ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-12
    Description: Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089591/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089591/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ko, Ho -- Hofer, Sonja B -- Pichler, Bruno -- Buchanan, Katherine A -- Sjostrom, P Jesper -- Mrsic-Flogel, Thomas D -- FP7 243914/Medical Research Council/United Kingdom -- G0700188/Medical Research Council/United Kingdom -- G0700188(81448)/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2011 May 5;473(7345):87-91. doi: 10.1038/nature09880. Epub 2011 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21478872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/chemistry ; Calcium Signaling/physiology ; Computer Simulation ; Electrical Synapses/*physiology ; Mice ; Mice, Inbred C57BL ; Nerve Net/*physiology ; Patch-Clamp Techniques ; Photic Stimulation ; Pyramidal Cells/physiology ; Visual Cortex/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-26
    Description: Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farmer, W Todd -- Abrahamsson, Therese -- Chierzi, Sabrina -- Lui, Christopher -- Zaelzer, Cristian -- Jones, Emma V -- Bally, Blandine Ponroy -- Chen, Gary G -- Theroux, Jean-Francois -- Peng, Jimmy -- Bourque, Charles W -- Charron, Frederic -- Ernst, Carl -- Sjostrom, P Jesper -- Murai, Keith K -- FDN 143337/Canadian Institutes of Health Research/Canada -- MOP 111152/Canadian Institutes of Health Research/Canada -- MOP 123390/Canadian Institutes of Health Research/Canada -- MOP 126137/Canadian Institutes of Health Research/Canada -- NIA 288936/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):849-54. doi: 10.1126/science.aab3103.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada. ; Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada. ; Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montreal, Department of Medicine, University of Montreal, Montreal, Quebec, Canada. Department of Biology, McGill University, Montreal, Quebec, Canada. ; Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada. Department of Human Genetics, McGill University, Montreal, Quebec, Canada. Douglas Hospital Research Institute, Verdun, Quebec, Canada. ; Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada. keith.murai@mcgill.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912893" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*metabolism ; Cerebellar Cortex/*cytology ; Female ; Gene Deletion ; Hedgehog Proteins/genetics/*metabolism ; Male ; Mice ; Mice, Mutant Strains ; Neurons/*metabolism ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...