ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-19
    Description: Piwi-associated RNAs (piRNAs), a specific class of 24- to 30-nucleotide-long RNAs produced by the Piwi-type of Argonaute proteins, have a specific germline function in repressing transposable elements. This repression is thought to involve heterochromatin formation and transcriptional and post-transcriptional silencing. The piRNA pathway has other essential functions in germline stem cell maintenance and in maintaining germline DNA integrity. Here we uncover an unexpected function of the piRNA pathway in the decay of maternal messenger RNAs and in translational repression in the early embryo. A subset of maternal mRNAs is degraded in the embryo at the maternal-to-zygotic transition. In Drosophila, maternal mRNA degradation depends on the RNA-binding protein Smaug and the deadenylase CCR4, as well as the zygotic expression of a microRNA cluster. Using mRNA encoding the embryonic posterior morphogen Nanos (Nos) as a paradigm to study maternal mRNA decay, we found that CCR4-mediated deadenylation of nos depends on components of the piRNA pathway including piRNAs complementary to a specific region in the nos 3' untranslated region. Reduced deadenylation when piRNA-induced regulation is impaired correlates with nos mRNA stabilization and translational derepression in the embryo, resulting in head development defects. Aubergine, one of the Argonaute proteins in the piRNA pathway, is present in a complex with Smaug, CCR4, nos mRNA and piRNAs that target the nos 3' untranslated region, in the bulk of the embryo. We propose that piRNAs and their associated proteins act together with Smaug to recruit the CCR4 deadenylation complex to specific mRNAs, thus promoting their decay. Because the piRNAs involved in this regulation are produced from transposable elements, this identifies a direct developmental function for transposable elements in the regulation of gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouget, Christel -- Papin, Catherine -- Boureux, Anthony -- Meunier, Anne-Cecile -- Franco, Benedicte -- Robine, Nicolas -- Lai, Eric C -- Pelisson, Alain -- Simonelig, Martine -- R01 GM083300/GM/NIGMS NIH HHS/ -- R01-GM083300/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 28;467(7319):1128-32. doi: 10.1038/nature09465. Epub 2010 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉mRNA Regulation and Development, Institute of Human Genetics, CNRS UPR1142, 141 rue de la Cardonille, Cedex 5, 34396 Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20953170" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Animals ; Argonaute Proteins ; Cytoplasm/genetics/metabolism ; DNA Transposable Elements/genetics ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/cytology/*embryology/*genetics ; Embryo, Nonmammalian/cytology/embryology/metabolism ; Female ; *Gene Expression Regulation, Developmental ; Mothers ; Peptide Initiation Factors/genetics/metabolism ; Polyadenylation/*genetics ; *RNA Stability ; RNA, Messenger/genetics/*metabolism ; RNA, Small Interfering/*genetics/metabolism ; RNA-Binding Proteins/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Ribonucleases/genetics/metabolism ; Zygote/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-11-21
    Description: The Janus family of tyrosine kinases (JAK) plays an essential role in development and in coupling cytokine receptors to downstream intracellular signaling events. A t(9;12)(p24;p13) chromosomal translocation in a T cell childhood acute lymphoblastic leukemia patient was characterized and shown to fuse the 3' portion of JAK2 to the 5' region of TEL, a gene encoding a member of the ETS transcription factor family. The TEL-JAK2 fusion protein includes the catalytic domain of JAK2 and the TEL-specific oligomerization domain. TEL-induced oligomerization of TEL-JAK2 resulted in the constitutive activation of its tyrosine kinase activity and conferred cytokine-independent proliferation to the interleukin-3-dependent Ba/F3 hematopoietic cell line.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lacronique, V -- Boureux, A -- Valle, V D -- Poirel, H -- Quang, C T -- Mauchauffe, M -- Berthou, C -- Lessard, M -- Berger, R -- Ghysdael, J -- Bernard, O A -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U 301 de l'Institut National de la Sante et de la Recherche Medicale and SD 401 No. 301 CNRS, Institut de Genetique Moleculaire, 27 rue Juliette Dodu, 75010 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9360930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biopolymers ; Cell Division ; Cell Line ; Child, Preschool ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Enzyme Activation ; Humans ; Interleukin-3/physiology ; Janus Kinase 2 ; Leukemia-Lymphoma, Adult T-Cell/genetics/*metabolism ; Male ; Mice ; *Milk Proteins ; Molecular Sequence Data ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-ets ; *Repressor Proteins ; STAT5 Transcription Factor ; Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; Transfection ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-13
    Description: Recent sequencing technologies that allow massive parallel production of short reads are the method of choice for transcriptome analysis. Particularly, digital gene expression (DGE) technologies produce a large dynamic range of expression data by generating short tag signatures for each cell transcript. These tags can be mapped back to a reference genome to identify new transcribed regions that can be further covered by RNA-sequencing (RNA-Seq) reads. Here, we applied an integrated bioinformatics approach that combines DGE tags, RNA-Seq, tiling array expression data and species-comparison to explore new transcriptional regions and their specific biological features, particularly tissue expression or conservation. We analysed tags from a large DGE data set (designated as ‘TranscriRef’). We then annotated 750 000 tags that were uniquely mapped to the human genome according to Ensembl. We retained transcripts originating from both DNA strands and categorized tags corresponding to protein-coding genes, antisense, intronic- or intergenic-transcribed regions and computed their overlap with annotated non-coding transcripts. Using this bioinformatics approach, we identified ~34 000 novel transcribed regions located outside the boundaries of known protein-coding genes. As demonstrated using sequencing data from human pluripotent stem cells for biological validation, the method could be easily applied for the selection of tissue-specific candidate transcripts. DigitagCT is available at http://cractools.gforge.inria.fr/softwares/digitagct .
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...