ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-06-21
    Description: Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, M D -- Kelley, J M -- Gocayne, J D -- Dubnick, M -- Polymeropoulos, M H -- Xiao, H -- Merril, C R -- Wu, A -- Olde, B -- Moreno, R F -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1651-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Receptor Biochemistry and Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047873" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Automation ; *Base Sequence ; Brain/*physiology ; Chromosome Mapping ; DNA/*genetics ; Gene Expression ; *Gene Library ; *Human Genome Project ; Humans ; Molecular Sequence Data ; Multigene Family ; Polymerase Chain Reaction ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-07-11
    Description: Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA resulted in correction of their excessive lysosomal storage of LDL cholesterol, thereby defining the critical role of NPC1 in regulation of intracellular cholesterol trafficking. The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carstea, E D -- Morris, J A -- Coleman, K G -- Loftus, S K -- Zhang, D -- Cummings, C -- Gu, J -- Rosenfeld, M A -- Pavan, W J -- Krizman, D B -- Nagle, J -- Polymeropoulos, M H -- Sturley, S L -- Ioannou, Y A -- Higgins, M E -- Comly, M -- Cooney, A -- Brown, A -- Kaneski, C R -- Blanchette-Mackie, E J -- Dwyer, N K -- Neufeld, E B -- Chang, T Y -- Liscum, L -- Strauss, J F 3rd -- Ohno, K -- Zeigler, M -- Carmi, R -- Sokol, J -- Markie, D -- O'Neill, R R -- van Diggelen, O P -- Elleder, M -- Patterson, M C -- Brady, R O -- Vanier, M T -- Pentchev, P G -- Tagle, D A -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211849" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Carrier Proteins ; Cholesterol/*metabolism ; Cholesterol, LDL/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 18 ; Cloning, Molecular ; *Drosophila Proteins ; Homeostasis ; Humans ; Hydroxymethylglutaryl CoA Reductases/chemistry ; Insect Proteins/chemistry ; Intracellular Signaling Peptides and Proteins ; Lysosomes/metabolism ; *Membrane Glycoproteins ; Membrane Proteins/chemistry ; Molecular Sequence Data ; Mutation ; Niemann-Pick Diseases/*genetics/metabolism ; Polymorphism, Single-Stranded Conformational ; Proteins/chemistry/*genetics/physiology ; Receptors, Cell Surface/chemistry ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-06-27
    Description: Parkinson's disease (PD) is a common neurodegenerative disorder with a lifetime incidence of approximately 2 percent. A pattern of familial aggregation has been documented for the disorder, and it was recently reported that a PD susceptibility gene in a large Italian kindred is located on the long arm of human chromosome 4. A mutation was identified in the alpha-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal plasticity, in the Italian kindred and in three unrelated families of Greek origin with autosomal dominant inheritance for the PD phenotype. This finding of a specific molecular alteration associated with PD will facilitate the detailed understanding of the pathophysiology of the disorder.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polymeropoulos, M H -- Lavedan, C -- Leroy, E -- Ide, S E -- Dehejia, A -- Dutra, A -- Pike, B -- Root, H -- Rubenstein, J -- Boyer, R -- Stenroos, E S -- Chandrasekharappa, S -- Athanassiadou, A -- Papapetropoulos, T -- Johnson, W G -- Lazzarini, A M -- Duvoisin, R C -- Di Iorio, G -- Golbe, L I -- Nussbaum, R L -- New York, N.Y. -- Science. 1997 Jun 27;276(5321):2045-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetic Disease Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-1430, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9197268" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 4 ; Female ; Genes, Dominant ; Genetic Markers ; Greece ; Humans ; Italy ; Male ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/*genetics/physiology ; Parkinson Disease/*genetics ; Pedigree ; Phenotype ; *Point Mutation ; Polymerase Chain Reaction ; Protein Structure, Secondary ; Synucleins ; alpha-Synuclein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-10-23
    Description: A map of 30,181 human gene-based markers was assembled and integrated with the current genetic map by radiation hybrid mapping. The new gene map contains nearly twice as many genes as the previous release, includes most genes that encode proteins of known function, and is twofold to threefold more accurate than the previous version. A redesigned, more informative and functional World Wide Web site (www.ncbi.nlm.nih.gov/genemap) provides the mapping information and associated data and annotations. This resource constitutes an important infrastructure and tool for the study of complex genetic traits, the positional cloning of disease genes, the cross-referencing of mammalian genomes, and validated human transcribed sequences for large-scale studies of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deloukas, P -- Schuler, G D -- Gyapay, G -- Beasley, E M -- Soderlund, C -- Rodriguez-Tome, P -- Hui, L -- Matise, T C -- McKusick, K B -- Beckmann, J S -- Bentolila, S -- Bihoreau, M -- Birren, B B -- Browne, J -- Butler, A -- Castle, A B -- Chiannilkulchai, N -- Clee, C -- Day, P J -- Dehejia, A -- Dibling, T -- Drouot, N -- Duprat, S -- Fizames, C -- Fox, S -- Gelling, S -- Green, L -- Harrison, P -- Hocking, R -- Holloway, E -- Hunt, S -- Keil, S -- Lijnzaad, P -- Louis-Dit-Sully, C -- Ma, J -- Mendis, A -- Miller, J -- Morissette, J -- Muselet, D -- Nusbaum, H C -- Peck, A -- Rozen, S -- Simon, D -- Slonim, D K -- Staples, R -- Stein, L D -- Stewart, E A -- Suchard, M A -- Thangarajah, T -- Vega-Czarny, N -- Webber, C -- Wu, X -- Hudson, J -- Auffray, C -- Nomura, N -- Sikela, J M -- Polymeropoulos, M H -- James, M R -- Lander, E S -- Hudson, T J -- Myers, R M -- Cox, D R -- Weissenbach, J -- Boguski, M S -- Bentley, D R -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):744-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanger Centre, Hinxton Hall, Hinxton, Cambridge CB10 1SA UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human/*genetics ; Expressed Sequence Tags ; Gene Expression ; Genetic Markers ; *Genome, Human ; Human Genome Project ; Humans ; Internet ; *Physical Chromosome Mapping ; Rats ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-10-25
    Description: The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. The integrated resource is available through a site on the World Wide Web at http://www.ncbi.nlm.nih.gov/SCIENCE96/.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuler, G D -- Boguski, M S -- Stewart, E A -- Stein, L D -- Gyapay, G -- Rice, K -- White, R E -- Rodriguez-Tome, P -- Aggarwal, A -- Bajorek, E -- Bentolila, S -- Birren, B B -- Butler, A -- Castle, A B -- Chiannilkulchai, N -- Chu, A -- Clee, C -- Cowles, S -- Day, P J -- Dibling, T -- Drouot, N -- Dunham, I -- Duprat, S -- East, C -- Edwards, C -- Fan, J B -- Fang, N -- Fizames, C -- Garrett, C -- Green, L -- Hadley, D -- Harris, M -- Harrison, P -- Brady, S -- Hicks, A -- Holloway, E -- Hui, L -- Hussain, S -- Louis-Dit-Sully, C -- Ma, J -- MacGilvery, A -- Mader, C -- Maratukulam, A -- Matise, T C -- McKusick, K B -- Morissette, J -- Mungall, A -- Muselet, D -- Nusbaum, H C -- Page, D C -- Peck, A -- Perkins, S -- Piercy, M -- Qin, F -- Quackenbush, J -- Ranby, S -- Reif, T -- Rozen, S -- Sanders, C -- She, X -- Silva, J -- Slonim, D K -- Soderlund, C -- Sun, W L -- Tabar, P -- Thangarajah, T -- Vega-Czarny, N -- Vollrath, D -- Voyticky, S -- Wilmer, T -- Wu, X -- Adams, M D -- Auffray, C -- Walter, N A -- Brandon, R -- Dehejia, A -- Goodfellow, P N -- Houlgatte, R -- Hudson, J R Jr -- Ide, S E -- Iorio, K R -- Lee, W Y -- Seki, N -- Nagase, T -- Ishikawa, K -- Nomura, N -- Phillips, C -- Polymeropoulos, M H -- Sandusky, M -- Schmitt, K -- Berry, R -- Swanson, K -- Torres, R -- Venter, J C -- Sikela, J M -- Beckmann, J S -- Weissenbach, J -- Myers, R M -- Cox, D R -- James, M R -- Bentley, D -- Deloukas, P -- Lander, E S -- Hudson, T J -- HG00098/HG/NHGRI NIH HHS/ -- HG00206/HG/NHGRI NIH HHS/ -- HG00835/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- etc. -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):540-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849440" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; *Chromosome Mapping ; Chromosomes, Artificial, Yeast ; Computer Communication Networks ; DNA, Complementary/genetics ; Databases, Factual ; Gene Expression ; Genetic Markers ; *Genome, Human ; *Human Genome Project ; Humans ; Multigene Family ; RNA, Messenger/genetics ; Sequence Homology, Nucleic Acid ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-11-15
    Description: Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting approximately 1 percent of the population over age 50. Recent studies have confirmed significant familial aggregation of PD and a large number of large multicase families have been documented. Genetic markers on chromosome 4q21-q23 were found to be linked to the PD phenotype in a large kindred with autosomal dominant PD, with a Zmax = 6.00 for marker D4S2380. This finding will facilitate identification of the gene and research on the pathogenesis of PD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polymeropoulos, M H -- Higgins, J J -- Golbe, L I -- Johnson, W G -- Ide, S E -- Di Iorio, G -- Sanges, G -- Stenroos, E S -- Pho, L T -- Schaffer, A A -- Lazzarini, A M -- Nussbaum, R L -- Duvoisin, R C -- New York, N.Y. -- Science. 1996 Nov 15;274(5290):1197-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetic Disease Research, National Center for Human Genome Research, National Institutes of Health, Bethesda, MD 20892-1430, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8895469" target="_blank"〉PubMed〈/a〉
    Keywords: *Chromosome Mapping ; *Chromosomes, Human, Pair 4 ; Female ; Genetic Linkage ; Genetic Markers ; Humans ; Lod Score ; Male ; Parkinson Disease/*genetics ; Pedigree ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Ellis van Creveld syndrome (EVC) is an autosomal recessive disorder which has previously been mapped to human chromosome 4p16.1. This disorder is characterized by disproportionate dwarfism, polydactyly, cleft palate, natal teeth, and congenital heart disease. The MSX1 homeobox gene also maps to the 4p16.1 region. Msx gene transcripts in the mouse embryo are known to be involved in pattern formation of the developing limb bud and craniofacial bones. Thus, on the basis of both map location and known gene function, MSX1 was an excellent candidate as the causative gene for EVC. Nonetheless, direct DNA sequencing of both exons of the MSX1 gene in five affected individuals segregating with the EVC phenotype, as well as those of two obligate carriers, revealed no mutations in the coding region of the gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract We have identified and characterized a new member of the human synuclein gene family, γ-synuclein (SNCG). This gene is composed of five exons, which encode a 127 amino acid protein that is highly homologous to α-synuclein, which is mutated in some Parkinson’s disease families, and to β-synuclein. The γ-synuclein gene is localized to chromosome 10q23 and is principally expressed in the brain, particularly in the substantia nigra. We have determined its genomic sequence, and established conditions for sequence analysis of each of the exons. The γ-synuclein gene, also known as BCSG1, was recently found to be overexpressed in advanced infiltrating carcinoma of the breast. Our survey of the EST database indicated that it might also be overexpressed in an ovarian tumor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease and is manifested as a movement disorder. A positive family history is the second most important risk factor for developing the illness, after age. Both autosomal dominant and recessive forms of the illness have been described. Recently deletions in a novel gene, parkin, have been associated with the autosomal recessive form of the illness in Japanese families. In this study, we demonstrate that deletions of exons 5, 6 and 7 of the parkin gene are present in two affected individuals of a Greek pedigree with early onset Parkinson’s disease. However, no deletions were identified in a different branch of the same pedigree with three affected individuals. These results suggest that deletions in the parkin gene will be found in other families besides those of Japanese origin and that there must be at least one additional locus responsible for early onset autosomal recessive Parkinson’s disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...