ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (1,508)
  • *Biological Evolution  (1,390)
  • American Association for the Advancement of Science (AAAS)  (2,886)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-03-25
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-03
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-20
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-29
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-09
    Description: Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaolei -- Ditlev, Jonathon A -- Hui, Enfu -- Xing, Wenmin -- Banjade, Sudeep -- Okrut, Julia -- King, David S -- Taunton, Jack -- Rosen, Michael K -- Vale, Ronald D -- 5-F32-DK101188/DK/NIDDK NIH HHS/ -- F32 DK101188/DK/NIDDK NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):595-9. doi: 10.1126/science.aad9964. Epub 2016 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; HHMI Mass Spectrometry Laboratory and Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27056844" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Adaptor Proteins, Signal Transducing/*metabolism ; Fluorescence Recovery After Photobleaching ; Humans ; Jurkat Cells ; Membrane Proteins/*metabolism ; Mitogen-Activated Protein Kinase Kinases ; Phosphorylation ; Polymerization ; Receptors, Antigen, T-Cell/*agonists ; Signal Transduction ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maxmen, Amy -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1378-80. doi: 10.1126/science.351.6280.1378.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013707" target="_blank"〉PubMed〈/a〉
    Keywords: Anal Canal/*anatomy & histology ; Animals ; *Biological Evolution ; Ctenophora/*anatomy & histology/genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-19
    Description: Systemic inflammation, which results from the massive release of proinflammatory molecules into the circulatory system, is a major risk factor for severe illness, but the precise mechanisms underlying its control are not fully understood. We observed that prostaglandin E2 (PGE2), through its receptor EP4, is down-regulated in human systemic inflammatory disease. Mice with reduced PGE2 synthesis develop systemic inflammation, associated with translocation of gut bacteria, which can be prevented by treatment with EP4 agonists. Mechanistically, we demonstrate that PGE2-EP4 signaling acts directly on type 3 innate lymphoid cells (ILCs), promoting their homeostasis and driving them to produce interleukin-22 (IL-22). Disruption of the ILC-IL-22 axis impairs PGE2-mediated inhibition of systemic inflammation. Hence, the ILC-IL-22 axis is essential in protecting against gut barrier dysfunction, enabling PGE2-EP4 signaling to impede systemic inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duffin, Rodger -- O'Connor, Richard A -- Crittenden, Siobhan -- Forster, Thorsten -- Yu, Cunjing -- Zheng, Xiaozhong -- Smyth, Danielle -- Robb, Calum T -- Rossi, Fiona -- Skouras, Christos -- Tang, Shaohui -- Richards, James -- Pellicoro, Antonella -- Weller, Richard B -- Breyer, Richard M -- Mole, Damian J -- Iredale, John P -- Anderton, Stephen M -- Narumiya, Shuh -- Maizels, Rick M -- Ghazal, Peter -- Howie, Sarah E -- Rossi, Adriano G -- Yao, Chengcan -- 106122/Wellcome Trust/United Kingdom -- BB/K091121/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- DK37097/DK/NIDDK NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1333-8. doi: 10.1126/science.aad9903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK. ; Division of Pathway Medicine, Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh EH16 4SB, UK. ; Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh EH9 3JT, UK. ; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK. ; Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China. ; Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37212, USA. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA. ; Center for Innovation in Immunoregulative Technology and Therapeutics (AK Project), Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan. ; Division of Pathway Medicine, Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh EH16 4SB, UK. Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh EH9 3JD, UK. ; Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK. chengcan.yao@ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Infections/genetics/immunology ; Dinoprostone/*immunology ; Gene Expression ; Humans ; Immunity, Innate ; Inflammation/drug therapy/*immunology/microbiology ; Interleukins/*immunology ; Intestines/*immunology/microbiology ; Lymphocytes/*immunology ; Mice ; Receptors, Prostaglandin E, EP4 Subtype/antagonists & ; inhibitors/genetics/*immunology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-23
    Description: Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Hui-Hsin -- Niu, Jianqin -- Munji, Roeben -- Davalos, Dimitrios -- Chang, Junlei -- Zhang, Haijing -- Tien, An-Chi -- Kuo, Calvin J -- Chan, Jonah R -- Daneman, Richard -- Fancy, Stephen P J -- 1P01 NS083513/NS/NINDS NIH HHS/ -- 1R01NS064517/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):379-84. doi: 10.1126/science.aad3839.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of California at San Francisco (UCSF), San Francisco, CA 94158, USA. ; Departments of Pharmacology and Neuroscience, University of California at San Diego (UCSD), San Diego, CA 92093, USA. ; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA. ; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. ; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Urology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA. Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA. Duke University School of Medicine, Durham, NC 27710, USA. ; Department of Neurology, UCSF, San Francisco, CA 94158, USA. ; Department of Pediatrics, University of California at San Francisco (UCSF), San Francisco, CA 94158, USA. Department of Neurology, UCSF, San Francisco, CA 94158, USA. Division of Neonatology, UCSF, San Francisco, CA 94158, USA. Newborn Brain Research Institute, UCSF, San Francisco, CA 94158, USA. stephen.fancy@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/cytology/embryology ; *Cell Movement ; Cerebral Cortex/blood supply/*embryology ; Endothelium, Vascular/cytology ; Humans ; Mice ; Neural Stem Cells/cytology/*physiology ; *Neurogenesis ; Oligodendroglia/cytology/*physiology ; *Organogenesis ; Pericytes/cytology/physiology ; Receptors, CXCR4/metabolism ; Signal Transduction ; Spinal Cord/blood supply/cytology/*embryology ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-26
    Description: Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farmer, W Todd -- Abrahamsson, Therese -- Chierzi, Sabrina -- Lui, Christopher -- Zaelzer, Cristian -- Jones, Emma V -- Bally, Blandine Ponroy -- Chen, Gary G -- Theroux, Jean-Francois -- Peng, Jimmy -- Bourque, Charles W -- Charron, Frederic -- Ernst, Carl -- Sjostrom, P Jesper -- Murai, Keith K -- FDN 143337/Canadian Institutes of Health Research/Canada -- MOP 111152/Canadian Institutes of Health Research/Canada -- MOP 123390/Canadian Institutes of Health Research/Canada -- MOP 126137/Canadian Institutes of Health Research/Canada -- NIA 288936/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):849-54. doi: 10.1126/science.aab3103.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada. ; Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada. ; Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montreal, Department of Medicine, University of Montreal, Montreal, Quebec, Canada. Department of Biology, McGill University, Montreal, Quebec, Canada. ; Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada. Department of Human Genetics, McGill University, Montreal, Quebec, Canada. Douglas Hospital Research Institute, Verdun, Quebec, Canada. ; Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada. keith.murai@mcgill.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912893" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*metabolism ; Cerebellar Cortex/*cytology ; Female ; Gene Deletion ; Hedgehog Proteins/genetics/*metabolism ; Male ; Mice ; Mice, Mutant Strains ; Neurons/*metabolism ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-02-26
    Description: Purine biosynthetic enzymes organize into dynamic cellular bodies called purinosomes. Little is known about the spatiotemporal control of these structures. Using super-resolution microscopy, we demonstrated that purinosomes colocalized with mitochondria, and these results were supported by isolation of purinosome enzymes with mitochondria. Moreover, the number of purinosome-containing cells responded to dysregulation of mitochondrial function and metabolism. To explore the role of intracellular signaling, we performed a kinome screen using a label-free assay and found that mechanistic target of rapamycin (mTOR) influenced purinosome assembly. mTOR inhibition reduced purinosome-mitochondria colocalization and suppressed purinosome formation stimulated by mitochondria dysregulation. Collectively, our data suggest an mTOR-mediated link between purinosomes and mitochondria, and a general means by which mTOR regulates nucleotide metabolism by spatiotemporal control over protein association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉French, Jarrod B -- Jones, Sara A -- Deng, Huayun -- Pedley, Anthony M -- Kim, Doory -- Chan, Chung Yu -- Hu, Haibei -- Pugh, Raymond J -- Zhao, Hong -- Zhang, Youxin -- Huang, Tony Jun -- Fang, Ye -- Zhuang, Xiaowei -- Benkovic, Stephen J -- 1R33EB019785-01/EB/NIBIB NIH HHS/ -- GM024129/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):733-7. doi: 10.1126/science.aac6054.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Cell Biology, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. ; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard University, Cambridge, MA 02138, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912862" target="_blank"〉PubMed〈/a〉
    Keywords: HeLa Cells ; Humans ; Microscopy ; Mitochondria/*metabolism/ultrastructure ; Purines/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-01-23
    Description: The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xuan, Wei -- Band, Leah R -- Kumpf, Robert P -- Van Damme, Daniel -- Parizot, Boris -- De Rop, Gieljan -- Opdenacker, Davy -- Moller, Barbara K -- Skorzinski, Noemi -- Njo, Maria F -- De Rybel, Bert -- Audenaert, Dominique -- Nowack, Moritz K -- Vanneste, Steffen -- Beeckman, Tom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):384-7. doi: 10.1126/science.aad2776.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, PR China. ; Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. ; Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tubingen, Germany. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, Netherlands. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. tobee@psb.vib-ugent.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798015" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Arabidopsis/cytology/*growth & development/metabolism ; Indoleacetic Acids/*metabolism ; Plant Epidermis/cytology/growth & development/metabolism ; Plant Root Cap/cytology/*growth & development/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics/metabolism ; Signal Transduction ; Soil ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):214-5. doi: 10.1126/science.351.6270.214. Epub 2016 Jan 14.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816357" target="_blank"〉PubMed〈/a〉
    Keywords: Anatomy, Comparative ; Animals ; *Biological Evolution ; Colubridae/anatomy & histology/physiology ; *Copulation ; Female ; Genitalia, Female/*anatomy & histology/*physiology ; Male
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ball, Steven G -- Bhattacharya, Debashish -- Weber, Andreas P M -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):659-60. doi: 10.1126/science.aad8864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite de Lille CNRS, UMR 8576-UGSF-Unite de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France. ; Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA. debash.bhattacharya@gmail.com. ; Institute for Plant Biochemistry, Center of Excellence on Plant Sciences, Heinrich-Heine-University, Universitatsstrasse 1, D-40225 Dusseldorf, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912842" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaproteobacteria/*genetics/pathogenicity ; Animals ; Archaea/metabolism ; *Biological Evolution ; Endocytosis ; Energy Metabolism/genetics ; Eukaryota/genetics ; *Host-Pathogen Interactions ; Humans ; Mitochondria/*genetics ; Plastids/*genetics ; Rickettsia/genetics/pathogenicity ; Symbiosis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-02-06
    Description: The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howitt, Michael R -- Lavoie, Sydney -- Michaud, Monia -- Blum, Arthur M -- Tran, Sara V -- Weinstock, Joel V -- Gallini, Carey Ann -- Redding, Kevin -- Margolskee, Robert F -- Osborne, Lisa C -- Artis, David -- Garrett, Wendy S -- F31DK105653/DK/NIDDK NIH HHS/ -- F32DK098826/DK/NIDDK NIH HHS/ -- R01 CA154426/CA/NCI NIH HHS/ -- R01 GM099531/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1329-33. doi: 10.1126/science.aaf1648. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. ; Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. ; Monell Chemical Senses Center, Philadelphia, PA 19104, USA. ; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA. ; Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. wgarrett@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemoreceptor Cells/*immunology ; Eosinophils/immunology ; Goblet Cells/immunology ; Helminthiasis/immunology/parasitology ; Helminths/immunology ; Immunity, Mucosal ; Interleukin-13/immunology ; Interleukin-17/immunology ; Intestinal Diseases, Parasitic/*immunology/parasitology ; Intestinal Mucosa/*immunology/*parasitology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota/*immunology ; Protein-Serine-Threonine Kinases/immunology ; Protozoan Infections/immunology/parasitology ; Signal Transduction ; TRPM Cation Channels/*immunology ; Taste ; Transducin/genetics/immunology ; Tritrichomonas/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hulme, Philip E -- Le Roux, Johannes J -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422. doi: 10.1126/science.352.6284.422-b. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. philip.hulme@lincoln.ac.nz. ; The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-02-06
    Description: SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56beta, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bidinosti, Michael -- Botta, Paolo -- Kruttner, Sebastian -- Proenca, Catia C -- Stoehr, Natacha -- Bernhard, Mario -- Fruh, Isabelle -- Mueller, Matthias -- Bonenfant, Debora -- Voshol, Hans -- Carbone, Walter -- Neal, Sarah J -- McTighe, Stephanie M -- Roma, Guglielmo -- Dolmetsch, Ricardo E -- Porter, Jeffrey A -- Caroni, Pico -- Bouwmeester, Tewis -- Luthi, Andreas -- Galimberti, Ivan -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1199-203. doi: 10.1126/science.aad5487. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Friedrich Miescher Institute, Basel, Switzerland. ; Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA. ; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ivan.galimberti@novartis.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autism Spectrum Disorder/*drug therapy/enzymology/genetics ; Chromosome Deletion ; Chromosome Disorders/genetics ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Down-Regulation ; Gene Knockdown Techniques ; Humans ; Insulin-Like Growth Factor I/metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nerve Tissue Proteins/*genetics ; Neurons/enzymology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt/genetics/metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-29
    Description: Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rankin, Erinn B -- Giaccia, Amato J -- CA-197713/CA/NCI NIH HHS/ -- CA-198291/CA/NCI NIH HHS/ -- CA-67166/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):175-80. doi: 10.1126/science.aaf4405. Epub 2016 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. ; Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. giaccia@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124451" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Biomarkers, Tumor/analysis/metabolism ; Cell Hypoxia ; Cell Movement ; Disease Progression ; Drug Resistance, Neoplasm ; Epithelial-Mesenchymal Transition ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit/*metabolism ; Neoplasm Invasiveness ; Neoplasm Metastasis/*pathology/*therapy ; Radiation Tolerance ; Signal Transduction ; *Tumor Microenvironment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarrazin, Francois -- Lecomte, Jane -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422-3. doi: 10.1126/science.352.6284.422-c. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sorbonne Universites, UPMC Univ. Paris 06, Museum National d'Histoire Naturelle, CNRS, CESCO, UMR 7204, 75005 Paris, France. sarrazin@mnhn.fr. ; Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Universite Paris-Saclay, 91400 Orsay, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-03-12
    Description: The oncogene MDMX is overexpressed in many cancers, leading to suppression of the tumor suppressor p53. Inhibitors of the oncogene product MDMX therefore might help reactivate p53 and enhance the efficacy of DNA-damaging drugs. However, we currently lack a quantitative understanding of how MDMX inhibition affects the p53 signaling pathway and cell sensitivity to DNA damage. Live cell imaging showed that MDMX depletion triggered two distinct phases of p53 accumulation in single cells: an initial postmitotic pulse, followed by low-amplitude oscillations. The response to DNA damage was sharply different in these two phases; in the first phase, MDMX depletion was synergistic with DNA damage in causing cell death, whereas in the second phase, depletion of MDMX inhibited cell death. Thus a quantitative understanding of signal dynamics and cellular states is important for designing an optimal schedule of dual-drug administration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Sheng-Hong -- Forrester, William -- Lahav, Galit -- F32GM105205/GM/NIGMS NIH HHS/ -- GM083303/GM/NIGMS NIH HHS/ -- R01 GM083303/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1204-8. doi: 10.1126/science.aac5610. Epub 2016 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA, USA. ; Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965628" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*administration & dosage ; Apoptosis ; *DNA Damage ; Gene Knockdown Techniques ; Humans ; MCF-7 Cells ; Molecular Imaging ; Neoplasms/*drug therapy ; Proto-Oncogene Proteins c-mdm2/*antagonists & inhibitors/genetics ; RNA, Small Interfering/genetics ; Signal Transduction ; Time Factors ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-08-16
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-10-14
    Description: Authors: Caroline Ash, L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-10-14
    Description: Reversible protein phosphorylation plays a fundamental role in signal transduction networks. Phosphorylation alters protein function by regulating enzymatic activity, stability, cellular localization, or binding partners. Over three-quarters of human proteins may be phosphorylated, with many targeted at multiple sites. Such multisite phosphorylation substantially increases the scope for modulating protein function—a protein with n phosphorylation sites has the potential to exist in 2n distinct phosphorylation states, each of which could, in theory, display modified functionality. Proteins can be substrates for several protein kinases, thereby integrating distinct signals to provide a coherent biological response. However, they can also be phosphorylated at multiple sites by a single protein kinase to promote a specific functional output that can be reversed by dephosphorylation by protein phosphatases. On page 233 of this issue, Mylona et al. (1) reveal an unexpected role for multisite phosphorylation, whereby a protein kinase progressively phosphorylates sites on a transcription factor to promote and then subsequently limit its activity independently of dephosphorylation. Authors: Alan J. Whitmarsh, Roger J. Davis
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dantzer, Ben -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):822-3. doi: 10.1126/science.aaa6480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. dantzer@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700499" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Competitive Behavior ; *Ecosystem ; Female ; Male ; *Maternal Behavior ; Songbirds/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-04-11
    Description: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Indrajit -- Krzyzosiak, Agnieszka -- Schneider, Kim -- Wrabetz, Lawrence -- D'Antonio, Maurizio -- Barry, Nicholas -- Sigurdardottir, Anna -- Bertolotti, Anne -- 309516/European Research Council/International -- MC_U105185860/Medical Research Council/United Kingdom -- R01-NS55256/NS/NINDS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):239-42. doi: 10.1126/science.aaa4484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. aberto@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859045" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/drug therapy/metabolism/pathology ; Animals ; Cells, Cultured ; Charcot-Marie-Tooth Disease/drug therapy/metabolism/pathology ; Disease Models, Animal ; Endoplasmic Reticulum Stress/drug effects ; Enzyme Inhibitors/metabolism/pharmacokinetics/*pharmacology/toxicity ; Guanabenz/*analogs & derivatives/chemical ; synthesis/metabolism/pharmacology/toxicity ; HeLa Cells ; Humans ; Mice ; Mice, Transgenic ; Molecular Targeted Therapy ; Phosphorylation ; Protein Folding ; Protein Phosphatase 1/*antagonists & inhibitors ; Proteostasis Deficiencies/*drug therapy/*prevention & control ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-22
    Description: Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras-dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687752/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687752/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Yong -- Wong, Ching-On -- Cho, Kwang-jin -- van der Hoeven, Dharini -- Liang, Hong -- Thakur, Dhananiay P -- Luo, Jialie -- Babic, Milos -- Zinsmaier, Konrad E -- Zhu, Michael X -- Hu, Hongzhen -- Venkatachalam, Kartik -- Hancock, John F -- R01 NS081301/NS/NINDS NIH HHS/ -- R01NS081301/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):873-6. doi: 10.1126/science.aaa5619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology and Pharmacology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA. ; Department of Diagnostic and Biomedical Sciences, Dental School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA. ; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA. ; Department of Integrative Biology and Pharmacology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA. Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA. ; Department of Integrative Biology and Pharmacology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA. Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA. john.f.hancock@uth.tmc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293964" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Membrane/metabolism/*physiology ; Cricetinae ; Drosophila melanogaster ; Fibroblasts ; *Membrane Potentials ; Mice ; Neurons ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylserines/*metabolism ; Signal Transduction ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mervis, Jeffrey -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1054. doi: 10.1126/science.347.6226.1054.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745139" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Biology/*education ; Curriculum ; *Faculty ; Knowledge ; *Professional Competence ; *Religion and Science ; Role ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-02-28
    Description: A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, Tiffany B -- Mulley, Geraldine -- Dills, Alexander H -- Alsohim, Abdullah S -- McGuffin, Liam J -- Studholme, David J -- Silby, Mark W -- Brockhurst, Michael A -- Johnson, Louise J -- Jackson, Robert W -- BB/J015350/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/K003240/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT097835MF/Wellcome Trust/United Kingdom -- WT101650MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1014-7. doi: 10.1126/science.1259145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. ; Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. Department of Plant Production and Protection, Qassim University, Qassim, P.O. Box 6622, Saudi Arabia. ; College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK. ; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. l.j.johnson@reading.ac.uk. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. The University of Akureyri, Borgir vid Nordurslod, IS-600 Akureyri, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722415" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/*physiology ; *Biological Evolution ; Flagella/genetics/metabolism/*physiology ; Gene Deletion ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Nitrogen/*metabolism ; Pseudomonas fluorescens/genetics/metabolism/*physiology ; Regulon ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-03-06
    Description: Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to 2.58-million-year-old fossil and hominin-bearing sediments in the Ledi-Geraru research area of Afar, Ethiopia, that have produced the earliest record of the genus Homo. Vertebrate fossils record a faunal turnover indicative of more open and probably arid habitats than those reconstructed earlier in this region, which is in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time. Geological analyses constrain depositional and structural models of Afar and date the LD 350-1 Homo mandible to 2.80 to 2.75 Ma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DiMaggio, Erin N -- Campisano, Christopher J -- Rowan, John -- Dupont-Nivet, Guillaume -- Deino, Alan L -- Bibi, Faysal -- Lewis, Margaret E -- Souron, Antoine -- Garello, Dominique -- Werdelin, Lars -- Reed, Kaye E -- Arrowsmith, J Ramon -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1355-9. doi: 10.1126/science.aaa1415. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. dimaggio@psu.edu kreed@asu.edu. ; Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; CNRS Geosciences Rennes, Campus de Beaulieu, 35042 Rennes, France. ; Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA. ; Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany. ; Biology Program, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA. ; Human Evolution Research Center, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. ; Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, SE-10405 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739409" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Ecosystem ; Ethiopia ; Fossils ; *Geologic Sediments ; *Hominidae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-11-21
    Description: The nonrandom distribution of meiotic recombination shapes heredity and genetic diversification. Theoretically, hotspots--favored sites of recombination initiation--either evolve rapidly toward extinction or are conserved, especially if they are chromosomal features under selective constraint, such as promoters. We tested these theories by comparing genome-wide recombination initiation maps from widely divergent Saccharomyces species. We find that hotspots frequently overlap with promoters in the species tested, and consequently, hotspot positions are well conserved. Remarkably, the relative strength of individual hotspots is also highly conserved, as are larger-scale features of the distribution of recombination initiation. This stability, not predicted by prior models, suggests that the particular shape of the yeast recombination landscape is adaptive and helps in understanding evolutionary dynamics of recombination in other species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656144/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656144/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Isabel -- Keeney, Scott -- F31 GM097861/GM/NIGMS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM058673/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):932-7. doi: 10.1126/science.aad0814.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. s-keeney@ski.mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586758" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Chromosomes, Fungal/genetics ; *DNA Breaks, Double-Stranded ; Genome, Fungal/genetics ; *Homologous Recombination ; Meiosis/*genetics ; Phylogeny ; Saccharomyces cerevisiae/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-09-19
    Description: Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, David T -- Zheng, Yu -- Wittner, Ben S -- Lee, Richard J -- Zhu, Huili -- Broderick, Katherine T -- Desai, Rushil -- Fox, Douglas B -- Brannigan, Brian W -- Trautwein, Julie -- Arora, Kshitij S -- Desai, Niyati -- Dahl, Douglas M -- Sequist, Lecia V -- Smith, Matthew R -- Kapur, Ravi -- Wu, Chin-Lee -- Shioda, Toshi -- Ramaswamy, Sridhar -- Ting, David T -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- 2R01CA129933/CA/NCI NIH HHS/ -- EB008047/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1351-6. doi: 10.1126/science.aab0917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Urology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383955" target="_blank"〉PubMed〈/a〉
    Keywords: Androgen Antagonists/pharmacology/*therapeutic use ; Animals ; Cell Line, Tumor ; Drug Resistance, Neoplasm/*genetics ; Humans ; Male ; Mice ; Neoplastic Cells, Circulating/drug effects/*metabolism ; Phenylthiohydantoin/*analogs & derivatives/pharmacology/therapeutic use ; Prostate/drug effects/metabolism/pathology ; Prostatic Neoplasms/*drug therapy/*pathology ; Proto-Oncogene Proteins/genetics/metabolism ; RNA Splicing ; Receptors, Androgen/*genetics ; Sequence Analysis, RNA/methods ; Signal Transduction ; Single-Cell Analysis/methods ; Transcriptome ; Wnt Proteins/genetics/*metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-11-07
    Description: Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boualem, Adnane -- Troadec, Christelle -- Camps, Celine -- Lemhemdi, Afef -- Morin, Halima -- Sari, Marie-Agnes -- Fraenkel-Zagouri, Rina -- Kovalski, Irina -- Dogimont, Catherine -- Perl-Treves, Rafael -- Bendahmane, Abdelhafid -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):688-91. doi: 10.1126/science.aac8370.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. ; Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Universite Rene Descartes, Paris, France. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; INRA, UR 1052, Unite de Genetique et d'Amelioration des Fruits et Legumes, BP 94, F-84143 Montfavet, France. ; Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. bendahm@evry.inra.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542573" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; *Biological Evolution ; Cucumis sativus/enzymology/genetics/growth & development ; Cucurbitaceae/enzymology/genetics/*growth & development ; Ethylenes/biosynthesis ; Flowers/enzymology/genetics/*growth & development ; Genes, Plant/genetics/physiology ; Lyases/genetics/*physiology ; Molecular Sequence Data ; Phloem/enzymology/genetics/growth & development ; Plant Proteins/genetics/*physiology ; Sex Determination Processes/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-06-20
    Description: G protein-coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein alpha subunit Ras and helical domains-previously observed to separate widely upon receptor binding to expose the nucleotide-binding site-separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dror, Ron O -- Mildorf, Thomas J -- Hilger, Daniel -- Manglik, Aashish -- Borhani, David W -- Arlow, Daniel H -- Philippsen, Ansgar -- Villanueva, Nicolas -- Yang, Zhongyu -- Lerch, Michael T -- Hubbell, Wayne L -- Kobilka, Brian K -- Sunahara, Roger K -- Shaw, David E -- P30EY00331/EY/NEI NIH HHS/ -- R01EY05216/EY/NEI NIH HHS/ -- R01GM083118/GM/NIGMS NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1361-5. doi: 10.1126/science.aaa5264.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com. ; D. E. Shaw Research, New York, NY 10036, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. ; D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089515" target="_blank"〉PubMed〈/a〉
    Keywords: GTP-Binding Protein alpha Subunits, Gi-Go/*chemistry ; GTP-Binding Protein alpha Subunits, Gs/*chemistry ; Guanine Nucleotide Exchange Factors/*chemistry ; Humans ; Models, Chemical ; Molecular Dynamics Simulation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-02-24
    Description: An important question in ecology is how mechanistic processes occurring among individuals drive large-scale patterns of community formation and change. Here we show that in two species of bluebirds, cycles of replacement of one by the other emerge as an indirect consequence of maternal influence on offspring behavior in response to local resource availability. Sampling across broad temporal and spatial scales, we found that western bluebirds, the more competitive species, bias the birth order of offspring by sex in a way that influences offspring aggression and dispersal, setting the stage for rapid increases in population density that ultimately result in the replacement of their sister species. Our results provide insight into how predictable community dynamics can occur despite the contingency of local behavioral interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duckworth, Renee A -- Belloni, Virginia -- Anderson, Samantha R -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):875-7. doi: 10.1126/science.1260154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. rad3@email.arizona.edu. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700519" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/analysis ; Animals ; *Biological Evolution ; Clutch Size ; *Competitive Behavior ; *Ecosystem ; Egg Yolk/chemistry ; Female ; Fires ; Male ; *Maternal Behavior ; Population Density ; Songbirds/*physiology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-06-20
    Description: Villmoare et al. (Reports, 20 March 2015, p. 1352) report on a hominin mandible from the Ledi-Geraru research area, Ethiopia, which they claim to be the earliest known representative of the genus Homo. However, certain measurements and observations for Australopithecus sediba mandibles presented are incorrect or are not included in critical aspects of the study. When correctly used, these data demonstrate that specimen LD 350-1 cannot be unequivocally assigned to the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawks, John -- de Ruiter, Darryl J -- Berger, Lee R -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aab0591.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA. Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa. jhawks@wisc.edu. ; Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa. Department of Anthropology, Texas A&M University, College Station, TX 77843, USA. ; Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hominidae/*anatomy & histology ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-22
    Description: Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG), which activates strigolactone signaling and illuminates signal perception by the strigolactone receptors. Here we describe how strigolactones bind to and act via ShHTLs, the diverged family of alpha/beta hydrolase-fold proteins in Striga. Live imaging using YLGs revealed that a dynamic wavelike propagation of strigolactone perception wakes up Striga seeds. We conclude that ShHTLs function as the strigolactone receptors mediating seed germination in Striga. Our findings enable access to strigolactone receptors and observation of the regulatory dynamics for strigolactone signal transduction in Striga.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsuchiya, Yuichiro -- Yoshimura, Masahiko -- Sato, Yoshikatsu -- Kuwata, Keiko -- Toh, Shigeo -- Holbrook-Smith, Duncan -- Zhang, Hua -- McCourt, Peter -- Itami, Kenichiro -- Kinoshita, Toshinori -- Hagihara, Shinya -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):864-8. doi: 10.1126/science.aab3831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada. yuichiro@itbm.nagoya-u.ac.jp hagi@itbm.nagoya-u.ac.jp. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. ; Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Japan Science and Technology Agency-Exploratory Research for Advanced Technology, Itami Molecular Nanocarbon Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. yuichiro@itbm.nagoya-u.ac.jp hagi@itbm.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293962" target="_blank"〉PubMed〈/a〉
    Keywords: Fluoresceins/chemistry/metabolism ; Fluorescence ; Fluorescent Dyes/chemistry/metabolism ; *Germination ; Hydrolases/metabolism ; Hydrolysis ; Lactones/*metabolism ; Molecular Imaging/methods ; Molecular Sequence Data ; Plant Growth Regulators/*metabolism ; Plant Proteins/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Seeds/*growth & development/metabolism ; Signal Transduction ; Striga/*growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-01-31
    Description: The mechanistic basis of eukaryotic circadian oscillators in model systems as diverse as Neurospora, Drosophila, and mammalian cells is thought to be a transcription-and-translation-based negative feedback loop, wherein progressive and controlled phosphorylation of one or more negative elements ultimately elicits their own proteasome-mediated degradation, thereby releasing negative feedback and determining circadian period length. The Neurospora crassa circadian negative element FREQUENCY (FRQ) exemplifies such proteins; it is progressively phosphorylated at more than 100 sites, and strains bearing alleles of frq with anomalous phosphorylation display abnormal stability of FRQ that is well correlated with altered periods or apparent arrhythmicity. Unexpectedly, we unveiled normal circadian oscillations that reflect the allelic state of frq but that persist in the absence of typical degradation of FRQ. This manifest uncoupling of negative element turnover from circadian period length determination is not consistent with the consensus eukaryotic circadian model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larrondo, Luis F -- Olivares-Yanez, Consuelo -- Baker, Christopher L -- Loros, Jennifer J -- Dunlap, Jay C -- P01 GM68087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R01 GM083336/GM/NIGMS NIH HHS/ -- R01 GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):1257277. doi: 10.1126/science.1257277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl. ; Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635104" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/pharmacology ; Alleles ; *Circadian Clocks ; *Circadian Rhythm ; Feedback, Physiological ; Fungal Proteins/biosynthesis/*genetics/*metabolism ; Half-Life ; Neurospora crassa/*physiology ; Phosphorylation ; Proteasome Endopeptidase Complex/metabolism ; Protein Kinase Inhibitors/pharmacology ; Protein Stability ; Proteolysis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-02-24
    Description: Cope's rule proposes that animal lineages evolve toward larger body size over time. To test this hypothesis across all marine animals, we compiled a data set of body sizes for 17,208 genera of marine animals spanning the past 542 million years. Mean biovolume across genera has increased by a factor of 150 since the Cambrian, whereas minimum biovolume has decreased by less than a factor of 10, and maximum biovolume has increased by more than a factor of 100,000. Neutral drift from a small initial value cannot explain this pattern. Instead, most of the size increase reflects differential diversification across classes, indicating that the pattern does not reflect a simple scaling-up of widespread and persistent selection for larger size within populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heim, Noel A -- Knope, Matthew L -- Schaal, Ellen K -- Wang, Steve C -- Payne, Jonathan L -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):867-70. doi: 10.1126/science.1260065.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA. naheim@stanford.edu. ; Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA. ; Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA 19081, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; *Biological Evolution ; *Body Size
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-05-23
    Description: Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex cross-talk between microenvironment, ILCs, and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed in order to regulate or enhance immune responses in disease prevention and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eberl, Gerard -- Colonna, Marco -- Di Santo, James P -- McKenzie, Andrew N J -- 100963/Wellcome Trust/United Kingdom -- 1U01AI095542/AI/NIAID NIH HHS/ -- MC_U105178805/Medical Research Council/United Kingdom -- R01DE021255/DE/NIDCR NIH HHS/ -- R21CA16719/CA/NCI NIH HHS/ -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 May 22;348(6237):aaa6566. doi: 10.1126/science.aaa6566. Epub 2015 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Microenvironment and Immunity Unit, 75724 Paris, France. gerard.eberl@pasteur.fr. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Institut Pasteur, Innate Immunity Unit, INSERM U668, 75724 Paris, France. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999512" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Adipose Tissue/immunology ; *Biological Evolution ; Bone Marrow/immunology ; Cytokines/immunology ; Diet ; Humans ; *Immunity, Innate ; Immunotherapy ; Inflammation/immunology ; Liver/embryology/immunology ; Lymphocyte Activation ; Lymphocytes/*immunology ; Microbiota/immunology ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-02-28
    Description: Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550587/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550587/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakurai, Yasuteru -- Kolokoltsov, Andrey A -- Chen, Cheng-Chang -- Tidwell, Michael W -- Bauta, William E -- Klugbauer, Norbert -- Grimm, Christian -- Wahl-Schott, Christian -- Biel, Martin -- Davey, Robert A -- R01 AI063513/AI/NIAID NIH HHS/ -- R01AI063513/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):995-8. doi: 10.1126/science.1258758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Texas Biomedical Research Institute, San Antonio, TX, USA. ; The University of Texas Medical Branch, Galveston, TX, USA. ; Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitat Munchen, Munich, Germany. ; Southwest Research Institute, San Antonio, TX, USA. ; Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany. ; Texas Biomedical Research Institute, San Antonio, TX, USA. rdavey@txbiomed.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/*pharmacology/therapeutic use ; BALB 3T3 Cells ; Benzylisoquinolines/pharmacology/therapeutic use ; Calcium Channel Blockers/*pharmacology/therapeutic use ; Calcium Channels/genetics/*physiology ; Ebolavirus/drug effects/*physiology ; Female ; Gene Knockout Techniques ; HeLa Cells ; Hemorrhagic Fever, Ebola/drug therapy/*therapy/virology ; Humans ; Macrophages/drug effects/virology ; Mice ; *Molecular Targeted Therapy ; NADP/analogs & derivatives/metabolism ; RNA Interference ; Signal Transduction ; Verapamil/pharmacology/therapeutic use ; Virus Internalization/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-11-14
    Description: Following the end-Devonian mass extinction (359 million years ago), vertebrates experienced persistent reductions in body size for at least 36 million years. Global shrinkage was not related to oxygen or temperature, which suggests that ecological drivers played a key role in determining the length and direction of size trends. Small, fast-breeding ray-finned fishes, sharks, and tetrapods, most under 1 meter in length from snout to tail, radiated to dominate postextinction ecosystems and vertebrae biodiversity. The few large-bodied, slow-breeding survivors failed to diversify, facing extinction despite earlier evolutionary success. Thus, the recovery interval resembled modern ecological successions in terms of active selection on size and related life histories. Disruption of global vertebrate, and particularly fish, biotas may commonly lead to widespread, long-term reduction in body size, structuring future biodiversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sallan, Lauren -- Galimberti, Andrew K -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):812-5. doi: 10.1126/science.aac7373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA. lsallan@sas.upenn.edu. ; Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; *Body Size ; Extinction, Biological ; Fishes/*anatomy & histology ; Tail/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-09-01
    Description: Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and beta-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinson, John T -- Chopra, Anant -- Nafissi, Navid -- Polacheck, William J -- Benson, Craig C -- Swist, Sandra -- Gorham, Joshua -- Yang, Luhan -- Schafer, Sebastian -- Sheng, Calvin C -- Haghighi, Alireza -- Homsy, Jason -- Hubner, Norbert -- Church, George -- Cook, Stuart A -- Linke, Wolfgang A -- Chen, Christopher S -- Seidman, J G -- Seidman, Christine E -- EB017103/EB/NIBIB NIH HHS/ -- HG005550/HG/NHGRI NIH HHS/ -- HL007374/HL/NHLBI NIH HHS/ -- HL115553/HL/NHLBI NIH HHS/ -- HL125807/HL/NHLBI NIH HHS/ -- K08 HL125807/HL/NHLBI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):982-6. doi: 10.1126/science.aaa5458.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu. ; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. ; Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56 D-44780, Bochum, Germany. ; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. ; National Institute for Health Research (NIHR) Biomedical Research Unit in Cardiovascular Disease at Royal Brompton and Harefield National Health Service (NHS) Foundation Trust, Imperial College London, London, UK. National Heart Centre and Duke-National University, Singapore, Singapore. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315439" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/pharmacology ; Cardiomyopathy, Dilated/*genetics/pathology/*physiopathology ; Cells, Cultured ; Connectin/chemistry/*genetics/*physiology ; Heart Rate ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Isoproterenol/pharmacology ; Mutant Proteins/chemistry/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocytes, Cardiac/*physiology ; RNA/genetics/metabolism ; Sarcomeres/*physiology/ultrastructure ; Sequence Analysis, RNA ; Signal Transduction ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-06-13
    Description: Cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction. In cells, MPS1 binding to kinetochores or to ectopic NDC80 complexes was prevented by end-on microtubule attachment, independent of known kinetochore protein-removal mechanisms. Competition for kinetochore binding between SAC proteins and microtubules provides a direct and perhaps evolutionarily conserved way to detect a properly organized spindle ready for cell division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiruma, Yoshitaka -- Sacristan, Carlos -- Pachis, Spyridon T -- Adamopoulos, Athanassios -- Kuijt, Timo -- Ubbink, Marcellus -- von Castelmur, Eleonore -- Perrakis, Anastassis -- Kops, Geert J P L -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1264-7. doi: 10.1126/science.aaa4055. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068855" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Binding, Competitive ; Calcium-Binding Proteins/genetics/metabolism ; *Cell Cycle Checkpoints ; Cell Cycle Proteins/*metabolism ; HeLa Cells ; Humans ; Kinetochores/*metabolism ; Microfilament Proteins/genetics/metabolism ; Microtubules/*metabolism ; Nuclear Proteins/chemistry/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Spindle Apparatus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-04-18
    Description: Human-like modes of communication, including mutual gaze, in dogs may have been acquired during domestication with humans. We show that gazing behavior from dogs, but not wolves, increased urinary oxytocin concentrations in owners, which consequently facilitated owners' affiliation and increased oxytocin concentration in dogs. Further, nasally administered oxytocin increased gazing behavior in dogs, which in turn increased urinary oxytocin concentrations in owners. These findings support the existence of an interspecies oxytocin-mediated positive loop facilitated and modulated by gazing, which may have supported the coevolution of human-dog bonding by engaging common modes of communicating social attachment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagasawa, Miho -- Mitsui, Shouhei -- En, Shiori -- Ohtani, Nobuyo -- Ohta, Mitsuaki -- Sakuma, Yasuo -- Onaka, Tatsushi -- Mogi, Kazutaka -- Kikusui, Takefumi -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):333-6. doi: 10.1126/science.1261022. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan. ; Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. ; University of Tokyo Health Sciences, Tama, Tokyo, Japan. ; Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan. ; Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. kikusui@azabu-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*psychology ; *Biological Evolution ; *Bonding, Human-Pet ; *Communication ; Dogs/*psychology ; Female ; *Fixation, Ocular ; Humans ; Oxytocin/*physiology ; Wolves/*psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-10-03
    Description: Body-size constancy and symmetry are signs of developmental stability. Yet, it is unclear exactly how developing animals buffer size variation. Drosophila insulin-like peptide Dilp8 is responsive to growth perturbations and controls homeostatic mechanisms that coordinately adjust growth and maturation to maintain size within the normal range. Here we show that Lgr3 is a Dilp8 receptor. Through the use of functional and adenosine 3',5'-monophosphate assays, we defined a pair of Lgr3 neurons that mediate homeostatic regulation. These neurons have extensive axonal arborizations, and genetic and green fluorescent protein reconstitution across synaptic partners show that these neurons connect with the insulin-producing cells and prothoracicotropic hormone-producing neurons to attenuate growth and maturation. This previously unrecognized circuit suggests how growth and maturation rate are matched and co-regulated according to Dilp8 signals to stabilize organismal size.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vallejo, Diana M -- Juarez-Carreno, Sergio -- Bolivar, Jorge -- Morante, Javier -- Dominguez, Maria -- OD010949-10/OD/NIH HHS/ -- P40OD018537/OD/NIH HHS/ -- R01-GM084947/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):aac6767. doi: 10.1126/science.aac6767. Epub 2015 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain. ; Departamento de Biomedicina, Biotecnologia y Salud Publica, Facultad de Ciencias, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real, Spain. ; Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain. m.dominguez@umh.es j.morante@umh.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26429885" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Animals ; Body Size ; Brain/cytology/*growth & development/metabolism ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*growth & development/metabolism ; Homeostasis ; Insect Hormones/genetics/metabolism ; Insulin/*metabolism ; Intercellular Signaling Peptides and Proteins/genetics/*metabolism ; Nerve Net/cytology/metabolism ; Neurons/*metabolism ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Evans, Susan -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):374-5. doi: 10.1126/science.aac5672. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University College London, London, UK. s.e.evans@ucl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206915" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Extremities/*anatomy & histology ; Lizards/*anatomy & histology ; Snakes/*anatomy & histology/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-11-21
    Description: Stabilization of the hypoxia-inducible factor 1 (HIF-1) increases life span and health span in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in Caenorhabditis elegans through a cell nonautonomous signal to the intestine, which results in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This prolongevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine. Intestinal FMO-2 is also activated by dietary restriction (DR) and is necessary for DR-mediated life-span extension, which suggests that this enzyme represents a point of convergence for two distinct longevity pathways. FMOs are conserved in eukaryotes and induced by multiple life span-extending interventions in mice, which suggests that these enzymes may play a critical role in promoting health and longevity across phyla.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leiser, Scott F -- Miller, Hillary -- Rossner, Ryan -- Fletcher, Marissa -- Leonard, Alison -- Primitivo, Melissa -- Rintala, Nicholas -- Ramos, Fresnida J -- Miller, Dana L -- Kaeberlein, Matt -- P30AG013280/AG/NIA NIH HHS/ -- R00AGA0033050/PHS HHS/ -- R01AG038518/AG/NIA NIH HHS/ -- T32AG000057/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1375-8. doi: 10.1126/science.aac9257. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Pathology, University of Washington, Seattle, WA 98195, USA. kaeber@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586189" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Caenorhabditis elegans/genetics/metabolism/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism/*physiology ; Diet ; Intestines/*enzymology ; Longevity/genetics/*physiology ; Mice ; Neurons/*metabolism ; Oxygenases/genetics/*physiology ; Protein Stability ; RNA Interference ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/*metabolism ; Tryptophan Hydroxylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leslie, Mitch -- New York, N.Y. -- Science. 2015 May 8;348(6235):615-6. doi: 10.1126/science.348.6235.615.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25953984" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/enzymology/genetics/ultrastructure ; Bacteria/enzymology/genetics/ultrastructure ; *Biological Evolution ; Chloroplasts ; Eukaryota/*classification/genetics/*ultrastructure ; Mitochondria ; Oceans and Seas ; Seawater/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vermeij, Geerat -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1038. doi: 10.1126/science.aad7032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA. gjvermeij@ucdavis.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26612940" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; *Biological Evolution ; Cichlids/*anatomy & histology ; *Extinction, Biological ; Jaw/*anatomy & histology ; Pharynx/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-06-20
    Description: Hawks et al. argue that our analysis of Australopithecus sediba mandibles is flawed and that specimen LD 350-1 cannot be distinguished from this, or any other, Australopithecus species. Our reexamination of the evidence confirms that LD 350-1 falls outside of the pattern that A. sediba shares with Australopithecus and thus is reasonably assigned to the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Villmoare, Brian -- Kimbel, William H -- Seyoum, Chalachew -- Campisano, Christopher J -- DiMaggio, Erin -- Rowan, John -- Braun, David R -- Arrowsmith, J Ramon -- Reed, Kaye E -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aab1122.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA. Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. Department of Anthropology, University College London, London WC1H 0BW, UK. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. Authority for Research and Conservation of Cultural Heritage, Addis Ababa, Ethiopia. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. ; Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. ; Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hominidae/*anatomy & histology ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-03-06
    Description: Our understanding of the origin of the genus Homo has been hampered by a limited fossil record in eastern Africa between 2.0 and 3.0 million years ago (Ma). Here we report the discovery of a partial hominin mandible with teeth from the Ledi-Geraru research area, Afar Regional State, Ethiopia, that establishes the presence of Homo at 2.80 to 2.75 Ma. This specimen combines primitive traits seen in early Australopithecus with derived morphology observed in later Homo, confirming that dentognathic departures from the australopith pattern occurred early in the Homo lineage. The Ledi-Geraru discovery has implications for hypotheses about the timing and place of origin of the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Villmoare, Brian -- Kimbel, William H -- Seyoum, Chalachew -- Campisano, Christopher J -- DiMaggio, Erin N -- Rowan, John -- Braun, David R -- Arrowsmith, J Ramon -- Reed, Kaye E -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1352-5. doi: 10.1126/science.aaa1343. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA. Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. Department of Anthropology, University College London, London WC1H 0BW, UK. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. Authority for Research and Conservation of Cultural Heritage, Addis Ababa, Ethiopia. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. ; Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739410" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Ethiopia ; Fossils ; Hominidae/*anatomy & histology ; Humans ; Mandible/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lichten, Michael -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):913. doi: 10.1126/science.aad5404. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Bethesda, MD 20892, USA. mlichten@helix.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586748" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *DNA Breaks, Double-Stranded ; *Evolution, Molecular ; Finches/*genetics ; *Gene Expression Regulation ; *Homologous Recombination ; Meiosis/*genetics ; *Recombination, Genetic ; Repressor Proteins/*genetics ; Saccharomyces cerevisiae/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):372-3. doi: 10.1126/science.349.6246.372.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206914" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Collagen/chemistry ; *Extinction, Biological ; Fossils ; Humans ; Mammals ; Paleontology/*methods ; Proteomics/*methods ; Sequence Analysis, Protein/*methods ; Skull
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-01-03
    Description: Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, which promoted longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysis to identify several lipids in which abundance was increased in worms constitutively overexpressing LIPL-4. Among them, oleoylethanolamide directly bound to LBP-8 and NHR-80 proteins, activated transcription of target genes of NHR-49 and NHR-80, and promoted longevity in C. elegans. These findings reveal a lysosome-to-nucleus signaling pathway that promotes longevity and suggest a function of lysosomes as signaling organelles in metazoans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Folick, Andrew -- Oakley, Holly D -- Yu, Yong -- Armstrong, Eric H -- Kumari, Manju -- Sanor, Lucas -- Moore, David D -- Ortlund, Eric A -- Zechner, Rudolf -- Wang, Meng C -- F30 AG046043/AG/NIA NIH HHS/ -- F30AG046043/AG/NIA NIH HHS/ -- R00 AG034988/AG/NIA NIH HHS/ -- R00AG034988/AG/NIA NIH HHS/ -- R01 AG045183/AG/NIA NIH HHS/ -- R01 DK095750/DK/NIDDK NIH HHS/ -- R01AG045183/AG/NIA NIH HHS/ -- R01DK095750/DK/NIDDK NIH HHS/ -- T32 GM008602/GM/NIGMS NIH HHS/ -- T32GM008602/GM/NIGMS NIH HHS/ -- T32HD055200/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):83-6. doi: 10.1126/science.1258857.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. ; Department of Biochemistry, Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA. ; Institute of Molecular Biosciences, University of Graz, Graz, A-8010, Austria. ; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. wmeng@bcm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554789" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Nucleus/metabolism ; Lipase/metabolism ; Lipid Metabolism ; Longevity/genetics/*physiology ; Lysosomes/*metabolism ; Molecular Chaperones/genetics/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wade, Lizzie -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):370-1. doi: 10.1126/science.349.6246.370. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206913" target="_blank"〉PubMed〈/a〉
    Keywords: Analytic Sample Preparation Methods ; Animals ; Biodiversity ; *Biological Evolution ; *Caves ; Cold Temperature ; DNA/chemistry/*genetics/*isolation & purification ; Hot Temperature ; Mexico ; Rodentia/*genetics ; Tooth/chemistry ; *Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-09-01
    Description: A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types-an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597888/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597888/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Ye -- Kim, Jae Kyoung -- Hirning, Andrew J -- Josic, Kresimir -- Bennett, Matthew R -- R01 GM104974/GM/NIGMS NIH HHS/ -- R01GM104974/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):986-9. doi: 10.1126/science.aaa3794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences, Rice University, Houston, TX 77005, USA. ; Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea. Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA. ; Department of Mathematics, University of Houston, Houston, TX 77204, USA. Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA. ; Department of Biosciences, Rice University, Houston, TX 77005, USA. Institute of Biosciences and Bioengineering, Rice University, Houston, TX 77005, USA. matthew.bennett@rice.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315440" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/analogs & derivatives/metabolism ; Escherichia coli/*genetics/*physiology ; Escherichia coli Proteins/genetics/metabolism ; Feedback, Physiological ; *Gene Expression Regulation, Bacterial ; *Gene Regulatory Networks ; Genetic Engineering ; Lab-On-A-Chip Devices ; Microbial Consortia/*genetics/*physiology ; Microbial Interactions ; Models, Biological ; Promoter Regions, Genetic ; Quorum Sensing ; Signal Transduction ; Synthetic Biology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Peter J -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):736-7. doi: 10.1126/science.aad6283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA. wagnerpj@si.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Body Size ; Fishes/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: Mammoths provide a detailed example of species origins and dispersal, but understanding has been impeded by taxonomic confusion, especially in North America. The Columbian mammoth Mammuthus columbi was thought to have evolved in North America from a more primitive Eurasian immigrant. The earliest American mammoths (1.5 million years ago), however, resemble the advanced Eurasian M. trogontherii that crossed the Bering land bridge around that time, giving rise directly to M. columbi. Woolly mammoth M. primigenius later evolved in Beringia and spread into Europe and North America, leading to a diversity of morphologies as it encountered endemic M. trogontherii and M. columbi, respectively. In North America, this included intermediates ("M. jeffersonii"), suggesting introgression of M. primigenius with M. columbi. The lineage illustrates the dynamic interplay of local adaptation, dispersal, and gene flow in the evolution of a widely distributed species complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, A M -- Sher, A V -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):805-9. doi: 10.1126/science.aac5660.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. a.lister@nhm.ac.uk. ; Severtsov Institute of Ecology and Evolution, Moscow 119071, Russia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564853" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animal Migration ; Animals ; *Biological Evolution ; Europe ; Fossils ; Gene Flow ; Mammoths/anatomy & histology/*classification/genetics ; Molar/anatomy & histology ; North America ; Tooth Wear/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-01-09
    Description: The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Shuyu -- Tsun, Zhi-Yang -- Wolfson, Rachel L -- Shen, Kuang -- Wyant, Gregory A -- Plovanich, Molly E -- Yuan, Elizabeth D -- Jones, Tony D -- Chantranupong, Lynne -- Comb, William -- Wang, Tim -- Bar-Peled, Liron -- Zoncu, Roberto -- Straub, Christoph -- Kim, Choah -- Park, Jiwon -- Sabatini, Bernardo L -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA180754/CA/NCI NIH HHS/ -- F31 AG044064/AG/NIA NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567906" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/chemistry/genetics/*metabolism ; Arginine/deficiency/*metabolism ; HEK293 Cells ; Humans ; Lysosomes/*enzymology ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/*metabolism ; Protein Structure, Tertiary ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-06-13
    Description: Steffen et al. (Research Articles, 13 February 2015, p. 736) recently assessed current global freshwater use, finding it to be well below a corresponding planetary boundary. However, they ignored recent scientific advances implying that the global consumptive use of freshwater may have already crossed the associated planetary boundary.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaramillo, Fernando -- Destouni, Georgia -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1217. doi: 10.1126/science.aaa9629. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Geography, Stockholm University, SE-106 91, Stockholm, Sweden. Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden. fernando.jaramillo@natgeo.su.se. ; Department of Physical Geography, Stockholm University, SE-106 91, Stockholm, Sweden. Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068843" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-07-18
    Description: Secretion of the cytokine interleukin-1beta (IL-1beta) by macrophages, a major driver of pathogenesis in atherosclerosis, requires two steps: Priming signals promote transcription of immature IL-1beta, and then endogenous "danger" signals activate innate immune signaling complexes called inflammasomes to process IL-1beta for secretion. Although cholesterol crystals are known to act as danger signals in atherosclerosis, what primes IL-1beta transcription remains elusive. Using a murine model of atherosclerosis, we found that cholesterol crystals acted both as priming and danger signals for IL-1beta production. Cholesterol crystals triggered neutrophils to release neutrophil extracellular traps (NETs). NETs primed macrophages for cytokine release, activating T helper 17 (TH17) cells that amplify immune cell recruitment in atherosclerotic plaques. Therefore, danger signals may drive sterile inflammation, such as that seen in atherosclerosis, through their interactions with neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warnatsch, Annika -- Ioannou, Marianna -- Wang, Qian -- Papayannopoulos, Venizelos -- MC_UP_1202/13/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):316-20. doi: 10.1126/science.aaa8064. Epub 2015 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. ; Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. veni.p@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26185250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/genetics ; Atherosclerosis/*immunology ; Cells, Cultured ; Cholesterol/chemistry/immunology ; Disease Models, Animal ; Extracellular Traps/*immunology ; Humans ; Inflammasomes/immunology ; Inflammation/immunology ; Interleukin-1beta/*biosynthesis/genetics ; Macrophages/*immunology ; Mice ; Mice, Mutant Strains ; Neutrophils/*immunology ; Signal Transduction ; Th17 Cells/immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garber, Ken -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):129. doi: 10.1126/science.349.6244.129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160924" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/chemistry/metabolism ; Collagen/metabolism ; Copper/*metabolism ; Humans ; Melanoma/drug therapy/pathology ; Neoplasms/*drug therapy/pathology ; Proto-Oncogene Proteins B-raf/*antagonists & inhibitors/genetics ; Signal Transduction ; Skin Diseases/drug therapy/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-03-15
    Description: Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Galphaq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(alpha)-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N(alpha)-terminal acetyl group.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Eun -- Kim, Jeong-Mok -- Seok, Ok-Hee -- Cho, Hanna -- Wadas, Brandon -- Kim, Seon-Young -- Varshavsky, Alexander -- Hwang, Cheol-Sang -- DK039520/DK/NIDDK NIH HHS/ -- GM031530/GM/NIGMS NIH HHS/ -- R01 DK039520/DK/NIDDK NIH HHS/ -- R01 GM031530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1249-52. doi: 10.1126/science.aaa3844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. ; Medical Genomics Research Center, KRIBB, Daejeon, South Korea. Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. cshwang@postech.ac.kr avarsh@caltech.edu. ; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea. cshwang@postech.ac.kr avarsh@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766235" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; GTP-Binding Protein alpha Subunits, Gq-G11/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Membrane Proteins/genetics/metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Processing, Post-Translational ; Protein Stability ; Proteolysis ; RGS Proteins/chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/genetics/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-10-31
    Description: Miocene small-bodied anthropoid primates from Africa and Eurasia are generally considered to precede the divergence between the two groups of extant catarrhines-hominoids (apes and humans) and Old World monkeys-and are thus viewed as more primitive than the stem ape Proconsul. Here we describe Pliobates cataloniae gen. et sp. nov., a small-bodied (4 to 5 kilograms) primate from the Iberian Miocene (11.6 million years ago) that displays a mosaic of primitive characteristics coupled with multiple cranial and postcranial shared derived features of extant hominoids. Our cladistic analyses show that Pliobates is a stem hominoid that is more derived than previously described small catarrhines and Proconsul. This forces us to reevaluate the role played by small-bodied catarrhines in ape evolution and provides key insight into the last common ancestor of hylobatids (gibbons) and hominids (great apes and humans).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alba, David M -- Almecija, Sergio -- DeMiguel, Daniel -- Fortuny, Josep -- Perez de los Rios, Miriam -- Pina, Marta -- Robles, Josep M -- Moya-Sola, Salvador -- New York, N.Y. -- Science. 2015 Oct 30;350(6260):aab2625. doi: 10.1126/science.aab2625. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA. Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. FOSSILIA Serveis Paleontologics i Geologics, Jaume I 87, 5e 1a, 08470 Sant Celoni, Barcelona, Spain. ; Institucio Catalana de Recerca i Estudis Avancats at ICP and Unitat d'Antropologia Biologica (Department de Biologia Animal, de Biologia Vegetal i d'Ecologia), Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Weight ; Bone and Bones/anatomy & histology ; Brain/anatomy & histology/growth & development ; Dentition ; Hominidae/anatomy & histology/*classification/growth & development ; Humans ; Hylobates/anatomy & histology/*classification/growth & development ; Phylogeny ; Skull/anatomy & histology/growth & development ; Spain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-06-06
    Description: Skinner and colleagues (Research Article, 23 January 2015, p. 395), based on metacarpal trabecular bone structure, argue that Australopithecus africanus employed human-like dexterity for stone tool making and use 3 million years ago. However, their evolutionary and biological assumptions are misinformed, failing to refute the previously existing hypothesis that human-like manipulation preceded systematized stone tool manufacture, as indicated by the fossil record.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Almecija, Sergio -- Wallace, Ian J -- Judex, Stefan -- Alba, David M -- Moya-Sola, Salvador -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1101. doi: 10.1126/science.aaa8414.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA. Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA. Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. sergio.almecija@gmail.com. ; Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA. ; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA. ; Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; ICREA at Institut Catala de Paleontologia Miquel Crusafont and Unitat d'Antropologia Biologica (Departament BABVE), Universitat Autonoma de Barcelona, Edifici ICTA-CP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26045428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Humans ; Metacarpal Bones/*anatomy & histology ; Metacarpus/*anatomy & histology ; Thumb/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-06-13
    Description: Jaramillo and Destouni claim that freshwater consumption is beyond the planetary boundary, based on high estimates of water cycle components, different definitions of water consumption, and extrapolation from a single case study. The difference from our analysis, based on mainstream assessments of global water consumption, highlights the need for clearer definitions of water cycle components and improved models and databases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerten, Dieter -- Rockstrom, Johan -- Heinke, Jens -- Steffen, Will -- Richardson, Katherine -- Cornell, Sarah -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1217. doi: 10.1126/science.aab0031. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Domain of Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. gerten@pik-potsdam.de. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. ; Research Domain of Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. International Livestock Research Institute, Nairobi, 00100 Kenya. Commonwealth Scientific and Industrial Research Organization, St. Lucia, QLD 4067, Australia. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia. ; Center for Macroecology, Evolution, and Climate, University of Copenhagen, Natural History Museum of Denmark, 2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068844" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-08-15
    Description: The evolution of sexual reproduction is often explained by Red Queen dynamics: Organisms must continually evolve to maintain fitness relative to interacting organisms, such as parasites. Recombination accompanies sexual reproduction and helps diversify an organism's offspring, so that parasites cannot exploit static host genotypes. Here we show that Drosophila melanogaster plastically increases the production of recombinant offspring after infection. The response is consistent across genetic backgrounds, developmental stages, and parasite types but is not induced after sterile wounding. Furthermore, the response appears to be driven by transmission distortion rather than increased recombination. Our study extends the Red Queen model to include the increased production of recombinant offspring and uncovers a remarkable ability of hosts to actively distort their recombination fraction in rapid response to environmental cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Nadia D -- Criscoe, Dallas R -- Skolfield, Shelly -- Kohl, Kathryn P -- Keebaugh, Erin S -- Schlenke, Todd A -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):747-50. doi: 10.1126/science.aab1768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA. ndsingh@ncsu.edu schlenkt@reed.edu. ; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA. ; Department of Biology, Reed College, Portland, OR, USA. ; Department of Biology, Winthrop University, Rock Hill, SC, USA. ; Department of Biology, Emory University, Atlanta, GA, USA. ; Department of Biology, Reed College, Portland, OR, USA. ndsingh@ncsu.edu schlenkt@reed.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273057" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Drosophila melanogaster/*genetics/growth & development/*parasitology ; Female ; *Genetic Fitness ; Genetic Variation ; Larva ; Male ; Mutation ; Parasitic Diseases/genetics ; *Recombination, Genetic ; Reproduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):729-30. doi: 10.1126/science.350.6262.729.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564827" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Brain/*growth & development ; *Fossils ; Pandalidae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):264. doi: 10.1126/science.350.6258.264.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472887" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; *Biological Evolution ; Caves ; China ; *Fossils ; *Human Migration ; Humans ; Tooth
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-06-06
    Description: Almecija and colleagues claim that we apply a simplified understanding of bone functional adaptation and that our results of human-like hand use in Australopithecus africanus are not novel. We argue that our results speak to actual behavior, rather than potential behaviors, and our functional interpretation is well supported by our methodological approach, comparative sample, and previous experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skinner, Matthew M -- Stephens, Nicholas B -- Tsegai, Zewdi J -- Foote, Alexandra C -- Nguyen, N Huynh -- Gross, Thomas -- Pahr, Dieter H -- Hublin, Jean-Jacques -- Kivell, Tracy L -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1101. doi: 10.1126/science.aaa8931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Anthropology, University College London London, WC1H 0BW, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anthropology, University College London London, WC1H 0BW, UK. ; Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Wien, Vienna, Austria. ; School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26045429" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Humans ; Metacarpal Bones/*anatomy & histology ; Metacarpus/*anatomy & histology ; Thumb/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-02-14
    Description: A new Late Jurassic docodontan shows specializations for a subterranean lifestyle. It is similar to extant subterranean golden moles in having reduced digit segments as compared to the ancestral phalangeal pattern of mammaliaforms and extant mammals. The reduction of digit segments can occur in mammals by fusion of the proximal and intermediate phalangeal precursors, a developmental process for which a gene and signaling network have been characterized in mouse and human. Docodontans show a positional shift of thoracolumbar ribs, a developmental variation that is controlled by Hox9 and Myf5 genes in extant mammals. We argue that these morphogenetic mechanisms of modern mammals were operating before the rise of modern mammals, driving the morphological disparity in the earliest mammaliaform diversification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Zhe-Xi -- Meng, Qing-Jin -- Ji, Qiang -- Liu, Di -- Zhang, Yu-Guang -- Neander, April I -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):760-4. doi: 10.1126/science.1260880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA. zxluo@uchicago.edu mengqingjin@bmnh.org.cn. ; Beijing Museum of Natural History, Beijing 100050, China. zxluo@uchicago.edu mengqingjin@bmnh.org.cn. ; Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. ; Beijing Museum of Natural History, Beijing 100050, China. ; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; China ; Finger Phalanges/*anatomy & histology/*growth & development ; Foot/anatomy & histology/growth & development ; Homeodomain Proteins/genetics/physiology ; Humans ; Mammals/*anatomy & histology/genetics/*growth & development ; Mice ; Morphogenesis/genetics/*physiology ; Myogenic Regulatory Factor 5/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-01-24
    Description: The distinctly human ability for forceful precision and power "squeeze" gripping is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of tools. However, it is unclear when these locomotory and manipulative transitions occurred. Here we show that Australopithecus africanus (~3 to 2 million years ago) and several Pleistocene hominins, traditionally considered not to have engaged in habitual tool manufacture, have a human-like trabecular bone pattern in the metacarpals consistent with forceful opposition of the thumb and fingers typically adopted during tool use. These results support archaeological evidence for stone tool use in australopiths and provide morphological evidence that Pliocene hominins achieved human-like hand postures much earlier and more frequently than previously considered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skinner, Matthew M -- Stephens, Nicholas B -- Tsegai, Zewdi J -- Foote, Alexandra C -- Nguyen, N Huynh -- Gross, Thomas -- Pahr, Dieter H -- Hublin, Jean-Jacques -- Kivell, Tracy L -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):395-9. doi: 10.1126/science.1261735.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Anthropology, University College London, London WC1H 0BW, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig Germany. ; Department of Anthropology, University College London, London WC1H 0BW, UK. ; Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Wien, Vienna, Austria. ; School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeology ; *Biological Evolution ; Hominidae/anatomy & histology ; Humans ; Metacarpal Bones/*anatomy & histology ; Metacarpus/*anatomy & histology/physiology ; Neanderthals/anatomy & histology ; Posture ; Thumb/*anatomy & histology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):362-6. doi: 10.1126/science.349.6246.362.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206910" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeology ; Asia/ethnology ; *Biological Evolution ; DNA/*genetics ; Europe/ethnology ; *Genome, Human ; Humans ; Russia/ethnology ; *Sequence Analysis, DNA ; Skull
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):21-3. doi: 10.1126/science.349.6243.21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138961" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Brain/*anatomy & histology/*embryology ; DNA/genetics ; *Enhancer Elements, Genetic ; GTPase-Activating Proteins/genetics ; Gene Dosage ; Genes, Regulator ; Genetic Engineering ; *Genome, Human ; Humans ; Mice ; Mutagenesis, Insertional ; Organ Size/genetics ; Pan troglodytes/anatomy & histology/embryology/genetics ; Receptors, Cell Surface/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 May 22;348(6237):847. doi: 10.1126/science.348.6237.847.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; DNA/*genetics ; Europe ; *Fossils ; Humans ; *Mandible ; Neanderthals/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1056-7. doi: 10.1126/science.347.6226.1056-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Ethiopia ; *Fossils ; Hominidae/anatomy & histology/*genetics ; Jaw/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-02-24
    Description: Navigation depends on multiple neural systems that encode the moment-to-moment changes in an animal's direction and location in space. These include head direction (HD) cells representing the orientation of the head and grid cells that fire at multiple locations, forming a repeating hexagonal grid pattern. Computational models hypothesize that generation of the grid cell signal relies upon HD information that ascends to the hippocampal network via the anterior thalamic nuclei (ATN). We inactivated or lesioned the ATN and subsequently recorded single units in the entorhinal cortex and parasubiculum. ATN manipulation significantly disrupted grid and HD cell characteristics while sparing theta rhythmicity in these regions. These results indicate that the HD signal via the ATN is necessary for the generation and function of grid cell activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476794/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476794/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Shawn S -- Clark, Benjamin J -- Taube, Jeffrey S -- NS053907/NS/NINDS NIH HHS/ -- R01 MH048924/MH/NIMH NIH HHS/ -- R01 NS053907/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):870-4. doi: 10.1126/science.1259591. Epub 2015 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA. ; Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA. jeffrey.taube@dartmouth.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Thalamic Nuclei/drug effects/*physiology ; Entorhinal Cortex/cytology/*physiology ; Female ; Head ; Hippocampus/cytology/physiology ; Lidocaine/pharmacology ; Nerve Net/cytology/drug effects/*physiology ; Neurons/*physiology ; Orientation/*physiology ; Rats ; Rats, Inbred LEC ; Signal Transduction ; Spatial Navigation/*physiology ; Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-09-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Sep 11;349(6253):1149-50. doi: 10.1126/science.349.6253.1149.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359379" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Bone and Bones/*anatomy & histology ; Caves ; *Fossils ; Humans ; South Africa ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacLean, Evan L -- Hare, Brian -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):280-1. doi: 10.1126/science.aab1200. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke Canine Cognition Center, Duke University, Durham, NC, USA. Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. ; Duke Canine Cognition Center, Duke University, Durham, NC, USA. Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. Center for Cognitive Neuroscience, Duke University, Durham, NC, USA. b.hare@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*psychology ; *Biological Evolution ; *Bonding, Human-Pet ; *Communication ; Dogs/*psychology ; Female ; *Fixation, Ocular ; Humans ; Oxytocin/*physiology ; Wolves/*psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 May 15;348(6236):744. doi: 10.1126/science.348.6236.744.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/*anatomy & histology/embryology ; *Biological Evolution ; Birds/*anatomy & histology/embryology/*genetics ; Bone and Bones/anatomy & histology/embryology ; Fibroblast Growth Factor 8/*genetics ; Fossils ; Hedgehog Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):220-1. doi: 10.1126/science.347.6219.220.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25593165" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Arthropods/anatomy & histology/classification/physiology ; *Biological Evolution ; *Crustacea/anatomy & histology/classification/physiology ; Fatty Acids, Unsaturated/metabolism ; *Insects/anatomy & histology/classification/physiology ; Juvenile Hormones/metabolism ; Phylogeny ; Respiration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-11-14
    Description: In healthy individuals, the intestinal microbiota cannot access the liver, spleen, or other peripheral tissues. Some pathogenic bacteria can reach these sites, however, and can induce a systemic immune response. How such compartmentalization is achieved is unknown. We identify a gut-vascular barrier (GVB) in mice and humans that controls the translocation of antigens into the blood stream and prohibits entry of the microbiota. Salmonella typhimurium can penetrate the GVB in a manner dependent on its pathogenicity island (Spi) 2-encoded type III secretion system and on decreased beta-catenin-dependent signaling in gut endothelial cells. The GVB is modified in celiac disease patients with elevated serum transaminases, which indicates that GVB dismantling may be responsible for liver damage in these patients. Understanding the GVB may provide new insights into the regulation of the gut-liver axis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spadoni, Ilaria -- Zagato, Elena -- Bertocchi, Alice -- Paolinelli, Roberta -- Hot, Edina -- Di Sabatino, Antonio -- Caprioli, Flavio -- Bottiglieri, Luca -- Oldani, Amanda -- Viale, Giuseppe -- Penna, Giuseppe -- Dejana, Elisabetta -- Rescigno, Maria -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):830-4. doi: 10.1126/science.aad0135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. ; The Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan, Italy. ; First Department of Medicine, St. Matteo Hospital, University of Pavia, Pavia, Italy. ; Unita Operativa Gastroenterologia ed Endoscopia, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico di Milano, and Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Universita degli Studi di Milano, Milan, Italy. ; Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy. ; The Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan, Italy. Department of Biosciences, Universita degli Studi di Milano, Italy. Department of Genetics, Immunology and Pathology, Uppsala University, Uppsala, Sweden. ; Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. Department of Biosciences, Universita degli Studi di Milano, Italy. maria.rescigno@ieo.eu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/blood/immunology ; Capillary Permeability/*immunology ; Celiac Disease/blood/immunology/microbiology ; Genomic Islands/genetics/immunology ; Humans ; Ileum/blood supply/immunology/microbiology ; Intestinal Mucosa/immunology/microbiology ; Intestines/blood supply/*immunology/*microbiology ; Liver/immunology ; Mice ; Mice, Inbred C57BL ; Microbiota/*immunology ; Salmonella Infections/*immunology ; Salmonella typhimurium/genetics/*immunology/pathogenicity ; Signal Transduction ; Spleen/immunology ; Transaminases/blood ; Type III Secretion Systems/genetics/immunology ; Wnt Signaling Pathway ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perkins, Sid -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1431. doi: 10.1126/science.349.6255.1431.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Dental Enamel ; *Fishes ; Fossils ; Hardness ; *Tooth
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jeremiah Y -- New York, N.Y. -- Science. 2015 Oct 2;350(6256):47. doi: 10.1126/science.aad3003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. jeremiah.cohen@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26430113" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Dopamine/*metabolism ; Dopaminergic Neurons/*metabolism ; Electric Stimulation ; Humans ; Mice ; Neurophysiology/trends ; *Reward ; Serotonin/*metabolism ; Signal Transduction ; Time Factors ; Ventral Tegmental Area/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-07-25
    Description: Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martill, David M -- Tischlinger, Helmut -- Longrich, Nicholas R -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):416-9. doi: 10.1126/science.aaa9208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK. ; Tannenweg 16, 85134 Stammham, Germany. ; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206932" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; *Biological Evolution ; Brazil ; Extinction, Biological ; Extremities/*anatomy & histology ; Fossils ; India ; Lizards/*anatomy & histology ; Phylogeny ; Skull/anatomy & histology ; Snakes/*anatomy & histology/*classification ; South America ; Spine/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-08-01
    Description: Obligate parasitic plants in the Orobanchaceae germinate after sensing plant hormones, strigolactones, exuded from host roots. In Arabidopsis thaliana, the alpha/beta-hydrolase D14 acts as a strigolactone receptor that controls shoot branching, whereas its ancestral paralog, KAI2, mediates karrikin-specific germination responses. We observed that KAI2, but not D14, is present at higher copy numbers in parasitic species than in nonparasitic relatives. KAI2 paralogs in parasites are distributed into three phylogenetic clades. The fastest-evolving clade, KAI2d, contains the majority of KAI2 paralogs. Homology models predict that the ligand-binding pockets of KAI2d resemble D14. KAI2d transgenes confer strigolactone-specific germination responses to Arabidopsis thaliana. Thus, the KAI2 paralogs D14 and KAI2d underwent convergent evolution of strigolactone recognition, respectively enabling developmental responses to strigolactones in angiosperms and host detection in parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conn, Caitlin E -- Bythell-Douglas, Rohan -- Neumann, Drexel -- Yoshida, Satoko -- Whittington, Bryan -- Westwood, James H -- Shirasu, Ken -- Bond, Charles S -- Dyer, Kelly A -- Nelson, David C -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):540-3. doi: 10.1126/science.aab1140.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Georgia, Athens, GA 30602, USA. ; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia. ; RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228149" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*metabolism/*parasitology ; Arabidopsis Proteins/*classification/genetics/metabolism ; *Biological Evolution ; Gene Dosage ; Germination ; Heterocyclic Compounds, 1-Ring/*metabolism ; Host-Parasite Interactions ; Hydrolases/*classification/genetics/metabolism ; Lactones/*metabolism ; Orobanchaceae/*enzymology/genetics/growth & development ; Phylogeny ; Plant Growth Regulators/*metabolism ; Plant Roots/metabolism/parasitology ; Plants, Genetically Modified/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-08-15
    Description: Astrocytes are important regulatory elements in brain function. They respond to neurotransmitters and release gliotransmitters that modulate synaptic transmission. However, the cell- and synapse-specificity of the functional relationship between astrocytes and neurons in certain brain circuits remains unknown. In the dorsal striatum, which mainly comprises two intermingled subtypes (striatonigral and striatopallidal) of medium spiny neurons (MSNs) and synapses belonging to two neural circuits (the direct and indirect pathways of the basal ganglia), subpopulations of astrocytes selectively responded to specific MSN subtype activity. These subpopulations of astrocytes released glutamate that selectively activated N-methyl-d-aspartate receptors in homotypic, but not heterotypic, MSNs. Likewise, astrocyte subpopulations selectively regulated homotypic synapses through metabotropic glutamate receptor activation. Therefore, bidirectional astrocyte-neuron signaling selectively occurs between specific subpopulations of astrocytes, neurons, and synapses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, R -- Bajo-Graneras, R -- Moratalla, R -- Perea, G -- Araque, A -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):730-4. doi: 10.1126/science.aaa7945.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto Cajal, Consejo Superior de Investigaciones Cientificas, 28002 Madrid, Spain. ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas, 28002 Madrid, Spain. Centro de Investigacion Biomedica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain. ; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA. araque@umn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*physiology ; Basal Ganglia/cytology/*physiology ; Cell Communication ; Glutamates/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net/physiology ; Neurons/*physiology ; Receptors, Metabotropic Glutamate/agonists/metabolism ; Receptors, N-Methyl-D-Aspartate/agonists/metabolism ; Signal Transduction ; Synapses/*physiology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, Richard F -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1068-9. doi: 10.1126/science.aaa9217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Anthropology and Division of Earth and Ocean Sciences, Duke University, Durham, NC 27708, USA. richard.kay@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Fossils ; Peru ; Phylogeny ; *Platyrrhini/anatomy & histology/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-01-17
    Description: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries-climate change and biosphere integrity-have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steffen, Will -- Richardson, Katherine -- Rockstrom, Johan -- Cornell, Sarah E -- Fetzer, Ingo -- Bennett, Elena M -- Biggs, Reinette -- Carpenter, Stephen R -- de Vries, Wim -- de Wit, Cynthia A -- Folke, Carl -- Gerten, Dieter -- Heinke, Jens -- Mace, Georgina M -- Persson, Linn M -- Ramanathan, Veerabhadran -- Reyers, Belinda -- Sorlin, Sverker -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):1259855. doi: 10.1126/science.1259855. Epub 2015 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia. will.steffen@anu.edu.au. ; Center for Macroecology, Evolution, and Climate, University of Copenhagen, Natural History Museum of Denmark, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. ; Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Centre for Studies in Complexity, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa. ; Center for Limnology, University of Wisconsin, 680 North Park Street, Madison WI 53706 USA. ; Alterra Wageningen University and Research Centre, P.O. Box 47, 6700AA Wageningen, Netherlands. Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands. ; Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, SE-10405 Stockholm, Sweden. ; Research Domain Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A62, 14473 Potsdam, Germany. ; Research Domain Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A62, 14473 Potsdam, Germany. International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya. CSIRO (Commonwealth Scientific and Industrial Research Organization), St. Lucia, QLD 4067, Australia. ; Centre for Biodiversity and Environment Research (CBER), Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK. ; Stockholm Environment Institute, Linnegatan 87D, SE-10451 Stockholm, Sweden. ; Scripps Institution of Oceanography, University of California at San Diego, 8622 Kennel Way, La Jolla, CA 92037 USA. TERI (The Energy and Resources Institute) University, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi 110070, India. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Natural Resources and the Environment, CSIR, P.O. Box 320, Stellenbosch 7599, South Africa. ; Division of History of Science, Technology and Environment, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25592418" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Fresh Water ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-04-18
    Description: Many top consumers in today's oceans are marine tetrapods, a collection of lineages independently derived from terrestrial ancestors. The fossil record illuminates their transitions from land to sea, yet these initial invasions account for a small proportion of their evolutionary history. We review the history of marine invasions that drove major changes in anatomy, physiology, and ecology over more than 250 million years. Many innovations evolved convergently in multiple clades, whereas others are unique to individual lineages. The evolutionary arcs of these ecologically important clades are framed against the backdrop of mass extinctions and regime shifts in ocean ecosystems. Past and present human disruptions to marine tetrapods, with cascading impacts on marine ecosystems, underscore the need to link macroecology with evolutionary change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelley, Neil P -- Pyenson, Nicholas D -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):aaa3716. doi: 10.1126/science.aaa3716.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA. kelleynp@si.edu. ; Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*classification ; *Biological Evolution ; Ecosystem ; Fossils ; *Introduced Species ; Oceans and Seas ; Vertebrates/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-02-24
    Description: Prufer and Meyer raise concerns over the mitochondrial DNA (mtDNA) results we reported for the Hoyo Negro individual, citing failure of a portion of these data to conform to their expectations of ancient DNA (aDNA). Because damage patterns in aDNA vary, outright rejection of our findings on this basis is unwarranted, especially in light of our other observations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kemp, Brian M -- Lindo, John -- Bolnick, Deborah A -- Malhi, Ripan S -- Chatters, James C -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):835. doi: 10.1126/science.1261188.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA. paleosci@gmail.com bmkemp@wsu.edu. ; Department of Anthropology, University of Illinois, Urbana, IL 61801, USA. ; Department of Anthropology and Population Research Center, University of Texas at Austin, Austin, TX 78712, USA. ; Department of Anthropology, University of Illinois, Urbana, IL 61801, USA. Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA. ; Applied Paleoscience and DirectAMS, 10322 Northeast 190th Street, Bothell, WA 98011, USA. paleosci@gmail.com bmkemp@wsu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700511" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Humans ; Indians, North American/*genetics ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, Michael -- New York, N.Y. -- Science. 2015 May 8;348(6235):617. doi: 10.1126/science.348.6235.617.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25953986" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology/*physiology ; China ; Feathers/*physiology ; *Flight, Animal ; Fossils
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):914. doi: 10.1126/science.349.6251.914.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315415" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; Genes, Chloroplast ; *Genetic Speciation ; Genetic Variation ; Genome, Plant ; Orchidaceae/classification/*genetics/physiology ; *Phylogeny ; Pollination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-04-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiers, E Toby -- West, Stuart A -- New York, N.Y. -- Science. 2015 Apr 24;348(6233):392-4. doi: 10.1126/science.aaa9605.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Ecological Sciences, Vrije Universiteit, 1081 HV Amsterdam, Netherlands. toby.kiers@vu.nl. ; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25908807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria ; *Biological Evolution ; Energy Metabolism ; Insects/microbiology ; Platyhelminths ; Symbiosis/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-02-24
    Description: Chatters et al. (Reports, 16 May 2014, p. 750) reported the retrieval of DNA sequences from a 12,000- to 13,000-year-old human tooth discovered in an underwater cave in Mexico's Yucatan peninsula. They propose that this ancient human individual's mitochondrial DNA (mtDNA) belongs to haplogroup D1. However, our analysis of postmortem damage patterns finds no evidence for an ancient origin of these sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prufer, Kay -- Meyer, Matthias -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):835. doi: 10.1126/science.1260617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. pruefer@eva.mpg.de mmeyer@eva.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700510" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Humans ; Indians, North American/*genetics ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-09-26
    Description: Dying cells initiate adaptive immunity by providing both antigens and inflammatory stimuli for dendritic cells, which in turn activate CD8(+) T cells through a process called antigen cross-priming. To define how different forms of programmed cell death influence immunity, we established models of necroptosis and apoptosis, in which dying cells are generated by receptor-interacting protein kinase-3 and caspase-8 dimerization, respectively. We found that the release of inflammatory mediators, such as damage-associated molecular patterns, by dying cells was not sufficient for CD8(+) T cell cross-priming. Instead, robust cross-priming required receptor-interacting protein kinase-1 (RIPK1) signaling and nuclear factor kappaB (NF-kappaB)-induced transcription within dying cells. Decoupling NF-kappaB signaling from necroptosis or inflammatory apoptosis reduced priming efficiency and tumor immunity. Our results reveal that coordinated inflammatory and cell death signaling pathways within dying cells orchestrate adaptive immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651449/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651449/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yatim, Nader -- Jusforgues-Saklani, Helene -- Orozco, Susana -- Schulz, Oliver -- Barreira da Silva, Rosa -- Reis e Sousa, Caetano -- Green, Douglas R -- Oberst, Andrew -- Albert, Matthew L -- 5R01AI108685-02/AI/NIAID NIH HHS/ -- AI44848/AI/NIAID NIH HHS/ -- R01 AI108685/AI/NIAID NIH HHS/ -- R01AI108685/AI/NIAID NIH HHS/ -- R21 CA185681/CA/NCI NIH HHS/ -- R21CA185681/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):328-34. doi: 10.1126/science.aad0395. Epub 2015 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France. Institut National de la Sante et de la Recherche Medicale, U818, 25 Rue du Docteur Roux, 75015 Paris, France. Frontieres du Vivant Doctoral School, Ecole Doctorale 474, Universite Paris Diderot-Paris 7, Sorbonne Paris Cite, 8-10 Rue Charles V, 75004 Paris, France. ; Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France. Institut National de la Sante et de la Recherche Medicale, U818, 25 Rue du Docteur Roux, 75015 Paris, France. ; Department of Immunology, University of Washington, Campus Box 358059, 750 Republican Street, Seattle, WA 98109, USA. ; Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26405229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*immunology ; CD8-Positive T-Lymphocytes/*immunology ; Caspase 8/metabolism ; Cell Survival ; Cross-Priming ; Dendritic Cells/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/*metabolism ; NIH 3T3 Cells ; Receptor-Interacting Protein Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-08-01
    Description: The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1alpha (DD1alpha), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1alpha appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1alpha-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1alpha thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, Kyoung Wan -- Byun, Sanguine -- Kwon, Eunjeong -- Hwang, So-Young -- Chu, Kiki -- Hiraki, Masatsugu -- Jo, Seung-Hee -- Weins, Astrid -- Hakroush, Samy -- Cebulla, Angelika -- Sykes, David B -- Greka, Anna -- Mundel, Peter -- Fisher, David E -- Mandinova, Anna -- Lee, Sam W -- CA142805/CA/NCI NIH HHS/ -- CA149477/CA/NCI NIH HHS/ -- CA80058/CA/NCI NIH HHS/ -- DK062472/DK/NIDDK NIH HHS/ -- DK091218/DK/NIDDK NIH HHS/ -- DK093378/DK/NIDDK NIH HHS/ -- DK57683/DK/NIDDK NIH HHS/ -- S10RR027673/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):1261669. doi: 10.1126/science.1261669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. ; Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ; Center for Regenerative Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ; Department of Medicine, Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. swlee@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/genetics/*immunology ; Autoimmune Diseases/genetics/immunology ; Cell Line, Tumor ; Female ; Humans ; Inflammation/genetics/immunology ; Macrophages/immunology ; Male ; Membrane Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Phagocytosis/*immunology ; Phosphatidylserines/*metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-11-28
    Description: Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGee, Matthew D -- Borstein, Samuel R -- Neches, Russell Y -- Buescher, Heinz H -- Seehausen, Ole -- Wainwright, Peter C -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1077-9. doi: 10.1126/science.aab0800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA 95616, USA. Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland. Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland. mcgee.matthew@gmail.com. ; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA. ; Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA 95616, USA. ; Zoological Institute, University of Basel, CH-4051 Basel, Switzerland. ; Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland. Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26612951" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; *Biological Evolution ; Cichlids/*anatomy & histology ; Eating ; *Extinction, Biological ; Jaw/*anatomy & histology ; Lakes ; Malawi ; Pharynx/*anatomy & histology ; Tanzania
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-08-22
    Description: Alternative splicing (AS) generates extensive transcriptomic and proteomic complexity. However, the functions of species- and lineage-specific splice variants are largely unknown. Here we show that mammalian-specific skipping of polypyrimidine tract-binding protein 1 (PTBP1) exon 9 alters the splicing regulatory activities of PTBP1 and affects the inclusion levels of numerous exons. During neurogenesis, skipping of exon 9 reduces PTBP1 repressive activity so as to facilitate activation of a brain-specific AS program. Engineered skipping of the orthologous exon in chicken cells induces a large number of mammalian-like AS changes in PTBP1 target exons. These results thus reveal that a single exon-skipping event in an RNA binding regulator directs numerous AS changes between species. Our results further suggest that these changes contributed to evolutionary differences in the formation of vertebrate nervous systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gueroussov, Serge -- Gonatopoulos-Pournatzis, Thomas -- Irimia, Manuel -- Raj, Bushra -- Lin, Zhen-Yuan -- Gingras, Anne-Claude -- Blencowe, Benjamin J -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):868-73. doi: 10.1126/science.aaa8381.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain. ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ; Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. b.blencowe@utoronto.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293963" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; *Biological Evolution ; Brain/*embryology ; Chickens ; Embryonic Stem Cells/metabolism ; Exons/genetics ; HEK293 Cells ; Heterogeneous-Nuclear Ribonucleoproteins/*genetics ; Humans ; Mice ; Neural Stem Cells/metabolism ; Neurogenesis/*genetics ; Polypyrimidine Tract-Binding Protein/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benefit, Brenda R -- McCrossin, Monte L -- New York, N.Y. -- Science. 2015 Oct 30;350(6260):515-6. doi: 10.1126/science.aad0677.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, New Mexico State University, Las Cruces, NM 88003, USA. bbenefit@nmsu.edu. ; Department of Anthropology, New Mexico State University, Las Cruces, NM 88003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516271" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hominidae/*classification ; Humans ; Hylobates/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...