ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Time Factors  (895)
  • Protein Binding  (474)
  • Models, Biological  (417)
  • Nature Publishing Group (NPG)  (1,711)
  • American Meteorological Society (AMS)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplan, Karen -- England -- Nature. 2010 Sep 23;467(7314):489-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20963934" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Emigration and Immigration ; Europe ; European Union ; Faculty ; Income/statistics & numerical data ; Internationality ; *Pensions/statistics & numerical data ; Research Personnel/*economics/statistics & numerical data ; Retirement/*economics/statistics & numerical data ; Time Factors ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janvier, Philippe -- Clement, Gael -- England -- Nature. 2010 Jan 7;463(7277):40-1. doi: 10.1038/463040a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054387" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Chordata/anatomy & histology/classification/*physiology ; Extremities/anatomy & histology/physiology ; Fishes/anatomy & histology/physiology ; *Fossils ; Gait/physiology ; History, Ancient ; Models, Biological ; Phylogeny ; Poland
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-26
    Description: In physiological settings, nucleic-acid translocases must act on substrates occupied by other proteins, and an increasingly appreciated role of translocases is to catalyse protein displacement from RNA and DNA. However, little is known regarding the inevitable collisions that must occur, and the fate of protein obstacles and the mechanisms by which they are evicted from DNA remain unexplored. Here we sought to establish the mechanistic basis for protein displacement from DNA using RecBCD as a model system. Using nanofabricated curtains of DNA and multicolour single-molecule microscopy, we visualized collisions between a model translocase and different DNA-bound proteins in real time. We show that the DNA translocase RecBCD can disrupt core RNA polymerase, holoenzymes, stalled elongation complexes and transcribing RNA polymerases in either head-to-head or head-to-tail orientations, as well as EcoRI(E111Q), lac repressor and even nucleosomes. RecBCD did not pause during collisions and often pushed proteins thousands of base pairs before evicting them from DNA. We conclude that RecBCD overwhelms obstacles through direct transduction of chemomechanical force with no need for specific protein-protein interactions, and that proteins can be removed from DNA through active disruption mechanisms that act on a transition state intermediate as they are pushed from one nonspecific site to the next.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkelstein, Ilya J -- Visnapuu, Mari-Liis -- Greene, Eric C -- F32GM80864/GM/NIGMS NIH HHS/ -- GM074739/GM/NIGMS NIH HHS/ -- GM082848/GM/NIGMS NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- R01 GM074739-01A1/GM/NIGMS NIH HHS/ -- R01 GM074739-05/GM/NIGMS NIH HHS/ -- R01 GM082848/GM/NIGMS NIH HHS/ -- R01 GM082848-01A1/GM/NIGMS NIH HHS/ -- R01 GM082848-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 16;468(7326):983-7. doi: 10.1038/nature09561. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107319" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/genetics ; Biocatalysis ; DNA/genetics/*metabolism ; DNA, Viral/genetics/metabolism ; DNA-Binding Proteins/*metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Deoxyribonuclease EcoRI/metabolism ; Escherichia coli/enzymology ; Exodeoxyribonuclease V/*metabolism ; Holoenzymes/chemistry/metabolism ; Lac Repressors/metabolism ; Microscopy, Fluorescence ; *Movement ; Nucleosomes/metabolism ; Promoter Regions, Genetic/genetics ; Protein Binding ; Quantum Dots ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-06-04
    Description: Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheller, Silvan -- Goenrich, Meike -- Boecher, Reinhard -- Thauer, Rudolf K -- Jaun, Bernhard -- England -- Nature. 2010 Jun 3;465(7298):606-8. doi: 10.1038/nature09015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520712" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; *Biocatalysis ; Gases/metabolism ; Kinetics ; Mesna/analogs & derivatives/metabolism ; Methane/*biosynthesis/*metabolism ; Methanobacteriaceae/*enzymology ; Methylation ; Models, Biological ; Nickel/*metabolism ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-05-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, Kelly Rae -- England -- Nature. 2010 Apr 15;464(7291):1090-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20503480" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/genetics/metabolism/pathology/therapy ; Computational Biology/education/manpower/trends ; Female ; Genetic Heterogeneity ; Humans ; Models, Biological ; Neoplasms/genetics/*metabolism/*pathology/therapy ; Research Personnel/education ; Systems Biology/education/manpower/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-05-21
    Description: Malaria is a devastating infection caused by protozoa of the genus Plasmodium. Drug resistance is widespread, no new chemical class of antimalarials has been introduced into clinical practice since 1996 and there is a recent rise of parasite strains with reduced sensitivity to the newest drugs. We screened nearly 2 million compounds in GlaxoSmithKline's chemical library for inhibitors of P. falciparum, of which 13,533 were confirmed to inhibit parasite growth by at least 80% at 2 microM concentration. More than 8,000 also showed potent activity against the multidrug resistant strain Dd2. Most (82%) compounds originate from internal company projects and are new to the malaria community. Analyses using historic assay data suggest several novel mechanisms of antimalarial action, such as inhibition of protein kinases and host-pathogen interaction related targets. Chemical structures and associated data are hereby made public to encourage additional drug lead identification efforts and further research into this disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gamo, Francisco-Javier -- Sanz, Laura M -- Vidal, Jaume -- de Cozar, Cristina -- Alvarez, Emilio -- Lavandera, Jose-Luis -- Vanderwall, Dana E -- Green, Darren V S -- Kumar, Vinod -- Hasan, Samiul -- Brown, James R -- Peishoff, Catherine E -- Cardon, Lon R -- Garcia-Bustos, Jose F -- England -- Nature. 2010 May 20;465(7296):305-10. doi: 10.1038/nature09107.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485427" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/*analysis/chemistry/*pharmacology/toxicity ; Cell Line, Tumor ; *Drug Discovery ; Drug Resistance, Multiple/drug effects ; Humans ; Malaria, Falciparum/*drug therapy/parasitology ; Models, Biological ; Phylogeny ; Plasmodium falciparum/*drug effects/enzymology/genetics/growth & development ; Small Molecule Libraries/*analysis/chemistry/*pharmacology/toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luebeck, E Georg -- England -- Nature. 2010 Oct 28;467(7319):1053-5. doi: 10.1038/4671053a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981088" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Lineage/genetics ; Clone Cells/metabolism/pathology ; DNA Mutational Analysis ; Disease Progression ; Early Detection of Cancer ; *Evolution, Molecular ; Genomic Instability/*genetics ; Humans ; Models, Biological ; Mutagenesis/*genetics ; Neoplasm Metastasis/*genetics/pathology ; Pancreatic Neoplasms/classification/*genetics/*pathology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-01-16
    Description: Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Cuimin -- Young, Anna L -- Starling-Windhof, Amanda -- Bracher, Andreas -- Saschenbrecker, Sandra -- Rao, Bharathi Vasudeva -- Rao, Karnam Vasudeva -- Berninghausen, Otto -- Mielke, Thorsten -- Hartl, F Ulrich -- Beckmann, Roland -- Hayer-Hartl, Manajit -- England -- Nature. 2010 Jan 14;463(7278):197-202. doi: 10.1038/nature08651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075914" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Chaperonin 10/metabolism ; Chaperonin 60/metabolism ; Cryoelectron Microscopy ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Protein Binding ; *Protein Folding ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Ribulose-Bisphosphate Carboxylase/*chemistry/*metabolism/ultrastructure ; Synechococcus/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-04-03
    Description: Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the Arabidopsis JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel Interactor of JAZ (NINJA). NINJA acts as a transcriptional repressor whose activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress-related and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauwels, Laurens -- Barbero, Gemma Fernandez -- Geerinck, Jan -- Tilleman, Sofie -- Grunewald, Wim -- Perez, Amparo Cuellar -- Chico, Jose Manuel -- Bossche, Robin Vanden -- Sewell, Jared -- Gil, Eduardo -- Garcia-Casado, Gloria -- Witters, Erwin -- Inze, Dirk -- Long, Jeff A -- De Jaeger, Geert -- Solano, Roberto -- Goossens, Alain -- R01 GM072764/GM/NIGMS NIH HHS/ -- R01 GM072764-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 1;464(7289):788-91. doi: 10.1038/nature08854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360743" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*drug effects/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cyclopentanes/antagonists & inhibitors/*pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Models, Biological ; Oxylipins/antagonists & inhibitors/*pharmacology ; Plants, Genetically Modified ; Protein Binding ; Repressor Proteins/genetics/*metabolism ; Signal Transduction/*drug effects ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-16
    Description: Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we use zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically relevant micromolar ligand concentrations. Translation at each codon is monitored by stable binding of transfer RNAs (tRNAs)-labelled with distinct fluorophores-to translating ribosomes, which allows direct detection of the identity of tRNA molecules bound to the ribosome and therefore the underlying messenger RNA (mRNA) sequence. We observe the transit of tRNAs on single translating ribosomes and determine the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA molecule. Our results show that ribosomes are only briefly occupied by two tRNA molecules and that release of deacylated tRNA from the exit (E) site is uncoupled from binding of aminoacyl-tRNA site (A-site) tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uemura, Sotaro -- Aitken, Colin Echeverria -- Korlach, Jonas -- Flusberg, Benjamin A -- Turner, Stephen W -- Puglisi, Joseph D -- GM51266/GM/NIGMS NIH HHS/ -- R01 GM051266/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):1012-7. doi: 10.1038/nature08925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393556" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Codon/*genetics ; Escherichia coli ; Fluorescence ; Kinetics ; Ligands ; Luminescent Measurements ; Optical Tweezers ; Protein Biosynthesis/genetics/*physiology ; RNA, Transfer/genetics/*metabolism ; Ribosomes/chemistry/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-04-23
    Description: The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-alpha and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC(50)) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log(10) reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Min -- Nettles, Richard E -- Belema, Makonen -- Snyder, Lawrence B -- Nguyen, Van N -- Fridell, Robert A -- Serrano-Wu, Michael H -- Langley, David R -- Sun, Jin-Hua -- O'Boyle, Donald R 2nd -- Lemm, Julie A -- Wang, Chunfu -- Knipe, Jay O -- Chien, Caly -- Colonno, Richard J -- Grasela, Dennis M -- Meanwell, Nicholas A -- Hamann, Lawrence G -- England -- Nature. 2010 May 6;465(7294):96-100. doi: 10.1038/nature08960. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410884" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antiviral Agents/blood/chemistry/*pharmacology/therapeutic use ; Cell Line ; Cercopithecus aethiops ; Drug Resistance, Viral ; Female ; Genotype ; HeLa Cells ; Hepacivirus/*drug effects ; Hepatitis C/drug therapy/virology ; Humans ; Imidazoles/blood/chemistry/*pharmacology ; Inhibitory Concentration 50 ; Male ; Middle Aged ; Time Factors ; Vero Cells ; Viral Load/drug effects ; Viral Nonstructural Proteins/*antagonists & inhibitors ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cockburn, Andrew -- England -- Nature. 2010 Aug 19;466(7309):930-1. doi: 10.1038/466930a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/classification/genetics/*physiology ; *Cooperative Behavior ; Fathers ; Female ; Male ; Models, Biological ; Mothers ; Phylogeny ; Reproduction/genetics/physiology ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Deborah -- Carter, Philip -- England -- Nature. 2010 Jul 15;466(7304):315. doi: 10.1038/466315a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631779" target="_blank"〉PubMed〈/a〉
    Keywords: *Conflict of Interest ; *Drug Industry ; Humans ; *Influenza A Virus, H1N1 Subtype ; Influenza Vaccines/*supply & distribution ; Influenza, Human/*epidemiology/prevention & control/virology ; Reproducibility of Results ; Time Factors ; *Vaccination ; *World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-02-25
    Description: Tumours with mutant BRAF are dependent on the RAF-MEK-ERK signalling pathway for their growth. We found that ATP-competitive RAF inhibitors inhibit ERK signalling in cells with mutant BRAF, but unexpectedly enhance signalling in cells with wild-type BRAF. Here we demonstrate the mechanistic basis for these findings. We used chemical genetic methods to show that drug-mediated transactivation of RAF dimers is responsible for paradoxical activation of the enzyme by inhibitors. Induction of ERK signalling requires direct binding of the drug to the ATP-binding site of one kinase of the dimer and is dependent on RAS activity. Drug binding to one member of RAF homodimers (CRAF-CRAF) or heterodimers (CRAF-BRAF) inhibits one protomer, but results in transactivation of the drug-free protomer. In BRAF(V600E) tumours, RAS is not activated, thus transactivation is minimal and ERK signalling is inhibited in cells exposed to RAF inhibitors. These results indicate that RAF inhibitors will be effective in tumours in which BRAF is mutated. Furthermore, because RAF inhibitors do not inhibit ERK signalling in other cells, the model predicts that they would have a higher therapeutic index and greater antitumour activity than mitogen-activated protein kinase (MEK) inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have been borne out in a recent clinical trial of the RAF inhibitor PLX4032 (refs 4, 5). The model indicates that promotion of RAF dimerization by elevation of wild-type RAF expression or RAS activity could lead to drug resistance in mutant BRAF tumours. In agreement with this prediction, RAF inhibitors do not inhibit ERK signalling in cells that coexpress BRAF(V600E) and mutant RAS.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178447/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178447/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulikakos, Poulikos I -- Zhang, Chao -- Bollag, Gideon -- Shokat, Kevan M -- Rosen, Neal -- 1P01CA129243-02/CA/NCI NIH HHS/ -- 2R01EB001987/EB/NIBIB NIH HHS/ -- P01 CA129243-010002/CA/NCI NIH HHS/ -- R01 EB001987/EB/NIBIB NIH HHS/ -- U01 CA091178/CA/NCI NIH HHS/ -- U01 CA091178-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Mar 18;464(7287):427-30. doi: 10.1038/nature08902.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20179705" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Catalytic Domain ; Cell Line ; Cell Line, Tumor ; Enzyme Activation/drug effects ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; Indoles/pharmacology ; MAP Kinase Signaling System/*drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Models, Biological ; Neoplasms/drug therapy/enzymology/genetics/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinase Inhibitors/metabolism/*pharmacology/therapeutic use ; Protein Multimerization ; Proto-Oncogene Proteins B-raf/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Sulfonamides/pharmacology ; Transcriptional Activation/*drug effects ; raf Kinases/*antagonists & inhibitors/chemistry/genetics/*metabolism ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-01-29
    Description: Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vierbuchen, Thomas -- Ostermeier, Austin -- Pang, Zhiping P -- Kokubu, Yuko -- Sudhof, Thomas C -- Wernig, Marius -- 1018438-142-PABCA/PHS HHS/ -- 5T32NS007280/NS/NINDS NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 25;463(7284):1035-41. doi: 10.1038/nature08797. Epub 2010 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, California 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20107439" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Biomarkers/analysis ; Cell Line ; *Cell Lineage ; *Cell Transdifferentiation ; Cells, Cultured ; Embryo, Mammalian/cytology ; Fibroblasts/*cytology ; Mice ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/*cytology/metabolism/*physiology ; POU Domain Factors/genetics/metabolism ; Regenerative Medicine ; Synapses/metabolism ; Tail/cytology ; Time Factors ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-10-15
    Description: The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becks, Lutz -- Agrawal, Aneil F -- England -- Nature. 2010 Nov 4;468(7320):89-92. doi: 10.1038/nature09449. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada. lutz.becks@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944628" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration/physiology ; Animals ; *Biological Evolution ; Diet/veterinary ; *Ecosystem ; Female ; *Food ; Genetic Drift ; Male ; Meiosis/genetics ; Models, Biological ; Ovum/physiology ; Population Density ; Reproduction/physiology ; Reproduction, Asexual/physiology ; Rotifera/cytology/genetics/*physiology ; Selection, Genetic ; *Sex
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Francis -- England -- Nature. 2010 Dec 16;468(7326):877. doi: 10.1038/468877a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164451" target="_blank"〉PubMed〈/a〉
    Keywords: Drug Industry ; National Institutes of Health (U.S.)/economics/*organization & administration ; Time Factors ; Translational Medical Research/economics/*organization & administration/trends ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-11-19
    Description: Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branch, Trevor A -- Watson, Reg -- Fulton, Elizabeth A -- Jennings, Simon -- McGilliard, Carey R -- Pablico, Grace T -- Ricard, Daniel -- Tracey, Sean R -- England -- Nature. 2010 Nov 18;468(7322):431-5. doi: 10.1038/nature09528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, Washington 98195-5020, USA. tbranch@uw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification/*metabolism ; Biodiversity ; Biomass ; Databases, Factual ; *Ecosystem ; Environmental Policy ; *Fisheries ; *Fishes/metabolism ; Food Chain ; Human Activities ; Invertebrates/metabolism ; Models, Biological ; Plankton/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2009-12-18
    Description: Avian brood parasites and their hosts provide model systems for investigating links between recognition, learning, and their fitness consequences. One major evolutionary puzzle has continued to capture the attention of naturalists for centuries: why do hosts of brood parasites generally fail to recognize parasitic offspring after they have hatched from the egg, even when the host and parasitic chicks differ to almost comic degrees? One prominent theory to explain this pattern proposes that the costs of mistakenly learning to recognize the wrong offspring make recognition maladaptive. Here we show that American coots, Fulica americana, can recognize and reject parasitic chicks in their brood by using learned cues, despite the fact that the hosts and the brood parasites are of the same species. A series of chick cross-fostering experiments confirm that coots use first-hatched chicks in a brood as referents to learn to recognize their own chicks and then discriminate against later-hatched parasitic chicks in the same brood. When experimentally provided with the wrong reference chicks, coots can be induced to discriminate against their own offspring, confirming that the learning errors proposed by theory can exist. However, learning based on hatching order is reliable in naturally parasitized coot nests because host eggs hatch predictably ahead of parasite eggs. Conversely, a lack of reliable information may help to explain why the evolution of chick recognition is not more common in hosts of most interspecific brood parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shizuka, Daizaburo -- Lyon, Bruce E -- England -- Nature. 2010 Jan 14;463(7278):223-6. doi: 10.1038/nature08655. Epub 2009 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA. shizuka@biology.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016486" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*parasitology/*physiology ; British Columbia ; Cues ; Discrimination Learning/*physiology ; Feeding Behavior/physiology ; Genetic Fitness ; Nesting Behavior/*physiology ; Ovum/growth & development ; Pattern Recognition, Visual/physiology ; Survival Rate ; Time Factors ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quirk, Gregory J -- Milad, Mohammed R -- England -- Nature. 2010 Jan 7;463(7277):36-7. doi: 10.1038/463036a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054384" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conditioning, Classical/*physiology ; Cues ; Electroshock ; Extinction, Psychological/*physiology ; Fear/*physiology/*psychology ; Humans ; Memory/*physiology ; Models, Neurological ; Models, Psychological ; Neuronal Plasticity/*physiology ; Photic Stimulation ; Rats ; Stress Disorders, Post-Traumatic/therapy ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2009-12-23
    Description: Reprogramming of somatic cell nuclei to yield induced pluripotent stem (iPS) cells makes possible derivation of patient-specific stem cells for regenerative medicine. However, iPS cell generation is asynchronous and slow (2-3 weeks), the frequency is low (〈0.1%), and DNA demethylation constitutes a bottleneck. To determine regulatory mechanisms involved in reprogramming, we generated interspecies heterokaryons (fused mouse embryonic stem (ES) cells and human fibroblasts) that induce reprogramming synchronously, frequently and fast. Here we show that reprogramming towards pluripotency in single heterokaryons is initiated without cell division or DNA replication, rapidly (1 day) and efficiently (70%). Short interfering RNA (siRNA)-mediated knockdown showed that activation-induced cytidine deaminase (AID, also known as AICDA) is required for promoter demethylation and induction of OCT4 (also known as POU5F1) and NANOG gene expression. AID protein bound silent methylated OCT4 and NANOG promoters in fibroblasts, but not active demethylated promoters in ES cells. These data provide new evidence that mammalian AID is required for active DNA demethylation and initiation of nuclear reprogramming towards pluripotency in human somatic cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhutani, Nidhi -- Brady, Jennifer J -- Damian, Mara -- Sacco, Alessandra -- Corbel, Stephane Y -- Blau, Helen M -- AG009521/AG/NIA NIH HHS/ -- AG024987/AG/NIA NIH HHS/ -- AI007328/AI/NIAID NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG024987/AG/NIA NIH HHS/ -- R01 AG024987-05/AG/NIA NIH HHS/ -- T32 AI007328/AI/NIAID NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5175, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20027182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Fusion ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; Chromatin Immunoprecipitation ; Cytidine Deaminase/deficiency/genetics/*metabolism ; DNA/chemistry/genetics/metabolism ; *DNA Methylation ; DNA Replication ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Gene Knockdown Techniques ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Lung/cytology/embryology ; Mice ; Models, Biological ; Octamer Transcription Factor-3/genetics ; Promoter Regions, Genetic/genetics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-08-27
    Description: Eusociality, in which some individuals reduce their own lifetime reproductive potential to raise the offspring of others, underlies the most advanced forms of social organization and the ecologically dominant role of social insects and humans. For the past four decades kin selection theory, based on the concept of inclusive fitness, has been the major theoretical attempt to explain the evolution of eusociality. Here we show the limitations of this approach. We argue that standard natural selection theory in the context of precise models of population structure represents a simpler and superior approach, allows the evaluation of multiple competing hypotheses, and provides an exact framework for interpreting empirical observations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279739/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279739/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nowak, Martin A -- Tarnita, Corina E -- Wilson, Edward O -- R01 GM078986/GM/NIGMS NIH HHS/ -- R01 GM078986-04/GM/NIGMS NIH HHS/ -- R01GM078986/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1057-62. doi: 10.1038/nature09205.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program for Evolutionary Dynamics, Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA. martin_nowak@harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20740005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; *Biological Evolution ; Female ; Humans ; Insects/physiology ; Male ; Models, Biological ; Selection, Genetic ; *Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-05-14
    Description: Copper is an essential trace element for eukaryotes and most prokaryotes. However, intracellular free copper must be strictly limited because of its toxic side effects. Complex systems for copper trafficking evolved to satisfy cellular requirements while minimizing toxicity. The factors driving the copper transfer between protein partners along cellular copper routes are, however, not fully rationalized. Until now, inconsistent, scattered and incomparable data on the copper-binding affinities of copper proteins have been reported. Here we determine, through a unified electrospray ionization mass spectrometry (ESI-MS)-based strategy, in an environment that mimics the cellular redox milieu, the apparent Cu(I)-binding affinities for a representative set of intracellular copper proteins involved in enzymatic redox catalysis, in copper trafficking to and within various cellular compartments, and in copper storage. The resulting thermodynamic data show that copper is drawn to the enzymes that require it by passing from one copper protein site to another, exploiting gradients of increasing copper-binding affinity. This result complements the finding that fast copper-transfer pathways require metal-mediated protein-protein interactions and therefore protein-protein specific recognition. Together with Cu,Zn-SOD1, metallothioneins have the highest affinity for copper(I), and may play special roles in the regulation of cellular copper distribution; however, for kinetic reasons they cannot demetallate copper enzymes. Our study provides the thermodynamic basis for the kinetic processes that lead to the distribution of cellular copper.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banci, Lucia -- Bertini, Ivano -- Ciofi-Baffoni, Simone -- Kozyreva, Tatiana -- Zovo, Kairit -- Palumaa, Peep -- England -- Nature. 2010 Jun 3;465(7298):645-8. doi: 10.1038/nature09018. Epub 2010 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463663" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Carrier Proteins/*metabolism ; Cations, Monovalent/metabolism ; Copper/isolation & purification/*metabolism ; Cyclooxygenase 2/chemistry/metabolism ; Dithiothreitol/metabolism ; Glutathione/metabolism ; Humans ; Intracellular Space/*metabolism ; Ion Transport ; Kinetics ; Ligands ; Metallothionein/metabolism ; Mitochondria, Liver ; Oxidation-Reduction ; Protein Binding ; Rats ; Spectrometry, Mass, Electrospray Ionization ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-11-26
    Description: Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Li-Qing -- Hou, Bi-Huei -- Lalonde, Sylvie -- Takanaga, Hitomi -- Hartung, Mara L -- Qu, Xiao-Qing -- Guo, Woei-Jiun -- Kim, Jung-Gun -- Underwood, William -- Chaudhuri, Bhavna -- Chermak, Diane -- Antony, Ginny -- White, Frank F -- Somerville, Shauna C -- Mudgett, Mary Beth -- Frommer, Wolf B -- 1R01DK079109/DK/NIDDK NIH HHS/ -- F32GM083439-02/GM/NIGMS NIH HHS/ -- R01 DK079109/DK/NIDDK NIH HHS/ -- R01 DK079109-01/DK/NIDDK NIH HHS/ -- R01 DK079109-02/DK/NIDDK NIH HHS/ -- R01 DK079109-03/DK/NIDDK NIH HHS/ -- R01 DK079109-03S1/DK/NIDDK NIH HHS/ -- R01 DK079109-04/DK/NIDDK NIH HHS/ -- R01 GM068886/GM/NIGMS NIH HHS/ -- ZR01GM06886-06A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Nov 25;468(7323):527-32. doi: 10.1038/nature09606.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport/genetics ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Glucose/*metabolism ; HEK293 Cells ; Host-Pathogen Interactions/*physiology ; Humans ; Membrane Transport Proteins/*metabolism ; Models, Biological ; Oryza/genetics/metabolism/microbiology ; RNA, Messenger/metabolism ; Saccharomyces cerevisiae/genetics ; Xenopus/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okasha, Samir -- England -- Nature. 2010 Oct 7;467(7316):653-5. doi: 10.1038/467653a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Philosophy, University of Bristol, Bristol BS8 1TB, UK. Samir.Okasha@bristol.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20930821" target="_blank"〉PubMed〈/a〉
    Keywords: *Altruism ; Animals ; Biological Evolution ; *Cooperative Behavior ; Female ; Group Processes ; Male ; Models, Biological ; *Research Personnel ; Selection, Genetic ; Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vedral, Vlatko -- England -- Nature. 2010 Dec 9;468(7325):769-70. doi: 10.1038/468769a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150986" target="_blank"〉PubMed〈/a〉
    Keywords: Hot Temperature ; Models, Biological ; Photosynthesis ; *Quantum Theory ; *Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-07-16
    Description: The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Niels -- Konevega, Andrey L -- Wintermeyer, Wolfgang -- Rodnina, Marina V -- Stark, Holger -- England -- Nature. 2010 Jul 15;466(7304):329-33. doi: 10.1038/nature09206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉3D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631791" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Escherichia coli ; Kinetics ; Models, Molecular ; Molecular Conformation ; *Movement ; *Protein Biosynthesis ; RNA, Transfer/genetics/*metabolism ; Ribosome Subunits, Large, Bacterial/chemistry/metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism ; Ribosomes/chemistry/*metabolism ; Temperature ; Thermodynamics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-09-14
    Description: Messenger RNA lacking stop codons ('non-stop mRNA') can arise from errors in gene expression, and encode aberrant proteins whose accumulation could be deleterious to cellular function. In bacteria, these 'non-stop proteins' become co-translationally tagged with a peptide encoded by ssrA/tmRNA (transfer-messenger RNA), which signals their degradation by energy-dependent proteases. How eukaryotic cells eliminate non-stop proteins has remained unknown. Here we show that the Saccharomyces cerevisiae Ltn1 RING-domain-type E3 ubiquitin ligase acts in the quality control of non-stop proteins, in a process that is mechanistically distinct but conceptually analogous to that performed by ssrA: Ltn1 is predominantly associated with ribosomes, and it marks nascent non-stop proteins with ubiquitin to signal their proteasomal degradation. Ltn1-mediated ubiquitylation of non-stop proteins seems to be triggered by their stalling in ribosomes on translation through the poly(A) tail. The biological relevance of this process is underscored by the finding that loss of Ltn1 function confers sensitivity to stress caused by increased non-stop protein production. We speculate that defective protein quality control may underlie the neurodegenerative phenotype that results from mutation of the mouse Ltn1 homologue Listerin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988496/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988496/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bengtson, Mario H -- Joazeiro, Claudio A P -- R01 GM083060/GM/NIGMS NIH HHS/ -- R01 GM083060-03/GM/NIGMS NIH HHS/ -- R01GM083060/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):470-3. doi: 10.1038/nature09371. Epub 2010 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, CB168, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20835226" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Codon, Terminator/genetics ; Mice ; Models, Biological ; Peptide Chain Termination, Translational ; Polylysine/biosynthesis/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Protein Biosynthesis/*physiology ; Ribosomes/*enzymology/*metabolism ; Saccharomyces cerevisiae/cytology/enzymology/genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Stress, Physiological ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-07-09
    Description: Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuello, Luis G -- Jogini, Vishwanath -- Cortes, D Marien -- Perozo, Eduardo -- R01 GM057846/GM/NIGMS NIH HHS/ -- R01 GM057846-15/GM/NIGMS NIH HHS/ -- R01-GM57846/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 8;466(7303):203-8. doi: 10.1038/nature09153.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613835" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Electrons ; *Ion Channel Gating ; Kinetics ; Models, Biological ; Models, Molecular ; Potassium/metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; Streptomyces lividans/*chemistry ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-10-01
    Description: In most bacteria and all archaea, glutamyl-tRNA synthetase (GluRS) glutamylates both tRNA(Glu) and tRNA(Gln), and then Glu-tRNA(Gln) is selectively converted to Gln-tRNA(Gln) by a tRNA-dependent amidotransferase. The mechanisms by which the two enzymes recognize their substrate tRNA(s), and how they cooperate with each other in Gln-tRNA(Gln) synthesis, remain to be determined. Here we report the formation of the 'glutamine transamidosome' from the bacterium Thermotoga maritima, consisting of tRNA(Gln), GluRS and the heterotrimeric amidotransferase GatCAB, and its crystal structure at 3.35 A resolution. The anticodon-binding body of GluRS recognizes the common features of tRNA(Gln) and tRNA(Glu), whereas the tail body of GatCAB recognizes the outer corner of the L-shaped tRNA(Gln) in a tRNA(Gln)-specific manner. GluRS is in the productive form, as its catalytic body binds to the amino-acid-acceptor arm of tRNA(Gln). In contrast, GatCAB is in the non-productive form: the catalytic body of GatCAB contacts that of GluRS and is located near the acceptor stem of tRNA(Gln), in an appropriate site to wait for the completion of Glu-tRNA(Gln) formation by GluRS. We identified the hinges between the catalytic and anticodon-binding bodies of GluRS and between the catalytic and tail bodies of GatCAB, which allow both GluRS and GatCAB to adopt the productive and non-productive forms. The catalytic bodies of the two enzymes compete for the acceptor arm of tRNA(Gln) and therefore cannot assume their productive forms simultaneously. The transition from the present glutamylation state, with the productive GluRS and the non-productive GatCAB, to the putative amidation state, with the non-productive GluRS and the productive GatCAB, requires an intermediate state with the two enzymes in their non-productive forms, for steric reasons. The proposed mechanism explains how the transamidosome efficiently performs the two consecutive steps of Gln-tRNA(Gln) formation, with a low risk of releasing the unstable intermediate Glu-tRNA(Gln).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Takuhiro -- Yokoyama, Shigeyuki -- England -- Nature. 2010 Sep 30;467(7315):612-6. doi: 10.1038/nature09411.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20882017" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/genetics ; Biocatalysis ; Crystallography, X-Ray ; Electrophoretic Mobility Shift Assay ; Glutamate-tRNA Ligase/*chemistry/*metabolism ; Models, Molecular ; Molecular Conformation ; Nitrogenous Group Transferases/*chemistry/*metabolism ; Protein Binding ; RNA, Transfer, Gln/biosynthesis/*chemistry/*metabolism ; RNA, Transfer, Glu/chemistry/metabolism ; Staphylococcus aureus/enzymology ; Substrate Specificity ; Thermotoga maritima/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-05-14
    Description: Traditional robots rely for their function on computing, to store internal representations of their goals and environment and to coordinate sensing and any actuation of components required in response. Moving robotics to the single-molecule level is possible in principle, but requires facing the limited ability of individual molecules to store complex information and programs. One strategy to overcome this problem is to use systems that can obtain complex behaviour from the interaction of simple robots with their environment. A first step in this direction was the development of DNA walkers, which have developed from being non-autonomous to being capable of directed but brief motion on one-dimensional tracks. Here we demonstrate that previously developed random walkers-so-called molecular spiders that comprise a streptavidin molecule as an inert 'body' and three deoxyribozymes as catalytic 'legs'-show elementary robotic behaviour when interacting with a precisely defined environment. Single-molecule microscopy observations confirm that such walkers achieve directional movement by sensing and modifying tracks of substrate molecules laid out on a two-dimensional DNA origami landscape. When using appropriately designed DNA origami, the molecular spiders autonomously carry out sequences of actions such as 'start', 'follow', 'turn' and 'stop'. We anticipate that this strategy will result in more complex robotic behaviour at the molecular level if additional control mechanisms are incorporated. One example might be interactions between multiple molecular robots leading to collective behaviour; another might be the ability to read and transform secondary cues on the DNA origami landscape as a means of implementing Turing-universal algorithmic behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907518/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907518/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lund, Kyle -- Manzo, Anthony J -- Dabby, Nadine -- Michelotti, Nicole -- Johnson-Buck, Alexander -- Nangreave, Jeanette -- Taylor, Steven -- Pei, Renjun -- Stojanovic, Milan N -- Walter, Nils G -- Winfree, Erik -- Yan, Hao -- P41 RR017573/RR/NCRR NIH HHS/ -- P41 RR017573-086704/RR/NCRR NIH HHS/ -- R01 GM062357/GM/NIGMS NIH HHS/ -- R01 GM062357-09/GM/NIGMS NIH HHS/ -- T32 EB005582/EB/NIBIB NIH HHS/ -- T32 EB005582-05/EB/NIBIB NIH HHS/ -- T32 GM008270/GM/NIGMS NIH HHS/ -- T32 GM008270-24/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):206-10. doi: 10.1038/nature09012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463735" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Computers, Molecular ; DNA, Catalytic/*metabolism ; DNA, Single-Stranded/chemistry/*metabolism ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; *Movement/drug effects ; Nanotechnology/*methods ; Robotics ; Streptavidin/*chemistry ; Surface Plasmon Resonance ; Time Factors ; Zinc/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-07-14
    Description: The NAD-dependent deacetylase Sir2 was initially identified as a mediator of replicative lifespan in budding yeast and was subsequently shown to modulate longevity in worms and flies. Its mammalian homologue, SIRT1, seems to have evolved complex systemic roles in cardiac function, DNA repair and genomic stability. Recent studies suggest a functional relevance of SIRT1 in normal brain physiology and neurological disorders. However, it is unknown if SIRT1 has a role in higher-order brain functions. We report that SIRT1 modulates synaptic plasticity and memory formation via a microRNA-mediated mechanism. Activation of SIRT1 enhances, whereas its loss-of-function impairs, synaptic plasticity. Surprisingly, these effects were mediated via post-transcriptional regulation of cAMP response binding protein (CREB) expression by a brain-specific microRNA, miR-134. SIRT1 normally functions to limit expression of miR-134 via a repressor complex containing the transcription factor YY1, and unchecked miR-134 expression following SIRT1 deficiency results in the downregulated expression of CREB and brain-derived neurotrophic factor (BDNF), thereby impairing synaptic plasticity. These findings demonstrate a new role for SIRT1 in cognition and a previously unknown microRNA-based mechanism by which SIRT1 regulates these processes. Furthermore, these results describe a separate branch of SIRT1 signalling, in which SIRT1 has a direct role in regulating normal brain function in a manner that is disparate from its cell survival functions, demonstrating its value as a potential therapeutic target for the treatment of central nervous system disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Jun -- Wang, Wen-Yuan -- Mao, Ying-Wei -- Graff, Johannes -- Guan, Ji-Song -- Pan, Ling -- Mak, Gloria -- Kim, Dohoon -- Su, Susan C -- Tsai, Li-Huei -- P01 AG027916/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Aug 26;466(7310):1105-9. doi: 10.1038/nature09271. Epub 2010 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20622856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/metabolism ; CREB-Binding Protein/metabolism ; Electrical Synapses/genetics/pathology ; Gene Expression Regulation ; Gene Knockdown Techniques ; Long-Term Potentiation/genetics ; Male ; Memory/*physiology ; Memory Disorders/genetics/physiopathology ; Mice ; MicroRNAs/*genetics/*metabolism ; Neuronal Plasticity/*genetics ; Protein Binding ; Sequence Deletion ; Sirtuin 1/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-07-24
    Description: Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozgul, Arpat -- Childs, Dylan Z -- Oli, Madan K -- Armitage, Kenneth B -- Blumstein, Daniel T -- Olson, Lucretia E -- Tuljapurkar, Shripad -- Coulson, Tim -- P01 AG022500/AG/NIA NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jul 22;466(7305):482-5. doi: 10.1038/nature09210.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Imperial College London, Ascot, Berkshire SL5 7PY, UK. a.ozgul@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651690" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Body Weight/*physiology ; Colorado ; Female ; *Global Warming ; Hibernation/*physiology ; Marmota/*anatomy & histology/growth & development/*physiology ; Phenotype ; Population Dynamics ; Reproduction/physiology ; Survival Rate ; Time Factors ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-07-30
    Description: The post-translational methylation of alpha-amino groups was first discovered over 30 years ago on the bacterial ribosomal proteins L16 and L33 (refs 1, 2), but almost nothing is known about the function or enzymology of this modification. Several other bacterial and eukaryotic proteins have since been shown to be alpha-N-methylated. However, the Ran guanine nucleotide-exchange factor, RCC1, is the only protein for which any biological function of alpha-N-methylation has been identified. Methylation-defective mutants of RCC1 have reduced affinity for DNA and cause mitotic defects, but further characterization of this modification has been hindered by ignorance of the responsible methyltransferase. All fungal and animal N-terminally methylated proteins contain a unique N-terminal motif, Met-(Ala/Pro/Ser)-Pro-Lys, indicating that they may be targets of the same, unknown enzyme. The initiating Met is cleaved, and the exposed alpha-amino group is mono-, di- or trimethylated. Here we report the discovery of the first alpha-N-methyltransferase, which we named N-terminal RCC1 methyltransferase (NRMT). Substrate docking and mutational analysis of RCC1 defined the NRMT recognition sequence and enabled the identification of numerous new methylation targets, including SET (also known as TAF-I or PHAPII) and the retinoblastoma protein, RB. Knockdown of NRMT recapitulates the multi-spindle phenotype seen with methylation-defective RCC1 mutants, demonstrating the importance of alpha-N-methylation for normal bipolar spindle formation and chromosome segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tooley, Christine E Schaner -- Petkowski, Janusz J -- Muratore-Schroeder, Tara L -- Balsbaugh, Jeremy L -- Shabanowitz, Jeffrey -- Sabat, Michal -- Minor, Wladek -- Hunt, Donald F -- Macara, Ian G -- R01 GM050526/GM/NIGMS NIH HHS/ -- R01 GM050526-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1125-8. doi: 10.1038/nature09343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. ces5g@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20668449" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; Cell Line ; Chromosome Segregation ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/*metabolism ; HeLa Cells ; Histone Chaperones/metabolism ; Humans ; Methyltransferases/chemistry/genetics/*metabolism ; Models, Molecular ; Mutation/genetics ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Retinoblastoma Protein/*metabolism ; Spindle Apparatus/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-10-29
    Description: Sex determination is a fundamental biological process, yet its mechanisms are remarkably diverse. In vertebrates, sex can be determined by inherited genetic factors or by the temperature experienced during embryonic development. However, the evolutionary causes of this diversity remain unknown. Here we show that live-bearing lizards at different climatic extremes of the species' distribution differ in their sex-determining mechanisms, with temperature-dependent sex determination in lowlands and genotypic sex determination in highlands. A theoretical model parameterized with field data accurately predicts this divergence in sex-determining systems and the consequence thereof for variation in cohort sex ratios among years. Furthermore, we show that divergent natural selection on sex determination across altitudes is caused by climatic effects on lizard life history and variation in the magnitude of between-year temperature fluctuations. Our results establish an adaptive explanation for intra-specific divergence in sex-determining systems driven by phenotypic plasticity and ecological selection, thereby providing a unifying framework for integrating the developmental, ecological and evolutionary basis for variation in vertebrate sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pen, Ido -- Uller, Tobias -- Feldmeyer, Barbara -- Harts, Anna -- While, Geoffrey M -- Wapstra, Erik -- England -- Nature. 2010 Nov 18;468(7322):436-8. doi: 10.1038/nature09512. Epub 2010 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology Group, University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands. i.r.pen@rug.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981009" target="_blank"〉PubMed〈/a〉
    Keywords: Altitude ; Animals ; Biological Evolution ; *Climate ; Female ; Genotype ; Lizards/*genetics/*physiology ; Male ; Models, Biological ; Phenotype ; Selection, Genetic ; Sex Chromosomes ; *Sex Determination Processes/genetics/physiology ; *Sex Differentiation/genetics/physiology ; Sex Ratio ; *Temperature ; Time Factors ; Viviparity, Nonmammalian/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Oct 28;467(7319):1026-7. doi: 10.1038/4671026a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981067" target="_blank"〉PubMed〈/a〉
    Keywords: Americas ; Asia ; Europe ; Genetic Predisposition to Disease ; Genetics, Population ; *Genome, Human ; Genomics/economics/*statistics & numerical data/trends ; Humans ; Precision Medicine/trends ; Sequence Analysis, DNA/economics/*statistics & numerical data/trends ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonetta, Laura -- England -- Nature. 2010 Dec 9;468(7325):854. doi: 10.1038/468854a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21151000" target="_blank"〉PubMed〈/a〉
    Keywords: California ; Protein Binding ; Protein Interaction Mapping/*methods ; RNA, Transfer/metabolism ; Ribosomes/metabolism ; Sequence Analysis, DNA/methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-12-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schofield, Paul N -- Tapio, Soile -- Grosche, Bernd -- England -- Nature. 2010 Dec 2;468(7324):634. doi: 10.1038/468634a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124436" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archives/*history ; Databases, Factual/history ; Europe ; History, 20th Century ; Information Storage and Retrieval ; Japan ; Radiobiology/*history ; Time Factors ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, Rex -- England -- Nature. 2010 Mar 18;464(7287):335. doi: 10.1038/464335a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237533" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeology ; Geography ; Hominidae/*classification ; Indonesia ; Paleontology ; *Phylogeny ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Rachel -- England -- Nature. 2010 Aug 26;466(7310):S11-2. doi: 10.1038/466S11a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739930" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomarkers ; Brain/pathology ; *Early Diagnosis ; Ethics, Medical ; Humans ; Parkinson Disease/*diagnosis/pathology ; Risk Factors ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Persons, Derek A -- England -- Nature. 2010 Sep 16;467(7313):277-8. doi: 10.1038/467277a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20844523" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Blood Cells/cytology/metabolism ; Blood Transfusion ; Clone Cells/metabolism ; *Genetic Therapy ; HMGA2 Protein/genetics/*metabolism ; Humans ; Male ; Time Factors ; Transcriptional Activation ; Young Adult ; beta-Globins/*genetics/*metabolism ; beta-Thalassemia/*genetics/metabolism/*therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-02-26
    Description: Despite the essential roles of sphingolipids both as structural components of membranes and critical signalling molecules, we have a limited understanding of how cells sense and regulate their levels. Here we reveal the function in sphingolipid metabolism of the ORM genes (known as ORMDL genes in humans)-a conserved gene family that includes ORMDL3, which has recently been identified as a potential risk factor for childhood asthma. Starting from an unbiased functional genomic approach in Saccharomyces cerevisiae, we identify Orm proteins as negative regulators of sphingolipid synthesis that form a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877384/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877384/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breslow, David K -- Collins, Sean R -- Bodenmiller, Bernd -- Aebersold, Ruedi -- Simons, Kai -- Shevchenko, Andrej -- Ejsing, Christer S -- Weissman, Jonathan S -- N01-HV-28179/HV/NHLBI NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- P50 GM073210-06/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 25;463(7284):1048-53. doi: 10.1038/nature08787.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20182505" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Asthma/metabolism ; Cell Line ; Conserved Sequence ; Fatty Acids, Monounsaturated/pharmacology ; HeLa Cells ; *Homeostasis ; Humans ; Molecular Sequence Data ; *Multigene Family ; Multiprotein Complexes/chemistry/metabolism ; Phosphoric Monoester Hydrolases/genetics/metabolism ; Phosphorylation ; Protein Binding ; Saccharomyces cerevisiae/drug effects/enzymology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/classification/genetics/*metabolism ; Serine C-Palmitoyltransferase/genetics/metabolism ; Sphingolipids/biosynthesis/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbott, Alison -- England -- Nature. 2010 Dec 16;468(7326):879. doi: 10.1038/468879a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164453" target="_blank"〉PubMed〈/a〉
    Keywords: Cooperative Behavior ; Drug-Related Side Effects and Adverse Reactions ; Germany ; Hepatocytes/metabolism ; Humans ; Interdisciplinary Communication ; Liver/*physiology ; Models, Biological ; Pharmaceutical Preparations/metabolism ; Physics ; Research Personnel ; Systems Biology/economics/manpower/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-07-03
    Description: The development of multicellular organisms relies on the coordinated control of cell divisions leading to proper patterning and growth. The molecular mechanisms underlying pattern formation, particularly the regulation of formative cell divisions, remain poorly understood. In Arabidopsis, formative divisions generating the root ground tissue are controlled by SHORTROOT (SHR) and SCARECROW (SCR). Here we show, using cell-type-specific transcriptional effects of SHR and SCR combined with data from chromatin immunoprecipitation-based microarray experiments, that SHR regulates the spatiotemporal activation of specific genes involved in cell division. Coincident with the onset of a specific formative division, SHR and SCR directly activate a D-type cyclin; furthermore, altering the expression of this cyclin resulted in formative division defects. Our results indicate that proper pattern formation is achieved through transcriptional regulation of specific cell-cycle genes in a cell-type- and developmental-stage-specific context. Taken together, we provide evidence for a direct link between developmental regulators, specific components of the cell-cycle machinery and organ patterning.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sozzani, R -- Cui, H -- Moreno-Risueno, M A -- Busch, W -- Van Norman, J M -- Vernoux, T -- Brady, S M -- Dewitte, W -- Murray, J A H -- Benfey, P N -- BB/E022383/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- P50 GM081883/GM/NIGMS NIH HHS/ -- P50 GM081883-020003/GM/NIGMS NIH HHS/ -- P50 GM081883-030003/GM/NIGMS NIH HHS/ -- P50-GM081883/GM/NIGMS NIH HHS/ -- R01 GM043778/GM/NIGMS NIH HHS/ -- R01 GM043778-18/GM/NIGMS NIH HHS/ -- R01 GM043778-19/GM/NIGMS NIH HHS/ -- R01 GM043778-20/GM/NIGMS NIH HHS/ -- R01 GM043778-21/GM/NIGMS NIH HHS/ -- R01-GM043778/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 1;466(7302):128-32. doi: 10.1038/nature09143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596025" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/embryology/*genetics/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Body Patterning/*genetics/*physiology ; Cell Cycle/genetics/physiology ; Cell Division/genetics ; Cyclin D/genetics/metabolism ; Cyclin-Dependent Kinases/metabolism ; Gene Expression Regulation, Plant ; Genes, cdc/*physiology ; Organogenesis/genetics/physiology ; Plant Roots/cytology/embryology/genetics/growth & development ; Time Factors ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2010 Sep 23;467(7314):386-7. doi: 10.1038/467386a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20864970" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Brazil ; Carbon Dioxide/*analysis/metabolism ; *Ecosystem ; Environmental Monitoring/economics/*instrumentation ; Forestry ; Germany ; Global Warming ; *Greenhouse Effect ; Time Factors ; Trees/growth & development/*metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-06-29
    Description: The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mangan, Scott A -- Schnitzer, Stefan A -- Herre, Edward A -- Mack, Keenan M L -- Valencia, Mariana C -- Sanchez, Evelyn I -- Bever, James D -- R01 GM092660/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):752-5. doi: 10.1038/nature09273.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Wisconsin-Milwaukee, Wisconsin 53201, USA. smangan37@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20581819" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Biomass ; Computer Simulation ; Feedback, Physiological ; Food Chain ; Insects/physiology ; Models, Biological ; Panama ; Population Density ; Seedlings/growth & development ; Soil/*analysis ; *Soil Microbiology ; Species Specificity ; Trees/*classification/*growth & development/microbiology/parasitology ; *Tropical Climate ; Vertebrates/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-05-21
    Description: In protein synthesis initiation, the eukaryotic translation initiation factor (eIF) 2 (a G protein) functions in its GTP-bound state to deliver initiator methionyl-tRNA (tRNA(i)(Met)) to the small ribosomal subunit and is necessary for protein synthesis in all cells. Phosphorylation of eIF2 [eIF2(alphaP)] is critical for translational control in diverse settings including nutrient deprivation, viral infection and memory formation. eIF5 functions in start site selection as a GTPase accelerating protein (GAP) for the eIF2.GTP.tRNA(i)(Met) ternary complex within the ribosome-bound pre-initiation complex. Here we define new regulatory functions of eIF5 in the recycling of eIF2 from its inactive eIF2.GDP state between successive rounds of translation initiation. First we show that eIF5 stabilizes the binding of GDP to eIF2 and is therefore a bi-functional protein that acts as a GDP dissociation inhibitor (GDI). We find that this activity is independent of the GAP function and identify conserved residues within eIF5 that are necessary for this role. Second we show that eIF5 is a critical component of the eIF2(alphaP) regulatory complex that inhibits the activity of the guanine-nucleotide exchange factor (GEF) eIF2B. Together our studies define a new step in the translation initiation pathway, one that is critical for normal translational controls.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875157/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875157/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jennings, Martin D -- Pavitt, Graham D -- BB/E002005/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H010599/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBE0020051/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2010 May 20;465(7296):378-81. doi: 10.1038/nature09003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485439" target="_blank"〉PubMed〈/a〉
    Keywords: Basic-Leucine Zipper Transcription Factors/metabolism ; Eukaryotic Initiation Factor-2/antagonists & inhibitors/chemistry/*metabolism ; GTPase-Activating Proteins/metabolism ; Guanine Nucleotide Dissociation Inhibitors/chemistry/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; *Peptide Chain Initiation, Translational ; Peptide Initiation Factors/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Subunits/chemistry/metabolism ; RNA, Transfer, Met/metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-06-22
    Description: Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. Although conserved protein kinase, lipid kinase and ubiquitin-like protein conjugation subnetworks controlling autophagosome formation and cargo recruitment have been defined, our understanding of the global organization of this system is limited. Here we report a proteomic analysis of the autophagy interaction network in human cells under conditions of ongoing (basal) autophagy, revealing a network of 751 interactions among 409 candidate interacting proteins with extensive connectivity among subnetworks. Many new autophagy interaction network components have roles in vesicle trafficking, protein or lipid phosphorylation and protein ubiquitination, and affect autophagosome number or flux when depleted by RNA interference. The six ATG8 orthologues in humans (MAP1LC3/GABARAP proteins) interact with a cohort of 67 proteins, with extensive binding partner overlap between family members, and frequent involvement of a conserved surface on ATG8 proteins known to interact with LC3-interacting regions in partner proteins. These studies provide a global view of the mammalian autophagy interaction landscape and a resource for mechanistic analysis of this critical protein homeostasis pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behrends, Christian -- Sowa, Mathew E -- Gygi, Steven P -- Harper, J Wade -- R01 AG011085/AG/NIA NIH HHS/ -- R01 AG011085-18/AG/NIA NIH HHS/ -- R01 GM054137/GM/NIGMS NIH HHS/ -- R01 GM054137-14/GM/NIGMS NIH HHS/ -- R01 GM054137-14S1/GM/NIGMS NIH HHS/ -- R01 GM054137-15/GM/NIGMS NIH HHS/ -- R01 GM070565/GM/NIGMS NIH HHS/ -- R01 GM070565-05S1/GM/NIGMS NIH HHS/ -- R01 GM095567/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 1;466(7302):68-76. doi: 10.1038/nature09204. Epub 2010 Jun 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20562859" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Autophagy/genetics/*physiology ; Homeostasis ; Humans ; Microfilament Proteins/genetics/metabolism ; Phagosomes ; Phosphorylation ; Protein Binding ; *Protein Interaction Mapping ; Proteomics ; RNA Interference ; Reproducibility of Results ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2009-12-17
    Description: Recent research on changing fears has examined targeting reconsolidation. During reconsolidation, stored information is rendered labile after being retrieved. Pharmacological manipulations at this stage result in an inability to retrieve the memories at later times, suggesting that they are erased or persistently inhibited. Unfortunately, the use of these pharmacological manipulations in humans can be problematic. Here we introduce a non-invasive technique to target the reconsolidation of fear memories in humans. We provide evidence that old fear memories can be updated with non-fearful information provided during the reconsolidation window. As a consequence, fear responses are no longer expressed, an effect that lasted at least a year and was selective only to reactivated memories without affecting others. These findings demonstrate the adaptive role of reconsolidation as a window of opportunity to rewrite emotional memories, and suggest a non-invasive technique that can be used safely in humans to prevent the return of fear.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640262/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640262/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiller, Daniela -- Monfils, Marie-H -- Raio, Candace M -- Johnson, David C -- Ledoux, Joseph E -- Phelps, Elizabeth A -- K05 MH067048/MH/NIMH NIH HHS/ -- P50 MH058911/MH/NIMH NIH HHS/ -- R01 MH038774/MH/NIMH NIH HHS/ -- R01 MH046516/MH/NIMH NIH HHS/ -- R21 MH072279/MH/NIMH NIH HHS/ -- R37 MH038774/MH/NIMH NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jan 7;463(7277):49-53. doi: 10.1038/nature08637. Epub 2009 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Science, New York University, New York, New York 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010606" target="_blank"〉PubMed〈/a〉
    Keywords: Conditioning, Classical/*physiology ; Cues ; Electrodes ; Electroshock ; Extinction, Psychological/*physiology ; Fear/*physiology/*psychology ; Humans ; Memory/*physiology ; Models, Neurological ; Models, Psychological ; Neuronal Plasticity/*physiology ; Photic Stimulation ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-09-25
    Description: Origins of replication are activated throughout the S phase of the cell cycle such that some origins fire early and others fire late to ensure that each chromosome is completely replicated in a timely fashion. However, in response to DNA damage or replication fork stalling, eukaryotic cells block activation of unfired origins. Human cells derived from patients with ataxia telangiectasia are deficient in this process due to the lack of a functional ataxia telangiectasia mutated (ATM) kinase and elicit radioresistant DNA synthesis after gamma-irradiation(2). This effect is conserved in budding yeast, as yeast cells lacking the related kinase Mec1 (ATM and Rad3-related (ATR in humans)) also fail to inhibit DNA synthesis in the presence of DNA damage. This intra-S-phase checkpoint actively regulates DNA synthesis by inhibiting the firing of late replicating origins, and this inhibition requires both Mec1 and the downstream checkpoint kinase Rad53 (Chk2 in humans). However, the Rad53 substrate(s) whose phosphorylation is required to mediate this function has remained unknown. Here we show that the replication initiation protein Sld3 is phosphorylated by Rad53, and that this phosphorylation, along with phosphorylation of the Cdc7 kinase regulatory subunit Dbf4, blocks late origin firing in Saccharomyces cerevisiae. Upon exposure to DNA-damaging agents, cells expressing non-phosphorylatable alleles of SLD3 and DBF4 (SLD3-m25 and dbf4-m25, respectively) proceed through the S phase faster than wild-type cells by inappropriately firing late origins of replication. SLD3-m25 dbf4-m25 cells grow poorly in the presence of the replication inhibitor hydroxyurea and accumulate multiple Rad52 foci. Moreover, SLD3-m25 dbf4-m25 cells are delayed in recovering from transient blocks to replication and subsequently arrest at the DNA damage checkpoint. These data indicate that the intra-S-phase checkpoint functions to block late origin firing in adverse conditions to prevent genomic instability and maximize cell survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Mosqueda, Jaime -- Maas, Nancy L -- Jonsson, Zophonias O -- Defazio-Eli, Lisa G -- Wohlschlegel, James -- Toczyski, David P -- GM059691/GM/NIGMS NIH HHS/ -- R01 GM059691/GM/NIGMS NIH HHS/ -- R01 GM059691-09/GM/NIGMS NIH HHS/ -- R01 GM059691-10/GM/NIGMS NIH HHS/ -- R01 GM059691-11/GM/NIGMS NIH HHS/ -- R01 GM059691-12/GM/NIGMS NIH HHS/ -- R01 GM089778/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):479-83. doi: 10.1038/nature09377.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158-9001, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865002" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/genetics/*metabolism ; Checkpoint Kinase 2 ; DNA Damage/*physiology ; DNA Replication/drug effects/*physiology ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Hydroxyurea/pharmacology ; Phosphorylation/drug effects ; Protein-Serine-Threonine Kinases ; Rad52 DNA Repair and Recombination Protein/metabolism ; Replication Origin/drug effects/*physiology ; *S Phase/drug effects/physiology ; Saccharomyces cerevisiae/cytology/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-11-16
    Description: The chemotaxis signalling network in Escherichia coli that controls the locomotion of bacteria is a classic model system for signal transduction. This pathway modulates the behaviour of flagellar motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to a steady state in response to environmental changes, the signalling events within the chemotaxis network are noisy and cause large temporal variations of the motor behaviour even in the absence of stimulus. That the same signalling network governs both behavioural variability and cellular response raises the question of whether these two traits are independent. Here, we experimentally establish a fluctuation-response relationship in the chemotaxis system of living bacteria. Using this relationship, we demonstrate the possibility of inferring the cellular response from the behavioural variability measured before stimulus. In monitoring the pre- and post-stimulus switching behaviour of individual bacterial motors, we found that variability scales linearly with the response time for different functioning states of the cell. This study highlights that the fundamental relationship between fluctuation and response is not constrained to physical systems at thermodynamic equilibrium but is extensible to living cells. Such a relationship not only implies that behavioural variability and cellular response can be coupled traits, but it also provides a general framework within which we can examine how the selection of a network design shapes this interdependence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230254/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230254/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Heungwon -- Pontius, William -- Guet, Calin C -- Marko, John F -- Emonet, Thierry -- Cluzel, Philippe -- 1U54CA143869-01/CA/NCI NIH HHS/ -- P50 GM081892/GM/NIGMS NIH HHS/ -- P50 GM081892-04/GM/NIGMS NIH HHS/ -- R01 AI059195-03/AI/NIAID NIH HHS/ -- R01AI059195-03/AI/NIAID NIH HHS/ -- U54 CA143869/CA/NCI NIH HHS/ -- U54 CA143869-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):819-23. doi: 10.1038/nature09551. Epub 2010 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The James Franck Institute, The Institute for Biophysical Dynamics, and The Department of Physics, University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21076396" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/metabolism/pharmacology ; Calibration ; Chemotaxis/drug effects/*physiology ; Chromatography, High Pressure Liquid ; *Environment ; Escherichia coli/*cytology/drug effects/*physiology ; Flagella/drug effects/physiology ; Molecular Motor Proteins/metabolism ; Rotation ; *Signal Transduction/drug effects ; Stochastic Processes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-12-18
    Description: Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Wen-Wei -- Wang, Zhanxin -- Yiu, Teresa T -- Akdemir, Kadir C -- Xia, Weiya -- Winter, Stefan -- Tsai, Cheng-Yu -- Shi, Xiaobing -- Schwarzer, Dirk -- Plunkett, William -- Aronow, Bruce -- Gozani, Or -- Fischle, Wolfgang -- Hung, Mien-Chie -- Patel, Dinshaw J -- Barton, Michelle Craig -- GM079641/GM/NIGMS NIH HHS/ -- GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627-010003/GM/NIGMS NIH HHS/ -- P01 GM081627-020003/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30DK078392-01/DK/NIDDK NIH HHS/ -- T32 HD07325/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):927-32. doi: 10.1038/nature09542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164480" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Breast Neoplasms/*genetics/*metabolism/pathology ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Crystallography, X-Ray ; Estrogen Receptor alpha/metabolism ; Estrogens/metabolism ; *Gene Expression Regulation, Neoplastic/genetics ; HEK293 Cells ; Histones/chemistry/*metabolism ; Humans ; Methylation ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Substrate Specificity ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-11-05
    Description: Stroke is a leading cause of disability, but no pharmacological therapy is currently available for promoting recovery. The brain region adjacent to stroke damage-the peri-infarct zone-is critical for rehabilitation, as it shows heightened neuroplasticity, allowing sensorimotor functions to re-map from damaged areas. Thus, understanding the neuronal properties constraining this plasticity is important for the development of new treatments. Here we show that after a stroke in mice, tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is mediated by extrasynaptic GABA(A) receptors and is caused by an impairment in GABA (gamma-aminobutyric acid) transporter (GAT-3/GAT-4) function. To counteract the heightened inhibition, we administered in vivo a benzodiazepine inverse agonist specific for alpha5-subunit-containing extrasynaptic GABA(A) receptors at a delay after stroke. This treatment produced an early and sustained recovery of motor function. Genetically lowering the number of alpha5- or delta-subunit-containing GABA(A) receptors responsible for tonic inhibition also proved beneficial for recovery after stroke, consistent with the therapeutic potential of diminishing extrasynaptic GABA(A) receptor function. Together, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarkson, Andrew N -- Huang, Ben S -- Macisaac, Sarah E -- Mody, Istvan -- Carmichael, S Thomas -- NS30549/NS/NINDS NIH HHS/ -- R01 NS030549/NS/NINDS NIH HHS/ -- R01 NS030549-18/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Nov 11;468(7321):305-9. doi: 10.1038/nature09511. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzodiazepines/pharmacology ; Cerebral Infarction/metabolism/pathology/physiopathology ; Disease Models, Animal ; Drug Inverse Agonism ; GABA Antagonists/pharmacology ; GABA Plasma Membrane Transport Proteins/metabolism ; Imidazoles/pharmacology ; Male ; Membrane Potentials/drug effects ; Mice ; Mice, Inbred C57BL ; Motor Cortex/metabolism/pathology/*physiology/*physiopathology ; Neuronal Plasticity/physiology ; Receptors, GABA/deficiency/genetics/metabolism ; Recovery of Function/*physiology ; Stroke/drug therapy/*metabolism/pathology ; Synapses/metabolism ; Time Factors ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-09-08
    Description: Cell cycle checkpoints are implemented to safeguard the genome, avoiding the accumulation of genetic errors. Checkpoint loss results in genomic instability and contributes to the evolution of cancer. Among G1-, S-, G2- and M-phase checkpoints, genetic studies indicate the role of an intact S-phase checkpoint in maintaining genome integrity. Although the basic framework of the S-phase checkpoint in multicellular organisms has been outlined, the mechanistic details remain to be elucidated. Human chromosome-11 band-q23 translocations disrupting the MLL gene lead to poor prognostic leukaemias. Here we assign MLL as a novel effector in the mammalian S-phase checkpoint network and identify checkpoint dysfunction as an underlying mechanism of MLL leukaemias. MLL is phosphorylated at serine 516 by ATR in response to genotoxic stress in the S phase, which disrupts its interaction with, and hence its degradation by, the SCF(Skp2) E3 ligase, leading to its accumulation. Stabilized MLL protein accumulates on chromatin, methylates histone H3 lysine 4 at late replication origins and inhibits the loading of CDC45 to delay DNA replication. Cells deficient in MLL showed radioresistant DNA synthesis and chromatid-type genomic abnormalities, indicative of S-phase checkpoint dysfunction. Reconstitution of Mll(-/-) (Mll also known as Mll1) mouse embryonic fibroblasts with wild-type but not S516A or DeltaSET mutant MLL rescues the S-phase checkpoint defects. Moreover, murine myeloid progenitor cells carrying an Mll-CBP knock-in allele that mimics human t(11;16) leukaemia show a severe radioresistant DNA synthesis phenotype. MLL fusions function as dominant negative mutants that abrogate the ATR-mediated phosphorylation/stabilization of wild-type MLL on damage to DNA, and thus compromise the S-phase checkpoint. Together, our results identify MLL as a key constituent of the mammalian DNA damage response pathway and show that deregulation of the S-phase checkpoint incurred by MLL translocations probably contributes to the pathogenesis of human MLL leukaemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Han -- Takeda, Shugaku -- Kumar, Rakesh -- Westergard, Todd D -- Brown, Eric J -- Pandita, Tej K -- Cheng, Emily H-Y -- Hsieh, James J-D -- CA119008/CA/NCI NIH HHS/ -- CA123232/CA/NCI NIH HHS/ -- CA129537/CA/NCI NIH HHS/ -- R01 CA119008/CA/NCI NIH HHS/ -- R01 CA119008-01/CA/NCI NIH HHS/ -- R01 CA119008-02/CA/NCI NIH HHS/ -- R01 CA119008-03/CA/NCI NIH HHS/ -- R01 CA119008-04/CA/NCI NIH HHS/ -- R01 CA119008-05/CA/NCI NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):343-6. doi: 10.1038/nature09350. Epub 2010 Sep 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20818375" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/*metabolism ; Cell Line ; Chromatin/metabolism ; DNA Damage ; DNA Replication/physiology ; Genes, Dominant/genetics ; Genomic Instability/physiology ; Histone-Lysine N-Methyltransferase ; Histones/chemistry/metabolism ; Humans ; Leukemia/genetics ; Lysine/metabolism ; Methylation ; Mice ; Myeloid Progenitor Cells/metabolism ; Myeloid-Lymphoid Leukemia Protein/chemistry/deficiency/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases/*metabolism ; S Phase/*physiology ; S-Phase Kinase-Associated Proteins/metabolism ; Signal Transduction ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-04-22
    Description: 'Brain training', or the goal of improved cognitive function through the regular use of computerized tests, is a multimillion-pound industry, yet in our view scientific evidence to support its efficacy is lacking. Modest effects have been reported in some studies of older individuals and preschool children, and video-game players outperform non-players on some tests of visual attention. However, the widely held belief that commercially available computerized brain-training programs improve general cognitive function in the wider population in our opinion lacks empirical support. The central question is not whether performance on cognitive tests can be improved by training, but rather, whether those benefits transfer to other untrained tasks or lead to any general improvement in the level of cognitive functioning. Here we report the results of a six-week online study in which 11,430 participants trained several times each week on cognitive tasks designed to improve reasoning, memory, planning, visuospatial skills and attention. Although improvements were observed in every one of the cognitive tasks that were trained, no evidence was found for transfer effects to untrained tasks, even when those tasks were cognitively closely related.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, Adrian M -- Hampshire, Adam -- Grahn, Jessica A -- Stenton, Robert -- Dajani, Said -- Burns, Alistair S -- Howard, Robert J -- Ballard, Clive G -- MC_U105559837/Medical Research Council/United Kingdom -- MC_U105559847/Medical Research Council/United Kingdom -- U.1055.01.002.00001.01/Medical Research Council/United Kingdom -- U.1055.01.002.00001.01(80449)/Medical Research Council/United Kingdom -- U.1055.01.003.00001.01/Medical Research Council/United Kingdom -- England -- Nature. 2010 Jun 10;465(7299):775-8. doi: 10.1038/nature09042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK. adrian.owen@mrc-cbu.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20407435" target="_blank"〉PubMed〈/a〉
    Keywords: Attention/physiology ; Brain/*physiology ; Cognition/*physiology ; Computers ; Exercise/*physiology ; Humans ; Memory/physiology ; Task Performance and Analysis ; Thinking/physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-01-30
    Description: The processes controlling the carbon flux and carbon storage of the atmosphere, ocean and terrestrial biosphere are temperature sensitive and are likely to provide a positive feedback leading to amplified anthropogenic warming. Owing to this feedback, at timescales ranging from interannual to the 20-100-kyr cycles of Earth's orbital variations, warming of the climate system causes a net release of CO(2) into the atmosphere; this in turn amplifies warming. But the magnitude of the climate sensitivity of the global carbon cycle (termed gamma), and thus of its positive feedback strength, is under debate, giving rise to large uncertainties in global warming projections. Here we quantify the median gamma as 7.7 p.p.m.v. CO(2) per degrees C warming, with a likely range of 1.7-21.4 p.p.m.v. CO(2) per degrees C. Sensitivity experiments exclude significant influence of pre-industrial land-use change on these estimates. Our results, based on the coupling of a probabilistic approach with an ensemble of proxy-based temperature reconstructions and pre-industrial CO(2) data from three ice cores, provide robust constraints for gamma on the policy-relevant multi-decadal to centennial timescales. By using an ensemble of 〉200,000 members, quantification of gamma is not only improved, but also likelihoods can be assigned, thereby providing a benchmark for future model simulations. Although uncertainties do not at present allow exclusion of gamma calculated from any of ten coupled carbon-climate models, we find that gamma is about twice as likely to fall in the lowermost than in the uppermost quartile of their range. Our results are incompatibly lower (P 〈 0.05) than recent pre-industrial empirical estimates of approximately 40 p.p.m.v. CO(2) per degrees C (refs 6, 7), and correspondingly suggest approximately 80% less potential amplification of ongoing global warming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, David C -- Esper, Jan -- Raible, Christoph C -- Buntgen, Ulf -- Trouet, Valerie -- Stocker, Benjamin -- Joos, Fortunat -- England -- Nature. 2010 Jan 28;463(7280):527-30. doi: 10.1038/nature08769.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Federal Research Institute WSL, Zurcherstrasse 111, CH-8903 Birmensdorf, Switzerland. david.frank@wsl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110999" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/*metabolism ; Carbon Dioxide/analysis ; *Climate Change ; Ice/analysis ; *Models, Theoretical ; Temperature ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonetta, Laura -- England -- Nature. 2010 Dec 9;468(7325):851-4. doi: 10.1038/468851a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150998" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/diagnosis/metabolism/pathology ; Computational Biology ; Databases, Factual/trends ; False Negative Reactions ; False Positive Reactions ; Genes, Reporter ; Humans ; Immunoprecipitation ; Mass Spectrometry ; Protein Array Analysis ; Protein Binding ; Protein Interaction Mapping/*methods/*trends ; Proteome/genetics/metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Apr 1;464(7289):649-50. doi: 10.1038/464649a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360688" target="_blank"〉PubMed〈/a〉
    Keywords: Data Collection ; Genetic Testing/trends ; Genetics, Medical/*trends ; Genome, Human/*genetics ; Genomics/economics/*history/trends ; Haplotypes/genetics ; History, 20th Century ; History, 21st Century ; Human Genome Project/*history ; Humans ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2010-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brakmann, Susanne -- England -- Nature. 2010 Apr 15;464(7291):987-8. doi: 10.1038/464987a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393548" target="_blank"〉PubMed〈/a〉
    Keywords: Codon/*genetics ; Fluorescence ; Ligands ; Protein Biosynthesis/genetics/*physiology ; RNA, Transfer/genetics/*metabolism ; Ribosomes/chemistry/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Francis -- England -- Nature. 2010 Oct 7;467(7316):635. doi: 10.1038/467635a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20930798" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Aptitude ; Awards and Prizes ; *Career Mobility ; Creativity ; Financing, Organized/economics ; *Freedom ; Humans ; Laboratories/economics/manpower ; National Institutes of Health (U.S.) ; Pilot Projects ; *Research/education/manpower ; *Research Personnel/education ; Research Support as Topic/economics/organization & administration ; Time Factors ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-07-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Visser, Marcel E -- England -- Nature. 2010 Jul 22;466(7305):445-7. doi: 10.1038/466445a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651679" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Body Weight/*physiology ; Colorado ; *Global Warming ; Hibernation/*physiology ; Marmota/*anatomy & histology/growth & development/*physiology ; Population Dynamics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2010-12-18
    Description: Changes in gene regulatory networks are a major source of evolutionary novelty. Here we describe a specific type of network rewiring event, one that intercalates a new level of transcriptional control into an ancient circuit. We deduce that, over evolutionary time, the direct ancestral connections between a regulator and its target genes were broken and replaced by indirect connections, preserving the overall logic of the ancestral circuit but producing a new behaviour. The example was uncovered through a series of experiments in three ascomycete yeasts: the bakers' yeast Saccharomyces cerevisiae, the dairy yeast Kluyveromyces lactis and the human pathogen Candida albicans. All three species have three cell types: two mating-competent cell forms (a and alpha) and the product of their mating (a/alpha), which is mating-incompetent. In the ancestral mating circuit, two homeodomain proteins, Mata1 and Matalpha2, form a heterodimer that directly represses four genes that are expressed only in a and alpha cells and are required for mating. In a relatively recent ancestor of K. lactis, a reorganization occurred. The Mata1-Matalpha2 heterodimer represses the same four genes (known as the core haploid-specific genes) but now does so indirectly through an intermediate regulatory protein, Rme1. The overall logic of the ancestral circuit is preserved (haploid-specific genes ON in a and alpha cells and OFF in a/alpha cells), but a new phenotype was produced by the rewiring: unlike S. cerevisiae and C. albicans, K. lactis integrates nutritional signals, by means of Rme1, into the decision of whether or not to mate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254258/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254258/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Booth, Lauren N -- Tuch, Brian B -- Johnson, Alexander D -- R01 GM037049/GM/NIGMS NIH HHS/ -- R01 GM037049-26/GM/NIGMS NIH HHS/ -- R01 GM037049-27/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):959-63. doi: 10.1038/nature09560.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164485" target="_blank"〉PubMed〈/a〉
    Keywords: Candida albicans/cytology/*genetics/metabolism/physiology ; *Evolution, Molecular ; Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Fungal/genetics ; Genes, Fungal/genetics ; Homeodomain Proteins/genetics/metabolism ; Kluyveromyces/cytology/*genetics/physiology ; Models, Biological ; Phenotype ; Protein Precursors/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae/cytology/*genetics/metabolism/physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2010-08-21
    Description: Laryngeal echolocation, used by most living bats to form images of their surroundings and to detect and capture flying prey, is considered to be a key innovation for the evolutionary success of bats, and palaeontologists have long sought osteological correlates of echolocation that can be used to infer the behaviour of fossil bats. Veselka et al. argued that the most reliable trait indicating echolocation capabilities in bats is an articulation between the stylohyal bone (part of the hyoid apparatus that supports the throat and larynx) and the tympanic bone, which forms the floor of the middle ear. They examined the oldest and most primitive known bat, Onychonycteris finneyi (early Eocene, USA), and argued that it showed evidence of this stylohyal-tympanic articulation, from which they concluded that O. finneyi may have been capable of echolocation. We disagree with their interpretation of key fossil data and instead argue that O. finneyi was probably not an echolocating bat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simmons, Nancy B -- Seymour, Kevin L -- Habersetzer, Jorg -- Gunnell, Gregg F -- England -- Nature. 2010 Aug 19;466(7309):E8; discussion E9. doi: 10.1038/nature09219.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA. simmons@amnh.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724993" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/physiology ; Animals ; Bone and Bones/physiology ; Chiroptera/anatomy & histology/*physiology ; Echolocation/*physiology ; *Fossils ; Models, Biological ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Aug 19;466(7309):903. doi: 10.1038/466903a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724996" target="_blank"〉PubMed〈/a〉
    Keywords: Astronomy/economics/instrumentation/trends ; Budgets/trends ; *Data Collection ; Program Evaluation ; Research/economics/trends ; Time Factors ; United States ; United States National Aeronautics and Space Administration/*economics/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-11-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powers, Joseph E -- England -- Nature. 2010 Nov 18;468(7322):385-6. doi: 10.1038/468385a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085170" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification ; *Biodiversity ; Databases, Factual ; *Ecosystem ; *Fisheries ; *Fishes ; Food Chain ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viswanathan, Gandhimohan M -- England -- Nature. 2010 Jun 24;465(7301):1018-9. doi: 10.1038/4651018a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Fishes/*physiology ; *Food ; Locomotion/*physiology ; Models, Biological ; Predatory Behavior/*physiology ; *Seawater ; Swimming/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katsnelson, Alla -- England -- Nature. 2010 Apr 22;464(7292):1111. doi: 10.1038/4641111a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20414280" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Brain/*physiology ; Exercise/physiology ; Humans ; Mental Processes/*physiology ; Middle Aged ; Time Factors ; Treatment Failure ; *Video Games ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2010-12-03
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kielian, Margaret -- R01 AI075647/AI/NIAID NIH HHS/ -- R01 AI075647-17/AI/NIAID NIH HHS/ -- R01 GM057454/GM/NIGMS NIH HHS/ -- R01 GM057454-11/GM/NIGMS NIH HHS/ -- R21 AI067931/AI/NIAID NIH HHS/ -- R21 AI067931-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):645-6. doi: 10.1038/468645a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124448" target="_blank"〉PubMed〈/a〉
    Keywords: Chikungunya virus/*chemistry/physiology ; Crystallography, X-Ray ; Membrane Fusion ; Membrane Glycoproteins/*chemistry/metabolism ; Models, Biological ; Protein Multimerization ; Protein Structure, Quaternary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*physiology ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2010-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khosla, Ashok -- Marton-Lefevre, Julia -- England -- Nature. 2010 Jan 7;463(7277):25. doi: 10.1038/463025c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054377" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Conservation of Natural Resources/*trends ; Extinction, Biological ; Politics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2010-01-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kilner, Rebecca -- England -- Nature. 2010 Jan 14;463(7278):165-7. doi: 10.1038/463165a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075907" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Birds/*parasitology/*physiology ; Cues ; Discrimination Learning/*physiology ; Models, Biological ; Nesting Behavior/*physiology ; Pattern Recognition, Visual/physiology ; Survival Rate ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2010-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, William L -- England -- Nature. 2010 Jul 1;466(7302):42-3. doi: 10.1038/466042a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596009" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; *Computer-Aided Design ; Drug Design ; Drug Discovery/*methods ; Enzyme Inhibitors/*chemistry/*metabolism ; Flavonoids/chemistry/metabolism ; Ligands ; Luteolin/chemistry/metabolism ; Molecular Dynamics Simulation ; Plasmodium falciparum ; Protein Binding ; Protozoan Proteins/chemistry/metabolism ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2010-08-21
    Description: Theory predicts that the evolution of cooperative behaviour is favoured by low levels of promiscuity leading to high within-group relatedness. However, in vertebrates, cooperation often occurs between non-relatives and promiscuity rates are among the highest recorded. Here we resolve this apparent inconsistency with a phylogenetic analysis of 267 bird species, demonstrating that cooperative breeding is associated with low promiscuity; that in cooperative species, helping is more common when promiscuity is low; and that intermediate levels of promiscuity favour kin discrimination. Overall, these results suggest that promiscuity is a unifying feature across taxa in explaining transitions to and from cooperative societies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cornwallis, Charlie K -- West, Stuart A -- Davis, Katie E -- Griffin, Ashleigh S -- England -- Nature. 2010 Aug 19;466(7309):969-72. doi: 10.1038/nature09335.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/classification/genetics/*physiology ; *Cooperative Behavior ; Fathers ; Female ; Male ; Models, Biological ; Mothers ; Phylogeny ; Reproduction/genetics/physiology ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2008-11-14
    Description: Many complex behaviours, like speech or music, have a hierarchical organization with structure on many timescales, but it is not known how the brain controls the timing of behavioural sequences, or whether different circuits control different timescales of the behaviour. Here we address these issues by using temperature to manipulate the biophysical dynamics in different regions of the songbird forebrain involved in song production. We find that cooling the premotor nucleus HVC (formerly known as the high vocal centre) slows song speed across all timescales by up to 45 per cent but only slightly alters the acoustic structure, whereas cooling the downstream motor nucleus RA (robust nucleus of the arcopallium) has no observable effect on song timing. Our observations suggest that dynamics within HVC are involved in the control of song timing, perhaps through a chain-like organization. Local manipulation of brain temperature should be broadly applicable to the identification of neural circuitry that controls the timing of behavioural sequences and, more generally, to the study of the origin and role of oscillatory and other forms of brain dynamics in neural systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Michael A -- Fee, Michale S -- DC009280/DC/NIDCD NIH HHS/ -- K99 DC009280/DC/NIDCD NIH HHS/ -- K99 DC009280-02/DC/NIDCD NIH HHS/ -- MH067105/MH/NIMH NIH HHS/ -- R01 MH067105/MH/NIMH NIH HHS/ -- R01 MH067105-04/MH/NIMH NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):189-94. doi: 10.1038/nature07448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19005546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cold Temperature ; Efferent Pathways/physiology ; Finches/*physiology ; High Vocal Center/*physiology ; Neurons/physiology ; Prosencephalon/*physiology/radiography ; Time Factors ; Vocalization, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadman, Meredith -- England -- Nature. 2008 Apr 17;452(7189):788. doi: 10.1038/452788b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18431822" target="_blank"〉PubMed〈/a〉
    Keywords: Genetic Counseling/trends ; *Genome, Human ; Genomics/economics/*trends ; History, 21st Century ; Humans ; Individuality ; Male ; Reference Standards ; Sequence Analysis, DNA/economics/*trends ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2008-03-14
    Description: Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christofk, Heather R -- Vander Heiden, Matthew G -- Wu, Ning -- Asara, John M -- Cantley, Lewis C -- R01 GM056203/GM/NIGMS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- England -- Nature. 2008 Mar 13;452(7184):181-6. doi: 10.1038/nature06667.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337815" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Animals ; Catalysis ; Cell Line ; Cell Proliferation/drug effects ; Cells/drug effects/metabolism ; HeLa Cells ; Humans ; Lysine/metabolism ; Models, Molecular ; Peptide Library ; Phosphotyrosine/*metabolism ; Protein Binding ; Proteomics ; Pyruvate Kinase/antagonists & inhibitors/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2008-05-16
    Description: Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loulergue, Laetitia -- Schilt, Adrian -- Spahni, Renato -- Masson-Delmotte, Valerie -- Blunier, Thomas -- Lemieux, Benedicte -- Barnola, Jean-Marc -- Raynaud, Dominique -- Stocker, Thomas F -- Chappellaz, Jerome -- England -- Nature. 2008 May 15;453(7193):383-6. doi: 10.1038/nature06950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Glaciologie et Geophysique de l'Environnement, CNRS-Universite Joseph Fourier Grenoble, 54 Rue Moliere, 38402 St Martin d'Heres, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480822" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Greenhouse Effect ; History, Ancient ; Ice Cover ; Methane/*analysis ; Temperature ; Time Factors ; Tropical Climate ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hugenholtz, Philip -- Tyson, Gene W -- England -- Nature. 2008 Sep 25;455(7212):481-3. doi: 10.1038/455481a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818648" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; Computational Biology/trends ; *Ecosystem ; *Environmental Microbiology ; Eukaryotic Cells/metabolism ; Evolution, Molecular ; *Genetics, Microbial/methods ; Genome/genetics ; *Genomics/economics/methods/trends ; Humans ; Marine Biology ; Prokaryotic Cells/metabolism ; Sequence Analysis, DNA/economics ; Time Factors ; Viruses/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2008-05-03
    Description: Networks have in recent years emerged as an invaluable tool for describing and quantifying complex systems in many branches of science. Recent studies suggest that networks often exhibit hierarchical organization, in which vertices divide into groups that further subdivide into groups of groups, and so forth over multiple scales. In many cases the groups are found to correspond to known functional units, such as ecological niches in food webs, modules in biochemical networks (protein interaction networks, metabolic networks or genetic regulatory networks) or communities in social networks. Here we present a general technique for inferring hierarchical structure from network data and show that the existence of hierarchy can simultaneously explain and quantitatively reproduce many commonly observed topological properties of networks, such as right-skewed degree distributions, high clustering coefficients and short path lengths. We further show that knowledge of hierarchical structure can be used to predict missing connections in partly known networks with high accuracy, and for more general network structures than competing techniques. Taken together, our results suggest that hierarchy is a central organizing principle of complex networks, capable of offering insight into many network phenomena.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clauset, Aaron -- Moore, Cristopher -- Newman, M E J -- England -- Nature. 2008 May 1;453(7191):98-101. doi: 10.1038/nature06830.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, USA. aaronc@santafe.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18451861" target="_blank"〉PubMed〈/a〉
    Keywords: *Algorithms ; Biosynthetic Pathways ; Food Chain ; Gene Regulatory Networks ; Metabolic Networks and Pathways ; *Models, Biological ; *Probability ; Protein Binding ; Sensitivity and Specificity ; Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2008-11-28
    Description: Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. A nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), has a primary structure similar to that of the hormone-sensitive lipases (HSLs). Here we analyse the crystal structure of Oryza sativa GID1 (OsGID1) bound with GA(4) and GA(3) at 1.9 A resolution. The overall structure of both complexes shows an alpha/beta-hydrolase fold similar to that of HSLs except for an amino-terminal lid. The GA-binding pocket corresponds to the substrate-binding site of HSLs. On the basis of the OsGID1 structure, we mutagenized important residues for GA binding and examined their binding activities. Almost all of them showed very little or no activity, confirming that the residues revealed by structural analysis are important for GA binding. The replacement of Ile 133 with Leu or Val-residues corresponding to those of the lycophyte Selaginella moellendorffii GID1s-caused an increase in the binding affinity for GA(34), a 2beta-hydroxylated GA(4). These observations indicate that GID1 originated from HSL and was further modified to have higher affinity and more strict selectivity for bioactive GAs by adapting the amino acids involved in GA binding in the course of plant evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimada, Asako -- Ueguchi-Tanaka, Miyako -- Nakatsu, Toru -- Nakajima, Masatoshi -- Naoe, Youichi -- Ohmiya, Hiroko -- Kato, Hiroaki -- Matsuoka, Makoto -- England -- Nature. 2008 Nov 27;456(7221):520-3. doi: 10.1038/nature07546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19037316" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Gibberellins/*chemistry/*metabolism ; Hydrolases/chemistry/metabolism ; Hydroxylation ; Models, Molecular ; Oryza/*chemistry/genetics/metabolism ; Plant Growth Regulators/*chemistry/*metabolism ; Plant Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Substrate Specificity ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2008-02-08
    Description: Rates of atmospheric deposition of biologically active nitrogen (N) are two to seven times the pre-industrial rates in many developed nations because of combustion of fossil fuels and agricultural fertilization. They are expected to increase similarly over the next 50 years in industrializing nations of Asia and South America. Although the environmental impacts of high rates of nitrogen addition have been well studied, this is not so for the lower, chronic rates that characterize much of the globe. Here we present results of the first multi-decadal experiment to examine the impacts of chronic, experimental nitrogen addition as low as 10 kg N ha(-1) yr(-1) above ambient atmospheric nitrogen deposition (6 kg N ha(-1) yr(-1) at our site). This total input rate is comparable to terrestrial nitrogen deposition in many industrialized nations. We found that this chronic low-level nitrogen addition rate reduced plant species numbers by 17% relative to controls receiving ambient N deposition. Moreover, species numbers were reduced more per unit of added nitrogen at lower addition rates, suggesting that chronic but low-level nitrogen deposition may have a greater impact on diversity than previously thought. A second experiment showed that a decade after cessation of nitrogen addition, relative plant species number, although not species abundances, had recovered, demonstrating that some effects of nitrogen addition are reversible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Christopher M -- Tilman, David -- England -- Nature. 2008 Feb 7;451(7179):712-5. doi: 10.1038/nature06503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, 100 Ecology, 1987 Upper Buford Circle, University of Minnesota, St. Paul, Minnesota 55108, USA. clark134@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256670" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Biomass ; *Ecosystem ; Nitrogen/*metabolism ; Plants/classification/*metabolism ; *Poaceae/metabolism ; Random Allocation ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2008-02-08
    Description: Biosignatures and structures in the geological record indicate that microbial life has inhabited Earth for the past 3.5 billion years or so. Research in the physical sciences has been able to generate statements about the ancient environment that hosted this life. These include the chemical compositions and temperatures of the early ocean and atmosphere. Only recently have the natural sciences been able to provide experimental results describing the environments of ancient life. Our previous work with resurrected proteins indicated that ancient life lived in a hot environment. Here we expand the timescale of resurrected proteins to provide a palaeotemperature trend of the environments that hosted life from 3.5 to 0.5 billion years ago. The thermostability of more than 25 phylogenetically dispersed ancestral elongation factors suggest that the environment supporting ancient life cooled progressively by 30 degrees C during that period. Here we show that our results are robust to potential statistical bias associated with the posterior distribution of inferred character states, phylogenetic ambiguity, and uncertainties in the amino-acid equilibrium frequencies used by evolutionary models. Our results are further supported by a nearly identical cooling trend for the ancient ocean as inferred from the deposition of oxygen isotopes. The convergence of results from natural and physical sciences suggest that ancient life has continually adapted to changes in environmental temperatures throughout its evolutionary history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaucher, Eric A -- Govindarajan, Sridhar -- Ganesh, Omjoy K -- England -- Nature. 2008 Feb 7;451(7179):704-7. doi: 10.1038/nature06510.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256669" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Bacteria/classification/*metabolism ; Bacterial Proteins/analysis/*chemistry ; *Biological Evolution ; Enzyme Stability ; History, Ancient ; Hot Temperature ; Peptide Elongation Factor Tu/analysis/chemistry ; Phylogeny ; Seawater/*microbiology ; *Temperature ; Time Factors ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2008-10-25
    Description: BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized alpha-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB-BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavathiotis, Evripidis -- Suzuki, Motoshi -- Davis, Marguerite L -- Pitter, Kenneth -- Bird, Gregory H -- Katz, Samuel G -- Tu, Ho-Chou -- Kim, Hyungjin -- Cheng, Emily H-Y -- Tjandra, Nico -- Walensky, Loren D -- 5P01CA92625/CA/NCI NIH HHS/ -- 5R01CA125562/CA/NCI NIH HHS/ -- 5R01CA50239/CA/NCI NIH HHS/ -- K99 HL095929/HL/NHLBI NIH HHS/ -- K99 HL095929-01A1/HL/NHLBI NIH HHS/ -- K99 HL095929-02/HL/NHLBI NIH HHS/ -- R00 HL095929/HL/NHLBI NIH HHS/ -- R01 CA050239/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1076-81. doi: 10.1038/nature07396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948948" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Apoptosis Regulatory Proteins/chemistry/metabolism ; BH3 Interacting Domain Death Agonist Protein/metabolism ; Cell Line ; *Gene Expression Regulation ; Humans ; Membrane Proteins/chemistry/metabolism ; Mice ; Mutagenesis, Site-Directed ; Mutation/genetics ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Proto-Oncogene Proteins/chemistry/metabolism ; Sequence Alignment ; bcl-2-Associated X Protein/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2008-03-14
    Description: Genetic data from two or more species provide information about the process of speciation. In their analysis of DNA from humans, chimpanzees, gorillas, orangutans and macaques (HCGOM), Patterson et al. suggest that the apparently short divergence time between humans and chimpanzees on the X chromosome is explained by a massive interspecific hybridization event in the ancestry of these two species. However, Patterson et al. do not statistically test their own null model of simple speciation before concluding that speciation was complex, and--even if the null model could be rejected--they do not consider other explanations of a short divergence time on the X chromosome. These include natural selection on the X chromosome in the common ancestor of humans and chimpanzees, changes in the ratio of male-to-female mutation rates over time, and less extreme versions of divergence with gene flow (see ref. 2, for example). I therefore believe that their claim of hybridization is unwarranted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wakeley, John -- England -- Nature. 2008 Mar 13;452(7184):E3-4; discussion E4. doi: 10.1038/nature06805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA. wakeley@fas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337768" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/genetics ; Female ; *Genetic Speciation ; Humans ; Male ; *Models, Genetic ; Mutagenesis/genetics ; Pan troglodytes/*genetics ; Phylogeny ; Reproducibility of Results ; Selection, Genetic ; Sex Characteristics ; Time Factors ; X Chromosome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2008-08-30
    Description: It is thought that the Northern Hemisphere experienced only ephemeral glaciations from the Late Eocene to the Early Pliocene epochs (about 38 to 4 million years ago), and that the onset of extensive glaciations did not occur until about 3 million years ago. Several hypotheses have been proposed to explain this increase in Northern Hemisphere glaciation during the Late Pliocene. Here we use a fully coupled atmosphere-ocean general circulation model and an ice-sheet model to assess the impact of the proposed driving mechanisms for glaciation and the influence of orbital variations on the development of the Greenland ice sheet in particular. We find that Greenland glaciation is mainly controlled by a decrease in atmospheric carbon dioxide during the Late Pliocene. By contrast, our model results suggest that climatic shifts associated with the tectonically driven closure of the Panama seaway, with the termination of a permanent El Nino state or with tectonic uplift are not large enough to contribute significantly to the growth of the Greenland ice sheet; moreover, we find that none of these processes acted as a priming mechanism for glacial inception triggered by variations in the Earth's orbit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunt, Daniel J -- Foster, Gavin L -- Haywood, Alan M -- Stone, Emma J -- England -- Nature. 2008 Aug 28;454(7208):1102-5. doi: 10.1038/nature07223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BRIDGE, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK. d.j.lunt@bristol.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18756254" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Carbon Dioxide/analysis/*metabolism ; Climate ; Greenland ; History, Ancient ; *Ice Cover ; North America ; Rain ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2008-11-04
    Description: The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrovic, Milan -- Hummel, Thomas -- England -- Nature. 2008 Dec 11;456(7223):800-3. doi: 10.1038/nature07407. Epub 2008 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Neurobiologie, Universitat Munster, Badestrasse 9, D-48149 Munster, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18978776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism/physiology ; Cadherins/metabolism ; Compound Eye, Arthropod/growth & development ; DNA-Binding Proteins/genetics/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/genetics/*growth & development/*metabolism ; Gene Expression Regulation, Developmental ; Nerve Tissue Proteins/genetics/metabolism ; Photoreceptor Cells, Invertebrate/metabolism/physiology ; Protein Transport ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2008 Nov 20;456(7220):317-8. doi: 10.1038/456317a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19020598" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anniversaries and Special Events ; Biodiversity ; *Biological Evolution ; Epidemiology/trends ; Humans ; Models, Biological ; Mutagenesis ; Religion and Science ; Science/*trends ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Ji -- Elledge, Stephen J -- England -- Nature. 2008 Jun 19;453(7198):995-6. doi: 10.1038/453995a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18563141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Transformation, Neoplastic/*genetics ; Colonic Neoplasms/genetics/pathology ; Gene Expression Regulation, Neoplastic ; Genes, p53/genetics ; Genes, ras/genetics ; Humans ; Models, Biological ; Oncogenes/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2008-01-04
    Description: NUMB is a cell fate determinant, which, by asymmetrically partitioning at mitosis, controls cell fate choices by antagonising the activity of the plasma membrane receptor of the NOTCH family. NUMB is also an endocytic protein, and the NOTCH-NUMB counteraction has been linked to this function. There might be, however, additional functions of NUMB, as witnessed by its proposed role as a tumour suppressor in breast cancer. Here we describe a previously unknown function for human NUMB as a regulator of tumour protein p53 (also known as TP53). NUMB enters in a tricomplex with p53 and the E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing ubiquitination and degradation of p53. This results in increased p53 protein levels and activity, and in regulation of p53-dependent phenotypes. In breast cancers there is frequent loss of NUMB expression. We show that, in primary breast tumour cells, this event causes decreased p53 levels and increased chemoresistance. In breast cancers, loss of NUMB expression causes increased activity of the receptor NOTCH. Thus, in these cancers, a single event-loss of NUMB expression-determines activation of an oncogene (NOTCH) and attenuation of the p53 tumour suppressor pathway. Biologically, this results in an aggressive tumour phenotype, as witnessed by findings that NUMB-defective breast tumours display poor prognosis. Our results uncover a previously unknown tumour suppressor circuitry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colaluca, Ivan N -- Tosoni, Daniela -- Nuciforo, Paolo -- Senic-Matuglia, Francesca -- Galimberti, Viviana -- Viale, Giuseppe -- Pece, Salvatore -- Di Fiore, Pier Paolo -- England -- Nature. 2008 Jan 3;451(7174):76-80. doi: 10.1038/nature06412.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IFOM, the FIRC Institute for Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172499" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/genetics/metabolism/pathology ; Cell Line, Tumor ; Cells, Cultured ; DNA Damage ; Drug Resistance, Neoplasm ; Gene Silencing ; Humans ; Membrane Proteins/deficiency/genetics/*metabolism ; Nerve Tissue Proteins/deficiency/genetics/*metabolism ; Prognosis ; Protein Binding ; Proto-Oncogene Proteins c-mdm2/metabolism ; Tumor Suppressor Protein p53/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2008-05-16
    Description: The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Patrick J -- Haire, Lesley F -- Lin, Yi Pu -- Liu, Junfeng -- Russell, Rupert J -- Walker, Philip A -- Skehel, John J -- Martin, Stephen R -- Hay, Alan J -- Gamblin, Steven J -- MC_U117512711/Medical Research Council/United Kingdom -- MC_U117512723/Medical Research Council/United Kingdom -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117584222/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2008 Jun 26;453(7199):1258-61. doi: 10.1038/nature06956. Epub 2008 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480754" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; *Drug Resistance, Viral ; Enzyme Inhibitors/chemistry/metabolism/pharmacology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology/genetics ; Influenza A Virus, H5N1 Subtype/*drug effects/*enzymology/genetics ; Influenza, Human/virology ; Kinetics ; Models, Molecular ; Molecular Conformation ; Mutation/*genetics ; Neuraminidase/antagonists & inhibitors/*chemistry/*genetics/metabolism ; Oseltamivir/chemistry/metabolism/*pharmacology ; Protein Binding ; Zanamivir/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2008-01-22
    Description: The future paths of population ageing result from specific combinations of declining fertility and increasing life expectancies in different parts of the world. Here we measure the speed of population ageing by using conventional measures and new ones that take changes in longevity into account for the world as a whole and for 13 major regions. We report on future levels of indicators of ageing and the speed at which they change. We show how these depend on whether changes in life expectancy are taken into account. We also show that the speed of ageing is likely to increase over the coming decades and to decelerate in most regions by mid-century. All our measures indicate a continuous ageing of the world's population throughout the century. The median age of the world's population increases from 26.6 years in 2000 to 37.3 years in 2050 and then to 45.6 years in 2100, when it is not adjusted for longevity increase. When increases in life expectancy are taken into account, the adjusted median age rises from 26.6 in 2000 to 31.1 in 2050 and only to 32.9 in 2100, slightly less than what it was in the China region in 2005. There are large differences in the regional patterns of ageing. In North America, the median age adjusted for life expectancy change falls throughout almost the entire century, whereas the conventional median age increases significantly. Our assessment of trends in ageing is based on new probabilistic population forecasts. The probability that growth in the world's population will end during this century is 88%, somewhat higher than previously assessed. After mid-century, lower rates of population growth are likely to coincide with slower rates of ageing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutz, Wolfgang -- Sanderson, Warren -- Scherbov, Sergei -- England -- Nature. 2008 Feb 7;451(7179):716-9. doi: 10.1038/nature06516. Epub 2008 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉World Population Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria. lutz@iiasa.ac.at〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18204438" target="_blank"〉PubMed〈/a〉
    Keywords: Age Distribution ; Aged ; Aged, 80 and over ; Aging/physiology ; Emigration and Immigration ; *Geography ; Humans ; *Internationality ; Life Expectancy/ethnology/*trends ; Longevity ; Middle Aged ; Mortality/trends ; Population Density ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2008-05-27
    Description: Relapse to cocaine use after prolonged abstinence is an important clinical problem. This relapse is often induced by exposure to cues associated with cocaine use. To account for the persistent propensity for relapse, it has been suggested that cue-induced cocaine craving increases over the first several weeks of abstinence and remains high for extended periods. We and others identified an analogous phenomenon in rats that was termed 'incubation of cocaine craving': time-dependent increases in cue-induced cocaine-seeking over the first months after withdrawal from self-administered cocaine. Cocaine-seeking requires the activation of glutamate projections that excite receptors for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in the nucleus accumbens. Here we show that the number of synaptic AMPA receptors in the accumbens is increased after prolonged withdrawal from cocaine self-administration by the addition of new AMPA receptors lacking glutamate receptor 2 (GluR2). Furthermore, we show that these new receptors mediate the incubation of cocaine craving. Our results indicate that GluR2-lacking AMPA receptors could be a new target for drug development for the treatment of cocaine addiction. We propose that after prolonged withdrawal from cocaine, increased numbers of synaptic AMPA receptors combined with the higher conductance of GluR2-lacking AMPA receptors causes increased reactivity of accumbens neurons to cocaine-related cues, leading to an intensification of drug craving and relapse.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574981/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574981/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, Kelly L -- Tseng, Kuei Y -- Uejima, Jamie L -- Reimers, Jeremy M -- Heng, Li-Jun -- Shaham, Yavin -- Marinelli, Michela -- Wolf, Marina E -- DA00453/DA/NIDA NIH HHS/ -- DA015835/DA/NIDA NIH HHS/ -- DA020654/DA/NIDA NIH HHS/ -- DA09621/DA/NIDA NIH HHS/ -- Z01 DA000434-08/Intramural NIH HHS/ -- England -- Nature. 2008 Jul 3;454(7200):118-21. doi: 10.1038/nature06995. Epub 2008 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18500330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cocaine ; Cocaine-Related Disorders/genetics/metabolism/*physiopathology ; Cues ; Gene Expression Regulation ; Male ; Nucleus Accumbens/*metabolism/physiopathology ; Rats ; Rats, Long-Evans ; Rats, Sprague-Dawley ; Receptors, AMPA/deficiency/genetics/*metabolism ; Self Administration ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2008-08-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ingolia, Nicholas T -- Weissman, Jonathan S -- England -- Nature. 2008 Aug 28;454(7208):1059-62. doi: 10.1038/4541059a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18756243" target="_blank"〉PubMed〈/a〉
    Keywords: *Environment ; Galactose/metabolism ; *Gene Expression Regulation, Fungal/drug effects ; Glucose/metabolism/pharmacology ; Metabolic Networks and Pathways/drug effects/*genetics ; Microfluidics ; Models, Biological ; Osmotic Pressure ; RNA Stability/drug effects ; Saccharomyces cerevisiae/classification/drug effects/*genetics/*metabolism ; Systems Biology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynch, Clifford -- England -- Nature. 2008 Sep 4;455(7209):28-9. doi: 10.1038/455028a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Coalition for Networked Information, 21 Dupont Circle, Washington DC 20036, USA. cliff@cni.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18769419" target="_blank"〉PubMed〈/a〉
    Keywords: Archives ; Databases, Factual/economics/standards ; Humans ; Information Management/economics/*methods/organization & ; administration/*standards ; Information Storage and Retrieval/economics/methods/standards ; Research/economics/organization & administration/standards ; *Research Design ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2008-07-25
    Description: Statistical dependencies in the responses of sensory neurons govern both the amount of stimulus information conveyed and the means by which downstream neurons can extract it. Although a variety of measurements indicate the existence of such dependencies, their origin and importance for neural coding are poorly understood. Here we analyse the functional significance of correlated firing in a complete population of macaque parasol retinal ganglion cells using a model of multi-neuron spike responses. The model, with parameters fit directly to physiological data, simultaneously captures both the stimulus dependence and detailed spatio-temporal correlations in population responses, and provides two insights into the structure of the neural code. First, neural encoding at the population level is less noisy than one would expect from the variability of individual neurons: spike times are more precise, and can be predicted more accurately when the spiking of neighbouring neurons is taken into account. Second, correlations provide additional sensory information: optimal, model-based decoding that exploits the response correlation structure extracts 20% more information about the visual scene than decoding under the assumption of independence, and preserves 40% more visual information than optimal linear decoding. This model-based approach reveals the role of correlated activity in the retinal coding of visual stimuli, and provides a general framework for understanding the importance of correlated activity in populations of neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684455/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684455/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pillow, Jonathan W -- Shlens, Jonathon -- Paninski, Liam -- Sher, Alexander -- Litke, Alan M -- Chichilnisky, E J -- Simoncelli, Eero P -- EY018003/EY/NEI NIH HHS/ -- R01 EY018003/EY/NEI NIH HHS/ -- R01 EY018003-01/EY/NEI NIH HHS/ -- R01 EY018003-02/EY/NEI NIH HHS/ -- R01 EY018003-03/EY/NEI NIH HHS/ -- England -- Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gatsby Computational Neuroscience Unit, UCL, 17 Queen Square, London WC1N 3AR, UK. pillow@gatsby.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18650810" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Macaca mulatta/*physiology ; *Models, Neurological ; Photic Stimulation ; Retinal Ganglion Cells/*physiology ; Time Factors ; Vision, Ocular/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2008-09-12
    Description: Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luyssaert, Sebastiaan -- Schulze, E-Detlef -- Borner, Annett -- Knohl, Alexander -- Hessenmoller, Dominik -- Law, Beverly E -- Ciais, Philippe -- Grace, John -- England -- Nature. 2008 Sep 11;455(7210):213-5. doi: 10.1038/nature07276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium. sebastiaan.luyssaert@ua.ac.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18784722" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/chemistry ; Biomass ; Carbon/*metabolism ; Carbon Dioxide/metabolism ; Databases, Factual ; Disasters ; *Ecosystem ; History, 15th Century ; History, 16th Century ; History, 17th Century ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; History, Medieval ; Human Activities ; Time Factors ; Trees/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2008-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inglis, Stephen -- Wood, John -- Minor, Philip -- England -- Nature. 2008 Aug 21;454(7207):939. doi: 10.1038/454939c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719565" target="_blank"〉PubMed〈/a〉
    Keywords: Drug Industry/organization & administration/standards ; Humans ; Influenza Vaccines/classification/standards/*supply & distribution ; Orthomyxoviridae/physiology ; Orthomyxoviridae Infections/prevention & control ; Time Factors ; Virus Cultivation ; World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2008-02-26
    Description: Maintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell. For this process to operate effectively, the transduction machinery has to retain integrity and remain unfailingly independent of environmental changes. This is particularly challenging for poikilothermic organisms, where changes in temperature in the environment may impact the function of mechanoreceptor neurons. Thus, we wondered how insects whose habitat might quickly vary over several tens of degrees of temperature manage to maintain highly effective mechanical senses. We screened for Drosophila mutants with defective mechanical responses at elevated ambient temperatures, and identified a gene, spam, whose role is to protect the mechanosensory organ from massive cellular deformation caused by heat-induced osmotic imbalance. Here we show that Spam protein forms an extracellular shield that guards mechanosensory neurons from environmental insult. Remarkably, heterologously expressed Spam protein also endowed other cells with superb defence against physically and chemically induced deformation. We studied the mechanical impact of Spam coating and show that spam-coated cells are up to ten times stiffer than uncoated controls. Together, these results help explain how poikilothermic organisms preserve the architecture of critical cells during environmental stress, and illustrate an elegant and simple solution to such challenge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2387185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2387185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, Boaz -- Hardy, Robert W -- McConnaughey, William B -- Zuker, Charles S -- R01 EY006979/EY/NEI NIH HHS/ -- R01 EY006979-18/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Mar 20;452(7185):361-4. doi: 10.1038/nature06603. Epub 2008 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18297055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Shape/*drug effects/*physiology ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*cytology/drug effects/genetics/physiology ; Electrophysiology ; *Environment ; Eye Proteins/genetics/metabolism ; Hot Temperature ; Humidity ; Mechanoreceptors/cytology/physiology ; Mechanotransduction, Cellular/*drug effects/*physiology ; Models, Biological ; Osmotic Pressure ; Stimulation, Chemical ; Stress, Mechanical
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...