ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Transfection  (116)
  • American Association for the Advancement of Science (AAAS)  (116)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • 1995-1999  (57)
  • 1990-1994  (59)
  • 1997  (57)
  • 1993  (59)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (116)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • Springer  (1)
Years
  • 1995-1999  (57)
  • 1990-1994  (59)
Year
  • 1
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-17
    Description: The proto-oncogene-encoded transcription factor c-Jun activates genes in response to a number of inducers that act through mitogen-activated protein kinase (MAPK) signal transduction pathways. The activation of c-Jun after phosphorylation by MAPK is accompanied by a reduction in c-Jun ubiquitination and consequent stabilization of the protein. These results illustrate the relevance of regulated protein degradation in the signal-dependent control of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Musti, A M -- Treier, M -- Bohmann, D -- New York, N.Y. -- Science. 1997 Jan 17;275(5298):400-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8994040" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Cycle Proteins/metabolism ; GTP-Binding Proteins/metabolism ; Gene Expression Regulation ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Phosphorylation ; Proto-Oncogene Proteins c-jun/*metabolism ; Signal Transduction ; Transfection ; Ubiquitins/*metabolism ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-02-21
    Description: The Caenorhabditis elegans survival gene ced-9 regulates ced-4 activity and inhibits cell death, but the mechanism by which this occurs is unknown. Through a genetic screen for CED-4-binding proteins, CED-9 was identified as an interacting partner of CED-4. CED-9, but not loss-of-function mutants, associated specifically with CED-4 in yeast or mammalian cells. The CED-9 protein localized primarily to intracellular membranes and the perinuclear region, whereas CED-4 was distributed in the cytosol. Expression of CED-9, but not a mutant lacking the carboxy-terminal hydrophobic domain, targeted CED-4 from the cytosol to intracellular membranes in mammalian cells. Thus, the actions of CED-4 and CED-9 are directly linked, which could provide the basis for the regulation of programmed cell death in C. elegans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, D -- Wallen, H D -- Nunez, G -- CA-64556/CA/NCI NIH HHS/ -- T32A107413-03/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1126-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/*cytology/genetics ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/analysis/genetics/*metabolism ; Cell Fractionation ; Cell Line ; Cytosol/chemistry ; Genes, Helminth ; Helminth Proteins/analysis/genetics/*metabolism ; Humans ; Intracellular Membranes/chemistry ; Mutation ; Proto-Oncogene Proteins/analysis/genetics/*metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Transfection ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-07-25
    Description: More than 1% of the world's population is chronically infected with hepatitis C virus (HCV). HCV infection can result in acute hepatitis, chronic hepatitis, and cirrhosis, which is strongly associated with development of hepatocellular carcinoma. Genetic studies of HCV replication have been hampered by lack of a bona fide infectious molecular clone. Full-length functional clones of HCV complementary DNA were constructed. RNA transcripts from the clones were found to be infectious and to cause disease in chimpanzees after direct intrahepatic inoculation. This work defines the structure of a functional HCV genome RNA and proves that HCV alone is sufficient to cause disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolykhalov, A A -- Agapov, E V -- Blight, K J -- Mihalik, K -- Feinstone, S M -- Rice, C M -- AI40034/AI/NIAID NIH HHS/ -- CA57973/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):570-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9228008" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cloning, Molecular ; Consensus Sequence ; DNA, Complementary ; Hepacivirus/*genetics/physiology ; Hepatitis C/*transmission/*virology ; Liver/*virology ; Molecular Sequence Data ; Pan troglodytes ; Polymerase Chain Reaction ; RNA, Messenger/*genetics ; RNA, Viral/blood/*genetics ; Transfection ; Viremia ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-09-05
    Description: In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Wong, C -- Thoma, R S -- Richman, R -- Wu, Z -- Piwnica-Worms, H -- Elledge, S J -- GM17763/GM/NIGMS NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1497-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278511" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/*metabolism ; Cell Cycle Proteins/antagonists & inhibitors/*metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; Cytoskeletal Proteins ; *DNA Damage ; *F-Box Proteins ; G2 Phase ; HeLa Cells ; Humans ; Mice ; *Mitosis ; Molecular Sequence Data ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Transfection ; *Tyrosine 3-Monooxygenase ; *Ubiquitin-Protein Ligases ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-10-10
    Description: The caspase-3 (CPP32, apopain, YAMA) family of cysteinyl proteases has been implicated as key mediators of apoptosis in mammalian cells. Gelsolin was identified as a substrate for caspase-3 by screening the translation products of small complementary DNA pools for sensitivity to cleavage by caspase-3. Gelsolin was cleaved in vivo in a caspase-dependent manner in cells stimulated by Fas. Caspase-cleaved gelsolin severed actin filaments in vitro in a Ca2+-independent manner. Expression of the gelsolin cleavage product in multiple cell types caused the cells to round up, detach from the plate, and undergo nuclear fragmentation. Neutrophils isolated from mice lacking gelsolin had delayed onset of both blebbing and DNA fragmentation, following apoptosis induction, compared with wild-type neutrophils. Thus, cleaved gelsolin may be one physiological effector of morphologic change during apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kothakota, S -- Azuma, T -- Reinhard, C -- Klippel, A -- Tang, J -- Chu, K -- McGarry, T J -- Kirschner, M W -- Koths, K -- Kwiatkowski, D J -- Williams, L T -- P01 HL48743/HL/NHLBI NIH HHS/ -- R01 HL54188/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 10;278(5336):294-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chiron Corporation, Emeryville, CA 94608, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9323209" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Chloromethyl Ketones/pharmacology ; Animals ; Antigens, CD95/physiology ; *Apoptosis ; Caspase 3 ; *Caspases ; Cell Line ; *Cell Size ; Cycloheximide/pharmacology ; Cysteine Endopeptidases/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cytoskeleton/metabolism ; DNA Fragmentation ; Gelsolin/*metabolism ; Humans ; Mice ; Neutrophils/cytology/metabolism ; Recombinant Proteins/metabolism ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-10-06
    Description: Chromosome maintenance region 1 (CRM1), a protein that shares sequence similarities with the karyopherin beta family of proteins involved in nuclear import pathway, was shown to form a complex with the leucine-rich nuclear export signal (NES). This interaction was inhibited by leptomycin B, a drug that prevents the function of the CRM1 protein in yeast. To analyze the role of the CRM1-NES interaction in nuclear export, a transport assay based on semipermeabilized cells was developed. In this system, which reconstituted NES-, cytosol-, and energy-dependent nuclear export, leptomycin B specifically blocked export of NES-containing proteins. Thus, the CRM1 protein could act as a NES receptor involved in nuclear protein export.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ossareh-Nazari, B -- Bachelerie, F -- Dargemont, C -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):141-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie-CNRS Unite Mixte de Recherche 144, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311922" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Biological Transport/drug effects ; Carrier Proteins/*physiology ; Cell Nucleus/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Fluorescent Antibody Technique, Indirect ; HeLa Cells ; Humans ; *I-kappa B Proteins ; Immunoblotting ; *Karyopherins ; Nuclear Localization Signals ; Nuclear Proteins/*metabolism ; Protein Sorting Signals/chemistry/*metabolism ; Pyruvate Kinase/metabolism ; *Receptors, Cytoplasmic and Nuclear ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-03-07
    Description: Human immunodeficiency virus-type 1 (HIV-1) infection is characterized by a chronic state of immune hyperactivation in patients. Infection of human peripheral blood lymphocytes with HIV-1 in vitro resulted in increased interleukin-2 (IL-2) secretion in response to T cell activation via the CD3 and CD28 receptors. Expression of the HIV-1 transactivator Tat recapitulated this phenotype and was associated with increased IL-2 secretion in response to costimulation with CD3 plus CD28. IL-2 superinduction by Tat occurred at the transcriptional level, was mediated by the CD28-responsive element in the IL-2 promoter, and was exclusively dependent on the 29 amino acids encoded by the second exon of Tat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ott, M -- Emiliani, S -- Van Lint, C -- Herbein, G -- Lovett, J -- Chirmule, N -- McCloskey, T -- Pahwa, S -- Verdin, E -- New York, N.Y. -- Science. 1997 Mar 7;275(5305):1481-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Picower Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9045614" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/pharmacology ; Antibodies, Monoclonal/immunology ; Antigens, CD28/*immunology ; Antigens, CD3/immunology ; Exons ; Gene Products, tat/genetics/*physiology ; HIV Infections/immunology ; HIV-1/drug effects/genetics/*physiology ; Humans ; Interleukin-2/genetics/*secretion ; Jurkat Cells ; Leukocytes, Mononuclear/virology ; *Lymphocyte Activation ; Promoter Regions, Genetic ; T-Lymphocytes/*immunology/*virology ; Transcription Factors/metabolism ; Transcription, Genetic ; Transfection ; Zidovudine/pharmacology ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-03-21
    Description: The adenomatous polyposis coli (APC) tumor suppressor protein binds to beta-catenin, a protein recently shown to interact with Tcf and Lef transcription factors. The gene encoding hTcf-4, a Tcf family member that is expressed in colonic epithelium, was cloned and characterized. hTcf-4 transactivates transcription only when associated with beta-catenin. Nuclei of APC-/- colon carcinoma cells were found to contain a stable beta-catenin-hTcf-4 complex that was constitutively active, as measured by transcription of a Tcf reporter gene. Reintroduction of APC removed beta-catenin from hTcf-4 and abrogated the transcriptional transactivation. Constitutive transcription of Tcf target genes, caused by loss of APC function, may be a crucial event in the early transformation of colonic epithelium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korinek, V -- Barker, N -- Morin, P J -- van Wichen, D -- de Weger, R -- Kinzler, K W -- Vogelstein, B -- Clevers, H -- CA57345/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1784-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University Hospital, Post Office Box 85500, 3508 GA Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065401" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Transformation, Neoplastic ; Cloning, Molecular ; Colon/metabolism ; Colonic Neoplasms/*genetics/metabolism ; Cytoskeletal Proteins/genetics/*metabolism ; Gene Expression Regulation, Neoplastic ; *Genes, APC ; Genes, Reporter ; Humans ; Intestinal Mucosa/metabolism ; Mice ; Molecular Sequence Data ; Signal Transduction ; TCF Transcription Factors ; *Trans-Activators ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-12-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, S M -- Hoffmann, A -- Le, D -- Springer, M L -- Stock, P G -- Blau, H M -- F32 HL08991/HL/NHLBI NIH HHS/ -- R01-CA59717/CA/NCI NIH HHS/ -- R01-HD18179/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1322-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9411754" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/biosynthesis ; Apoptosis ; Cell Differentiation ; Cell Transplantation ; Fas Ligand Protein ; *Graft Rejection ; Immune Tolerance ; Islets of Langerhans/cytology ; *Islets of Langerhans Transplantation ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Muscle Fibers, Skeletal/*cytology/metabolism ; Muscle, Skeletal/*cytology/metabolism ; Neutrophils/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1997-07-11
    Description: In vertebrates, the presence of multiple heat shock transcription factors (HSFs) indicates that these factors may be regulated by distinct stress signals. HSF3 was specifically activated in unstressed proliferating cells by direct binding to the c-myb proto-oncogene product (c-Myb). These factors formed a complex through their DNA binding domains that stimulated the nuclear entry and formation of the transcriptionally active trimer of HSF3. Because c-Myb participates in cellular proliferation, this regulatory pathway may provide a link between cellular proliferation and the stress response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanei-Ishii, C -- Tanikawa, J -- Nakai, A -- Morimoto, R I -- Ishii, S -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):246-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, Tsukuba, Ibaraki 305, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Cycle ; Cell Line ; Cell Nucleus/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-myb ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/*metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1997-08-08
    Description: TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheridan, J P -- Marsters, S A -- Pitti, R M -- Gurney, A -- Skubatch, M -- Baldwin, D -- Ramakrishnan, L -- Gray, C L -- Baker, K -- Wood, W I -- Goddard, A D -- Godowski, P -- Ashkenazi, A -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242611" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; GPI-Linked Proteins ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1997-06-20
    Description: The human cytomegalovirus encodes a beta-chemokine receptor (US28) that is distantly related to the human chemokine receptors CCR5 and CXCR4, which also serve as cofactors for the entry into cells of human immunodeficiency virus-type 1 (HIV-1). Like CCR5, US28 allowed infection of CD4-positive human cell lines by primary isolates of HIV-1 and HIV-2, as well as fusion of these cell lines with cells expressing the viral envelope proteins. In addition, US28 mediated infection by cell line-adapted HIV-1 for which CXCR4 was an entry cofactor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pleskoff, O -- Treboute, C -- Brelot, A -- Heveker, N -- Seman, M -- Alizon, M -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1874-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inserm U.332, Institut Cochin de Genetique Moleculaire, 22 rue Mechain, 75014 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188536" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS-Related Opportunistic Infections/virology ; Amino Acid Sequence ; Cell Fusion ; Chemokines ; Coculture Techniques ; Cytomegalovirus/*genetics/physiology ; Cytomegalovirus Infections/virology ; Giant Cells ; HIV Infections/virology ; HIV-1/*physiology ; HIV-2/*physiology ; HeLa Cells ; Humans ; Membrane Proteins/physiology ; Molecular Sequence Data ; Receptors, CCR2 ; Receptors, CCR5 ; Receptors, CXCR4 ; *Receptors, Chemokine ; Receptors, Cytokine/genetics/*physiology ; Receptors, HIV/genetics/*physiology ; Transfection ; Tumor Cells, Cultured ; Viral Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-03-07
    Description: Protein dephosphorylation by phosphatase PP1 plays a central role in mediating the effects of insulin on glucose and lipid metabolism. A PP1C-targeting protein expressed in 3T3-L1 adipocytes (called PTG, for protein targeting to glycogen) was cloned and characterized. PTG was expressed predominantly in insulin-sensitive tissues. In addition to binding and localizing PP1C to glycogen, PTG formed complexes with phosphorylase kinase, phosphorylase a, and glycogen synthase, the primary enzymes involved in the hormonal regulation of glycogen metabolism. Overexpression of PTG markedly increased basal and insulin-stimulated glycogen synthesis in Chinese hamster ovary cells overexpressing the insulin receptor, which do not express endogenous PTG. These results suggest that PTG is critical for glycogen metabolism, possibly functioning as a molecular scaffold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Printen, J A -- Brady, M J -- Saltiel, A R -- New York, N.Y. -- Science. 1997 Mar 7;275(5305):1475-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9045612" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; CHO Cells ; Carrier Proteins/chemistry/genetics/*metabolism ; Cloning, Molecular ; Cricetinae ; DNA, Complementary/genetics ; Glycogen/biosynthesis/*metabolism ; Glycogen Synthase/metabolism ; Insulin/pharmacology ; *Intracellular Signaling Peptides and Proteins ; Mice ; Molecular Sequence Data ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylase Kinase/metabolism ; Phosphorylase a/metabolism ; Phosphorylation ; Protein Binding ; Protein Phosphatase 1 ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1997-02-14
    Description: The telomerase ribonucleoprotein catalyzes the addition of new telomeres onto chromosome ends. A gene encoding a mammalian telomerase homolog called TP1 (telomerase-associated protein 1) was identified and cloned. TP1 exhibited extensive amino acid similarity to the Tetrahymena telomerase protein p80 and was shown to interact specifically with mammalian telomerase RNA. Antiserum to TP1 immunoprecipitated telomerase activity from cell extracts, suggesting that TP1 is associated with telomerase in vivo. The identification of TP1 suggests that telomerase-associated proteins are conserved from ciliates to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrington, L -- McPhail, T -- Mar, V -- Zhou, W -- Oulton, R -- Bass, M B -- Arruda, I -- Robinson, M O -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):973-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arruda, Ontario Cancer Institute-Amgen Institute, Department of Medical Biophysics, University of Toronto, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Carrier Proteins/*chemistry/genetics/immunology/*metabolism ; Cell Line ; Cloning, Molecular ; DNA, Complementary/genetics ; Humans ; Mice ; Molecular Sequence Data ; Precipitin Tests ; RNA/*metabolism ; RNA, Messenger/genetics/metabolism ; Sequence Homology, Amino Acid ; Telomerase/*chemistry/genetics/metabolism ; Tetrahymena/chemistry/genetics ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1997-10-06
    Description: Activation of the nuclear factor of activated T cells transcription factor (NF-AT) is a key event underlying lymphocyte action. The CAML (calcium-modulator and cyclophilin ligand) protein is a coinducer of NF-AT activation when overexpressed in Jurkat T cells. A member of the tumor necrosis factor receptor superfamily was isolated by virtue of its affinity for CAML. Cross-linking of this lymphocyte-specific protein, designated TACI (transmembrane activator and CAML-interactor), on the surface of transfected Jurkat cells with TACI-specific antibodies led to activation of the transcription factors NF-AT, AP-1, and NFkappaB. TACI-induced activation of NF-AT was specifically blocked by a dominant-negative CAML mutant, thus implicating CAML as a signaling intermediate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Bulow, G U -- Bram, R J -- CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311921" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Calcineurin ; Calmodulin-Binding Proteins/metabolism ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Jurkat Cells ; Lymphocyte Activation ; *Membrane Proteins ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphoprotein Phosphatases/metabolism ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Sequence Alignment ; Signal Transduction ; T-Lymphocytes/immunology/*metabolism ; Transcription Factor AP-1/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic ; Transfection ; Transmembrane Activator and CAML Interactor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1997-09-12
    Description: Gangliosides participate in development and tissue differentiation. Cross-linking of the apoptosis-inducing CD95 protein (also called Fas or APO-1) in lymphoid and myeloid tumor cells triggered GD3 ganglioside synthesis and transient accumulation. CD95-induced GD3 accumulation depended on integral receptor "death domains" and on activation of a family of cysteine proteases called caspases. Cell-permeating ceramides, which are potent inducers of apoptosis, also triggered GD3 synthesis. GD3 disrupted mitochondrial transmembrane potential (DeltaPsim), and induced apoptosis, in a caspase-independent fashion. Transient overexpression of the GD3 synthase gene directly triggered apoptosis. Pharmacological inhibition of GD3 synthesis and exposure to GD3 synthase antisense oligodeoxynucleotides prevented CD95-induced apoptosis. Thus, GD3 ganglioside mediates the propagation of CD95-generated apoptotic signals in hematopoietic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Maria, R -- Lenti, L -- Malisan, F -- d'Agostino, F -- Tomassini, B -- Zeuner, A -- Rippo, M R -- Testi, R -- New York, N.Y. -- Science. 1997 Sep 12;277(5332):1652-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata," 00133 Rome, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9287216" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD95/metabolism/*physiology ; *Apoptosis ; Ceramides/pharmacology/*physiology ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Enzyme Inhibitors/pharmacology ; Gangliosides/biosynthesis/*metabolism/pharmacology ; Golgi Apparatus/metabolism ; Humans ; Membrane Potentials ; Mitochondria/physiology ; Morpholines/pharmacology ; Oligonucleotides, Antisense/pharmacology ; Sialyltransferases/genetics/metabolism ; Signal Transduction ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1997-12-31
    Description: CCR5 and CD4 are coreceptors for immunodeficiency virus entry into target cells. The gp120 envelope glycoprotein from human immunodeficiency virus strain HIV-1(YU2) bound human CCR5 (CCR5hu) or rhesus macaque CCR5 (CCR5rh) only in the presence of CD4. The gp120 from simian immunodeficiency virus strain SIVmac239 bound CCR5rh without CD4, but CCR5hu remained CD4-dependent. The CD4-independent binding of SIVmac239 gp120 depended on a single amino acid, Asp13, in the CCR5rh amino-terminus. Thus, CCR5-binding moieties on the immunodeficiency virus envelope glycoprotein can be generated by interaction with CD4 or by direct interaction with the CCR5 amino-terminus. These results may have implications for the evolution of receptor use among lentiviruses as well as utility in the development of effective intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, K A -- Wyatt, R -- Farzan, M -- Choe, H -- Marcon, L -- Desjardins, E -- Robinson, J -- Sodroski, J -- Gerard, C -- Gerard, N P -- AI41581/AI/NIAID NIH HHS/ -- HL36162/HL/NHLBI NIH HHS/ -- HL51366/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Nov 21;278(5342):1470-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Perlmutter Laboratory, Children's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9367961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Antigens, CD4/*physiology ; Cell Line ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/chemistry/*metabolism ; HIV-2/immunology ; Humans ; Macaca mulatta ; Macrophages/virology ; *Membrane Glycoproteins ; Mutation ; Receptors, CCR5/chemistry/*metabolism ; Simian Immunodeficiency Virus/*metabolism ; Transfection ; *Viral Envelope Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1997-05-09
    Description: Timely deactivation of kinase cascades is crucial to the normal control of cell signaling and is partly accomplished by protein phosphatase 2A (PP2A). The catalytic (alpha) subunit of the serine-threonine kinase casein kinase 2 (CK2) bound to PP2A in vitro and in mitogen-starved cells; binding required the integrity of a sequence motif common to CK2alpha and SV40 small t antigen. Overexpression of CK2alpha resulted in deactivation of mitogen-activated protein kinase kinase (MEK) and suppression of cell growth. Moreover, CK2alpha inhibited the transforming activity of oncogenic Ras, but not that of constitutively activated MEK. Thus, CK2alpha may regulate the deactivation of the mitogen-activated protein kinase pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heriche, J K -- Lebrin, F -- Rabilloud, T -- Leroy, D -- Chambaz, E M -- Goldberg, Y -- New York, N.Y. -- Science. 1997 May 9;276(5314):952-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commissariat a l'Energie Atomique, Departement de Biologie Moleculaire et Structurale, Laboratoire de Biochimie des Regulations Cellulaires Endocrines, Unite 244, F-38054 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9139659" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Antigens, Polyomavirus Transforming ; Binding Sites ; Casein Kinase II ; Cell Division ; Cell Transformation, Neoplastic ; MAP Kinase Kinase 1 ; Mice ; *Mitogen-Activated Protein Kinase Kinases ; Mutation ; Okadaic Acid/pharmacology ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein Phosphatase 2 ; Protein-Serine-Threonine Kinases/*metabolism/pharmacology ; Protein-Tyrosine Kinases/metabolism/pharmacology ; Recombinant Fusion Proteins/metabolism ; Transfection ; ras Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1997-03-21
    Description: Inactivation of the adenomatous polyposis coli (APC) tumor suppressor gene initiates colorectal neoplasia. One of the biochemical activities associated with the APC protein is down-regulation of transcriptional activation mediated by beta-catenin and T cell transcription factor 4 (Tcf-4). The protein products of mutant APC genes present in colorectal tumors were found to be defective in this activity. Furthermore, colorectal tumors with intact APC genes were found to contain activating mutations of beta-catenin that altered functionally significant phosphorylation sites. These results indicate that regulation of beta-catenin is critical to APC's tumor suppressive effect and that this regulation can be circumvented by mutations in either APC or beta-catenin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morin, P J -- Sparks, A B -- Korinek, V -- Barker, N -- Clevers, H -- Vogelstein, B -- Kinzler, K W -- CA57345/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1787-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Johns Hopkins Oncology Center, 424 North Bond Street, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065402" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Colonic Neoplasms/*genetics/metabolism ; Cytoskeletal Proteins/*genetics/*metabolism ; Gene Expression Regulation, Neoplastic ; *Genes, APC ; Genes, Reporter ; Germ-Line Mutation ; Humans ; Mutation ; Phosphorylation ; Signal Transduction ; TCF Transcription Factors ; *Trans-Activators ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1997-12-31
    Description: Retroviral vectors containing CD4 and an appropriate chemokine receptor were evaluated for the ability to transduce cells infected with human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). These CD4-chemokine receptor pseudotypes were able to target HIV- and SIV-infected cell lines and monocyte-derived macrophages in a manner that corresponded to the specificity of the viral envelope glycoprotein for its CD4-chemokine receptor complex. This approach could offer a way to deliver antiviral genes directly to HIV-infected cells in vivo and could provide an additional treatment strategy in conjunction with existing antiviral therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Endres, M J -- Jaffer, S -- Haggarty, B -- Turner, J D -- Doranz, B J -- O'Brien, P J -- Kolson, D L -- Hoxie, J A -- AI33854/AI/NIAID NIH HHS/ -- AI40880/AI/NIAID NIH HHS/ -- HL 07439/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Nov 21;278(5342):1462-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA 19104, USA. endres@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9367958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/*genetics/metabolism ; Cell Line ; Gene Products, env/metabolism ; *Gene Transfer Techniques ; *Genetic Vectors ; HIV-1/*physiology ; Humans ; Macrophages/virology ; Plasmids ; Receptors, CCR5/genetics/metabolism ; Receptors, CXCR4/genetics/metabolism ; Receptors, Chemokine/*genetics/metabolism ; Simian Immunodeficiency Virus/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1997-02-21
    Description: Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, J -- Liu, X -- Bhalla, K -- Kim, C N -- Ibrado, A M -- Cai, J -- Peng, T I -- Jones, D P -- Wang, X -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1129-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027314" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/metabolism ; *Apoptosis ; Caspase 3 ; *Caspases ; Cysteine Endopeptidases/metabolism ; Cytochrome c Group/*metabolism ; Cytochromes c ; Cytosol/metabolism ; DNA Fragmentation ; Enzyme Activation ; Etoposide/pharmacology ; HL-60 Cells ; HeLa Cells ; Humans ; Intracellular Membranes/metabolism ; Membrane Potentials/drug effects ; Mitochondria/*metabolism ; Poly(ADP-ribose) Polymerases/metabolism ; Proto-Oncogene Proteins c-bcl-2/genetics/*metabolism ; Staurosporine/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1997-03-28
    Description: The transcription factor NF-AT responds to Ca2+-calcineurin signals by translocating to the nucleus, where it participates in the activation of early immune response genes. Calcineurin dephosphorylates conserved serine residues in the amino terminus of NF-AT, resulting in nuclear import. Purification of the NF-AT kinase revealed that it is composed of a priming kinase activity and glycogen synthase kinase-3 (GSK-3). GSK-3 phosphorylates conserved serines necessary for nuclear export, promotes nuclear exit, and thereby opposes Ca2+-calcineurin signaling. Because GSK-3 responds to signals initiated by Wnt and other ligands, NF-AT family members could be effectors of these pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beals, C R -- Sheridan, C M -- Turck, C W -- Gardner, P -- Crabtree, G R -- New York, N.Y. -- Science. 1997 Mar 28;275(5308):1930-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9072970" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; Brain/enzymology ; COS Cells ; Calcineurin ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Calmodulin-Binding Proteins/metabolism ; Cell Nucleus/*metabolism ; Cloning, Molecular ; Cyclic AMP-Dependent Protein Kinases/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Humans ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Rats ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription Factors/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1997-01-10
    Description: Interaction of the p55 tumor necrosis factor receptor 1 (TNF-R1)-associated signal transducer TRADD with FADD signals apoptosis, whereas the TNF receptor-associated factor 2 protein (TRAF2) is required for activation of the nuclear transcription factor nuclear factor kappa B. TNF-induced activation of the stress-activated protein kinase (SAPK) was shown to occur through a noncytotoxic TRAF2-dependent pathway. TRAF2 was both sufficient and necessary for activation of SAPK by TNF-R1; conversely, expression of a dominant-negative FADD mutant, which blocks apoptosis, did not interfere with SAPK activation. Therefore, SAPK activation occurs through a pathway that is not required for TNF-R1-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natoli, G -- Costanzo, A -- Ianni, A -- Templeton, D J -- Woodgett, J R -- Balsano, C -- Levrero, M -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):200-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fondazione Andrea Cesalpino and Istituto di I Clinica Medica, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8985011" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/pharmacology ; *Adaptor Proteins, Signal Transducing ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/metabolism ; Cell Line ; Dactinomycin/pharmacology ; Enzyme Activation ; Fas-Associated Death Domain Protein ; Free Radical Scavengers/pharmacology ; HeLa Cells ; Humans ; JNK Mitogen-Activated Protein Kinases ; *MAP Kinase Kinase Kinase 1 ; *Mitogen-Activated Protein Kinases ; NF-kappa B/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/*metabolism ; Reactive Oxygen Species/metabolism ; Receptors, Tumor Necrosis Factor/*metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Transfection ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1997-08-08
    Description: TRAIL, also called Apo2L, is a cytotoxic protein that induces apoptosis of many transformed cell lines but not of normal tissues, even though its death domain-containing receptor, DR4, is expressed on both cell types. An antagonist decoy receptor (designated as TRID for TRAIL receptor without an intracellular domain) that may explain the resistant phenotype of normal tissues was identified. TRID is a distinct gene product with an extracellular TRAIL-binding domain and a transmembrane domain but no intracellular signaling domain. TRID transcripts were detected in many normal human tissues but not in most cancer cell lines examined. Ectopic expression of TRID protected mammalian cells from TRAIL-induced apoptosis, which is consistent with a protective role. Another death domain-containing receptor for TRAIL (designated as death receptor-5), which preferentially engaged a FLICE (caspase-8)-related death protease, was also identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, G -- Ni, J -- Wei, Y F -- Yu, G -- Gentz, R -- Dixit, V M -- ES08111/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):815-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242610" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caspase 10 ; Caspase 8 ; Caspase 9 ; *Caspases ; Cell Line, Transformed ; Cysteine Endopeptidases/metabolism ; GPI-Linked Proteins ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; Protein Sorting Signals ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Sequence Alignment ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-04
    Description: TRAIL (also known as Apo-2L) is a member of the tumor necrosis factor (TNF) ligand family that rapidly induces apoptosis in a variety of transformed cell lines. The human receptor for TRAIL was found to be an undescribed member of the TNF-receptor family (designated death receptor-4, DR4) that contains a cytoplasmic "death domain" capable of engaging the cell suicide apparatus but not the nuclear factor kappa B pathway in the system studied. Unlike Fas, TNFR-1, and DR3, DR4 could not use FADD to transmit the death signal, suggesting the use of distinct proximal signaling machinery. Thus, the DR4-TRAIL axis defines another receptor-ligand pair involved in regulating cell suicide and tissue homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, G -- O'Rourke, K -- Chinnaiyan, A M -- Gentz, R -- Ebner, R -- Ni, J -- Dixit, V M -- DAMD17-96-1-6085/DA/NIDA NIH HHS/ -- ES08111/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1997 Apr 4;276(5309):111-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9082980" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Carrier Proteins/metabolism ; Cell Line ; Fas-Associated Death Domain Protein ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1997-10-06
    Description: In the absence of costimulation, T cells activated through their antigen receptor become unresponsive (anergic) and do not transcribe the gene encoding interleukin-2 (IL-2) when restimulated with antigen. Anergic alloantigen-specific human T cells contained phosphorylated Cbl that coimmunoprecipitated with Fyn. The adapter protein CrkL was associated with both phosphorylated Cbl and the guanidine nucleotide-releasing factor C3G, which catalyzes guanosine triphosphate (GTP) exchange on Rap1. Active Rap1 (GTP-bound form) was present in anergic cells. Forced expression of low amounts of Rap1-GTP in Jurkat T cells recapitulated the anergic defect and blocked T cell antigen receptor (TCR)- and CD28-mediated IL-2 gene transcription. Therefore, Rap1 functions as a negative regulator of TCR-mediated IL-2 gene transcription and may be responsible for the specific defect in IL-2 production in T cell anergy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boussiotis, V A -- Freeman, G J -- Berezovskaya, A -- Barber, D L -- Nadler, L M -- AI 35225/AI/NIAID NIH HHS/ -- AI39671/AI/NIAID NIH HHS/ -- HL 54785/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):124-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA. vassiliki_boussiotis@macmailgw.dfci.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311917" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Antigens, CD28/immunology ; *Clonal Anergy ; GTP-Binding Proteins/*metabolism ; Gene Expression Regulation ; Guanine Nucleotide Exchange Factors ; Guanosine Triphosphate/metabolism ; Humans ; Interleukin-2/*genetics ; Jurkat Cells ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-cbl ; Proto-Oncogene Proteins c-fyn ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; *Transcription, Genetic ; Transfection ; *Ubiquitin-Protein Ligases ; rap GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors ; ras Proteins/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1997-12-31
    Description: Signal transducers and activators of transcription (STATs) enhance transcription of specific genes in response to cytokines and growth factors. STAT1 is also required for efficient constitutive expression of the caspases Ice, Cpp32, and Ich-1 in human fibroblasts. As a consequence, STAT1-null cells are resistant to apoptosis by tumor necrosis factor alpha (TNF-alpha). Reintroduction of STAT1alpha restored both TNF-alpha-induced apoptosis and the expression of Ice, Cpp32, and Ich-1. Variant STAT1 proteins carrying point mutations that inactivate domains required for STAT dimer formation nevertheless restored protease expression and sensitivity to apoptosis, indicating that the functions of STAT1 required for these activities are different from those that mediate induced gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, A -- Commane, M -- Flickinger, T W -- Horvath, C M -- Stark, G R -- P01 CA62220/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1630-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374464" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Caspase 1 ; Caspase 2 ; Caspase 3 ; *Caspases ; Cell Line ; Cysteine Endopeptidases/genetics/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dactinomycin/pharmacology ; Dimerization ; Gene Expression Regulation, Enzymologic ; Humans ; Interferon-gamma/pharmacology ; Phosphorylation ; Point Mutation ; Proteins/genetics/*metabolism ; STAT1 Transcription Factor ; Signal Transduction ; Trans-Activators/chemistry/genetics/*metabolism ; Transfection ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1997-09-26
    Description: Mature single-positive (SP) T lymphocytes enter a "resting" state in which they are proliferatively quiescent and relatively resistant to apoptosis. The molecular mechanisms regulating this quiescent phenotype were unknown. Here it was found that the expression of a Kruppel-like zinc finger transcription factor, lung Kruppel-like factor (LKLF), is developmentally induced during the maturation of SP quiescent T cells and rapidly extinguished after SP T cell activation. LKLF-deficient T cells produced by gene targeting had a spontaneously activated phenotype and died in the spleen and lymph nodes from Fas ligand-induced apoptosis. Thus, LKLF is required to program the quiescent state of SP T cells and to maintain their viability in the peripheral lymphoid organs and blood.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, C T -- Veselits, M L -- Leiden, J M -- AI29637/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 26;277(5334):1986-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9302292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/biosynthesis ; Apoptosis ; B-Lymphocytes/metabolism ; Cell Survival ; Chimera ; Fas Ligand Protein ; Gene Deletion ; Gene Targeting ; *Interphase ; Kruppel-Like Transcription Factors ; Lymph Nodes/cytology ; Lymphocyte Activation ; Membrane Glycoproteins/biosynthesis ; Mice ; Mice, Inbred C57BL ; Spleen/cytology ; T-Lymphocyte Subsets/metabolism ; T-Lymphocytes/*cytology/*immunology/metabolism ; Trans-Activators/biosynthesis/genetics/*physiology ; Transfection ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1997-11-21
    Description: The Janus family of tyrosine kinases (JAK) plays an essential role in development and in coupling cytokine receptors to downstream intracellular signaling events. A t(9;12)(p24;p13) chromosomal translocation in a T cell childhood acute lymphoblastic leukemia patient was characterized and shown to fuse the 3' portion of JAK2 to the 5' region of TEL, a gene encoding a member of the ETS transcription factor family. The TEL-JAK2 fusion protein includes the catalytic domain of JAK2 and the TEL-specific oligomerization domain. TEL-induced oligomerization of TEL-JAK2 resulted in the constitutive activation of its tyrosine kinase activity and conferred cytokine-independent proliferation to the interleukin-3-dependent Ba/F3 hematopoietic cell line.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lacronique, V -- Boureux, A -- Valle, V D -- Poirel, H -- Quang, C T -- Mauchauffe, M -- Berthou, C -- Lessard, M -- Berger, R -- Ghysdael, J -- Bernard, O A -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U 301 de l'Institut National de la Sante et de la Recherche Medicale and SD 401 No. 301 CNRS, Institut de Genetique Moleculaire, 27 rue Juliette Dodu, 75010 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9360930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biopolymers ; Cell Division ; Cell Line ; Child, Preschool ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Enzyme Activation ; Humans ; Interleukin-3/physiology ; Janus Kinase 2 ; Leukemia-Lymphoma, Adult T-Cell/genetics/*metabolism ; Male ; Mice ; *Milk Proteins ; Molecular Sequence Data ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-ets ; *Repressor Proteins ; STAT5 Transcription Factor ; Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; Transfection ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-02-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golstein, P -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1081-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France. golstein@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054009" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/cytology/metabolism ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/metabolism ; Caspase 1 ; *Caspases ; Cysteine Endopeptidases/metabolism ; Cytochrome c Group/metabolism ; Cytosol/metabolism ; Helminth Proteins/metabolism ; Membrane Glycoproteins/metabolism ; Mitochondria/metabolism ; Perforin ; Pore Forming Cytotoxic Proteins ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Signal Transduction ; Transfection ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-03-14
    Description: Axonal pathfinding in the nervous system is mediated in part by cell-to-cell signaling events involving members of the Eph receptor tyrosine kinase (RTK) family and their membrane-bound ligands. Genetic evidence suggests that transmembrane ligands may transduce signals in the developing embryo. The cytoplasmic domain of the transmembrane ligand Lerk2 became phosphorylated on tyrosine residues after contact with the Nuk/Cek5 receptor ectodomain, which suggests that Lerk2 has receptorlike intrinsic signaling potential. Moreover, Lerk2 is an in vivo substrate for the platelet-derived growth factor receptor, which suggests crosstalk between Lerk2 signaling and signaling cascades activated by tyrosine kinases. It is proposed that transmembrane ligands of Eph receptors act not only as conventional RTK ligands but also as receptorlike signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bruckner, K -- Pasquale, E B -- Klein, R -- EY10576/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 14;275(5306):1640-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054357" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Axons/physiology ; Brain-Derived Neurotrophic Factor/metabolism ; Cell Membrane/*metabolism ; Embryo, Mammalian/metabolism ; Ephrin-B1 ; Ligands ; Mice ; Phosphorylation ; Phosphotyrosine/*metabolism ; Platelet-Derived Growth Factor/pharmacology ; Proteins/*metabolism/pharmacology ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Ciliary Neurotrophic Factor ; Receptor, EphB2 ; Receptors, Nerve Growth Factor/metabolism ; Receptors, Platelet-Derived Growth Factor/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1997-07-04
    Description: The immunosuppressant rapamycin interferes with G1-phase progression in lymphoid and other cell types by inhibiting the function of the mammalian target of rapamycin (mTOR). mTOR was determined to be a terminal kinase in a signaling pathway that couples mitogenic stimulation to the phosphorylation of the eukaryotic initiation factor (eIF)-4E-binding protein, PHAS-I. The rapamycin-sensitive protein kinase activity of mTOR was required for phosphorylation of PHAS-I in insulin-stimulated human embryonic kidney cells. mTOR phosphorylated PHAS-I on serine and threonine residues in vitro, and these modifications inhibited the binding of PHAS-I to eIF-4E. These studies define a role for mTOR in translational control and offer further insights into the mechanism whereby rapamycin inhibits G1-phase progression in mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunn, G J -- Hudson, C C -- Sekulic, A -- Williams, J M -- Hosoi, H -- Houghton, P J -- Lawrence, J C Jr -- Abraham, R T -- AR41189/AR/NIAMS NIH HHS/ -- DK28312/DK/NIDDK NIH HHS/ -- DK50628/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):99-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204908" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Androstadienes/pharmacology ; Animals ; Carrier Proteins/pharmacology ; Cell Line ; DNA-Binding Proteins/pharmacology ; Eukaryotic Initiation Factor-4E ; G1 Phase ; Heat-Shock Proteins/pharmacology ; Humans ; Insulin/pharmacology ; Peptide Initiation Factors/metabolism ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/*metabolism ; Polyenes/*pharmacology ; *Protein Kinases ; Rats ; Recombinant Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Sirolimus ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Proteins ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1997-07-11
    Description: Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA resulted in correction of their excessive lysosomal storage of LDL cholesterol, thereby defining the critical role of NPC1 in regulation of intracellular cholesterol trafficking. The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carstea, E D -- Morris, J A -- Coleman, K G -- Loftus, S K -- Zhang, D -- Cummings, C -- Gu, J -- Rosenfeld, M A -- Pavan, W J -- Krizman, D B -- Nagle, J -- Polymeropoulos, M H -- Sturley, S L -- Ioannou, Y A -- Higgins, M E -- Comly, M -- Cooney, A -- Brown, A -- Kaneski, C R -- Blanchette-Mackie, E J -- Dwyer, N K -- Neufeld, E B -- Chang, T Y -- Liscum, L -- Strauss, J F 3rd -- Ohno, K -- Zeigler, M -- Carmi, R -- Sokol, J -- Markie, D -- O'Neill, R R -- van Diggelen, O P -- Elleder, M -- Patterson, M C -- Brady, R O -- Vanier, M T -- Pentchev, P G -- Tagle, D A -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211849" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Carrier Proteins ; Cholesterol/*metabolism ; Cholesterol, LDL/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 18 ; Cloning, Molecular ; *Drosophila Proteins ; Homeostasis ; Humans ; Hydroxymethylglutaryl CoA Reductases/chemistry ; Insect Proteins/chemistry ; Intracellular Signaling Peptides and Proteins ; Lysosomes/metabolism ; *Membrane Glycoproteins ; Membrane Proteins/chemistry ; Molecular Sequence Data ; Mutation ; Niemann-Pick Diseases/*genetics/metabolism ; Polymorphism, Single-Stranded Conformational ; Proteins/chemistry/*genetics/physiology ; Receptors, Cell Surface/chemistry ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1997-01-10
    Description: The interleukin-1beta (IL-1beta) converting enzyme (ICE) processes the inactive IL-1beta precursor to the proinflammatory cytokine. ICE was also shown to cleave the precursor of interferon-gamma inducing factor (IGIF) at the authentic processing site with high efficiency, thereby activating IGIF and facilitating its export. Lipopolysaccharide-activated ICE-deficient (ICE-/-) Kupffer cells synthesized the IGIF precursor but failed to process it into the active form. Interferon-gamma and IGIF were diminished in the sera of ICE-/- mice exposed to Propionibacterium acnes and lipopolysaccharide. The lack of multiple proinflammatory cytokines in ICE-/- mice may account for their protection from septic shock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Y -- Kuida, K -- Tsutsui, H -- Ku, G -- Hsiao, K -- Fleming, M A -- Hayashi, N -- Higashino, K -- Okamura, H -- Nakanishi, K -- Kurimoto, M -- Tanimoto, T -- Flavell, R A -- Sato, V -- Harding, M W -- Livingston, D J -- Su, M S -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):206-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vertex Pharmaceuticals, Inc., 130 Waverly Street, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Caspase 1 ; Caspase 3 ; *Caspases ; Caspases, Initiator ; Culture Media, Conditioned ; Cysteine Endopeptidases/*metabolism ; Cytokines/blood/*metabolism/pharmacology ; Humans ; Interferon-gamma/biosynthesis/blood ; Interleukin-18 ; Kupffer Cells/*metabolism ; Lipopolysaccharides/pharmacology ; Mice ; Protein Precursors/metabolism ; Protein Processing, Post-Translational ; Recombinant Proteins/metabolism/pharmacology ; Spleen/cytology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1997-01-24
    Description: The nuclear factor kappaB (NF-kappaB) transcription factor is responsive to specific cytokines and stress and is often activated in association with cell damage and growth arrest in eukaryotes. NF-kappaB is a heterodimeric protein, typically composed of 50- and 65-kilodalton subunits of the Rel family, of which RelA(p65) stimulates transcription of diverse genes. Specific cyclin-dependent kinases (CDKs) were found to regulate transcriptional activation by NF-kappaB through interactions with the coactivator p300. The transcriptional activation domain of RelA(p65) interacted with an amino-terminal region of p300 distinct from a carboxyl-terminal region of p300 required for binding to the cyclin E-Cdk2 complex. The CDK inhibitor p21 or a dominant negative Cdk2, which inhibited p300-associated cyclin E-Cdk2 activity, stimulated kappaB-dependent gene expression, which was also enhanced by expression of p300 in the presence of p21. The interaction of NF-kappaB and CDKs through the p300 and CBP coactivators provides a mechanism for the coordination of transcriptional activation with cell cycle progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perkins, N D -- Felzien, L K -- Betts, J C -- Leung, K -- Beach, D H -- Nabel, G J -- R01 AI29179/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 24;275(5299):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Michigan Medical Center, 4520 MSRB I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999795" target="_blank"〉PubMed〈/a〉
    Keywords: *CDC2-CDC28 Kinases ; Cell Cycle ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclin-Dependent Kinases/genetics/*metabolism ; Cyclins/genetics/metabolism ; Genes, Reporter ; Humans ; Jurkat Cells ; NF-kappa B/genetics/*metabolism ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; *Trans-Activators ; Transcription Factor RelA ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1997-12-31
    Description: The signal transducer and activator of transcription-3 (Stat3) protein is activated by the interleukin 6 (IL-6) family of cytokines, epidermal growth factor, and leptin. A protein named PIAS3 (protein inhibitor of activated STAT) that binds to Stat3 was isolated and characterized. The association of PIAS3 with Stat3 in vivo was only observed in cells stimulated with ligands that cause the activation of Stat3. PIAS3 blocked the DNA-binding activity of Stat3 and inhibited Stat3-mediated gene activation. Although Stat1 is also phosphorylated in response to IL-6, PIAS3 did not interact with Stat1 or affect its DNA-binding or transcriptional activity. The results indicate that PIAS3 is a specific inhibitor of Stat3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, C D -- Liao, J -- Liu, B -- Rao, X -- Jay, P -- Berta, P -- Shuai, K -- AI39612/AI/NIAID NIH HHS/ -- T32CA09056/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1803-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388184" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism/pharmacology ; Cell Line ; DNA/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation ; Humans ; Interferon Regulatory Factor-1 ; Interferon-alpha/pharmacology ; Interleukin-6/pharmacology ; *Intracellular Signaling Peptides and Proteins ; Mice ; Molecular Sequence Data ; NF-kappa B/metabolism ; Phosphoproteins/genetics ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Inhibitors of Activated STAT ; Recombinant Fusion Proteins/pharmacology ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/*metabolism ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1997-01-17
    Description: The tyrosine kinase class of receptors induces mitogen-activated protein kinase (MAPK) activation through the sequential interaction of the signaling proteins Grb2, Sos, Ras, Raf, and MEK. Receptors coupled to heterotrimeric guanine triphosphate-binding protein (G protein) stimulate MAPK through Gbetagamma subunits, but the subsequent intervening molecules are still poorly defined. Overexpression of phosphoinositide 3-kinase gamma (PI3Kgamma) in COS-7 cells activated MAPK in a Gbetagamma-dependent fashion, and expression of a catalytically inactive mutant of PI3Kgamma abolished the stimulation of MAPK by Gbetagamma or in response to stimulation of muscarinic (m2) G protein-coupled receptors. Signaling from PI3Kgamma to MAPK appears to require a tyrosine kinase, Shc, Grb2, Sos, Ras, and Raf. These findings indicate that PI3Kgamma mediates Gbetagamma-dependent regulation of the MAPK signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Ilasaca, M -- Crespo, P -- Pellici, P G -- Gutkind, J S -- Wetzker, R -- New York, N.Y. -- Science. 1997 Jan 17;275(5298):394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Research Unit Molecular Cell Biology, Medical Faculty, University of Jena, 07747 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8994038" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Androstadienes/pharmacology ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carbachol/pharmacology ; Cell Membrane/enzymology ; Enzyme Activation ; GRB2 Adaptor Protein ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Mitogen-Activated Protein Kinase 1 ; Phosphatidylinositol 3-Kinases ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/*metabolism ; Proteins/metabolism ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, Muscarinic M2 ; Receptors, Muscarinic/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Tyrosine/metabolism ; ras Guanine Nucleotide Exchange Factors ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-06-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartl, D L -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1659-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. dhartl@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9206830" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Nucleotidyltransferases/chemistry/*genetics ; *DNA Transposable Elements ; Drosophila/genetics ; Genes, Protozoan ; Genome, Protozoan ; Leishmania major/*genetics ; Mutagenesis, Insertional ; Transfection ; Transposases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1997-01-03
    Description: Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ichijo, H -- Nishida, E -- Irie, K -- ten Dijke, P -- Saitoh, M -- Moriguchi, T -- Takagi, M -- Matsumoto, K -- Miyazono, K -- Gotoh, Y -- New York, N.Y. -- Science. 1997 Jan 3;275(5296):90-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, The Cancer Institute, Tokyo, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8974401" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Division ; Cell Line ; Cell Survival ; Enzyme Activation ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase 6 ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; *Signal Transduction ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1997-03-14
    Description: NIH 3T3 fibroblasts stably transformed with a constitutively active isoform of p21(Ras), H-RasV12 (v-H-Ras or EJ-Ras), produced large amounts of the reactive oxygen species superoxide (.O2-). .O2- production was suppressed by the expression of dominant negative isoforms of Ras or Rac1, as well as by treatment with a farnesyltransferase inhibitor or with diphenylene iodonium, a flavoprotein inhibitor. The mitogenic activity of cells expressing H-RasV12 was inhibited by treatment with the chemical antioxidant N-acetyl-L-cysteine. Mitogen-activated protein kinase (MAPK) activity was decreased and c-Jun N-terminal kinase (JNK) was not activated in H-RasV12-transformed cells. Thus, H-RasV12-induced transformation can lead to the production of .O2- through one or more pathways involving a flavoprotein and Rac1. The implication of a reactive oxygen species, probably .O2-, as a mediator of Ras-induced cell cycle progression independent of MAPK and JNK suggests a possible mechanism for the effects of antioxidants against Ras-induced cellular transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irani, K -- Xia, Y -- Zweier, J L -- Sollott, S J -- Der, C J -- Fearon, E R -- Sundaresan, M -- Finkel, T -- Goldschmidt-Clermont, P J -- HL52315/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 14;275(5306):1649-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054359" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Acetylcysteine/pharmacology ; Animals ; Antioxidants/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; *Cell Cycle ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA/biosynthesis ; Electron Spin Resonance Spectroscopy ; GTP-Binding Proteins/metabolism ; *Genes, ras ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Oxidation-Reduction ; Proto-Oncogene Proteins p21(ras)/genetics/*metabolism ; Reactive Oxygen Species/*metabolism ; Signal Transduction ; Superoxides/*metabolism ; Transfection ; rac GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1997-10-06
    Description: HLA-DM is a major histocompatibility complex (MHC) class II-like molecule that facilitates antigen processing by catalyzing the exchange of invariant chain-derived peptides (CLIP) from class II molecules for antigenic peptides. HLA-DO is a second class II-like molecule that physically associates with HLA-DM in B cells. HLA-DO was shown to block HLA-DM function. Purified HLA-DM-DO complexes could not promote peptide exchange in vitro. Expression of HLA-DO in a class II+ and DM+, DO- human T cell line caused the accumulation of class II-CLIP complexes, indicating that HLA-DO blocked DM function in vivo and suggesting that HLA-DO is an important modulator of class II-restricted antigen processing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denzin, L K -- Sant'Angelo, D B -- Hammond, C -- Surman, M J -- Cresswell, P -- AI14579/AI/NIAID NIH HHS/ -- AI23081/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311912" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Antigen Presentation ; Antigens, Differentiation, B-Lymphocyte/metabolism ; B-Lymphocytes/*immunology ; HLA-D Antigens/*metabolism ; HLA-DR3 Antigen/metabolism ; Histocompatibility Antigens Class II/metabolism ; Humans ; Molecular Sequence Data ; *Nuclear Proteins ; T-Lymphocytes/*immunology ; Trans-Activators/genetics ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1997
    Description: The ras proto-oncogene is frequently mutated in human tumors and functions to chronically stimulate signal transduction cascades resulting in the synthesis or activation of specific transcription factors, including Ets, c-Myc, c-Jun, and nuclear factor kappa B (NF-kappaB). These Ras-responsive transcription factors are required for transformation, but the mechanisms by which these proteins facilitate oncogenesis have not been fully established. Oncogenic Ras was shown to initiate a p53-independent apoptotic response that was suppressed through the activation of NF-kappaB. These results provide an explanation for the requirement of NF-kappaB for Ras-mediated oncogenesis and provide evidence that Ras-transformed cells are susceptible to apoptosis even if they do not express the p53 tumor-suppressor gene product.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayo, M W -- Wang, C Y -- Cogswell, P C -- Rogers-Graham, K S -- Lowe, S W -- Der, C J -- Baldwin, A S Jr -- CA13106/CA/NCI NIH HHS/ -- CA52072/CA/NCI NIH HHS/ -- CA72771/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1812-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388187" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adenovirus E1A Proteins/genetics/metabolism ; Animals ; *Apoptosis ; Cell Line, Transformed ; Cell Survival ; *Cell Transformation, Neoplastic ; *Gene Expression Regulation, Neoplastic ; *Genes, p53 ; *Genes, ras ; Mice ; NF-kappa B/*metabolism ; Rats ; Transfection ; Tumor Suppressor Protein p53/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1997-08-15
    Description: Members of the recently recognized SRC-1 family of transcriptional coactivators interact with steroid hormone receptors to enhance ligand-dependent transcription. AIB1, a member of the SRC-1 family, was cloned during a search on the long arm of chromosome 20 for genes whose expression and copy number were elevated in human breast cancers. AIB1 amplification and overexpression were observed in four of five estrogen receptor-positive breast and ovarian cancer cell lines. Subsequent evaluation of 105 unselected specimens of primary breast cancer found AIB1 amplification in approximately 10 percent and high expression in 64 percent of the primary tumors analyzed. AIB1 protein interacted with estrogen receptors in a ligand-dependent fashion, and transfection of AIB1 resulted in enhancement of estrogen-dependent transcription. These observations identify AIB1 as a nuclear receptor coactivator whose altered expression may contribute to development of steroid-dependent cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anzick, S L -- Kononen, J -- Walker, R L -- Azorsa, D O -- Tanner, M M -- Guan, X Y -- Sauter, G -- Kallioniemi, O P -- Trent, J M -- Meltzer, P S -- New York, N.Y. -- Science. 1997 Aug 15;277(5328):965-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9252329" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Breast/metabolism ; Breast Neoplasms/*genetics/metabolism ; Chromosomes, Human, Pair 20 ; Cloning, Molecular ; Estradiol/metabolism/pharmacology ; Female ; *Gene Amplification ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Histone Acetyltransferases ; Humans ; In Situ Hybridization, Fluorescence ; Ligands ; Molecular Sequence Data ; Neoplasms, Hormone-Dependent/*genetics/metabolism ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 2 ; Ovarian Neoplasms/*genetics/metabolism ; Receptors, Estrogen/genetics/*metabolism ; Transcription Factors/genetics ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1997-08-01
    Description: The c-Jun amino-terminal kinase (JNK) is a member of the stress-activated group of mitogen-activated protein (MAP) kinases that are implicated in the control of cell growth. A murine cytoplasmic protein that binds specifically to JNK [the JNK interacting protein-1 (JIP-1)] was characterized and cloned. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression. In addition, JIP-1 suppressed the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. This analysis identifies JIP-1 as a specific inhibitor of the JNK signal transduction pathway and establishes protein targeting as a mechanism that regulates signaling by stress-activated MAP kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickens, M -- Rogers, J S -- Cavanagh, J -- Raitano, A -- Xia, Z -- Halpern, J R -- Greenberg, M E -- Sawyers, C L -- Davis, R J -- CA43855/CA/NCI NIH HHS/ -- CA65861/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 1;277(5326):693-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9235893" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 2 ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/chemistry/*metabolism ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cloning, Molecular ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Fusion Proteins, bcr-abl/metabolism ; Gene Expression Regulation ; JNK Mitogen-Activated Protein Kinases ; Mitogen-Activated Protein Kinase 9 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-18
    Description: Membrane-bound immunoglobulin (mIg) of the IgG, IgA, and IgE classes have conserved cytoplasmic tails. To investigate the function of these tails, a B cell line was transfected with truncated or mutated gamma2a heavy chains. Transport to the endosomal compartment of antigen bound by the B cell antigen receptor did not occur in the absence of the cytoplasmic tail; and one or two mutations, respectively, in the Tyr-X-X-Met motif of the tail partially or completely interrupted the process. Experiments with chimeric antigen receptors confirmed these findings. Thus, a role for the cytoplasmic tail of mIg heavy chains in endosomal targeting of antigen is revealed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weiser, P -- Muller, R -- Braun, U -- Reth, M -- New York, N.Y. -- Science. 1997 Apr 18;276(5311):407-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Immunbiologie, Stubeweg 51, D-79108 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9103197" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; B-Lymphocytes/*immunology ; Biological Transport ; Cytoplasm ; Dimerization ; Endosomes/*immunology ; Immunoglobulin gamma-Chains/chemistry/genetics/*metabolism ; Immunologic Memory ; Mice ; Mutation ; Receptors, Antigen, B-Cell/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1997-03-21
    Description: Signal transduction by beta-catenin involves its posttranslational stabilization and downstream coupling to the Lef and Tcf transcription factors. Abnormally high amounts of beta-catenin were detected in 7 of 26 human melanoma cell lines. Unusual messenger RNA splicing and missense mutations in the beta-catenin gene (CTNNB1) that result in stabilization of the protein were identified in six of the lines, and the adenomatous polyposis coli tumor suppressor protein (APC) was altered or missing in two others. In the APC-deficient cells, ectopic expression of wild-type APC eliminated the excess beta-catenin. Cells with stabilized beta-catenin contained a constitutive beta-catenin-Lef-1 complex. Thus, genetic defects that result in up-regulation of beta-catenin may play a role in melanoma progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubinfeld, B -- Robbins, P -- El-Gamil, M -- Albert, I -- Porfiri, E -- Polakis, P -- 1R43CA69931/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1790-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, 3031 Research Drive, Richmond, CA 94806, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065403" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Cell Line ; Cytoskeletal Proteins/chemistry/*genetics/metabolism ; DNA-Binding Proteins/metabolism ; *Gene Expression Regulation, Neoplastic ; *Genes, APC ; Humans ; Lymphoid Enhancer-Binding Factor 1 ; Melanoma/*genetics/metabolism ; Mice ; Mutation ; Point Mutation ; RNA Splicing ; RNA, Messenger/genetics ; RNA, Neoplasm/genetics ; *Trans-Activators ; Transcription Factors/metabolism ; Transfection ; Tumor Cells, Cultured ; Up-Regulation ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1997-12-31
    Description: The interleukin-1 receptor (IL-1R) signaling pathway leads to nuclear factor kappa B (NF-kappaB) activation in mammals and is similar to the Toll pathway in Drosophila: the IL-1R-associated kinase (IRAK) is homologous to Pelle. Two additional proximal mediators were identified that are required for IL-1R-induced NF-kappaB activation: IRAK-2, a Pelle family member, and MyD88, a death domain-containing adapter molecule. Both associate with the IL-1R signaling complex. Dominant negative forms of either attenuate IL-1R-mediated NF-kappaB activation. Therefore, IRAK-2 and MyD88 may provide additional therapeutic targets for inhibiting IL-1-induced inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muzio, M -- Ni, J -- Feng, P -- Dixit, V M -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1612-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Michigan Medical School, Department of Pathology, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374458" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; *Antigens, Differentiation ; Carrier Proteins/metabolism ; Cell Line ; *Drosophila Proteins ; Humans ; Interleukin-1/*metabolism ; Interleukin-1 Receptor-Associated Kinases ; Molecular Sequence Data ; Myeloid Differentiation Factor 88 ; NF-kappa B/metabolism ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; Proteins/chemistry/genetics/*metabolism ; *Receptors, Immunologic ; Receptors, Interleukin-1/*metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; *Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1997-11-05
    Description: Activation of the transcription factor nuclear factor kappa B (NF-kappaB) by inflammatory cytokines requires the successive action of NF-kappaB-inducing kinase (NIK) and IkappaB kinase-alpha (IKK-alpha). A widely expressed protein kinase was identified that is 52 percent identical to IKK-alpha. IkappaB kinase-beta (IKK-beta) activated NF-kappaB when overexpressed and phosphorylated serine residues 32 and 36 of IkappaB-alpha and serines 19 and 23 of IkappaB-beta. The activity of IKK-beta was stimulated by tumor necrosis factor and interleukin-1 treatment. IKK-alpha and IKK-beta formed heterodimers that interacted with NIK. Overexpression of a catalytically inactive form of IKK-beta blocked cytokine-induced NF-kappaB activation. Thus, an active IkappaB kinase complex may require three distinct protein kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woronicz, J D -- Gao, X -- Cao, Z -- Rothe, M -- Goeddel, D V -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):866-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cytokines/metabolism ; Enzyme Activation ; Genes, Reporter ; HeLa Cells ; Humans ; I-kappa B Kinase ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1997-01-31
    Description: A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dudek, H -- Datta, S R -- Franke, T F -- Birnbaum, M J -- Yao, R -- Cooper, G M -- Segal, R A -- Kaplan, D R -- Greenberg, M E -- DK39519/DK/NIDDK NIH HHS/ -- R01 CA18689/CA/NCI NIH HHS/ -- R01 CA43855/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):661-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005851" target="_blank"〉PubMed〈/a〉
    Keywords: Androstadienes/pharmacology ; Animals ; *Apoptosis/drug effects ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Survival/drug effects ; Cells, Cultured ; Cerebellum/cytology ; Chromones/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Insulin/pharmacology ; Insulin-Like Growth Factor I/*pharmacology ; Morpholines/pharmacology ; Neurons/*cytology/drug effects/enzymology ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1997-02-28
    Description: A complementary DNA clone has been isolated that encodes a coxsackievirus and adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonpermissive hamster cells became susceptible to coxsackie B virus attachment and infection. Furthermore, consistent with previous studies demonstrating that adenovirus infection depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for these two unrelated and structurally distinct viral pathogens is important for understanding viral pathogenesis and has implications for therapeutic gene delivery with adenovirus vectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bergelson, J M -- Cunningham, J A -- Droguett, G -- Kurt-Jones, E A -- Krithivas, A -- Hong, J S -- Horwitz, M S -- Crowell, R L -- Finberg, R W -- AI31628/AI/NIAID NIH HHS/ -- AI35667/AI/NIAID NIH HHS/ -- CA69703/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 28;275(5304):1320-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9036860" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/genetics/*metabolism/physiology ; Amino Acid Sequence ; Animals ; CHO Cells ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Cricetinae ; Cytopathogenic Effect, Viral ; Enterovirus B, Human/*metabolism/physiology ; Gene Transfer Techniques ; Genetic Vectors ; HeLa Cells ; Humans ; Molecular Sequence Data ; Receptors, Virus/chemistry/genetics/*isolation & purification/metabolism ; Sequence Alignment ; Transfection ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1997-09-05
    Description: The transactivation properties of the two estrogen receptors, ERalpha and ERbeta, were examined with different ligands in the context of an estrogen response element and an AP1 element. ERalpha and ERbeta were shown to signal in opposite ways when complexed with the natural hormone estradiol from an AP1 site: with ERalpha, 17beta-estradiol activated transcription, whereas with ERbeta, 17beta-estradiol inhibited transcription. Moreover, the antiestrogens tamoxifen, raloxifene, and Imperial Chemical Industries 164384 were potent transcriptional activators with ERbeta at an AP1 site. Thus, the two ERs signal in different ways depending on ligand and response element. This suggests that ERalpha and ERbeta may play different roles in gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paech, K -- Webb, P -- Kuiper, G G -- Nilsson, S -- Gustafsson, J -- Kushner, P J -- Scanlan, T S -- GM 50672/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1508-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278514" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/metabolism ; Cell Line ; Diethylstilbestrol/metabolism/pharmacology ; *Enhancer Elements, Genetic ; Estradiol/analogs & derivatives/metabolism/pharmacology ; Estrogen Antagonists/*pharmacology ; Estrogen Receptor alpha ; Estrogen Receptor beta ; Estrogens/*pharmacology ; Female ; HeLa Cells ; Humans ; Ligands ; Piperidines/metabolism/pharmacology ; Polyunsaturated Alkamides ; Raloxifene Hydrochloride ; Rats ; Receptors, Estrogen/*metabolism ; Tamoxifen/metabolism/pharmacology ; Transcription Factor AP-1/*genetics ; *Transcriptional Activation/drug effects ; Transfection ; Tumor Cells, Cultured ; Uterus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1997-06-20
    Description: The avian sarcoma virus 16 (ASV 16) is a retrovirus that induces hemangiosarcomas in chickens. Analysis of the ASV 16 genome revealed that it encodes an oncogene that is derived from the cellular gene for the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase). The gene is referred to as v-p3k, and like its cellular counterpart c-p3k, it is a potent transforming gene in cultured chicken embryo fibroblasts (CEFs). The products of the viral and cellular p3k genes have PI 3-kinase activity. CEFs transformed with either gene showed elevated levels of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate and activation of Akt kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H W -- Aoki, M -- Fruman, D -- Auger, K R -- Bellacosa, A -- Tsichlis, P N -- Cantley, L C -- Roberts, T M -- Vogt, P K -- CA 42564/CA/NCI NIH HHS/ -- GM 41890/GM/NIGMS NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1848-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188528" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Avian Sarcoma Viruses/*genetics/physiology ; *Cell Transformation, Neoplastic ; *Cell Transformation, Viral ; Cells, Cultured ; Chick Embryo ; Chickens ; Cloning, Molecular ; Enzyme Activation ; Genes, Viral ; Hemangiosarcoma/genetics/virology ; Molecular Sequence Data ; *Oncogenes ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/*genetics/metabolism ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1997-06-13
    Description: Transposable elements of the mariner/Tc1 family are postulated to have spread by horizontal transfer and be relatively independent of host-specific factors. This was tested by introducing the Drosophila mauritiana element mariner into the human parasite Leishmania major, a trypanosomatid protozoan belonging to one of the most ancient eukaryotic lineages. Transposition in Leishmania was efficient, occurring in more than 20 percent of random transfectants, and proceeded by the same mechanism as in Drosophila. Insertional inactivation of a specific gene was obtained, and a modified mariner element was used to select for gene fusions, establishing mariner as a powerful genetic tool for Leishmania and other organisms. These experiments demonstrate the evolutionary range of mariner transposition in vivo and underscore the ability of this ubiquitous DNA to parasitize the eukaryotic genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gueiros-Filho, F J -- Beverley, S M -- AI2964/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1716-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biological Evolution ; *Cinnamates ; DNA Nucleotidyltransferases/chemistry/*genetics ; *DNA Transposable Elements ; Drosophila/*genetics ; Drug Resistance ; Genes, Protozoan ; Genome, Protozoan ; Hygromycin B/analogs & derivatives/pharmacology ; Leishmania major/drug effects/*genetics ; Mutagenesis, Insertional ; RNA, Messenger/genetics/metabolism ; RNA, Protozoan/genetics/metabolism ; Species Specificity ; Transfection ; Transposases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1997-09-20
    Description: Renal 25-hydroxyvitamin D3 1alpha-hydroxylase [1alpha(OH)ase] catalyzes metabolic activation of 25-hydroxyvitamin D3 into 1alpha, 25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], an active form of vitamin D, and is inhibited by 1alpha,25(OH)2D3. 1alpha(OH)ase, which was cloned from the kidney of mice lacking the vitamin D receptor (VDR-/- mice), is a member of the P450 family of enzymes (P450VD1alpha). Expression of 1alpha(OH)ase was suppressed by 1alpha, 25(OH)2D3 in VDR+/+ and VDR+/- mice but not in VDR-/- mice. These results indicate that the negative feedback regulation of active vitamin D synthesis is mediated by 1alpha(OH)ase through liganded VDR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeyama, K -- Kitanaka, S -- Sato, T -- Kobori, M -- Yanagisawa, J -- Kato, S -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1827-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9295274" target="_blank"〉PubMed〈/a〉
    Keywords: 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/*genetics/*metabolism ; Amino Acid Sequence ; Animals ; COS Cells ; Calcifediol/metabolism ; Calcitriol/*biosynthesis/metabolism/pharmacology ; Cloning, Molecular ; Feedback ; *Gene Expression Regulation, Enzymologic ; Kidney/enzymology/metabolism ; Ligands ; Mice ; Mice, Knockout ; Molecular Sequence Data ; RNA, Messenger/genetics/metabolism ; Receptors, Calcitriol/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-25
    Description: Transcription of c-myc in plasma cells, which are terminally differentiated B cells, is repressed by plasmacytoma repressor factor. This factor was identified as Blimp-1, known for its ability to induce B cell differentiation. Blimp-1 repressed c-myc promoter activity in a binding site-dependent manner. Treatment of BCL1 lymphoma cells with interleukin-2 (IL-2) plus IL-5 induced Blimp-1 and caused a subsequent decline in c-Myc protein. Ectopic expression of Blimp-1 in Abelson-transformed precursor B cells repressed endogenous c-Myc and caused apoptosis; Blimp-1-induced death was partially overcome by ectopic expression of c-Myc. Thus, repression of c-myc is a component of the Blimp-1 program of terminal B cell differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y -- Wong, K -- Calame, K -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):596-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110979" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; B-Lymphocytes/*cytology/metabolism ; Binding Sites ; Cell Differentiation ; Cell Line ; Gene Expression Regulation ; *Genes, myc ; Interleukin-2/pharmacology ; Interleukin-5/pharmacology ; Mice ; Mutagenesis, Site-Directed ; Plasmacytoma ; Promoter Regions, Genetic ; *Repressor Proteins ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1997-02-21
    Description: Previous genetic studies of the nematode Caenorhabditis elegans identified three important components of the cell death machinery. CED-3 and CED-4 function to kill cells, whereas CED-9 protects cells from death. Here CED-9 and its mammalian homolog Bcl-xL (a member of the Bcl-2 family of cell death regulators) were both found to interact with and inhibit the function of CED-4. In addition, analysis revealed that CED-4 can simultaneously interact with CED-3 and its mammalian counterparts interleukin-1beta-converting enzyme (ICE) and FLICE. Thus, CED-4 plays a central role in the cell death pathway, biochemically linking CED-9 and the Bcl-2 family to CED-3 and the ICE family of pro-apoptotic cysteine proteases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chinnaiyan, A M -- O'Rourke, K -- Lane, B R -- Dixit, V M -- 7863/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Michigan Medical School, Department of Pathology, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/*cytology/genetics/metabolism ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/genetics/*metabolism ; Caspase 1 ; Caspase 8 ; Caspase 9 ; *Caspases ; Cell Line ; Cysteine Endopeptidases/genetics/*metabolism ; Genes, Helminth ; Helminth Proteins/genetics/*metabolism ; Humans ; Mutation ; Proto-Oncogene Proteins/genetics/*metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Transfection ; Tumor Cells, Cultured ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-08
    Description: Oncogenes discovered in retroviruses such as Rous sarcoma virus were generated by transduction of cellular proto-oncogenes into the viral genome. Several different kinds of junctions between the viral and proto-oncogene sequences have been found in different viruses. A system of retrovirus vectors and a protocol that mimicked this transduction during a single cycle of retrovirus replication was developed. The transduction involved the formation of a chimeric viral-cellular RNA, strand switching of the reverse transcription growing point from an infectious retrovirus to the chimeric RNA, and often a subsequent deletion during the rest of viral DNA synthesis. A short region of sequence identity was frequently used for the strand switching. The rate of this process was about 0.1 to 1 percent of the rate of homologous retroviral recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, J -- Temin, H M -- CA-07175/CA/NCI NIH HHS/ -- CA-22443/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):234-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Cinnamates ; *DNA Replication ; DNA, Viral/chemistry/genetics ; Drug Resistance/genetics ; Genes, Viral ; Genetic Vectors ; Hygromycin B/analogs & derivatives ; Kinetics ; Mice ; Molecular Sequence Data ; Moloney murine leukemia virus/genetics ; Neomycin ; Plasmids ; *Proto-Oncogenes ; RNA, Viral/analysis/genetics ; *Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Retroviridae/*genetics/physiology ; Transfection ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1993-10-22
    Description: Glycogen storage disease (GSD) type 1a is caused by the deficiency of D-glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high incidence and morbidity, the molecular mechanisms underlying this deficiency have eluded characterization. In the present study, the molecular and biochemical characterization of the human G6Pase complementary DNA, its gene, and the expressed protein, which is indistinguishable from human microsomal G6Pase, are reported. Several mutations in the G6Pase gene of affected individuals that completely inactivate the enzyme have been identified. These results establish the molecular basis of this disease and open the way for future gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lei, K J -- Shelly, L L -- Pan, C J -- Sidbury, J B -- Chou, J Y -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):580-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA, Complementary/genetics ; Exons ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/enzymology/*genetics ; Glycosylation ; Humans ; Liver/enzymology ; Mice ; Molecular Sequence Data ; *Mutation ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1993-03-12
    Description: Glucagon and the glucagon receptor are a primary source of control over blood glucose concentrations and are especially important to studies of diabetes in which the loss of control over blood glucose concentrations clinically defines the disease. A complementary DNA clone for the glucagon receptor was isolated by an expression cloning strategy, and the receptor protein was expressed in several kidney cell lines. The cloned receptor bound glucagon and caused an increase in the intracellular concentration of adenosine 3', 5'-monophosphate (cAMP). The cloned glucagon receptor also transduced a signal that led to an increased concentration of intracellular calcium. The glucagon receptor is similar to the calcitonin and parathyroid hormone receptors. It can transduce signals leading to the accumulation of two different second messengers, cAMP and calcium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jelinek, L J -- Lok, S -- Rosenberg, G B -- Smith, R A -- Grant, F J -- Biggs, S -- Bensch, P A -- Kuijper, J L -- Sheppard, P O -- Sprecher, C A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1614-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ZymoGenetics Inc., Seattle, WA 98105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384375" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/pharmacology ; Cell Line ; Cloning, Molecular ; Cricetinae ; Cyclic AMP/metabolism ; Glucagon/metabolism/*pharmacology ; Kidney ; Kinetics ; Liver/*metabolism ; Molecular Sequence Data ; Rats ; Receptors, Gastrointestinal Hormone/genetics/metabolism/*physiology ; Receptors, Glucagon ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-14
    Description: Guanosine triphosphate-binding regulatory proteins (G proteins) are key elements in transmembrane signaling and have been implicated as regulators of more complex biological processes such as differentiation and development. The G protein G alpha i2 is capable of mediating the inhibitory control of adenylylcyclase and regulates stem cell differentiation to primitive endoderm. Here an antisense RNA to G alpha i2 was expressed in a hybrid RNA construct whose expression was both tissue-specific and induced at birth. Transgenic mice in which the antisense construct was expressed displayed a lack of normal development in targeted organs that correlated with the absence of G alpha i2. The loss of G alpha i2 expression in adipose tissue of the transgenic mice was correlated with a rise in basal levels of adenosine 3',5'-monophosphate (cAMP) and the loss of receptor-mediated inhibition of adenylylcyclase. These data expand our understanding of G protein function in vivo and demonstrate the necessity for G alpha i2 in the development of liver and fat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moxham, C M -- Hod, Y -- Malbon, C C -- New York, N.Y. -- Science. 1993 May 14;260(5110):991-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, State University of New York (SUNY)/Stony Brook 11794-8651.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493537" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*growth & development/metabolism ; Animals ; Animals, Newborn/growth & development ; Base Sequence ; Body Weight ; GTP-Binding Proteins/biosynthesis/genetics/*physiology ; Growth/drug effects/*physiology ; Kidney/growth & development/metabolism ; Liver/*growth & development/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/genetics ; RNA, Antisense/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1993-11-05
    Description: B7 delivers a costimulatory signal through CD28, resulting in interleukin-2 secretion and T cell proliferation. Blockade of this pathway results in T cell anergy. The in vivo role of B7 was evaluated with B7-deficient mice. These mice had a 70 percent decrease in costimulation of the response to alloantigen. Despite lacking B7 expression, activated B cells from these mice bound CTLA-4 and GL1 monoclonal antibody, demonstrating that alternative CTLA-4 ligand or ligands exist. These receptors are functionally important because the residual allogenic mixed lymphocyte responses were blocked by CTLA4Ig. Characterization of these CTLA-4 ligands should lead to strategies for manipulating the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freeman, G J -- Borriello, F -- Hodes, R J -- Reiser, H -- Hathcock, K S -- Laszlo, G -- McKnight, A J -- Kim, J -- Du, L -- Lombard, D B -- CA 40216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):907-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694362" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antigens, CD ; Antigens, CD80/genetics/*immunology/metabolism ; Antigens, Differentiation/immunology/*metabolism ; B-Lymphocytes/*immunology ; Base Sequence ; CTLA-4 Antigen ; Cell Line ; *Immunoconjugates ; Interleukin-2/secretion ; Isoantigens/immunology ; Lymphocyte Activation ; Lymphocyte Culture Test, Mixed ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1993-08-06
    Description: Major histocompatibility complex (MHC) class I molecules present peptides derived from nuclear and cytosolic proteins to CD8+ T cells. These peptides are translocated into the lumen of the endoplasmic reticulum (ER) to associate with class I molecules. Two MHC-encoded putative transporter proteins, TAP1 and TAP2, are required for efficient assembly of class I molecules and presentation of endogenous peptides. Expression of TAP1 and TAP2 in a mutant cell line resulted in the delivery of an 11-amino acid oligomer model peptide to the ER. Peptide translocation depended on the sequence of the peptide, was adenosine triphosphate (ATP)-dependent, required ATP hydrolysis, and was inhibited in a concentration-dependent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neefjes, J J -- Momburg, F -- Hammerling, G J -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):769-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Netherlands Cancer Institute, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342042" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/*metabolism ; Amino Acid Sequence ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Cell Line ; Cell Membrane Permeability ; Endoplasmic Reticulum/metabolism ; Glycosylation ; Histocompatibility Antigens Class II/*metabolism ; Molecular Sequence Data ; Oligopeptides/*metabolism ; Rats ; T-Lymphocytes, Cytotoxic/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1993-06-18
    Description: The biological functions of interleukin-6 (IL-6) are mediated through a signal-transducing component of the IL-6 receptor, gp130, which is associated with the ligand-occupied IL-6 receptor (IL-6R) protein. Binding of IL-6 to IL-6R induced disulfide-linked homodimerization of gp130. Tyrosine kinase activity was associated with dimerized but not monomeric gp130 protein. Substitution of serine for proline residues 656 and 658 in the cytoplasmic motif abolished tyrosine kinase activation and cellular responses but not homodimerization of gp130. The IL-6-induced gp130 homodimer appears to be similar in function to the heterodimer formed between the leukemia inhibitory factor (LIF) receptor (LIFR) and gp130 in response to the LIF or ciliary neurotrophic factor (CNTF). Thus, a general first step in IL-6-related cytokine signaling may be the dimerization of signal-transducing molecules and activation of associated tyrosine kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, M -- Hibi, M -- Nakagawa, N -- Nakagawa, T -- Yasukawa, K -- Yamanishi, K -- Taga, T -- Kishimoto, T -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1808-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511589" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, CD ; Cytokine Receptor gp130 ; Enzyme Activation ; Haptoglobins/biosynthesis ; Humans ; Interleukin-6/*metabolism/pharmacology ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Immunologic/*metabolism ; Receptors, Interleukin-6 ; *Signal Transduction ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1993-01-15
    Description: A variety of tumors are potentially immunogenic but do not stimulate an effective anti-tumor immune response in vivo. Tumors may be capable of delivering antigen-specific signals to T cells, but may not deliver the costimulatory signals necessary for full activation of T cells. Expression of the costimulatory ligand B7 on melanoma cells was found to induce the rejection of a murine melanoma in vivo. This rejection was mediated by CD8+ T cells; CD4+ T cells were not required. These results suggest that B7 expression renders tumor cells capable of effective antigen presentation, leading to their eradication in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Townsend, S E -- Allison, J P -- CA57986/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 15;259(5093):368-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7678351" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD80 ; Antigens, Surface/genetics/*immunology ; CD4-Positive T-Lymphocytes/immunology ; Cross Reactions ; Female ; Gene Expression Regulation ; Genetic Vectors ; Ligands ; *Lymphocyte Activation ; Melanoma/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Nude ; T-Lymphocytes, Regulatory/*immunology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-06
    Description: Endonuclease G (Endo G) is widely distributed among animals and cleaves DNA at double-stranded (dG)n.(dC)n and at single-stranded (dC)n tracts. Endo G is synthesized as a propeptide with an amino-terminal presequence that targets the nuclease to mitochondria. Endo G can also be detected in extranucleolar chromatin. In addition to deoxyribonuclease activities, Endo G also has ribonuclease (RNase) and RNase H activities and specifically cleaves mouse mitochondrial RNA and DNA-RNA substrates containing the origin of heavy-strand DNA replication (OH). The cleavage sites match those found in vivo, indicating that Endo G is capable of generating the RNA primers required by DNA polymerase gamma to initiate replication of mitochondrial DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cote, J -- Ruiz-Carrillo, A -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):765-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research Center, Medical School of Laval University, L'Hotel-Dieu de Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7688144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Nucleus/enzymology ; DNA/genetics ; *DNA Replication ; DNA, Mitochondrial/*metabolism ; Endodeoxyribonucleases/chemistry/genetics/*metabolism ; Genetic Vectors ; Mitochondria/enzymology ; Molecular Sequence Data ; RNA/*metabolism ; Ribonuclease H/metabolism ; Ribonucleases/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1993-12-17
    Description: The interleukin-2 (IL-2) receptor gamma chain (IL-2R gamma) is an essential component of high- and intermediate-affinity IL-2 receptors. IL-2R gamma was demonstrated to be a component of the IL-4 receptor on the basis of chemical cross-linking data, the ability of IL-2R gamma to augment IL-4 binding affinity, and the requirement for IL-2R gamma in IL-4-mediated phosphorylation of insulin receptor substrate-1. The observation that IL-2R gamma is a functional component of the IL-4 receptor, together with the finding that IL-2R gamma associates with the IL-7 receptor, begins to elucidate why deficiency of this common gamma chain (gamma c) has a profound effect on lymphoid function and development, as seen in X-linked severe combined immunodeficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, S M -- Keegan, A D -- Harada, N -- Nakamura, Y -- Noguchi, M -- Leland, P -- Friedmann, M C -- Miyajima, A -- Puri, R K -- Paul, W E -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1880-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Pulmonary and Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266078" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Line, Transformed ; Genetic Linkage ; Humans ; Insulin Receptor Substrate Proteins ; Interleukin-4/metabolism ; L Cells (Cell Line) ; Mice ; Molecular Sequence Data ; Phosphoproteins/metabolism ; Phosphorylation ; Receptors, Interleukin-2/chemistry/genetics/*metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/chemistry/genetics/*metabolism ; Severe Combined Immunodeficiency/genetics/immunology ; Signal Transduction ; Transfection ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1993 May 7;260(5109):750.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8484114" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Antitubercular Agents/*pharmacology ; Drug Resistance, Microbial ; Luciferases/genetics/metabolism ; *Luminescent Measurements ; Microbial Sensitivity Tests/*methods ; Mycobacterium tuberculosis/*drug effects/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, J -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1691-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456293" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA, Viral/*genetics/therapeutic use ; Influenza A virus/*genetics/immunology ; Mice ; Nucleoproteins/genetics/immunology ; Orthomyxoviridae Infections/*prevention & control ; *RNA-Binding Proteins ; Transfection ; Viral Core Proteins/genetics/immunology ; Viral Vaccines/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-14
    Description: Antigen receptor genes are assembled by site-specific DNA rearrangement. The recombination activator genes RAG-1 and RAG-2 are essential for this process, termed V(D)J rearrangement. The activity and stability of the RAG-2 protein have now been shown to be regulated by phosphorylation. In fibroblasts RAG-2 was phosphorylated predominantly at two serine residues, one of which affected RAG-2 activity in vivo. The threonine at residue 490 was phosphorylated by p34cdc2 kinase in vitro; phosphorylation at this site in vivo was associated with rapid degradation of RAG-2. Instability was transferred to chimeric proteins by a 90-residue portion of RAG-2. Mutation of the p34cdc2 phosphorylation site of the tumor suppressor protein p53 conferred a similar phenotype, suggesting that this association between phosphorylation and degradation is a general mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, W C -- Desiderio, S -- CA16519/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 May 14;260(5110):953-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493533" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/metabolism ; Cell Line ; *DNA-Binding Proteins ; *Gene Rearrangement ; Humans ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins ; Phosphorylation ; Proteins/chemistry/genetics/*metabolism ; Receptors, Antigen/*genetics ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1993-01-08
    Description: Synthetic peptides corresponding to microbial epitopes stimulate T cell immunity but their immunogenicity is poor and their half-lives are short. A viral epitope inserted into the complementarity-determining region 3 (CDR3) loop of the heavy chain of a self immunoglobulin (Ig) molecule was generated from the Ig context and was presented by I-Ed class II molecules to virus-specific, CD4+ T cells. Chimeric Ig-peptide was presented 100 to 1000 times more efficiently than free synthetic peptide and was able to prime virus-specific T cells in vivo. These features suggest that antigenized Ig can provide an improved and safe vaccine for the presentation of microbial and other peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaghouani, H -- Steinman, R -- Nonacs, R -- Shah, H -- Gerhard, W -- Bona, C -- AI13013/AI/NIAID NIH HHS/ -- AI18316/AI/NIAID NIH HHS/ -- AI24460/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):224-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7678469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigen-Presenting Cells/*immunology ; Antigens, Viral/*immunology ; Arsenic/immunology ; *Arsenicals ; Base Sequence ; CD4-Positive T-Lymphocytes/immunology ; DNA/genetics ; Epitopes/*immunology ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/genetics/immunology ; Histocompatibility Antigens Class II/immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Immunoglobulin Variable Region/genetics/immunology ; Immunoglobulins/genetics/*immunology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutagenesis ; Receptors, Fc/immunology ; Recombinant Fusion Proteins/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1993-11-19
    Description: Humanized antibodies are highly efficient as immunotherapeutic reagents and have many advantages over rodent antibodies. A mouse strain was generated by gene targeting to replace the mouse kappa light chain constant (C) region gene with the human C kappa gene. Mice homozygous for the replacement mutation (C kappa R) produced normal concentrations of serum antibodies, most of which carry chimeric kappa light chains, and mounted normal immune responses to hapten-protein conjugates. This technology provides a feasible option for the generation of high-affinity humanized antibodies by means of the powerful somatic hypermutation-selection mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zou, Y R -- Gu, H -- Rajewsky, K -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1271-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetics, University of Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235658" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Gene Rearrangement ; *Genes, Immunoglobulin ; Humans ; Immunoglobulin Constant Regions/*biosynthesis/genetics ; Immunoglobulin Isotypes/biosynthesis ; Immunoglobulin kappa-Chains/*biosynthesis/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; Recombinant Fusion Proteins/biosynthesis ; Stem Cells ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1993-12-17
    Description: The interleukin-2 receptor gamma chain (IL-2R gamma) is a necessary component of functional IL-2 receptors. IL-2R gamma mutations result in X-linked severe combined immunodeficiency (XSCID) in humans, a disease characterized by the presence of few or no T cells. In contrast, SCID patients with IL-2 deficiency and IL-2-deficient mice have normal numbers of T cells, suggesting that IL-2R gamma is part of more than one cytokine receptor. By using chemical cross-linking, IL-2R gamma was shown to be physically associated with the IL-7 receptor. The presence of IL-2R gamma augmented both IL-7 binding affinity and the efficiency of internalization of IL-7. These findings may help explain the defects of XSCID. Given its role in more than one cytokine receptor system, the common gamma chain (gamma c) is proposed as the designation for IL-2R gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noguchi, M -- Nakamura, Y -- Russell, S M -- Ziegler, S F -- Tsang, M -- Cao, X -- Leonard, W J -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1877-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Pulmonary and Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266077" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Cell Line ; Genetic Linkage ; Interleukin-7/*metabolism ; L Cells (Cell Line) ; Mice ; Receptors, Interleukin/chemistry/genetics/*metabolism ; Receptors, Interleukin-2/chemistry/genetics/*metabolism ; Receptors, Interleukin-7 ; Severe Combined Immunodeficiency/genetics/immunology ; T-Lymphocytes/immunology ; Transfection ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1993-03-05
    Description: The actions of many hormones and neurotransmitters are mediated by the members of a superfamily of receptors coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins). These receptors are characterized by a highly conserved topographical arrangement in which seven transmembrane domains are connected by intracellular and extracellular loops. The interaction between these receptors and G proteins is mediated in large part by the third intracellular loop of the receptor. Coexpression of the third intracellular loop of the alpha 1B-adrenergic receptor with its parent receptor inhibited receptor-mediated activation of phospholipase C. The inhibition extended to the closely related alpha 1C-adrenergic receptor subtype, but not the phospholipase C-coupled M1 muscarinic acetylcholine receptor nor the adenylate cyclase-coupled D1A dopamine receptor. These results suggest that the receptor-G protein interface may represent a target for receptor antagonist drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luttrell, L M -- Ostrowski, J -- Cotecchia, S -- Kendall, H -- Lefkowitz, R J -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1453-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8383880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cloning, Molecular ; Cyclic AMP/metabolism ; Cytoplasm/metabolism ; GTP-Binding Proteins/*metabolism ; Globins/genetics ; Glutathione Transferase/genetics/metabolism ; Humans ; Inositol Phosphates/metabolism ; Kinetics ; Molecular Sequence Data ; Muscarinic Antagonists ; Oligodeoxyribonucleotides ; Plasmids ; Protein Structure, Secondary ; Receptors, Adrenergic, alpha/genetics/*metabolism ; Receptors, Dopamine D1/antagonists & inhibitors/genetics/*metabolism ; Receptors, Muscarinic/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1993-09-10
    Description: Interferons (IFNs) induce antiviral activity in many cell types. The ability of IFN-gamma to inhibit replication of ectromelia, vaccinia, and herpes simplex-1 viruses in mouse macrophages correlated with the cells' production of nitric oxide (NO). Viral replication was restored in IFN-gamma-treated macrophages exposed to inhibitors of NO synthase. Conversely, epithelial cells with no detectable NO synthesis restricted viral replication when transfected with a complementary DNA encoding inducible NO synthase or treated with organic compounds that generate NO. In mice, an inhibitor of NO synthase converted resolving ectromelia virus infection into fulminant mousepox. Thus, induction of NO synthase can be necessary and sufficient for a substantial antiviral effect of IFN-gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karupiah, G -- Xie, Q W -- Buller, R M -- Nathan, C -- Duarte, C -- MacMicking, J D -- CA43610/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1445-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/*biosynthesis/metabolism ; Animals ; Arginine/analogs & derivatives/pharmacology ; Cell Line ; Cells, Cultured ; Ectromelia virus/drug effects/*physiology ; Ectromelia, Infectious/microbiology ; Enzyme Induction ; Female ; Humans ; Interferon-gamma/*pharmacology ; Macrophages/*microbiology ; Mice ; Mice, Inbred C57BL ; Nitric Oxide/metabolism/pharmacology ; Nitric Oxide Synthase ; Simplexvirus/drug effects/physiology ; Transfection ; Vaccinia virus/drug effects/physiology ; *Virus Replication/drug effects ; omega-N-Methylarginine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aldhous, P -- New York, N.Y. -- Science. 1993 Jul 30;261(5121):546-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8393586" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Anopheles/*genetics/parasitology ; DNA Transposable Elements ; *Genes, Insect ; Genetic Engineering ; Humans ; Insect Vectors/*genetics/parasitology ; Malaria/*prevention & control/transmission ; Plasmodium/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1993-03-19
    Description: Interferon-gamma (IFN-gamma) is a pleiotrophic cytokine with immunomodulatory effects on a variety of immune cells. Mice with a targeted disruption of the IFN-gamma gene were generated. These mice developed normally and were healthy in the absence of pathogens. However, mice deficient in IFN-gamma had impaired production of macrophage antimicrobial products and reduced expression of macrophage major histocompatibility complex class II antigens. IFN-gamma-deficient mice were killed by a sublethal dose of the intracellular pathogen Mycobacterium bovis. Splenocytes exhibited uncontrolled proliferation in response to mitogen and alloantigen. After a mixed lymphocyte reaction, T cell cytolytic activity was enhanced against allogeneic target cells. Resting splenic natural killer cell activity was reduced in IFN-gamma-deficient mice. Thus, IFN-gamma is essential for the function of several cell types of the murine immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, D K -- Pitts-Meek, S -- Keshav, S -- Figari, I S -- Bradley, A -- Stewart, T A -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1739-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genentech Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cytotoxicity, Immunologic ; Histocompatibility Antigens Class II/immunology ; *Immunity ; Interferon-gamma/*genetics/physiology ; Isoantigens/immunology ; Killer Cells, Natural/immunology ; Lymphocyte Culture Test, Mixed ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Mycobacterium bovis ; Nitric Oxide/metabolism ; Spleen/cytology/immunology ; T-Lymphocytes/immunology ; Transfection ; Tuberculosis/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1993-12-17
    Description: Yin-Yang-1 (YY1) regulates the transcription of many genes, including the oncogenes c-fos and c-myc. Depending on the context, YY1 acts as a transcriptional repressor, a transcriptional activator, or a transcriptional initiator. The yeast two-hybrid system was used to screen a human complementary DNA (cDNA) library for proteins that associate with YY1, and a c-myc cDNA was isolated. Affinity chromatography confirmed that YY1 associates with c-Myc but not with Max. In cotransfections, c-Myc inhibits both the repressor and the activator functions of YY1, which suggests that one way c-Myc acts is by modulating the activity of YY1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shrivastava, A -- Saleque, S -- Kalpana, G V -- Artandi, S -- Goff, S P -- Calame, K -- CA 38571/CA/NCI NIH HHS/ -- GM29361/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1889-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266081" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adenovirus E1A Proteins/metabolism ; Animals ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; Basic-Leucine Zipper Transcription Factors ; DNA-Binding Proteins/antagonists & inhibitors/genetics/*metabolism/pharmacology ; Erythroid-Specific DNA-Binding Factors ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Proto-Oncogene Proteins c-myc/*metabolism/pharmacology ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/antagonists & inhibitors/genetics/*metabolism/pharmacology ; Transfection ; Tumor Cells, Cultured ; Upstream Stimulatory Factors ; YY1 Transcription Factor ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1993-03-19
    Description: Cytotoxic T lymphocytes (CTLs) specific for conserved viral antigens can respond to different strains of virus, in contrast to antibodies, which are generally strain-specific. The generation of such CTLs in vivo usually requires endogenous expression of the antigen, as occurs in the case of virus infection. To generate a viral antigen for presentation to the immune system without the limitations of direct peptide delivery or viral vectors, plasmid DNA encoding influenza A nucleoprotein was injected into the quadriceps of BALB/c mice. This resulted in the generation of nucleoprotein-specific CTLs and protection from a subsequent challenge with a heterologous strain of influenza A virus, as measured by decreased viral lung titers, inhibition of mass loss, and increased survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ulmer, J B -- Donnelly, J J -- Parker, S E -- Rhodes, G H -- Felgner, P L -- Dwarki, V J -- Gromkowski, S H -- Deck, R R -- DeWitt, C M -- Friedman, A -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1745-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456302" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA, Viral/*genetics/therapeutic use ; Gene Expression ; Genetic Vectors ; Histocompatibility Antigens Class I/immunology ; Immunization ; Influenza A virus/*genetics/immunology/isolation & purification ; Lung/microbiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Muscles/metabolism ; Nucleoproteins/*genetics/*immunology ; Orthomyxoviridae Infections/microbiology/*prevention & control ; Plasmids ; *RNA-Binding Proteins ; T-Lymphocytes, Cytotoxic/immunology ; Transfection ; Viral Core Proteins/*genetics/*immunology ; Viral Vaccines/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1993-09-10
    Description: Exposure of mammalian cells to radiation triggers the ultraviolet (UV) response, which includes activation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B). This was postulated to occur by induction of a nuclear signaling cascade by damaged DNA. Recently, induction of AP-1 by UV was shown to be mediated by a pathway involving Src tyrosine kinases and the Ha-Ras small guanosine triphosphate-binding protein, proteins located at the plasma membrane. It is demonstrated here that the same pathway mediates induction of NF-kappa B by UV. Because inactive NF-kappa B is stored in the cytosol, analysis of its activation directly tests the involvement of a nuclear-initiated signaling cascade. Enucleated cells are fully responsive to UV both in NF-kappa B induction and in activation of another key signaling event. Therefore, the UV response does not require a signal generated in the nucleus and is likely to be initiated at or near the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Devary, Y -- Rosette, C -- DiDonato, J A -- Karin, M -- CA50528/CA/NCI NIH HHS/ -- ES04151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1442-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8367725" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Catechols/pharmacology ; Cell Nucleus/*physiology ; Cytosol/metabolism ; Genes, ras ; Genes, src ; HeLa Cells ; Humans ; NF-kappa B/*metabolism/radiation effects ; Nitriles/pharmacology ; PC12 Cells ; Phosphatidylcholines/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins c-jun/metabolism ; Proto-Oncogene Proteins c-raf ; Reactive Oxygen Species/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; *Tyrphostins ; *Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1993-11-05
    Description: Transforming growth factor-beta (TGF-beta) and activin signal primarily through interaction with type I and type II receptors, which are transmembrane serine-threonine kinases. Tsk 7L is a type I receptor for TGF-beta and requires coexpression of the type II TGF-beta receptor for ligand binding. Tsk 7L also specifically bound activin, when coexpressed with the type IIA activin receptor. Tsk 7L could associate with either type II receptor and the ligand binding specificity of Tsk 7L was conferred by the type II receptor. Tsk 7L can therefore act as type I receptor for both activin and TGF-beta, and possibly other ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebner, R -- Chen, R H -- Lawler, S -- Zioncheck, T -- Derynck, R -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):900-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Growth and Development, and Anatomy, University of California at San Francisco 94143-0640.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235612" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors ; Activins ; Base Sequence ; DNA Primers ; Growth Substances/metabolism ; Humans ; Inhibins/*metabolism ; Molecular Sequence Data ; Precipitin Tests ; Protein-Serine-Threonine Kinases/*metabolism ; Receptors, Growth Factor/*metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1993-08-13
    Description: T cell antigen receptor (TCR) activation involves interactions between receptor subunits and nonreceptor protein tyrosine kinases (PTKs). Early steps in signaling through the zeta chain of the TCR were examined in transfected COS-1 cells. Coexpression of the PTK p59fynT, but not p56lck, with zeta or with a homodimeric TCR beta-zeta fusion protein produced tyrosine phosphorylation of both zeta and phospholipase C (PLC)-gamma 1, as well as calcium ion mobilization in response to receptor cross-linking. CD45 coexpression enhanced these effects. No requirement for the PTKZAP-70 was observed. Thus, p59fynT may link zeta directly to the PLC-gamma 1 activation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, C G -- Sancho, J -- Terhorst, C -- AI 15066/AI/NIAID NIH HHS/ -- CA 01486/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 13;261(5123):915-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Beth Israel Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8346442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/analysis ; Base Sequence ; Calcium/*metabolism ; Cell Line ; Cercopithecus aethiops ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism/physiology ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-fyn ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Type C Phospholipases/metabolism ; Tyrosine/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1993-11-12
    Description: Dimerization and oligomerization are general biological control mechanisms contributing to the activation of cell membrane receptors, transcription factors, vesicle fusion proteins, and other classes of intra- and extracellular proteins. Cell permeable, synthetic ligands were devised that can be used to control the intracellular oligomerization of specific proteins. To demonstrate their utility, these ligands were used to induce intracellular oligomerization of cell surface receptors that lacked their transmembrane and extracellular regions but contained intracellular signaling domains. Addition of these ligands to cells in culture resulted in signal transmission and specific target gene activation. Monomeric forms of the ligands blocked the pathway. This method of ligand-regulated activation and termination of signaling pathways has the potential to be applied wherever precise control of a signal transduction pathway is desired.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spencer, D M -- Wandless, T J -- Schreiber, S L -- Crabtree, G R -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1019-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694365" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Carrier Proteins/*metabolism ; Cross-Linking Reagents ; Gene Expression Regulation ; Heat-Shock Proteins/*metabolism ; Ligands ; Membrane Proteins/*metabolism ; Models, Biological ; Molecular Sequence Data ; Polymers ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; T-Lymphocytes/*metabolism ; Tacrolimus/*analogs & derivatives/chemical synthesis/chemistry/metabolism ; Tacrolimus Binding Proteins ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1993-03-12
    Description: PU.1 recruits the binding of a second B cell-restricted nuclear factor, NF-EM5, to a DNA site in the immunoglobulin kappa 3' enhancer. DNA binding by NF-EM5 requires a protein-protein interaction with PU.1 and specific DNA contacts. Dephosphorylated PU.1 bound to DNA but did not interact with NF-EM5. Analysis of serine-to-alanine mutations in PU.1 indicated that serine 148 (Ser148) is required for protein-protein interaction. PU.1 produced in bacteria did not interact with NF-EM5. Phosphorylation of bacterially produced PU.1 by purified casein kinase II modified it to a form that interacted with NF-EM5 and that recruited NF-EM5 to bind to DNA. Phosphopeptide analysis of bacterially produced PU.1 suggested that Ser148 is phosphorylated by casein kinase II. This site is also phosphorylated in vivo. Expression of wild-type PU.1 increased expression of a reporter construct containing the PU.1 and NF-EM5 binding sites nearly sixfold, whereas the Ser148 mutant form only weakly activated transcription. These results demonstrate that phosphorylation of PU.1 at Ser148 is necessary for interaction with NF-EM5 and suggest that this phosphorylation can regulate transcriptional activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pongubala, J M -- Van Beveren, C -- Nagulapalli, S -- Klemsz, M J -- McKercher, S R -- Maki, R A -- Atchison, M L -- AI 30656/AI/NIAID NIH HHS/ -- CA 42909/CA/NCI NIH HHS/ -- GM 42415/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456286" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/genetics/isolation & purification/*metabolism ; Enhancer Elements, Genetic ; Immunoglobulin kappa-Chains/genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Phosphorylation ; Plasmacytoma ; Recombinant Proteins/isolation & purification/metabolism ; Retroviridae Proteins, Oncogenic ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwall, R -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):696.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430322" target="_blank"〉PubMed〈/a〉
    Keywords: Bone Marrow/*physiology ; Cell Death/drug effects/*physiology ; Cell Division/drug effects ; Cell Survival/drug effects ; Erythropoietin/*pharmacology ; Humans ; Receptors, Erythropoietin/*genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1993-04-02
    Description: Point mutations that activate the Ki-ras proto-oncogene are presented in about 50 percent of human colorectal tumors. To study the functional significance of these mutations, the activated Ki-ras genes in two human colon carcinoma cell lines, DLD-1 and HCT 116, were disrupted by homologous recombination. Compared with parental cells, cells disrupted at the activated Ki-ras gene were morphologically altered, lost the capacity for anchorage-independent growth, grew more slowly both in vitro and in nude mice, and showed reduced expression of c-myc. Thus, the activated Ki-ras gene plays a key role in colorectal tumorigenesis through altered cell differentiation and cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirasawa, S -- Furuse, M -- Yokoyama, N -- Sasazuki, T -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Kyushu University, Fukuoka, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8465203" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Differentiation ; Cell Division ; Codon ; Colonic Neoplasms/*genetics/pathology ; Gene Expression Regulation, Neoplastic ; Genes, myc/genetics ; Genes, ras/*genetics ; Humans ; Infant ; Mice ; Mice, Nude ; Molecular Sequence Data ; Mutagenesis, Insertional ; Nucleic Acid Hybridization ; Plasmids ; *Point Mutation ; Polymerase Chain Reaction ; Restriction Mapping ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1993-09-24
    Description: Interferon-gamma (IFN-gamma) stimulates transcription of specific genes by inducing tyrosine phosphorylation of a 91-kilodalton cytoplasmic protein (termed STAT for signal transducer and activator of transcription). Stat91 was phosphorylated on a single site (Tyr701), and phosphorylation of this site was required for nuclear translocation, DNA binding, and gene activation. Stat84, a differentially spliced product of the same gene that lacks the 38 carboxyl-terminal amino acids of Stat91, did not activate transcription, although it was phosphorylated and translocated to the nucleus and bound DNA. Thus, Stat91 mediates activation of transcription in response to IFN-gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuai, K -- Stark, G R -- Kerr, I M -- Darnell, J E Jr -- AI32489-02/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1744-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, Laboratory of Molecular Cell Biology, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690989" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; *Gene Expression Regulation ; Humans ; Interferon-gamma/*pharmacology ; Molecular Sequence Data ; Peptide Fragments/chemistry/metabolism ; Phosphotyrosine ; *Signal Transduction ; Transcription Factors/chemistry/*metabolism ; Transcriptional Activation ; Transfection ; Tyrosine/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1993-02-12
    Description: The ligand for CD40 (CD40L) is a membrane glycoprotein on activated T cells that induces B cell proliferation and immunoglobulin secretion. Abnormalities in the CD40L gene were associated with an X-linked immunodeficiency in humans [hyper-IgM (immunoglobulin M) syndrome]. This disease is characterized by elevated concentrations of serum IgM and decreased amounts of all other isotypes. CD40L complementary DNAs from three of four patients with this syndrome contained distinct point mutations. Recombinant expression of two of the mutant CD40L complementary DNAs resulted in proteins incapable of binding to CD40 and unable to induce proliferation or IgE secretion from normal B cells. Activated T cells from the four affected patients failed to express wild-type CD40L, although their B cells responded normally to wild-type CD40L. Thus, these CD40L defects lead to a T cell abnormality that results in the failure of patient B cells to undergo immunoglobulin class switching.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, R C -- Armitage, R J -- Conley, M E -- Rosenblatt, H -- Jenkins, N A -- Copeland, N G -- Bedell, M A -- Edelhoff, S -- Disteche, C M -- Simoneaux, D K -- A125129/PHS HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):990-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7679801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*metabolism ; Antigens, CD40 ; Antigens, Differentiation, B-Lymphocyte/*metabolism ; Base Sequence ; CD40 Ligand ; DNA/chemistry/genetics ; Humans ; Immunoglobulin M/*blood ; Immunologic Deficiency Syndromes/*genetics/immunology ; Ligands ; Male ; Membrane Glycoproteins/*genetics ; Mice ; Molecular Sequence Data ; *Point Mutation ; Polymerase Chain Reaction ; T-Lymphocytes/*immunology ; Transfection ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1993-03-26
    Description: After synthesis, the alpha chain of the T cell antigen receptor (TCR alpha) can form a complex with other TCR chains and move to the cell surface, or TCR alpha can undergo degradation in the endoplasmic reticulum (ER) if it remains unassembled. The mechanism of translocation and degradation in the ER is unclear. It was found that the putative transmembrane region of TCR alpha (alpha tm) was incompetent on its own to act as a transmembrane region. Molecules that contained alpha tm were translocated into the ER lumen and then underwent either rapid degradation or secretion, depending on the sequence of the cytoplasmic domain. A specific signal for ER degradation within alpha tm does not appear to be present.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, J -- Lee, S -- Strominger, J L -- AI20182/AI/NIAID NIH HHS/ -- CA47554/CA/NCI NIH HHS/ -- GM48961/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1901-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456316" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/chemistry/genetics/metabolism ; Cytoplasm/metabolism ; DNA/genetics ; Endoplasmic Reticulum/*metabolism ; Glycosylation ; HeLa Cells/metabolism ; Humans ; Immunosorbent Techniques ; Lipid Bilayers/metabolism ; Macromolecular Substances ; Mice ; Molecular Sequence Data ; Mutagenesis ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1993-11-12
    Description: A beta-glucoside encoded by a cloned Zea mays complementary DNA (Zm-p60.1) cleaved the biologically inactive hormone conjugates cytokinin-O-glucosides and kinetin-N3-glucoside, releasing active cytokinin. Tobacco protoplasts that transiently expressed Zm-p60.1 could use the inactive cytokinin glucosides to initiate cell division. The ability of protoplasts to sustain growth in response to cytokinin glucosides persisted indefinitely after the likely disappearance of the expression vector. In the roots of maize seedlings, Zm-p60.1 was localized to the meristematic cells and may function in vivo to supply the developing maize embryo with active cytokinin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brzobohaty, B -- Moore, I -- Kristoffersen, P -- Bako, L -- Campos, N -- Schell, J -- Palme, K -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1051-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institut fur Zuchtungsforschung, Koln Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235622" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/metabolism ; Amino Acid Sequence ; Base Sequence ; Cell Division ; Cytokinins/*metabolism ; DNA, Complementary/genetics ; Glucosides/metabolism ; Kinetin ; Molecular Sequence Data ; Plants, Toxic ; Protoplasts/cytology/enzymology ; Tobacco/cytology/enzymology ; Transfection ; Zea mays/enzymology/growth & development/*metabolism ; Zeatin/*metabolism ; beta-Glucosidase/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1993-11-05
    Description: A system for stable transformation of Toxoplasma gondii tachyzoites was developed that exploited the susceptibility of Toxoplasma to chloramphenicol. Introduction of the chloramphenicol acetyltransferase (CAT) gene fused to Toxoplasma flanking sequences followed by chloramphenicol selection resulted in parasites stably expressing CAT. A construct incorporating the tandemly repeated gene, B1, targeted efficiently to its homologous chromosomal locus. Knockout of the single-copy gene, ROP1, was also successful. Stable transformation should permit the identification and analysis of Toxoplasma genes important in the interaction of this opportunistic parasite with its host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, K -- Soldati, D -- Boothroyd, J C -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):911-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235614" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chloramphenicol/pharmacology ; Chloramphenicol O-Acetyltransferase/*genetics ; Drug Resistance ; *Genes, Protozoan ; Genetic Markers ; Multigene Family ; Plasmids ; Recombination, Genetic ; Toxoplasma/drug effects/*genetics ; Transfection ; *Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: Regulation of cell proliferation, differentiation, and metabolic homeostasis is associated with the phosphorylation and dephosphorylation of specific tyrosine residues of key regulatory proteins. The phosphotyrosine phosphatase 1D (PTP 1D) contains two amino terminally located Src homology 2 (SH2) domains and is similar to the Drosophila corkscrew gene product, which positively regulates the torso tyrosine kinase signal transduction pathway. PTP activity was found to be regulated by physical interaction with a protein tyrosine kinase. PTP 1D did not dephosphorylate receptor tyrosine kinases, despite the fact that it associated with the epidermal growth factor receptor and chimeric receptors containing the extracellular domain of the epidermal growth factor receptor and the cytoplasmic domain of either the HER2-neu, kit-SCF, or platelet-derived growth factor beta (beta PDGF) receptors. PTP 1D was phosphorylated on tyrosine in cells overexpressing the beta PDGF receptor kinase and this tyrosine phosphorylation correlated with an enhancement of its catalytic activity. Thus, protein tyrosine kinases and phosphatases do not simply oppose each other's action; rather, they may work in concert to maintain a fine balance of effector activation needed for the regulation of cell growth and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, W -- Lammers, R -- Huang, J -- Ullrich, A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1611-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max-Planck-Institut fur Biochemie, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Chimera ; Drosophila/genetics ; Enzyme Activation ; Genes, src ; Humans ; Kidney ; Luminescent Measurements ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Phosphorylation ; Phosphotyrosine ; Plasmids ; Protein Tyrosine Phosphatases/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-kit ; Proto-Oncogenes ; Receptor, Epidermal Growth Factor/genetics/metabolism ; Receptor, ErbB-2 ; Receptors, Platelet-Derived Growth Factor/genetics/metabolism ; Sequence Homology, Amino Acid ; Signal Transduction ; Transfection ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1993-05-28
    Description: Transforming growth factor-beta (TGF-beta) affects cellular proliferation, differentiation, and interaction with the extracellular matrix primarily through interaction with the type I and type II TGF-beta receptors. The type II receptors for TGF-beta and activin contain putative serine-threonine kinase domains. A murine serine-threonine kinase receptor, Tsk 7L, was cloned that shared a conserved extracellular domain with the type II TGF-beta receptor. Overexpression of Tsk 7L alone did not increase cell surface binding of TGF-beta, but coexpression with the type II TGF-beta receptor caused TGF-beta to bind to Tsk 7L, which had the size of the type I TGF-beta receptor. Overexpression of Tsk 7L inhibited binding of TGF-beta to the type II receptor in a dominant negative fashion. Combinatorial interactions and stoichiometric ratios between the type I and II receptors may therefore determine the extent of TGF-beta binding and the resulting biological activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebner, R -- Chen, R H -- Shum, L -- Lawler, S -- Zioncheck, T F -- Lee, A -- Lopez, A R -- Derynck, R -- New York, N.Y. -- Science. 1993 May 28;260(5112):1344-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Growth and Development, University of California, San Francisco 94143-0640.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388127" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cercopithecus aethiops ; Cloning, Molecular ; Humans ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases ; Quail ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Receptors, Transforming Growth Factor beta ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-22
    Description: The 4-kilodalton amyloid beta protein (A beta), which forms fibrillar deposits in Alzheimer's disease (AD), is derived from a large protein referred to as the amyloid beta protein precursor (beta APP). Human neuroblastoma (M17) cells transfected with constructs expressing wild-type beta APP or a mutant, beta APP delta NL, recently linked to familial AD were compared. After continuous metabolic labeling for 8 hours, cells expressing beta APP delta NL had five times more of an A beta-bearing, carboxyl terminal, beta APP derivative than cells expressing wild-type beta APP and they released six times more A beta into the medium. Thus this mutant beta APP may cause AD because its processing is altered in a way that releases increased amounts of A beta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, X D -- Golde, T E -- Younkin, S G -- AG06656/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 22;259(5094):514-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8424174" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/metabolism ; Amino Acid Sequence ; Amyloid beta-Peptides/*biosynthesis/genetics ; Amyloid beta-Protein Precursor/*genetics/metabolism ; Base Sequence ; Cloning, Molecular ; Humans ; Molecular Sequence Data ; *Mutagenesis, Site-Directed ; Neuroblastoma ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction/methods ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1993-02-12
    Description: Interferon regulatory factor-1 (IRF-1), a transcriptional activator, and IRF-2, its antagonistic repressor, have been identified as regulators of type I interferon and interferon-inducible genes. The IRF-1 gene is itself interferon-inducible and hence may be one of the target genes critical for interferon action. When the IRF-2 gene was overexpressed in NIH 3T3 cells, the cells became transformed and displayed enhanced tumorigenicity in nude mice. This transformed phenotype was reversed by concomitant overexpression of the IRF-1 gene. Thus, restrained cell growth depends on a balance between these two mutually antagonistic transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harada, H -- Kitagawa, M -- Tanaka, N -- Yamamoto, H -- Harada, K -- Ishihara, M -- Taniguchi, T -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):971-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8438157" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells/metabolism ; Animals ; Blotting, Northern ; Cell Transformation, Neoplastic/*genetics ; Chromosome Mapping ; Chromosomes, Human, Pair 5 ; DNA/biosynthesis ; DNA-Binding Proteins/*genetics ; *Gene Expression ; Humans ; Immunosorbent Techniques ; Interferon Regulatory Factor-1 ; Interferon Regulatory Factor-2 ; Mice ; Mice, Nude ; Phenotype ; Phosphoproteins/*genetics ; Promoter Regions, Genetic ; RNA, Messenger/genetics ; *Repressor Proteins ; *Transcription Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1993-07-16
    Description: Nerve growth factor (NGF) binding to cellular receptors is required for the survival of some neural cells. In contrast to TrkA, the high-affinity NGF receptor that transduces NGF signals for survival and differentiation, the function of the low-affinity NGF receptor, p75NGFR, remains uncertain. Expression of p75NGFR induced neural cell death constitutively when p75NGFR was unbound; binding by NGF or monoclonal antibody, however, inhibited cell death induced by p75NGFR. Thus, expression of p75NGFR may explain the dependence of some neural cells on NGF for survival. These findings also suggest that p75NGFR has some functional similarities to other members of a superfamily of receptors that include tumor necrosis factor receptors, Fas (Apo-1), and CD40.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabizadeh, S -- Oh, J -- Zhong, L T -- Yang, J -- Bitler, C M -- Butcher, L L -- Bredesen, D E -- AG10671/AG/NIA NIH HHS/ -- NS10928/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332899" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/drug effects ; Cell Line ; Cell Survival/drug effects ; Culture Media, Serum-Free ; Nerve Growth Factors/*metabolism/pharmacology ; Neurons/*cytology/drug effects/metabolism ; PC12 Cells ; Receptors, Nerve Growth Factor/metabolism/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1993-01-08
    Description: The human and Drosophila heat shock transcription factors (HSFs) are multi-zipper proteins with high-affinity binding to DNA that is regulated by heat shock-induced trimerization. Formation of HSF trimers is dependent on hydrophobic heptad repeats located in the amino-terminal region of the protein. Two subregions at the carboxyl-terminal end of human HSF1 were identified that maintain the monomeric form of the protein under normal conditions. One of these contains a leucine zipper motif that is conserved between vertebrate and insect HSFs. These results suggest that the carboxyl-terminal zipper may suppress formation of trimers by the amino-terminal HSF zipper elements by means of intramolecular coiled-coil interactions that are sensitive to heat shock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabindran, S K -- Haroun, R I -- Clos, J -- Wisniewski, J -- Wu, C -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):230-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421783" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; DNA/metabolism ; Drosophila/chemistry ; Heat-Shock Proteins/*chemistry/genetics/metabolism ; Hot Temperature ; Humans ; *Leucine Zippers ; Macromolecular Substances ; Molecular Sequence Data ; Mutagenesis ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-26
    Description: Eukaryotic cells become committed to proliferate during the G1 phase of the cell cycle. In budding yeast, commitment occurs when the catalytic subunit of a protein kinase, encoded by the CDC28 gene (the homolog of the fission yeast cdc2+ gene), binds to a positively acting regulatory subunit, a cyclin. Related kinases are also required for progression through the G1 phase in higher eukaryotes. The role of cyclins in controlling G1 progression in mammalian cells was tested by construction of fibroblasts that constitutively overexpress human cyclin E. This was found to shorten the duration of G1, decrease cell size, and diminish the serum requirement for the transition from G1 to S phase. These observations show that cyclin levels can be rate-limiting for G1 progression in mammalian cells and suggest that cyclin synthesis may be the target of physiological signals that control cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohtsubo, M -- Roberts, J M -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1908-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/physiology ; Cell Line ; Cloning, Molecular ; Cyclins/genetics/*physiology ; Fibroblasts/*cytology/metabolism ; Flow Cytometry ; G1 Phase/*physiology ; Gene Expression ; Genetic Vectors ; Humans ; Kanamycin Kinase ; Male ; Phosphotransferases/genetics ; Rats ; Recombinant Fusion Proteins/metabolism ; Retroviridae/genetics ; S Phase/physiology ; Time Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1993-04-02
    Description: Cytotoxic T lymphocytes (CTLs) control viral infections by recognizing viral peptides presented by major histocompatibility complex (MHC) class I molecules. Human leukocyte antigen (HLA)-A11-restricted CTLs that recognize peptide residues 416 to 424 of the Epstein-Barr virus (EBV) nuclear antigen-4 frequently dominate EBV-induced responses in A11+ Caucasian donors. This epitope is conserved in type A EBV strains from Caucasians and central African populations, where A11 is relatively infrequent. However, strains from highly A11+ populations in New Guinea carry a lysine-to-threonine mutation at residue 424 that abrogates CTL recognition and binding of the peptide to nascent A11 molecules. The results suggest that evolution of a widespread and genetically stable virus such as EBV is influenced by pressure from MHC-restricted CTL responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Campos-Lima, P O -- Gavioli, R -- Zhang, Q J -- Wallace, L E -- Dolcetti, R -- Rowe, M -- Rickinson, A B -- Masucci, M G -- 2RO1 CA30264/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):98-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Tumor Biology, Karolinska Institute, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7682013" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Antigens, Viral/genetics/*immunology ; Cell Line, Transformed ; Cell Nucleus/*immunology ; Cell Transformation, Viral ; DNA-Binding Proteins/genetics/*immunology ; Epitopes/genetics/immunology ; Epstein-Barr Virus Nuclear Antigens ; European Continental Ancestry Group ; Gene Frequency ; HLA-A Antigens/genetics/*immunology ; HLA-A11 Antigen ; Herpesvirus 4, Human/*immunology ; Humans ; New Guinea ; Point Mutation ; T-Lymphocytes, Cytotoxic/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1993-02-19
    Description: Mineralocorticoid and glucocorticoid hormones elicit distinct physiologic responses, yet the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) bind to and activate transcription similarly from a consensus simple hormone response element (HRE). The activities of GR and MR at plfG, a 25-base pair composite response element to which both the steroid receptors and transcription factor AP1 can bind, are analyzed here. Under conditions in which GR represses AP1-stimulated transcription from plfG, MR was inactive. With the use of MR-GR chimeras, a segment of the NH2-terminal region of GR (amino acids 105 to 440) was shown to be required for this repression. Thus, the distinct physiologic effects mediated by MR and GR may be determined by differential interactions of nonreceptor factors with specific receptor domains at composite response elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, D -- Yamamoto, K R -- New York, N.Y. -- Science. 1993 Feb 19;259(5098):1161-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8382376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Corticosterone/*pharmacology ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; HeLa Cells ; Humans ; Hydrocortisone/*pharmacology ; Mineralocorticoids/*metabolism ; Plasmids ; Proto-Oncogene Proteins c-jun/*metabolism ; Receptors, Glucocorticoid/genetics/*metabolism ; Receptors, Mineralocorticoid ; Receptors, Steroid/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; *Transcription, Genetic/drug effects ; Transfection ; Zinc Fingers/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...