze guanosine triphosphate (GTP) quite slowly unless stimulated by a GTPase activating protein or GAP. The alpha subunits (G alpha) of the heterotrimeric G proteins hydrolyze GTP much more rapidly and contain an approximately 120-residue insert not found in other GTPases. Interactions between a G alpha insert domain and a G alpha GTP-binding core domain, both expressed as recombinant proteins, show that the insert acts biochemically as a GAP. The results suggest a general mechanism for GAP-dependent hydrolysis of GTP by other GTPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Markby, D W -- Onrust, R -- Bourne, H R -- 5F32-GM13918/GM/NIGMS NIH HHS/ -- CA54427/CA/NCI NIH HHS/ -- GM27800/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1895-901.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmcology, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266082" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Colforsin/pharmacology ; Cyclic AMP/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/chemistry/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism/pharmacology ; Guanosine Triphosphate/*metabolism ; Hydrolysis ; Kinetics ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1993-09-10
    Description: Exposure of mammalian cells to radiation triggers the ultraviolet (UV) response, which includes activation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B). This was postulated to occur by induction of a nuclear signaling cascade by damaged DNA. Recently, induction of AP-1 by UV was shown to be mediated by a pathway involving Src tyrosine kinases and the Ha-Ras small guanosine triphosphate-binding protein, proteins located at the plasma membrane. It is demonstrated here that the same pathway mediates induction of NF-kappa B by UV. Because inactive NF-kappa B is stored in the cytosol, analysis of its activation directly tests the involvement of a nuclear-initiated signaling cascade. Enucleated cells are fully responsive to UV both in NF-kappa B induction and in activation of another key signaling event. Therefore, the UV response does not require a signal generated in the nucleus and is likely to be initiated at or near the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Devary, Y -- Rosette, C -- DiDonato, J A -- Karin, M -- CA50528/CA/NCI NIH HHS/ -- ES04151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1442-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8367725" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Catechols/pharmacology ; Cell Nucleus/*physiology ; Cytosol/metabolism ; Genes, ras ; Genes, src ; HeLa Cells ; Humans ; NF-kappa B/*metabolism/radiation effects ; Nitriles/pharmacology ; PC12 Cells ; Phosphatidylcholines/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins c-jun/metabolism ; Proto-Oncogene Proteins c-raf ; Reactive Oxygen Species/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; *Tyrphostins ; *Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1993-06-18
    Description: The ciliary neurotrophic factor (CNTF) receptor complex is shown here to include the CNTF binding protein (CNTFR alpha) as well as the components of the leukemia inhibitory factor (LIF) receptor, LIFR beta (the LIF binding protein) and gp130 [the signal transducer of interleukin-6 (IL-6)]. Thus, the conversion of a bipartite LIF receptor into a tripartite CNTF receptor apparently occurs by the addition of the specificity-conferring element CNTFR alpha. Both CNTF and LIF trigger the association of initially separate receptor components, which in turn results in tyrosine phosphorylation of receptor subunits. Unlike the IL-6 receptor complex in which homodimerization of gp130 appears to be critical for signal initiation, signaling by the CNTF and LIF receptor complexes depends on the heterodimerization of gp130 with LIFR beta. Ligand-induced dimerization of signal-transducing receptor components, also seen with receptor tyrosine kinases, may provide a general mechanism for the transmission of a signal across the cell membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Aldrich, T H -- Stahl, N -- Pan, L -- Taga, T -- Kishimoto, T -- Ip, N Y -- Yancopoulos, G D -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1805-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8390097" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, CD ; Cell Line ; Cytokine Receptor gp130 ; Growth Inhibitors/pharmacology ; Interleukin-6/pharmacology ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Models, Biological ; Nerve Growth Factors ; Nerve Tissue Proteins/pharmacology ; Phosphorylation ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cell Surface/chemistry/*metabolism ; *Receptors, Cytokine ; Receptors, Immunologic/chemistry/*metabolism ; Receptors, Interleukin-6 ; Receptors, OSM-LIF ; *Signal Transduction ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1993-06-18
    Description: Lymphocytes recognize antigens with highly variable heterodimeric surface receptors. Although four distinct antigen receptors could in principle be produced by any lymphocyte, only one functional combination of receptor chains has thus far been found expressed on their surface. Examination of human gamma delta T cells revealed a population that violated this rule by expressing on their surface two distinct functional gamma delta T cell receptors (TCRs) that used different TCR gamma gene alleles. Thus, current models for T cell clonal selection may need modification, and a possible escape mechanism for autoreactive TCRs is suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davodeau, F -- Peyrat, M A -- Houde, I -- Hallet, M M -- De Libero, G -- Vie, H -- Bonneville, M -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1800-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U211, Institut de Biologie, Nantes, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8390096" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Cell Line ; Cytotoxicity, Immunologic ; *Gene Expression ; Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor ; Humans ; Molecular Sequence Data ; Receptors, Antigen, T-Cell, gamma-delta/analysis/*genetics/immunology ; T-Lymphocytes/*immunology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1993-02-05
    Description: beta-Adrenergic receptor kinase (beta ARK) and beta-arrestin function in the homologous or agonist-activated desensitization of G protein-coupled receptors. The isoforms beta ARK-2 and beta-arrestin-2 are highly enriched in and localized to the dendritic knobs and cilia of the olfactory receptor neurons where the initial events of olfactory signal transduction occur. Odorants induce a rapid and transient elevation of adenosine 3',5'-monophosphate (cAMP), which activates a nonspecific cation channel and produces membrane depolarization. Preincubation of rat olfactory cilia with antibodies raised against beta ARK-2 and beta-arrestin-2 increased the odorant-induced elevation of cAMP and attenuated desensitization. These results suggest that beta ARK-2 and beta-arrestin-2 mediate agonist-dependent desensitization in olfaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, T M -- Arriza, J L -- Jaworsky, D E -- Borisy, F F -- Attramadal, H -- Lefkowitz, R J -- Ronnett, G V -- NS 01578-01/NS/NINDS NIH HHS/ -- NS-02131/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 5;259(5096):825-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins Medical Institutions, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8381559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*metabolism ; *Arrestins ; Cells, Cultured ; Cyclic AMP/metabolism ; *Cyclic AMP-Dependent Protein Kinases ; Cytosol/metabolism ; Dendrites/physiology ; Eye Proteins/*metabolism ; G-Protein-Coupled Receptor Kinase 2 ; GTP-Binding Proteins/*metabolism ; Isoenzymes/metabolism ; Male ; Mechanoreceptors/*physiology ; Neurons/*physiology ; *Odors ; Olfactory Bulb/*physiology ; Protein Kinases/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, beta/*physiology ; Signal Transduction ; *Smell ; Testis/physiology ; Turbinates/*physiology ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peifer, M -- New York, N.Y. -- Science. 1993 Dec 10;262(5140):1667-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina, Chapel Hill 27599-3280.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8259511" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Cadherins/metabolism ; Colonic Neoplasms/*genetics ; Cytoskeletal Proteins/*metabolism ; Drosophila/*genetics/growth & development ; Genes, APC ; *Genes, Insect ; Humans ; Intercellular Junctions/metabolism ; Neoplasm Proteins/*metabolism ; Signal Transduction ; *Trans-Activators ; alpha Catenin ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1993-06-04
    Description: Phosphorothioate oligodeoxynucleotides containing the C-5 propyne analogs of uridine and cytidine bind RNA with high affinity and are potent antisense inhibitors of gene expression. In a cellular assay, gene-specific antisense inhibition occurred at nanomolar concentrations of oligonucleotide, was dose-dependent and exquisitely sensitive to sequence mismatches, and was correlated with the melting temperature and length of oligonucleotide. Activity was independent of RNA target site and cell type but was detectable only when the oligonucleotides were microinjected or delivered with cell-permeabilizing agents. These oligonucleotides may have important applications in therapy and in studies of gene function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, R W -- Matteucci, M D -- Lewis, J G -- Gutierrez, A J -- Moulds, C -- Froehler, B C -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1510-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gilead Sciences, Inc., Foster City, CA 94404.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7684856" target="_blank"〉PubMed〈/a〉
    Keywords: Alkynes/pharmacology ; Animals ; Base Sequence ; Cell Line ; Cercopithecus aethiops ; Humans ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacokinetics/*pharmacology ; Pyrimidine Nucleotides/pharmacokinetics/*pharmacology ; RNA/*drug effects ; Rats ; Thionucleotides/pharmacokinetics/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1993-11-05
    Description: Transforming growth factor-beta (TGF-beta) and activin signal primarily through interaction with type I and type II receptors, which are transmembrane serine-threonine kinases. Tsk 7L is a type I receptor for TGF-beta and requires coexpression of the type II TGF-beta receptor for ligand binding. Tsk 7L also specifically bound activin, when coexpressed with the type IIA activin receptor. Tsk 7L could associate with either type II receptor and the ligand binding specificity of Tsk 7L was conferred by the type II receptor. Tsk 7L can therefore act as type I receptor for both activin and TGF-beta, and possibly other ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebner, R -- Chen, R H -- Lawler, S -- Zioncheck, T -- Derynck, R -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):900-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Growth and Development, and Anatomy, University of California at San Francisco 94143-0640.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235612" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors ; Activins ; Base Sequence ; DNA Primers ; Growth Substances/metabolism ; Humans ; Inhibins/*metabolism ; Molecular Sequence Data ; Precipitin Tests ; Protein-Serine-Threonine Kinases/*metabolism ; Receptors, Growth Factor/*metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1993-08-13
    Description: T cell antigen receptor (TCR) activation involves interactions between receptor subunits and nonreceptor protein tyrosine kinases (PTKs). Early steps in signaling through the zeta chain of the TCR were examined in transfected COS-1 cells. Coexpression of the PTK p59fynT, but not p56lck, with zeta or with a homodimeric TCR beta-zeta fusion protein produced tyrosine phosphorylation of both zeta and phospholipase C (PLC)-gamma 1, as well as calcium ion mobilization in response to receptor cross-linking. CD45 coexpression enhanced these effects. No requirement for the PTKZAP-70 was observed. Thus, p59fynT may link zeta directly to the PLC-gamma 1 activation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, C G -- Sancho, J -- Terhorst, C -- AI 15066/AI/NIAID NIH HHS/ -- CA 01486/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 13;261(5123):915-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Beth Israel Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8346442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/analysis ; Base Sequence ; Calcium/*metabolism ; Cell Line ; Cercopithecus aethiops ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism/physiology ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-fyn ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Type C Phospholipases/metabolism ; Tyrosine/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1993-12-24
    Description: The CD4 molecule is essential for binding HIV particles, but is not sufficient for efficient viral entry and infection. The cofactor was shown to be dipeptidyl peptidase IV (DPP IV), also known as CD26. This serine protease cleaves its substrates at specific motifs; such motifs area also highly conserved in the V3 loops of HIV-1, HIV-2, and related simian isolates. Entry of HIV-1 or HIV-2 into T lymphoblastoid and monocytoid cell lines was inhibited by a specific monoclonal antibody against DPP IV or specific peptide inhibitors of this protease. Coexpression of human CD4 and CD26 in murine NIH 3T3 cells rendered them permissive to infection by HIV-1 and HIV-2. These observations could provide the basis for developing simple and specific inhibitors of HIV and open a possibility for vaccine development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callebaut, C -- Krust, B -- Jacotot, E -- Hovanessian, A G -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2045-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite de Virologie et Immunologie Cellulaire, UA CNRS, Institut Pasteur, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7903479" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Antigens, Differentiation, T-Lymphocyte/*physiology ; CD4-Positive T-Lymphocytes/*microbiology ; Cell Line ; Dipeptidyl Peptidase 4 ; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & ; inhibitors/*physiology ; HIV Envelope Protein gp120/physiology ; HIV-1/*pathogenicity ; HIV-2/*pathogenicity ; HeLa Cells ; Humans ; L Cells (Cell Line) ; Leukocytes, Mononuclear/microbiology ; Mice ; Molecular Sequence Data ; Peptide Fragments/physiology ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-09
    Description: When inositol 1,4,5-triphosphate (IP3) receptors are activated, calcium is released from intracellular stores in excitatory propagating waves that annihilate each other upon collision. The annihilation phenomenon suggests the presence of an underlying refractory period that controls excitability. Enhanced calcium-adenosine triphosphatase (ATPase) activity might alter the refractory period of calcium release. Expression of messenger RNA encoding the avian calcium-ATPase (SERCA1) in Xenopus laevis oocytes increased the frequency of IP3-induced calcium waves and narrowed the width of individual calcium waves. The effect of SERCA1 expression on calcium wave frequency was dependent on the concentration of IP3 and was larger at higher (1 microM) than at lower (0.1 microM) concentrations of IP3. The results demonstrate that calcium pump activity can control IP3-mediated calcium signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Camacho, P -- Lechleiter, J D -- New York, N.Y. -- Science. 1993 Apr 9;260(5105):226-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8385800" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium-Transporting ATPases/genetics/*metabolism/*physiology ; Cytoplasm/metabolism ; Female ; Inositol 1,4,5-Trisphosphate/*pharmacology ; Oocytes/drug effects/*metabolism ; RNA, Messenger/genetics/metabolism ; Signal Transduction ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eijgenraam, F -- New York, N.Y. -- Science. 1993 Aug 13;261(5123):833.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8394032" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Adhesion ; Cell Adhesion Molecules/*metabolism ; Cell Communication ; Protein Tyrosine Phosphatases/*metabolism ; Receptors, Cell Surface/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1993-03-12
    Description: PU.1 recruits the binding of a second B cell-restricted nuclear factor, NF-EM5, to a DNA site in the immunoglobulin kappa 3' enhancer. DNA binding by NF-EM5 requires a protein-protein interaction with PU.1 and specific DNA contacts. Dephosphorylated PU.1 bound to DNA but did not interact with NF-EM5. Analysis of serine-to-alanine mutations in PU.1 indicated that serine 148 (Ser148) is required for protein-protein interaction. PU.1 produced in bacteria did not interact with NF-EM5. Phosphorylation of bacterially produced PU.1 by purified casein kinase II modified it to a form that interacted with NF-EM5 and that recruited NF-EM5 to bind to DNA. Phosphopeptide analysis of bacterially produced PU.1 suggested that Ser148 is phosphorylated by casein kinase II. This site is also phosphorylated in vivo. Expression of wild-type PU.1 increased expression of a reporter construct containing the PU.1 and NF-EM5 binding sites nearly sixfold, whereas the Ser148 mutant form only weakly activated transcription. These results demonstrate that phosphorylation of PU.1 at Ser148 is necessary for interaction with NF-EM5 and suggest that this phosphorylation can regulate transcriptional activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pongubala, J M -- Van Beveren, C -- Nagulapalli, S -- Klemsz, M J -- McKercher, S R -- Maki, R A -- Atchison, M L -- AI 30656/AI/NIAID NIH HHS/ -- CA 42909/CA/NCI NIH HHS/ -- GM 42415/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456286" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/genetics/isolation & purification/*metabolism ; Enhancer Elements, Genetic ; Immunoglobulin kappa-Chains/genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Phosphorylation ; Plasmacytoma ; Recombinant Proteins/isolation & purification/metabolism ; Retroviridae Proteins, Oncogenic ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1993-06-18
    Description: CD8+ T cells are a major defense against viral infections and intracellular parasites. Their production of interferon-gamma (IFN-gamma) and their cytolytic activity are key elements in the immune response to these pathogens. Mature mouse CD8+ T cells that were activated in the presence of interleukin-4 (IL-4) developed into a CD8-CD4- population that was not cytolytic and did not produce IFN-gamma. However, these CD8- cells produced large amounts of IL-4, IL-5, and IL-10 and helped activate resting B cells. Thus, CD8 effector functions are potentially diverse and could be exploited by infectious agents that switch off host protective cytolytic responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erard, F -- Wild, M T -- Garcia-Sanz, J A -- Le Gros, G -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1802-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Allergy/Immunology, Ciba-Geigy Ltd., Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511588" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/analysis ; Antigens, CD8/*analysis ; B-Lymphocytes/*immunology ; Cell Line ; Cells, Cultured ; Cytotoxicity, Immunologic ; Immunophenotyping ; Interleukin-10/biosynthesis ; Interleukin-2/pharmacology ; Interleukin-4/biosynthesis/pharmacology ; Interleukin-5/biosynthesis ; Interleukins/*biosynthesis ; Ionomycin/pharmacology ; *Lymphocyte Activation ; Membrane Glycoproteins/genetics ; Mice ; Perforin ; Pore Forming Cytotoxic Proteins ; T-Lymphocyte Subsets/*immunology ; T-Lymphocytes, Cytotoxic/immunology ; Tetradecanoylphorbol Acetate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1993-04-23
    Description: Transforming growth factor-beta (TGF-beta) is a naturally occurring growth inhibitory polypeptide that arrests the cell cycle in middle to late G1 phase. Cells treated with TGF-beta contained normal amounts of cyclin E and cyclin-dependent protein kinase 2 (Cdk2) but failed to stably assemble cyclin E-Cdk2 complexes or accumulate cyclin E-associated kinase activity. Moreover, G1 phase extracts from TGF-beta-treated cells did not support activation of endogenous cyclin-dependent protein kinases by exogenous cyclins. These effects of TGF-beta, which correlated with the inhibition of retinoblastoma protein phosphorylation, suggest that mammalian G1 cyclin-dependent kinases, like their counterparts in yeast, are targets for negative regulators of the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koff, A -- Ohtsuki, M -- Polyak, K -- Roberts, J M -- Massague, J -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):536-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8475385" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *CDC2-CDC28 Kinases ; Cell Extracts ; Cell Line ; Cyclin-Dependent Kinase 2 ; *Cyclin-Dependent Kinases ; Cyclins/*metabolism/pharmacology ; Enzyme Activation/drug effects ; *G1 Phase ; Mink ; Phosphorylation ; Protein Kinases/*metabolism ; *Protein-Serine-Threonine Kinases ; Retinoblastoma Protein/metabolism ; Transforming Growth Factor beta/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1993-07-23
    Description: L-Selectin is a calcium-dependent mammalian lectin that mediates lymphocyte trafficking by recognizing sialylated ligands on high endothelial venules in lymph nodes. Although L-selectin probably mediates neutrophil extravasation into nonlymphoid tissues, no corresponding ligand has been characterized. Staining of cultured endothelial cells with an L-selectin chimera (LS-Rg) showed an internal pool of ligands. Metabolic labeling with sulfur-35-labeled sulfate revealed heparin lyase-sensitive ligands that bound LS-Rg in a calcium-dependent, sialic acid-independent manner. A fraction of commercial heparin bound to LS-Rg and LS-Rg bound to heparin-agarose, both in a calcium-dependent manner. Thus, L-selectin recognizes endothelial heparin-like chains, which could be physiological ligands mediating leucocyte trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norgard-Sumnicht, K E -- Varki, N M -- Varki, A -- HL07089/HL/NHLBI NIH HHS/ -- R01CA38701/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):480-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Glycobiology Program, UCSD Cancer Center.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7687382" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antithrombin III/metabolism ; Calcium/*physiology ; Cattle ; Cell Adhesion Molecules/*metabolism ; Cell Line ; Electrophoresis, Polyacrylamide Gel ; Endothelium, Lymphatic/metabolism ; Endothelium, Vascular/*metabolism ; Glycosaminoglycans/*metabolism ; Heparin/metabolism ; Humans ; L-Selectin ; Ligands ; Protein Binding ; Radioligand Assay ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1993-07-23
    Description: CD26, the T cell activation molecule dipeptidyl peptidase IV (DPPIV), associates with a 43-kilodalton protein. Amino acid sequence analysis and immunoprecipitation studies demonstrated that this 43-kilodalton protein was adenosine deaminase (ADA). ADA was coexpressed with CD26 on the Jurkat T cell lines, and an in vitro binding assay showed that the binding was through the extracellular domain of CD26. ADA deficiency causes severe combined immunodeficiency disease (SCID) in humans. Thus, ADA and CD26 (DPPIV) interact on the T cell surface, and this interaction may provide a clue to the pathophysiology of SCID caused by ADA deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kameoka, J -- Tanaka, T -- Nojima, Y -- Schlossman, S F -- Morimoto, C -- AI12069/AI/NIAID NIH HHS/ -- AI29530/AI/NIAID NIH HHS/ -- AR33713/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):466-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8101391" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/analysis/*physiology ; Antigens, Differentiation, T-Lymphocyte/analysis/*physiology ; Carrier Proteins/analysis ; Cell Line ; Dipeptidyl Peptidase 4 ; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/analysis ; Humans ; Lymphocyte Activation/physiology ; Protein Binding ; T-Lymphocytes/*enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1993-09-24
    Description: Interferon-gamma (IFN-gamma) stimulates transcription of specific genes by inducing tyrosine phosphorylation of a 91-kilodalton cytoplasmic protein (termed STAT for signal transducer and activator of transcription). Stat91 was phosphorylated on a single site (Tyr701), and phosphorylation of this site was required for nuclear translocation, DNA binding, and gene activation. Stat84, a differentially spliced product of the same gene that lacks the 38 carboxyl-terminal amino acids of Stat91, did not activate transcription, although it was phosphorylated and translocated to the nucleus and bound DNA. Thus, Stat91 mediates activation of transcription in response to IFN-gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuai, K -- Stark, G R -- Kerr, I M -- Darnell, J E Jr -- AI32489-02/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1744-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, Laboratory of Molecular Cell Biology, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690989" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; *Gene Expression Regulation ; Humans ; Interferon-gamma/*pharmacology ; Molecular Sequence Data ; Peptide Fragments/chemistry/metabolism ; Phosphotyrosine ; *Signal Transduction ; Transcription Factors/chemistry/*metabolism ; Transcriptional Activation ; Transfection ; Tyrosine/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1993-06-25
    Description: Insulin-induced activation of extracellular signal-regulated kinases [ERKs, also known as mitogen-activated protein (MAP) kinases] is mediated by Ras. Insulin activates Ras primarily by increasing the rate of guanine nucleotide-releasing activity. Here, we show that insulin-induced activation of ERKs was enhanced by stable overexpression of growth factor receptor-bound protein 2 (GRB2) but not by overexpression of GRB2 proteins with point mutations in the Src homology 2 and 3 domains. Moreover, a dominant negative form of Ras (with Ser17 substituted with Asn) blocked insulin-induced activation of ERKs in cells that overexpressed GRB2. GRB2 overexpression led to increased formation of a complex between the guanine nucleotide-releasing factor Sos (the product of the mammalian homolog of son of sevenless gene) and GRB2. In response to insulin stimulation, this complex bound to tyrosine-phosphorylated IRS-1 (insulin receptor substrate-1) and Shc. In contrast to the activated epidermal growth factor receptor that binds the GRB2-Sos complex directly, activation of the insulin receptor results in the interaction of GRB2-Sos with IRS-1 and Shc, thus linking the insulin receptor to Ras signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skolnik, E Y -- Batzer, A -- Li, N -- Lee, C H -- Lowenstein, E -- Mohammadi, M -- Margolis, B -- Schlessinger, J -- DK01927/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1953-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, New York University Medical Center, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316835" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Line ; Enzyme Activation ; Epidermal Growth Factor/*metabolism ; GRB2 Adaptor Protein ; Insulin/pharmacology ; Insulin Receptor Substrate Proteins ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Proteins/*metabolism ; Receptor, Insulin/*metabolism ; Signal Transduction ; Son of Sevenless Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1993-10-22
    Description: Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated complete MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunner, H G -- Nelen, M -- Breakefield, X O -- Ropers, H H -- van Oost, B A -- NS 21921/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):578-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University Hospital Nijmegen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211186" target="_blank"〉PubMed〈/a〉
    Keywords: *Aggression ; Cell Line ; Cells, Cultured ; Female ; *Genes ; Humans ; Intellectual Disability/enzymology/*genetics ; Male ; Monoamine Oxidase/deficiency/*genetics ; Pedigree ; Phenotype ; *Point Mutation ; Skin/enzymology ; Syndrome ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vijn, I -- das Nevas, L -- van Kammen, A -- Franssen, H -- Bisseling, T -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1764-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Agricultural University, Dreijenlaan, Wageningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511583" target="_blank"〉PubMed〈/a〉
    Keywords: Carbohydrate Sequence ; Cell Division ; Chitin/chemistry/pharmacology/*physiology ; Fabaceae/cytology/genetics/*microbiology ; Genes, Bacterial ; Genes, Plant ; Lipopolysaccharides/chemistry/*metabolism/pharmacology ; Molecular Sequence Data ; *Plants, Medicinal ; Rhizobium/genetics/*physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: Regulation of cell proliferation, differentiation, and metabolic homeostasis is associated with the phosphorylation and dephosphorylation of specific tyrosine residues of key regulatory proteins. The phosphotyrosine phosphatase 1D (PTP 1D) contains two amino terminally located Src homology 2 (SH2) domains and is similar to the Drosophila corkscrew gene product, which positively regulates the torso tyrosine kinase signal transduction pathway. PTP activity was found to be regulated by physical interaction with a protein tyrosine kinase. PTP 1D did not dephosphorylate receptor tyrosine kinases, despite the fact that it associated with the epidermal growth factor receptor and chimeric receptors containing the extracellular domain of the epidermal growth factor receptor and the cytoplasmic domain of either the HER2-neu, kit-SCF, or platelet-derived growth factor beta (beta PDGF) receptors. PTP 1D was phosphorylated on tyrosine in cells overexpressing the beta PDGF receptor kinase and this tyrosine phosphorylation correlated with an enhancement of its catalytic activity. Thus, protein tyrosine kinases and phosphatases do not simply oppose each other's action; rather, they may work in concert to maintain a fine balance of effector activation needed for the regulation of cell growth and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, W -- Lammers, R -- Huang, J -- Ullrich, A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1611-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max-Planck-Institut fur Biochemie, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Chimera ; Drosophila/genetics ; Enzyme Activation ; Genes, src ; Humans ; Kidney ; Luminescent Measurements ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Phosphorylation ; Phosphotyrosine ; Plasmids ; Protein Tyrosine Phosphatases/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-kit ; Proto-Oncogenes ; Receptor, Epidermal Growth Factor/genetics/metabolism ; Receptor, ErbB-2 ; Receptors, Platelet-Derived Growth Factor/genetics/metabolism ; Sequence Homology, Amino Acid ; Signal Transduction ; Transfection ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1993-11-26
    Description: The Pto gene in tomato confers resistance to races of Pseudomonas syringae pv. tomato that carry the avirulence gene avrPto. A yeast artificial chromosome clone that spans the Pto region was identified and used to probe a leaf complementary DNA (cDNA) library. A cDNA clone was isolated that represents a gene family, at least six members of which genetically cosegregate with Pto. When susceptible tomato plants were transformed with a cDNA from this family, they were resistant to the pathogen. Analysis of the amino acid sequence revealed similarity to serine-threonine protein kinases, suggesting a role for Pto in a signal transduction pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, G B -- Brommonschenkel, S H -- Chunwongse, J -- Frary, A -- Ganal, M W -- Spivey, R -- Wu, T -- Earle, E D -- Tanksley, S D -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Biometry, Cornell University, Ithaca, NY 14853-1902.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7902614" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chromosomes, Artificial, Yeast ; *Cloning, Molecular ; DNA, Complementary/genetics ; *Genes, Plant ; Molecular Sequence Data ; *Multigene Family ; Plant Diseases/*genetics ; *Plant Proteins ; Polymorphism, Restriction Fragment Length ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Pseudomonas/pathogenicity ; Signal Transduction ; Vegetables/enzymology/*genetics/microbiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1993-05-28
    Description: Transforming growth factor-beta (TGF-beta) affects cellular proliferation, differentiation, and interaction with the extracellular matrix primarily through interaction with the type I and type II TGF-beta receptors. The type II receptors for TGF-beta and activin contain putative serine-threonine kinase domains. A murine serine-threonine kinase receptor, Tsk 7L, was cloned that shared a conserved extracellular domain with the type II TGF-beta receptor. Overexpression of Tsk 7L alone did not increase cell surface binding of TGF-beta, but coexpression with the type II TGF-beta receptor caused TGF-beta to bind to Tsk 7L, which had the size of the type I TGF-beta receptor. Overexpression of Tsk 7L inhibited binding of TGF-beta to the type II receptor in a dominant negative fashion. Combinatorial interactions and stoichiometric ratios between the type I and II receptors may therefore determine the extent of TGF-beta binding and the resulting biological activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebner, R -- Chen, R H -- Shum, L -- Lawler, S -- Zioncheck, T F -- Lee, A -- Lopez, A R -- Derynck, R -- New York, N.Y. -- Science. 1993 May 28;260(5112):1344-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Growth and Development, University of California, San Francisco 94143-0640.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388127" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cercopithecus aethiops ; Cloning, Molecular ; Humans ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases ; Quail ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Receptors, Transforming Growth Factor beta ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1993-05-28
    Description: The retinoblastoma gene product (Rb) is a nuclear phosphoprotein that regulates cell cycle progression. Elf-1 is a lymphoid-specific Ets transcription factor that regulates inducible gene expression during T cell activation. In this report, it is demonstrated that Elf-1 contains a sequence motif that is highly related to the Rb binding sites of several viral oncoproteins and binds to the pocket region of Rb both in vitro and in vivo. Elf-1 binds exclusively to the underphosphorylated form of Rb and fails to bind to Rb mutants derived from patients with retinoblastoma. Co-immunoprecipitation experiments demonstrated an association between Elf-1 and Rb in resting normal human T cells. After T cell activation, the phosphorylation of Rb results in the release of Elf-1, which is correlated temporally with the activation of Elf-1-mediated transcription. Overexpression of a phosphorylation-defective form of Rb inhibited Elf-1-dependent transcription during T cell activation. These results demonstrate that Rb interacts specifically with a lineage-restricted Ets transcription factor. This regulated interaction may be important for the coordination of lineage-specific effector functions such as lymphokine production with cell cycle progression in activated T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, C Y -- Petryniak, B -- Thompson, C B -- Kaelin, W G -- Leiden, J M -- R01 AI29673-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 May 28;260(5112):1330-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493578" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Cycle ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Eye Neoplasms/genetics ; Humans ; Lymphocyte Activation ; Molecular Sequence Data ; Mutation ; Oligodeoxyribonucleotides ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Retinoblastoma/genetics ; Retinoblastoma Protein/*metabolism ; T-Lymphocytes/immunology/*metabolism ; Transcription Factors/chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1993-06-25
    Description: To acquire transforming potential, the precursor of the Ras oncoprotein must undergo farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase (FPTase), have therefore been suggested as anticancer agents for tumors in which Ras contributes to transformation. The tetrapeptide analog L-731,735 is a potent and selective inhibitor of FPTase in vitro. A prodrug of this compound, L-731,734, inhibited Ras processing in cells transformed with v-ras. L-731,734 decreased the ability of v-ras-transformed cells to form colonies in soft agar but had no effect on the efficiency of colony formation of cells transformed by either the v-raf or v-mos oncogenes. The results demonstrate selective inhibition of ras-dependent cell transformation with a synthetic organic inhibitor of FPTase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohl, N E -- Mosser, S D -- deSolms, S J -- Giuliani, E A -- Pompliano, D L -- Graham, S L -- Smith, R L -- Scolnick, E M -- Oliff, A -- Gibbs, J B -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316833" target="_blank"〉PubMed〈/a〉
    Keywords: *Alkyl and Aryl Transferases ; Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Cell Division/drug effects ; Cell Line ; Cell Transformation, Neoplastic/*drug effects ; Dipeptides/chemistry/*pharmacology ; Drug Design ; Farnesyltranstransferase ; *Genes, ras ; Oncogene Proteins/*metabolism ; Protein Prenylation/*drug effects ; Rats ; Transferases/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1993-04-16
    Description: A fundamental problem in the identification and isolation of tumor suppressor and other growth-inhibiting genes is the loss of power of genetic complementation at the subchromosomal level. A direct genetic strategy was developed to isolate subchromosomal transferable fragments (STFs) from any chromosome, each containing a selectable marker within the human DNA, that could be transferred to any mammalian cell. As a test of the method, several overlapping STFs from 11p15 were shown to cause in vitro growth arrest of rhabdomyosarcoma cells. This activity mapped between the beta-globin and insulin genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koi, M -- Johnson, L A -- Kalikin, L M -- Little, P F -- Nakamura, Y -- Feinberg, A P -- CA54358/CA/NCI NIH HHS/ -- T32GM07314/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 16;260(5106):361-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469989" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CHO Cells ; Cell Division ; Cell Line ; *Chromosomes, Human, Pair 11 ; Cricetinae ; DNA/*genetics ; *Genes, Tumor Suppressor ; Genetic Markers ; *Genetic Techniques ; Globins/genetics ; Humans ; Insulin/genetics ; Mice ; Molecular Sequence Data ; Rhabdomyosarcoma/*pathology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1993-07-16
    Description: Nerve growth factor (NGF) binding to cellular receptors is required for the survival of some neural cells. In contrast to TrkA, the high-affinity NGF receptor that transduces NGF signals for survival and differentiation, the function of the low-affinity NGF receptor, p75NGFR, remains uncertain. Expression of p75NGFR induced neural cell death constitutively when p75NGFR was unbound; binding by NGF or monoclonal antibody, however, inhibited cell death induced by p75NGFR. Thus, expression of p75NGFR may explain the dependence of some neural cells on NGF for survival. These findings also suggest that p75NGFR has some functional similarities to other members of a superfamily of receptors that include tumor necrosis factor receptors, Fas (Apo-1), and CD40.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabizadeh, S -- Oh, J -- Zhong, L T -- Yang, J -- Bitler, C M -- Butcher, L L -- Bredesen, D E -- AG10671/AG/NIA NIH HHS/ -- NS10928/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332899" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/drug effects ; Cell Line ; Cell Survival/drug effects ; Culture Media, Serum-Free ; Nerve Growth Factors/*metabolism/pharmacology ; Neurons/*cytology/drug effects/metabolism ; PC12 Cells ; Receptors, Nerve Growth Factor/metabolism/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1993-12-17
    Description: The gamma chain of the interleukin-2 (IL-2) receptor is an indispensable subunit for IL-2 binding and intracellular signal transduction. A monoclonal antibody to the gamma chain, TUGm2, inhibited IL-2 binding to the functional IL-2 receptors and also inhibited IL-4-induced cell growth and the high-affinity binding of IL-4 to the CTLL-2 mouse T cell line. Another monoclonal antibody, TUGm3, which reacted with the gamma chain cross-linked with IL-2, also immunoprecipitated the gamma chain when cross-linked with IL-4. These results suggest that the IL-2 receptor gamma chain is functionally involved in the IL-4 receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, M -- Takeshita, T -- Ishii, N -- Nakamura, M -- Watanabe, S -- Arai, K -- Sugamura, K -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1874-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Tohoku University School of Medicine, Sendai, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Cell Division ; Cell Line ; Interleukin-2/metabolism/pharmacology ; Interleukin-4/metabolism/pharmacology ; Mice ; Rats ; Rats, Wistar ; Receptors, Interleukin-2/chemistry/immunology/*metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/chemistry/immunology/*metabolism ; Signal Transduction ; T-Lymphocytes/cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1993-01-08
    Description: The human and Drosophila heat shock transcription factors (HSFs) are multi-zipper proteins with high-affinity binding to DNA that is regulated by heat shock-induced trimerization. Formation of HSF trimers is dependent on hydrophobic heptad repeats located in the amino-terminal region of the protein. Two subregions at the carboxyl-terminal end of human HSF1 were identified that maintain the monomeric form of the protein under normal conditions. One of these contains a leucine zipper motif that is conserved between vertebrate and insect HSFs. These results suggest that the carboxyl-terminal zipper may suppress formation of trimers by the amino-terminal HSF zipper elements by means of intramolecular coiled-coil interactions that are sensitive to heat shock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabindran, S K -- Haroun, R I -- Clos, J -- Wisniewski, J -- Wu, C -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):230-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421783" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; DNA/metabolism ; Drosophila/chemistry ; Heat-Shock Proteins/*chemistry/genetics/metabolism ; Hot Temperature ; Humans ; *Leucine Zippers ; Macromolecular Substances ; Molecular Sequence Data ; Mutagenesis ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Travis, J -- New York, N.Y. -- Science. 1993 Aug 27;261(5125):1112-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8356444" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Insulin/biosynthesis ; Kinesin/chemistry/*physiology ; Point Mutation ; Proinsulin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-09
    Description: Many cell membrane receptors stimulate the phosphoinositide (PI) cycle, which produces complex intracellular calcium signals that regulate diverse processes such as secretion and transcription. A major messenger of this cycle, inositol 1,4,5-triphosphate (IP3), stimulates its receptor channel on the endoplasmic reticulum to release calcium into the cytosol. Activation of the PI cycle also induces calcium influx, which refills the intracellular calcium stores. Confocal microscopy was used to show that receptor-activated calcium influx, enhanced by hyperpolarization, modulates the frequency and velocity of IP3-dependent calcium waves in Xenopus laevis oocytes. These results demonstrate that transmembrane voltage and calcium influx pathways may regulate spatial and temporal patterns of IP3-dependent calcium release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Girard, S -- Clapham, D -- New York, N.Y. -- Science. 1993 Apr 9;260(5105):229-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mayo Foundation, Rochester, MN 55905.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8385801" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/pharmacology ; Animals ; Atropine/pharmacology ; Calcium/*metabolism ; *Calcium Channels ; Female ; Inositol 1,4,5-Trisphosphate Receptors ; Inositol Phosphates/*pharmacology ; Membrane Potentials ; Microscopy, Fluorescence ; Oocytes/drug effects/*metabolism ; Organothiophosphorus Compounds/*pharmacology ; Receptors, Cell Surface/*metabolism ; *Receptors, Cytoplasmic and Nuclear ; Receptors, Muscarinic/*metabolism ; Second Messenger Systems ; Signal Transduction ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-26
    Description: Eukaryotic cells become committed to proliferate during the G1 phase of the cell cycle. In budding yeast, commitment occurs when the catalytic subunit of a protein kinase, encoded by the CDC28 gene (the homolog of the fission yeast cdc2+ gene), binds to a positively acting regulatory subunit, a cyclin. Related kinases are also required for progression through the G1 phase in higher eukaryotes. The role of cyclins in controlling G1 progression in mammalian cells was tested by construction of fibroblasts that constitutively overexpress human cyclin E. This was found to shorten the duration of G1, decrease cell size, and diminish the serum requirement for the transition from G1 to S phase. These observations show that cyclin levels can be rate-limiting for G1 progression in mammalian cells and suggest that cyclin synthesis may be the target of physiological signals that control cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohtsubo, M -- Roberts, J M -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1908-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/physiology ; Cell Line ; Cloning, Molecular ; Cyclins/genetics/*physiology ; Fibroblasts/*cytology/metabolism ; Flow Cytometry ; G1 Phase/*physiology ; Gene Expression ; Genetic Vectors ; Humans ; Kanamycin Kinase ; Male ; Phosphotransferases/genetics ; Rats ; Recombinant Fusion Proteins/metabolism ; Retroviridae/genetics ; S Phase/physiology ; Time Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gottardi, C J -- Caplan, M J -- GM 42136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):552-4; author reply 554-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8386395" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*enzymology ; *Cell Polarity ; Dogs ; Epithelial Cells ; *Sodium-Potassium-Exchanging ATPase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1993-09-24
    Description: Interferons induce transcriptional activation through tyrosine phosphorylation of the latent, cytoplasmic transcription factor interferon-stimulated gene factor-3 (ISGF-3). Growth factors and cytokines were found to use a similar pathway: The 91-kilodalton subunit of ISGF-3 was activated and tyrosine phosphorylated in response to epidermal growth factor (EGF), platelet-derived growth factor, and colony stimulating factor-1. The tyrosine phosphorylated factor acquired DNA binding activity and accumulated in nuclei. Activation required the major sites for autophosphorylation on the EGF receptor that bind Src homology region 2 domain-containing proteins implicated in Ras activation. However, activation of this factor was independent of the normal functioning of Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silvennoinen, O -- Schindler, C -- Schlessinger, J -- Levy, D E -- AI-28900/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, New York University School of Medicine, New York, 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8378775" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Base Sequence ; Cell Line ; DNA-Binding Proteins/*metabolism ; Epidermal Growth Factor/pharmacology ; Genes, ras ; Growth Substances/*pharmacology ; Humans ; Interferon-Stimulated Gene Factor 3 ; Interferon-Stimulated Gene Factor 3, gamma Subunit ; Macrophage Colony-Stimulating Factor/pharmacology ; Mice ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Receptor, Epidermal Growth Factor/metabolism ; STAT1 Transcription Factor ; *Signal Transduction ; *Trans-Activators ; Transcription Factors/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1993-05-14
    Description: Human immunodeficiency virus type-1 (HIV-1) DNA and messenger RNA sequences in both cell lines and blood obtained directly from HIV-1-infected patients were amplified by polymerase chain reaction and hybridized to fluorescein-labeled probes in situ, and the individually labeled cells were analyzed by flow cytometry. After flow cytometric analysis, heterogeneous cell populations were reproducibly resolved into HIV-1-positive and -negative distributions. Fluorescence microscopy showed that the cellular morphology was preserved and intracellular localization of amplified product DNA was maintained. Retention of nonspecific probe was not observed. Analysis of proviral DNA and viral messenger RNA in cells in the blood of HIV-1-infected patients showed that the HIV-1 genome persists in a large reservoir of latently infected cells. With the use of this technique it is now possible to detect single-copy DNA or low-abundance messenger RNA rapidly and reproducibly in a minor subpopulation of cells in suspension at single-cell resolution and to sort those cells for further characterization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patterson, B K -- Till, M -- Otto, P -- Goolsby, C -- Furtado, M R -- McBride, L J -- Wolinsky, S M -- AI-32535/AI/NIAID NIH HHS/ -- HD-26619-01/HD/NICHD NIH HHS/ -- P01-25569/PHS HHS/ -- New York, N.Y. -- Science. 1993 May 14;260(5110):976-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Northwestern University Medical School, Chicago, IL 60611.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493534" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; DNA, Viral/*isolation & purification ; Flow Cytometry ; HIV Infections/*microbiology ; HIV-1/*genetics/isolation & purification ; Humans ; In Situ Hybridization, Fluorescence ; Leukocytes, Mononuclear/*microbiology ; Molecular Sequence Data ; Polymerase Chain Reaction ; Proviruses/genetics ; RNA, Messenger/*isolation & purification ; RNA, Viral/*isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1993-02-19
    Description: Mineralocorticoid and glucocorticoid hormones elicit distinct physiologic responses, yet the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) bind to and activate transcription similarly from a consensus simple hormone response element (HRE). The activities of GR and MR at plfG, a 25-base pair composite response element to which both the steroid receptors and transcription factor AP1 can bind, are analyzed here. Under conditions in which GR represses AP1-stimulated transcription from plfG, MR was inactive. With the use of MR-GR chimeras, a segment of the NH2-terminal region of GR (amino acids 105 to 440) was shown to be required for this repression. Thus, the distinct physiologic effects mediated by MR and GR may be determined by differential interactions of nonreceptor factors with specific receptor domains at composite response elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, D -- Yamamoto, K R -- New York, N.Y. -- Science. 1993 Feb 19;259(5098):1161-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8382376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Corticosterone/*pharmacology ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; HeLa Cells ; Humans ; Hydrocortisone/*pharmacology ; Mineralocorticoids/*metabolism ; Plasmids ; Proto-Oncogene Proteins c-jun/*metabolism ; Receptors, Glucocorticoid/genetics/*metabolism ; Receptors, Mineralocorticoid ; Receptors, Steroid/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; *Transcription, Genetic/drug effects ; Transfection ; Zinc Fingers/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1993-12-03
    Description: Cell adhesion has an essential role in regulating proliferation during the G1 phase of the cell cycle, and loss of this adhesion requirement is a classic feature of oncogenic transformation. The appearance of cyclin A messenger RNA and protein in late G1 was dependent on cell adhesion in both NRK and NIH 3T3 fibroblasts. In contrast, the expression of Cdc2, Cdk2, cyclin D1, and cyclin E was independent of adhesion in both cell lines. Transfection of NRK cells with a cyclin A complementary DNA resulted in adhesion-independent accumulation of cyclin A protein and cyclin A-associated kinase activity. These transfected cells also entered S phase and complete multiple rounds of cell division in the absence of cell adhesion. Thus, cyclin A is a target of the adhesion-dependent signals that control cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guadagno, T M -- Ohtsubo, M -- Roberts, J M -- Assoian, R K -- GM48224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 3;262(5139):1572-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248807" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; CDC2 Protein Kinase/biosynthesis ; *CDC2-CDC28 Kinases ; Cell Adhesion/*physiology ; Cell Cycle/*physiology ; Cell Line ; Cyclin-Dependent Kinase 2 ; *Cyclin-Dependent Kinases ; Cyclins/*biosynthesis ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Humans ; Mice ; Protein Kinases/biosynthesis ; *Protein-Serine-Threonine Kinases ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1993-05-07
    Description: The hematopoietically expressed product of the vav proto-oncogene, Vav, shared homology with guanine nucleotide releasing factors (GRFs) [also called guanosine diphosphate-dissociation stimulators (GDSs)] that activate Ras-related small guanosine triphosphate (GTP)-binding proteins. Human T cell lysates or Vav immunoprecipitates possessed GRF activity that increased after T cell antigen receptor (TCR)-CD3 triggering; an in vitro-translated Vav fragment that contained the putative GRF domain was also active. Vav-associated GRF stimulation after TCR-CD3 ligation paralleled its tyrosine phosphorylation; both were blocked by a protein tyrosine kinase (PTK) inhibitor. Vav also was a substrate for the p56lck PTK. Thus, Vav is a PTK-regulated GRF that may be important in TCR-CD3-initiated signal transduction through the activation of Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gulbins, E -- Coggeshall, K M -- Baier, G -- Katzav, S -- Burn, P -- Altman, A -- CA35299/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 May 7;260(5109):822-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8484124" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoquinones ; *Cell Cycle Proteins ; Fungal Proteins/metabolism ; GTP-Binding Proteins/metabolism ; Guanosine Diphosphate/*metabolism ; Guanosine Triphosphate/*metabolism ; Humans ; Lactams, Macrocyclic ; Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Muromonab-CD3/pharmacology ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-vav ; Quinones/pharmacology ; Receptor-CD3 Complex, Antigen, T-Cell/immunology ; Rifabutin/analogs & derivatives ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; rap GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-15
    Description: The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, S -- Green, M R -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):395-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211160" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 1 ; Activating Transcription Factor 2 ; Base Sequence ; Basic-Leucine Zipper Transcription Factors ; Binding Sites ; Cell Line ; Cell Transformation, Viral ; Cyclic AMP Response Element-Binding Protein/metabolism ; DNA/*metabolism ; DNA-Binding Proteins ; G-Box Binding Factors ; Gene Products, tax/*metabolism ; Leucine Zippers ; Molecular Sequence Data ; Oligodeoxyribonucleotides/*metabolism ; Plant Proteins ; Polymers ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1993-09-17
    Description: Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, L M -- Myers, M G Jr -- Sun, X J -- Aaronson, S A -- White, M -- Pierce, J H -- DK-43808/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 17;261(5128):1591-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8372354" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/drug effects ; Cell Line ; Hematopoietic Stem Cells/*cytology/drug effects ; Insulin/*pharmacology ; Insulin Receptor Substrate Proteins ; Interleukin-4/*pharmacology ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptor, Insulin/metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/metabolism ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1993-10-29
    Description: Nuclear factor of activated T cells (NFAT) is a transcription factor that regulates expression of the cytokine interleukin-2 (IL-2) in activated T cells. The DNA-binding specificity of NFAT is conferred by NFATp, a phosphoprotein that is a target for the immunosuppressive compounds cyclosporin A and FK506. Here, the purification of NFATp from murine T cells and the isolation of a complementary DNA clone encoding NFATp are reported. A truncated form of NFATp, expressed as a recombinant protein in bacteria, binds specifically to the NFAT site of the murine IL-2 promoter and forms a transcriptionally active complex with recombinant protein fragment react with T cell NFATp. The molecular cloning of NFATp should allow detailed analysis of a T cell transcription factor that is central to initiation of the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCaffrey, P G -- Luo, C -- Kerppola, T K -- Jain, J -- Badalian, T M -- Ho, A M -- Burgeon, E -- Lane, W S -- Lambert, J N -- Curran, T -- CA42471/CA/NCI NIH HHS/ -- GM46227/GM/NIGMS NIH HHS/ -- NS25078/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 29;262(5134):750-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Virology, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235597" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA, Complementary ; DNA-Binding Proteins/genetics/*isolation & purification/physiology ; Immunosuppressive Agents/pharmacology ; Interleukin-2/genetics ; Mice ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphoproteins/genetics/isolation & purification/physiology ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-fos/physiology ; Proto-Oncogene Proteins c-jun/physiology ; RNA, Messenger/analysis ; Recombinant Proteins ; T-Lymphocytes/*chemistry ; Transcription Factors/genetics/*isolation & purification/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1993-05-28
    Description: A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chardin, P -- Camonis, J H -- Gale, N W -- van Aelst, L -- Schlessinger, J -- Wigler, M H -- Bar-Sagi, D -- CA46370/CA/NCI NIH HHS/ -- CA55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 May 28;260(5112):1338-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Pharmacologie Moleculaire et Cellulaire, CNRS, Valbonne, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493579" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Base Sequence ; *Cell Cycle Proteins ; Cell Line ; Fungal Proteins/chemistry/*metabolism ; GRB2 Adaptor Protein ; Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Proteins/*metabolism ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; Son of Sevenless Proteins ; ras Guanine Nucleotide Exchange Factors ; *ras-GRF1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1993-05-28
    Description: Transforming growth factor-beta (TGF-beta) is a multifunctional protein that regulates cell proliferation and differentiation and extracellular matrix production. Although two receptor types, the type I and type II receptors, have been implicated in TGF-beta-induced signaling, it is unclear how the many activities of TGF-beta are mediated through these receptors. With the use of cells overexpressing truncated type II receptors as dominant negative mutants to selectively block type II receptor signaling, the existence of two receptor pathways was shown. The type II receptors, possibly in conjunction with type I receptors, mediate the induction of growth inhibition and hypophosphorylation of the retinoblastoma gene product pRB. The type I receptors are responsible for effects on extracellular matrix, such as the induction of fibronectin and plasminogen activator inhibitor I, and for increased JunB expression. Selective inactivation of the type II receptors alters the TGF-beta response in a similar manner to the functional inactivation of pRB, suggesting a role for pRB in the type II, but not the type I, receptor pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, R H -- Ebner, R -- Derynck, R -- New York, N.Y. -- Science. 1993 May 28;260(5112):1335-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Growth and Development, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388126" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/drug effects ; Cell Line ; DNA/biosynthesis ; Down-Regulation ; Fibronectins/biosynthesis ; Plasminogen Activator Inhibitor 1/biosynthesis ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins c-jun/genetics ; Receptors, Cell Surface/genetics/*physiology ; *Receptors, Transforming Growth Factor beta ; Retinoblastoma Protein/metabolism ; Signal Transduction ; Transfection ; Transforming Growth Factor beta/*pharmacology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1993-12-10
    Description: Calmodulin is the primary calcium-dependent signal transducer and regulator of a wide variety of essential cellular functions. The structure of calcium-calmodulin bound to the peptide corresponding to the calmodulin-binding domain of brain calmodulin-dependent protein kinase II alpha was determined to 2 angstrom resolution. A comparison to two other calcium-calmodulin structures reveals how the central helix unwinds in order to position the two domains optimally in the recognition of different target enzymes and clarifies the role of calcium in maintaining recognition-competent domain structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meador, W E -- Means, A R -- Quiocho, F A -- New York, N.Y. -- Science. 1993 Dec 10;262(5140):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8259515" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry/*metabolism ; Calmodulin/*chemistry/metabolism ; Computer Graphics ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry/*metabolism ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1993-11-05
    Description: The shc oncogene product is tyrosine-phosphorylated by Src family kinases and after its phosphorylation interacts with the adapter protein Grb2 (growth factor receptor-bound protein 2). In turn, Grb2 interacts with the guanine nucleotide exchange factor for Ras, mSOS. Because several Src family kinases participate in T cell activation and Shc functions upstream of Ras, the role of Shc in T cell signaling was examined. Shc was phosphorylated on tyrosine after activation through the T cell receptor (TCR), and subsequently interacted with Grb2 and mSOS. The Src homology region 2 (SH2) domain of Shc directly interacted with the tyrosine-phosphorylated zeta chain of the TCR. Thus, Shc may couple TCR activation to the Ras signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravichandran, K S -- Lee, K K -- Songyang, Z -- Cantley, L C -- Burn, P -- Burakoff, S J -- AI-17258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):902-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235613" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Line ; GRB2 Adaptor Protein ; GTP-Binding Proteins/metabolism ; Humans ; Hybridomas ; *Lymphocyte Activation ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Oncogene Proteins/*metabolism ; Phosphorylation ; Proteins/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Son of Sevenless Proteins ; T-Lymphocytes/*immunology/metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: Homologous recombination was used to introduce a nominally transforming mutation into an endogenous H-ras1 gene in Rat1 fibroblasts. Although both the mutant and the remaining normal allele were expressed equally, the heterozygous cells were not neoplastically transformed. Instead, spontaneously transformed cells arose from the heterozygotes at a low frequency, and the majority of these cells had amplified the mutant allele. Thus, the activated H-ras1 allele was not by itself dominant over the normal allele but predisposed cells to transformation by independent events, such as amplification of the mutant allele.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finney, R E -- Bishop, J M -- CA 44338/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1524-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉George Williams Hooper Foundation, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502998" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Cell Division/genetics ; Cell Line ; Cell Line, Transformed ; Cell Transformation, Neoplastic/*genetics ; Genes, ras/*genetics ; Mice ; Mice, Nude ; Molecular Sequence Data ; Neoplasm Transplantation ; Point Mutation ; Rats ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1993-07-16
    Description: The cytoplasmic tyrosine kinase, Bruton's tyrosine kinase (Btk, formerly bpk or atk), is crucial for B cell development. Loss of kinase activity results in the human immunodeficiency, X-linked agammaglobulinemia, characterized by a failure to produce B cells. In the murine X-linked immunodeficiency (XID), B cells are present but respond abnormally to activating signals. The Btk gene, btk, was mapped to the xid region of the mouse X chromosome by interspecific backcross analysis. A single conserved residue within the amino terminal unique region of Btk was mutated in XID mice. This change in xid probably interferes with normal B cell signaling mediated by Btk protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rawlings, D J -- Saffran, D C -- Tsukada, S -- Largaespada, D A -- Grimaldi, J C -- Cohen, L -- Mohr, R N -- Bazan, J F -- Howard, M -- Copeland, N G -- AR36834/AR/NIAMS NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):358-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332901" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*enzymology/immunology ; Base Sequence ; Cell Line ; Chromosome Mapping ; Crosses, Genetic ; Exons ; Female ; Genetic Linkage ; Immunologic Deficiency Syndromes/enzymology/*genetics/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Mice, Inbred DBA ; Mice, Mutant Strains ; Molecular Sequence Data ; Protein-Tyrosine Kinases/chemistry/*genetics/metabolism ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-21
    Description: Cells crawl in response to external stimuli by extending and remodeling peripheral elastic lamellae in the direction of locomotion. The remodeling requires vectorial assembly of actin subunits into linear polymers at the lamella's leading edge and the crosslinking of the filaments by bifunctional gelation proteins. The disassembly of the crosslinked filaments into short fragments or monomeric subunits away from the leading edge supplies components for the actin assembly reactions that drive protrusion. Cellular proteins that respond to lipid and ionic signals elicited by sensory cues escort actin through this cycle in which filaments are assembled, crosslinked, and disassembled. One class of myosin molecules may contribute to crawling by guiding sensory receptors to the cell surface, and another class may contribute by imposing contractile forces on actin networks in the lamellae.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stossel, T P -- New York, N.Y. -- Science. 1993 May 21;260(5111):1086-94.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Experimental Medicine, Brigham and Women's Hospital, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493552" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actins/chemistry/metabolism/*physiology ; Animals ; Cell Adhesion ; Cell Line ; Cell Membrane/physiology ; *Cell Movement ; Cell Polarity ; Models, Biological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1993-10-08
    Description: Interferons, which induce several intracellular antiviral proteins, also induce an extracellular soluble protein that inhibits vesicular stomatitis virus (VSV) infection. This 28-kilodalton soluble protein was purified to homogeneity and identified by protein sequencing as the ligand-binding domain of the human 160-kilodalton low density lipoprotein receptor (LDLR). The existence of an antiviral soluble LDLR was confirmed by immunoaffinity chromatography with monoclonal antibody to LDLR. This soluble receptor mediates most of the interferon-triggered antiviral activity against VSV, apparently by interfering with virus assembly or budding, and not by inhibiting virus attachment to cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, D G -- Tal, N -- Novick, D -- Barak, S -- Rubinstein, M -- New York, N.Y. -- Science. 1993 Oct 8;262(5131):250-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211145" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiviral Agents/*biosynthesis/chemistry/isolation & purification ; Cell Line ; Cells, Cultured ; Chromatography, Affinity ; Culture Media, Serum-Free ; Cytopathogenic Effect, Viral ; HeLa Cells ; Humans ; Interferon-beta/pharmacology ; Interferon-gamma/*pharmacology ; Molecular Sequence Data ; Molecular Weight ; Receptors, LDL/*biosynthesis/chemistry/isolation & purification ; Solubility ; Vesicular stomatitis Indiana virus/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weiss, R -- New York, N.Y. -- Science. 1993 May 21;260(5111):1072-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood-Brain Barrier ; Cell Line ; Cell Survival/drug effects ; Dopamine/*biosynthesis ; Humans ; Nerve Growth Factors ; Nerve Tissue Proteins/genetics/isolation & purification/*pharmacology ; Neuroglia/*metabolism ; Neurons/cytology/*drug effects/metabolism ; Parkinson Disease/*drug therapy ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-19
    Description: Interleukin-4 (IL-4) is an immunoregulatory cytokine produced by activated T lymphocytes to promote the growth and differentiation of cells that participate in immune defense. This study demonstrates the rapid activation of a specific DNA binding factor by IL-4. The IL-4 nuclear-activated factor (IL-4 NAF) appeared within minutes of IL-4 stimulation and recognized a specific DNA sequence found in the promoters of IL-4-responsive genes. Activation of this putative transcription factor required tyrosine phosphorylation, and antibodies specific for phosphotyrosine recognize the IL-4 NAF-DNA complex. Thus, IL-4 appears to transduce a signal to the nucleus through tyrosine phosphorylation of a latent DNA binding factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kotanides, H -- Reich, N C -- R29CA50773/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1265-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Molecular and Cellular Biology, State University of New York at Stony Brook 11794.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694370" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; *Gene Expression Regulation ; Humans ; Interferon-gamma/pharmacology ; Interleukin-4/metabolism/*pharmacology ; Molecular Sequence Data ; Monocytes/metabolism ; Phosphorylation ; Phosphotyrosine ; Promoter Regions, Genetic ; Receptors, IgG/genetics ; Signal Transduction ; Transcription Factors/*metabolism ; Tyrosine/analogs & derivatives/analysis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-03
    Description: Cellular compartmentalization of RNAs is thought to influence their susceptibility to ribozyme cleavage. As a test of this idea, two retroviral vectors--one encoding a hammer-head ribozyme designed to cleave lacZ transcripts and another encoding the lacZ messenger RNA--were coexpressed inside retroviral packaging cells. Because of the retroviral packaging signal, the ribozyme would be expected to colocalize with the lacZ-containing viral genomic RNA but not with the lacZ messenger RNA. The ribozyme was found to reduce the titer of infectious virus containing lacZ by 90 percent, but had no effect on translation of lacZ messenger RNA. These results indicate that sorting gene inhibitors to appropriate intracellular sites may increase their effectiveness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sullenger, B A -- Cech, T R -- New York, N.Y. -- Science. 1993 Dec 3;262(5139):1566-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248806" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Base Sequence ; Biological Transport ; Cell Line ; Gene Transfer Techniques ; Genetic Vectors/genetics ; Mice ; Molecular Sequence Data ; Moloney murine leukemia virus/genetics ; RNA, Catalytic/administration & dosage/*genetics/metabolism ; RNA, Messenger/metabolism ; RNA, Viral/*metabolism ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-02-19
    Description: The Src homology 3 (SH3) region is a small protein domain present in a very large group of proteins, including cytoskeletal elements and signaling proteins. It is believed that SH3 domains serve as modules that mediate protein-protein associations and, along with Src homology 2 (SH2) domains, regulate cytoplasmic signaling. The SH3 binding sites of two SH3 binding proteins were localized to a nine- or ten-amino acid stretch very rich in proline residues. Similar SH3 binding motifs exist in the formins, proteins that function in pattern formation in embryonic limbs of the mouse, and one subtype of the muscarinic acetylcholine receptor. Identification of the SH3 binding site provides a basis for understanding the interaction between the SH3 domains and their targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, R -- Mayer, B J -- Cicchetti, P -- Baltimore, D -- CA 08875/CA/NCI NIH HHS/ -- CA 09673/CA/NCI NIH HHS/ -- CA 51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 19;259(5098):1157-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8438166" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cytoskeletal Proteins/genetics/*metabolism ; DNA/genetics/metabolism ; Genes, abl ; Glutathione Transferase/genetics/metabolism ; Kinetics ; Mice ; Molecular Sequence Data ; *Proline ; Proto-Oncogene Proteins c-abl/genetics/*metabolism ; Rats ; Receptors, Muscarinic/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Amino Acid ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1993-03-26
    Description: The eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) participates in many parts of the genetic program mediating T lymphocyte activation and growth. Nuclear expression of NF-kappa B occurs after its induced dissociation from its cytoplasmic inhibitor I kappa B alpha. Phorbol ester and tumor necrosis factor-alpha induction of nuclear NF-kappa B is associated with both the degradation of performed I kappa B alpha and the activation of I kappa B alpha gene expression. Transfection studies indicate that the I kappa B alpha gene is specifically induced by the 65-kilodalton transactivating subunit of NF-kappa B. Association of the newly synthesized I kappa B alpha with p65 restores intracellular inhibition of NF-kappa B DNA binding activity and prolongs the survival of this labile inhibitor. Together, these results show that NF-kappa B controls the expression of I kappa B alpha by means of an inducible autoregulatory pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, S C -- Ganchi, P A -- Ballard, D W -- Greene, W C -- 5T32CA09111/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Virology and Immunology, University of California, San Francisco.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8096091" target="_blank"〉PubMed〈/a〉
    Keywords: CD4-Positive T-Lymphocytes/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cycloheximide/pharmacology ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/*genetics ; *Gene Expression Regulation ; Humans ; *I-kappa B Proteins ; Immunoblotting ; Kinetics ; Molecular Weight ; Mutagenesis ; NF-kappa B/*antagonists & inhibitors/genetics/*physiology ; RNA, Messenger/biosynthesis ; Tetradecanoylphorbol Acetate/pharmacology ; Trans-Activators/pharmacology ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-28
    Description: Ataxia-telangiectasia (A-T) is an inherited human disease associated with neurologic degeneration, immune dysfunction, and high cancer risk. It has been proposed that the underlying abnormality in A-T is a defect in genetic recombination that interferes with immune gene rearrangements and the repair of DNA damage. Recombination was studied in A-T and control human fibroblast lines by means of two recombination vectors. Unexpectedly, spontaneous intrachromosomal recombination rates were 30 to 200 times higher in A-T fibroblast lines than in normal cells, whereas extrachromosomal recombination frequencies were near normal. Increased recombination is thus a component of genetic instability in A-T and may contribute to the cancer risk seen in A-T patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyn, M S -- GM38588/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 May 28;260(5112):1327-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia/*genetics ; Cell Line ; Cell Line, Transformed ; Chromosomes, Human/*physiology ; *Cinnamates ; Genetic Complementation Test ; Genetic Vectors ; Humans ; Hygromycin B/analogs & derivatives/pharmacology ; Mice ; Mitosis ; Neomycin/pharmacology ; Phenotype ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1993-01-29
    Description: Ras proteins undergo a series of posttranslational modifications that are critical for their cellular function. These modifications are necessary to anchor Ras proteins to the membrane. Yeast Ras2 proteins were purified with various degrees of modification and examined for their ability to activate their effector, adenylyl cyclase. The farnesylated intermediate form of Ras2 had more than 100 times higher affinity for adenylyl cyclase than for the unprocessed form. The subsequent palmitoylation reaction had little effect. In contrast, palmitoylation was required for efficient membrane localization of the Ras2 protein. These results indicate the importance of farnesylation in the interaction of Ras2 with its effector.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuroda, Y -- Suzuki, N -- Kataoka, T -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):683-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Kobe University School of Medicine, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430318" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/isolation & purification/*metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Membrane/enzymology ; Electrophoresis, Polyacrylamide Gel ; Enzyme Activation ; Fungal Proteins/genetics/isolation & purification/*metabolism ; GTP-Binding Proteins/genetics/*metabolism ; Genes, Fungal ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Insects ; Kinetics ; Molecular Sequence Data ; Molecular Weight ; Oligodeoxyribonucleotides ; Palmitic Acid ; Palmitic Acids/metabolism ; Protein Binding ; *Protein Processing, Post-Translational ; Recombinant Fusion Proteins/isolation & purification/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Transfection ; *ras Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1993-04-09
    Description: Cells maintain the integrity of their genome through an intricate network of repair systems that recognize and remove lesions from DNA. The only known site-directed recombination process in vertebrates is the V(D)J recombination of lymphocyte antigen receptor genes. A large panel of cell lines deficient in DNA repair were tested for the ability to perform V(D)J recombination after introduction of the RAG-1 and RAG-2 genes. Two mutants failed to generate normal V(D)J recombination, and further analysis provided evidence for two distinct nonlymphoid-specific genes that encode factors involved in both DNA repair and V(D)J recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taccioli, G E -- Rathbun, G -- Oltz, E -- Stamato, T -- Jeggo, P A -- Alt, F W -- AI 20047/AI/NIAID NIH HHS/ -- CA45277/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 9;260(5105):207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469973" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CHO Cells ; Cell Line ; Cricetinae ; DNA Nucleotidyltransferases/genetics/metabolism ; *DNA Repair ; *Gene Rearrangement, T-Lymphocyte ; *Genes, RAG-1 ; Immunoglobulin Heavy Chains ; Molecular Sequence Data ; Mutation ; Receptors, Antigen, T-Cell/*genetics ; Recombination, Genetic ; VDJ Recombinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1993-11-26
    Description: The protein CD36 is a membrane receptor for thrombospondin (TSP), malaria-infected erythrocytes, and collagen. Three functional sequences were identified within a single disulfide loop of CD36: one that mediates TSP binding (amino acids 87 to 99) and two that support malarial cytoadhesion (amino acids 8 to 21 and 97 to 110). One of these peptides (p87-99) is a consensus protein kinase C (PKC) phosphorylation site. Dephosphorylation of constitutively phosphorylated CD36 in resting platelets and a megakaryocytic cell line led to the loss of collagen adhesion and platelet reactivity to collagen, with a reciprocal increase in TSP binding. PKC-mediated phosphorylation of this ectodomain resulted in a loss of TSP binding and the reciprocal acquisition of collagen binding. In site-directed mutagenesis studies, when the threonine phosphorylation site was changed to alanine, CD36 was expressed in a dephosphorylated state and bound to TSP constitutively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asch, A S -- Liu, I -- Briccetti, F M -- Barnwell, J W -- Kwakye-Berko, F -- Dokun, A -- Goldberger, J -- Pernambuco, M -- HL02541/HL/NHLBI NIH HHS/ -- HL18828/HL/NHLBI NIH HHS/ -- HL44389/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1436-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology-Oncology, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7504322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/chemistry/genetics/*metabolism ; Antigens, CD36 ; Base Sequence ; Blood Platelets/*metabolism ; Cell Adhesion ; Cell Line ; Collagen/*metabolism ; Erythrocytes/cytology/parasitology ; Humans ; Megakaryocytes/metabolism ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Plasmodium falciparum/physiology ; Platelet Adhesiveness ; Platelet Aggregation ; Platelet Membrane Glycoproteins/chemistry/genetics/*metabolism ; Protein Kinase C/metabolism ; Receptors, Cytoadhesin/metabolism ; Thrombospondins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1993-04-23
    Description: Surface expression of the CD45 tyrosine phosphatase is essential for the T cell antigen receptor (TCR) to couple optimally with its second messenger pathways. CD45 may be required to dephosphorylate a TCR-activated protein tyrosine kinase, which then transduces an activation signal from the TCR. A chimeric molecule that contained extracellular and transmembrane sequences from an allele of a major histocompatibility class I molecule and cytoplasmic sequences of CD45 restored TCR signaling in a CD45-deficient mutant T cell line. Thus, expression of the complex extracellular domain of CD45 is not required for the TCR to couple to its signaling machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hovis, R R -- Donovan, J A -- Musci, M A -- Motto, D G -- Goldman, F D -- Ross, S E -- Koretzky, G A -- CA56050-01/CA/NCI NIH HHS/ -- CA56843-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):544-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8475387" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD45/genetics/*metabolism ; Base Sequence ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Enzyme Activation ; Humans ; Inositol Phosphates/metabolism ; Membrane Proteins/metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; *Signal Transduction ; T-Lymphocytes/*metabolism ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1993-07-30
    Description: A method was developed to clone, without the use of specific functional assays, complementary DNAs (cDNAs) that carry specific amino-terminal signal sequences, such as those encoding intercellular signal-transducing molecules and receptors. The vector used in this system directed the cell surface expression of interleukin-2 receptor fusion proteins when inserts with signal sequences were cloned in-frame with the correct orientation. An expression cDNA library was constructed from a bone marrow stromal cell line, which contained 5' portion-enriched cDNAs (the average size was 400 base pairs). Two cDNAs that encoded putative cytokine molecules, stromal cell-derived factor-1 alpha (SDF-1 alpha) and SDF-1 beta, which belong to the intercrine-macrophage inflammatory protein superfamily, were cloned.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tashiro, K -- Tada, H -- Heilker, R -- Shirozu, M -- Nakano, T -- Honjo, T -- New York, N.Y. -- Science. 1993 Jul 30;261(5121):600-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Kyoto University Faculty of Medicine, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342023" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Chemokine CXCL12 ; *Chemokines, CXC ; Cloning, Molecular/*methods ; Cytokines/chemistry/*genetics ; Genetic Vectors ; Molecular Sequence Data ; Open Reading Frames ; Protein Sorting Signals/chemistry/*genetics/metabolism ; Receptors, Interleukin-2/genetics ; Recombinant Fusion Proteins/biosynthesis ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1993-03-19
    Description: Tyrosine phosphorylation of proteins is required for signal transduction in cells and for growth regulation. A mitogen-induced gene (PAC-1) has been cloned from human T cells and encodes a 32-kilodalton protein that contains a sequence that defines the enzymatic site of known protein phosphotyrosine phosphatases (PTPases). Other than this sequence, PAC-1 is different from several other known related PTPases exemplified by PTP-1b. PAC-1 is similar to a phosphatase induced by mitogens or heat shock in fibroblasts, a yeast gene, and a vaccinia virus-encoded serine-tyrosine phosphatase (VH1). PAC-1 was predominantly expressed in hematopoietic tissues and localized to the nucleus in transfected COS-7 cells and in mitogen-stimulated T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohan, P J -- Davis, P -- Moskaluk, C A -- Kearns, M -- Krutzsch, H -- Siebenlist, U -- Kelly, K -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1763-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681221" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Cell Line ; Cell Nucleus/enzymology ; Conserved Sequence ; Cytoplasm/enzymology ; Dual Specificity Phosphatase 2 ; Fluorescent Antibody Technique ; Humans ; Immunosorbent Techniques ; Mice ; Mitogens/*pharmacology ; Molecular Sequence Data ; Organ Specificity ; Protein Phosphatase 2 ; Protein Tyrosine Phosphatases/chemistry/*genetics ; RNA/analysis ; Sequence Homology, Amino Acid ; Signal Transduction/physiology ; T-Lymphocytes/enzymology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1993-11-12
    Description: Mitogen-activated protein (MAP) kinases p42mapk and p44mapk are activated in cells stimulated with epidermal growth factor (EGF) and other agents. A principal pathway for MAP kinase (MAPK) activation by EGF consists of sequential activations of the guanine nucleotide exchange factor Sos, the guanosine triphosphate binding protein Ras, and the protein kinases Raf-1, MAPK kinase (MKK), and MAPK. Because adenosine 3',5'-monophosphate (cAMP) does not activate MAPK and has some opposing physiologic effects, the effect of increasing intracellular concentrations of cAMP with forskolin and 3-isobutyl-1-methylxanthine on the EGF-stimulated MAPK pathway was studied. Increased concentrations of cAMP blocked activation of Raf-1, MKK, and MAPK in Rat1hER fibroblasts, accompanied by a threefold increase in Raf-1 phosphorylation on serine 43 in the regulatory domain. Phosphorylation of Raf-1 in vitro and in vivo reduces the apparent affinity with which it binds to Ras and may contribute to the blockade by cAMP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Dent, P -- Jelinek, T -- Wolfman, A -- Weber, M J -- Sturgill, T W -- CA39076/CA/NCI NIH HHS/ -- DK41077/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1065-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Virginia, Health Sciences Center, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694366" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; 3T3 Cells ; Amino Acid Sequence ; Animals ; Cell Line ; Colforsin/pharmacology ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Enzyme Activation/drug effects ; Epidermal Growth Factor/*pharmacology ; Mice ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-raf ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-02
    Description: Interleukin-8 (IL-8) is one of the major mediators of the inflammatory response. The pathways by which IL-8 activates inositide-specific phospholipase C (PLC) were investigated by co-expression of different components of the guanosine triphosphate binding protein (G protein) pathway in COS-7 cells. Two distinct IL-8 receptors reconstituted ligand-dependent activation of endogenous PLC when transfected together with the G protein alpha subunits G alpha 14, G alpha 15, or G alpha 16. However, reconstitution was not observed with cells that overexpressed G alpha q or G alpha 11. Furthermore, IL-8 receptors interacted with endogenous pertussis toxin-sensitive G proteins or with the recombinant G protein Gi to release free beta gamma subunits that could then specifically activate the beta 2 isoform of PLC. These findings suggest that IL-8 acts through signal-transducing pathways that are limited to specific heterotrimeric G proteins and effectors. These may provide suitable targets for the development of anti-inflammatory agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, D -- LaRosa, G J -- Simon, M I -- New York, N.Y. -- Science. 1993 Jul 2;261(5117):101-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316840" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Enzyme Activation ; GTP-Binding Proteins/genetics/*metabolism ; Interleukin-8/*metabolism/pharmacology ; Pertussis Toxin ; Receptors, Immunologic/genetics/*metabolism ; Receptors, Interleukin-8A ; Recombinant Proteins/metabolism ; *Signal Transduction ; Transfection ; Type C Phospholipases/metabolism ; Virulence Factors, Bordetella/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1993-06-25
    Description: Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baltensperger, K -- Kozma, L M -- Cherniack, A D -- Klarlund, J K -- Chawla, A -- Banerjee, U -- Czech, M P -- DK 30648/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1950-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8391166" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Cell Line ; GRB2 Adaptor Protein ; Guanosine Triphosphate/metabolism ; Insulin/pharmacology ; Insulin Receptor Substrate Proteins ; Membrane Proteins/*metabolism ; Phosphatidylinositol 3-Kinases ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphotransferases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Receptor, Insulin/*metabolism ; Signal Transduction ; Son of Sevenless Proteins ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...