ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (272)
  • Models, Biological  (119)
  • Mice, Inbred C57BL  (105)
  • Nature Publishing Group (NPG)  (458)
  • 2005-2009  (458)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2009-12-23
    Description: Reprogramming of somatic cell nuclei to yield induced pluripotent stem (iPS) cells makes possible derivation of patient-specific stem cells for regenerative medicine. However, iPS cell generation is asynchronous and slow (2-3 weeks), the frequency is low (〈0.1%), and DNA demethylation constitutes a bottleneck. To determine regulatory mechanisms involved in reprogramming, we generated interspecies heterokaryons (fused mouse embryonic stem (ES) cells and human fibroblasts) that induce reprogramming synchronously, frequently and fast. Here we show that reprogramming towards pluripotency in single heterokaryons is initiated without cell division or DNA replication, rapidly (1 day) and efficiently (70%). Short interfering RNA (siRNA)-mediated knockdown showed that activation-induced cytidine deaminase (AID, also known as AICDA) is required for promoter demethylation and induction of OCT4 (also known as POU5F1) and NANOG gene expression. AID protein bound silent methylated OCT4 and NANOG promoters in fibroblasts, but not active demethylated promoters in ES cells. These data provide new evidence that mammalian AID is required for active DNA demethylation and initiation of nuclear reprogramming towards pluripotency in human somatic cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906123/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhutani, Nidhi -- Brady, Jennifer J -- Damian, Mara -- Sacco, Alessandra -- Corbel, Stephane Y -- Blau, Helen M -- AG009521/AG/NIA NIH HHS/ -- AG024987/AG/NIA NIH HHS/ -- AI007328/AI/NIAID NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG024987/AG/NIA NIH HHS/ -- R01 AG024987-05/AG/NIA NIH HHS/ -- T32 AI007328/AI/NIAID NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5175, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20027182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Fusion ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; Chromatin Immunoprecipitation ; Cytidine Deaminase/deficiency/genetics/*metabolism ; DNA/chemistry/genetics/metabolism ; *DNA Methylation ; DNA Replication ; Embryonic Stem Cells/cytology/metabolism ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Gene Knockdown Techniques ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Lung/cytology/embryology ; Mice ; Models, Biological ; Octamer Transcription Factor-3/genetics ; Promoter Regions, Genetic/genetics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-17
    Description: Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ruiqiang -- Fan, Wei -- Tian, Geng -- Zhu, Hongmei -- He, Lin -- Cai, Jing -- Huang, Quanfei -- Cai, Qingle -- Li, Bo -- Bai, Yinqi -- Zhang, Zhihe -- Zhang, Yaping -- Wang, Wen -- Li, Jun -- Wei, Fuwen -- Li, Heng -- Jian, Min -- Li, Jianwen -- Zhang, Zhaolei -- Nielsen, Rasmus -- Li, Dawei -- Gu, Wanjun -- Yang, Zhentao -- Xuan, Zhaoling -- Ryder, Oliver A -- Leung, Frederick Chi-Ching -- Zhou, Yan -- Cao, Jianjun -- Sun, Xiao -- Fu, Yonggui -- Fang, Xiaodong -- Guo, Xiaosen -- Wang, Bo -- Hou, Rong -- Shen, Fujun -- Mu, Bo -- Ni, Peixiang -- Lin, Runmao -- Qian, Wubin -- Wang, Guodong -- Yu, Chang -- Nie, Wenhui -- Wang, Jinhuan -- Wu, Zhigang -- Liang, Huiqing -- Min, Jiumeng -- Wu, Qi -- Cheng, Shifeng -- Ruan, Jue -- Wang, Mingwei -- Shi, Zhongbin -- Wen, Ming -- Liu, Binghang -- Ren, Xiaoli -- Zheng, Huisong -- Dong, Dong -- Cook, Kathleen -- Shan, Gao -- Zhang, Hao -- Kosiol, Carolin -- Xie, Xueying -- Lu, Zuhong -- Zheng, Hancheng -- Li, Yingrui -- Steiner, Cynthia C -- Lam, Tommy Tsan-Yuk -- Lin, Siyuan -- Zhang, Qinghui -- Li, Guoqing -- Tian, Jing -- Gong, Timing -- Liu, Hongde -- Zhang, Dejin -- Fang, Lin -- Ye, Chen -- Zhang, Juanbin -- Hu, Wenbo -- Xu, Anlong -- Ren, Yuanyuan -- Zhang, Guojie -- Bruford, Michael W -- Li, Qibin -- Ma, Lijia -- Guo, Yiran -- An, Na -- Hu, Yujie -- Zheng, Yang -- Shi, Yongyong -- Li, Zhiqiang -- Liu, Qing -- Chen, Yanling -- Zhao, Jing -- Qu, Ning -- Zhao, Shancen -- Tian, Feng -- Wang, Xiaoling -- Wang, Haiyin -- Xu, Lizhi -- Liu, Xiao -- Vinar, Tomas -- Wang, Yajun -- Lam, Tak-Wah -- Yiu, Siu-Ming -- Liu, Shiping -- Zhang, Hemin -- Li, Desheng -- Huang, Yan -- Wang, Xia -- Yang, Guohua -- Jiang, Zhi -- Wang, Junyi -- Qin, Nan -- Li, Li -- Li, Jingxiang -- Bolund, Lars -- Kristiansen, Karsten -- Wong, Gane Ka-Shu -- Olson, Maynard -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Wang, Jian -- Wang, Jun -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-05/HG/NHGRI NIH HHS/ -- England -- Nature. 2010 Jan 21;463(7279):311-7. doi: 10.1038/nature08696. Epub 2009 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010809" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; China ; Conserved Sequence/genetics ; Contig Mapping ; Diet/veterinary ; Dogs ; Evolution, Molecular ; Female ; Fertility/genetics/physiology ; Genome/*genetics ; *Genomics ; Heterozygote ; Humans ; Multigene Family/genetics ; Polymorphism, Single Nucleotide/genetics ; Receptors, G-Protein-Coupled/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Synteny/genetics ; Ursidae/classification/*genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, Rex -- England -- Nature. 2009 Jan 22;457(7228):369. doi: 10.1038/457369a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158758" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breeding/economics/*methods ; Cattle/*genetics ; Dairying/economics/*methods ; Female ; Internationality ; Male ; Milk/*secretion/*standards ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; United States ; United States Department of Agriculture
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-08-12
    Description: Reprogramming somatic cells to induced pluripotent stem (iPS) cells has been accomplished by expressing pluripotency factors and oncogenes, but the low frequency and tendency to induce malignant transformation compromise the clinical utility of this powerful approach. We address both issues by investigating the mechanisms limiting reprogramming efficiency in somatic cells. Here we show that reprogramming factors can activate the p53 (also known as Trp53 in mice, TP53 in humans) pathway. Reducing signalling to p53 by expressing a mutated version of one of its negative regulators, by deleting or knocking down p53 or its target gene, p21 (also known as Cdkn1a), or by antagonizing reprogramming-induced apoptosis in mouse fibroblasts increases reprogramming efficiency. Notably, decreasing p53 protein levels enabled fibroblasts to give rise to iPS cells capable of generating germline-transmitting chimaeric mice using only Oct4 (also known as Pou5f1) and Sox2. Furthermore, silencing of p53 significantly increased the reprogramming efficiency of human somatic cells. These results provide insights into reprogramming mechanisms and suggest new routes to more efficient reprogramming while minimizing the use of oncogenes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735889/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735889/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawamura, Teruhisa -- Suzuki, Jotaro -- Wang, Yunyuan V -- Menendez, Sergio -- Morera, Laura Batlle -- Raya, Angel -- Wahl, Geoffrey M -- Izpisua Belmonte, Juan Carlos -- 5 R01 CA061449/CA/NCI NIH HHS/ -- 5 R01 CA100845/CA/NCI NIH HHS/ -- R01 CA061449/CA/NCI NIH HHS/ -- R01 CA061449-30/CA/NCI NIH HHS/ -- R01 CA100845/CA/NCI NIH HHS/ -- R01 CA100845-05/CA/NCI NIH HHS/ -- R33 HL088293/HL/NHLBI NIH HHS/ -- R33 HL088293-03/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Aug 27;460(7259):1140-4. doi: 10.1038/nature08311. Epub 2009 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19668186" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cellular Reprogramming/*physiology ; Cyclin-Dependent Kinase Inhibitor p21/deficiency/genetics/metabolism ; Down-Regulation ; Embryo, Mammalian/cytology ; Female ; Fibroblasts/cytology/metabolism ; Humans ; Keratinocytes ; Male ; Mice ; Mice, Inbred C57BL ; Pluripotent Stem Cells/*cytology/*metabolism ; Tumor Suppressor Protein p53/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-01-13
    Description: In an adaptive immune response, naive T cells proliferate during infection and generate long-lived memory cells that undergo secondary expansion after a repeat encounter with the same pathogen. Although natural killer (NK) cells have traditionally been classified as cells of the innate immune system, they share many similarities with cytotoxic T lymphocytes. We use a mouse model of cytomegalovirus infection to show that, like T cells, NK cells bearing the virus-specific Ly49H receptor proliferate 100-fold in the spleen and 1,000-fold in the liver after infection. After a contraction phase, Ly49H-positive NK cells reside in lymphoid and non-lymphoid organs for several months. These self-renewing 'memory' NK cells rapidly degranulate and produce cytokines on reactivation. Adoptive transfer of these NK cells into naive animals followed by viral challenge results in a robust secondary expansion and protective immunity. These findings reveal properties of NK cells that were previously attributed only to cells of the adaptive immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Joseph C -- Beilke, Joshua N -- Lanier, Lewis L -- AI068129/AI/NIAID NIH HHS/ -- R01 AI068129/AI/NIAID NIH HHS/ -- R01 AI068129-09/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jan 29;457(7229):557-61. doi: 10.1038/nature07665. Epub 2009 Jan 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19136945" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/deficiency/genetics ; Adoptive Transfer ; Animals ; Cell Proliferation ; Immunologic Memory/*immunology ; Killer Cells, Natural/*cytology/*immunology ; Lymphoid Tissue/immunology ; Mice ; Mice, Congenic ; Mice, Inbred C57BL ; *Models, Immunological ; Muromegalovirus/immunology/physiology ; Phenotype ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-26
    Description: India has been underrepresented in genome-wide surveys of human variation. We analyse 25 diverse groups in India to provide strong evidence for two ancient populations, genetically divergent, that are ancestral to most Indians today. One, the 'Ancestral North Indians' (ANI), is genetically close to Middle Easterners, Central Asians, and Europeans, whereas the other, the 'Ancestral South Indians' (ASI), is as distinct from ANI and East Asians as they are from each other. By introducing methods that can estimate ancestry without accurate ancestral populations, we show that ANI ancestry ranges from 39-71% in most Indian groups, and is higher in traditionally upper caste and Indo-European speakers. Groups with only ASI ancestry may no longer exist in mainland India. However, the indigenous Andaman Islanders are unique in being ASI-related groups without ANI ancestry. Allele frequency differences between groups in India are larger than in Europe, reflecting strong founder effects whose signatures have been maintained for thousands of years owing to endogamy. We therefore predict that there will be an excess of recessive diseases in India, which should be possible to screen and map genetically.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, David -- Thangaraj, Kumarasamy -- Patterson, Nick -- Price, Alkes L -- Singh, Lalji -- HG004168/HG/NHGRI NIH HHS/ -- R01 HG006399/HG/NHGRI NIH HHS/ -- U01 HG004168/HG/NHGRI NIH HHS/ -- U01 HG004168-03/HG/NHGRI NIH HHS/ -- England -- Nature. 2009 Sep 24;461(7263):489-94. doi: 10.1038/nature08365.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. reich@genetics.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779445" target="_blank"〉PubMed〈/a〉
    Keywords: Asia/ethnology ; Chromosomes, Human, Y/genetics ; Continental Population Groups/genetics ; DNA, Mitochondrial/genetics ; Ethnic Groups/*genetics ; Europe/ethnology ; Female ; Founder Effect ; Gene Frequency ; Genes, Recessive/genetics ; Genetic Variation/*genetics ; Genetics, Medical ; Genetics, Population ; Genome, Human/genetics ; Genomics ; Genotype ; Geography ; Humans ; India ; Language ; Linkage Disequilibrium/genetics ; Male ; Middle East/ethnology ; *Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Principal Component Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-06
    Description: The activation of innate immune responses by nucleic acids is crucial to protective and pathological immunities and is mediated by the transmembrane Toll-like receptors (TLRs) and cytosolic receptors. However, it remains unknown whether a mechanism exists that integrates these nucleic-acid-sensing systems. Here we show that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids. HMGBs bind to all immunogenic nucleic acids examined with a correlation between affinity and immunogenic potential. Hmgb1(-/-) and Hmgb2(-/-) mouse cells are defective in type-I interferon and inflammatory cytokine induction by DNA or RNA targeted to activate the cytosolic nucleic-acid-sensing receptors; cells in which the expression of all three HMGBs is suppressed show a more profound defect, accompanied by impaired activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-kappaB. The absence of HMGBs also severely impairs the activation of TLR3, TLR7 and TLR9 by their cognate nucleic acids. Our results therefore indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic-acid-sensing receptors is contingent on the more promiscuous sensing of nucleic acids by HMGBs. These findings may have implications for understanding the evolution of the innate immune system and for the treatment of immunological disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yanai, Hideyuki -- Ban, Tatsuma -- Wang, ZhiChao -- Choi, Myoung Kwon -- Kawamura, Takeshi -- Negishi, Hideo -- Nakasato, Makoto -- Lu, Yan -- Hangai, Sho -- Koshiba, Ryuji -- Savitsky, David -- Ronfani, Lorenza -- Akira, Shizuo -- Bianchi, Marco E -- Honda, Kenya -- Tamura, Tomohiko -- Kodama, Tatsuhiko -- Taniguchi, Tadatsugu -- England -- Nature. 2009 Nov 5;462(7269):99-103. doi: 10.1038/nature08512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cytosol/immunology ; DNA/immunology ; HMGB Proteins/deficiency/genetics/*immunology/*metabolism ; HMGB1 Protein/deficiency/genetics/immunology/metabolism ; HMGB2 Protein/deficiency/genetics/immunology/metabolism ; Immunity, Innate/*immunology ; Interferon Regulatory Factor-3/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Immunological ; NF-kappa B/metabolism ; Nucleic Acids/*immunology ; Nucleotides/chemistry/immunology/metabolism ; RNA/immunology ; Signal Transduction ; Toll-Like Receptors/immunology ; Virus Diseases/immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reiff, Sarah B -- Striepen, Boris -- England -- Nature. 2009 Jun 18;459(7249):918-9. doi: 10.1038/459918a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536248" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Malaria, Falciparum/drug therapy/*parasitology ; Models, Biological ; Plasmodium falciparum/*metabolism ; Protein Binding ; Protein Transport ; Protozoan Proteins/antagonists & inhibitors/*metabolism ; Vacuoles/metabolism/parasitology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Apr 2;458(7238):550. doi: 10.1038/458550a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19340028" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Enteral Nutrition/ethics/utilization ; Female ; Humans ; Italy ; Living Wills/ethics/*legislation & jurisprudence ; *Patients ; *Physicians ; Right to Die/ethics/*legislation & jurisprudence ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-10-30
    Description: The leading cause of infertility in men and women is quantitative and qualitative defects in human germ-cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ-cell formation and differentiation owing to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages. Here we used a germ-cell reporter to quantify and isolate primordial germ cells derived from both male and female human embryonic stem cells. By silencing and overexpressing genes that encode germ-cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ-cell formation and developmental progression. We observed that human DAZL (deleted in azoospermia-like) functions in primordial germ-cell formation, whereas closely related genes DAZ and BOULE (also called BOLL) promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133736/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133736/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kee, Kehkooi -- Angeles, Vanessa T -- Flores, Martha -- Nguyen, Ha Nam -- Reijo Pera, Renee A -- R01 HD047721/HD/NICHD NIH HHS/ -- R01 HD047721-06/HD/NICHD NIH HHS/ -- R01HD047721/HD/NICHD NIH HHS/ -- U54 HD055764/HD/NICHD NIH HHS/ -- U54 HD055764-015755/HD/NICHD NIH HHS/ -- U54HD055764/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):222-5. doi: 10.1038/nature08562. Epub 2009 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Embryonic Stem Cell Research and Education, Institute for Stem Cell Biology & Regenerative Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Palo Alto, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865085" target="_blank"〉PubMed〈/a〉
    Keywords: Bone Morphogenetic Proteins/metabolism ; Cell Count ; *Cell Differentiation ; Cell Line ; Cellular Reprogramming ; Embryonic Stem Cells/cytology/metabolism ; Female ; Gene Expression ; Gene Silencing ; Genes, Reporter ; Germ Cells/*cytology/*metabolism ; *Haploidy ; Humans ; Male ; Meiosis ; Organ Specificity ; RNA-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2009-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonnell, Anna -- England -- Nature. 2009 Jun 18;459(7249):909. doi: 10.1038/459909b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Fertility ; History, Ancient ; Humans ; Pregnancy ; Sculpture/*history
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2009-07-25
    Description: African primates are naturally infected with over 40 different simian immunodeficiency viruses (SIVs), two of which have crossed the species barrier and generated human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Unlike the human viruses, however, SIVs do not generally cause acquired immunodeficiency syndrome (AIDS) in their natural hosts. Here we show that SIVcpz, the immediate precursor of HIV-1, is pathogenic in free-ranging chimpanzees. By following 94 members of two habituated chimpanzee communities in Gombe National Park, Tanzania, for over 9 years, we found a 10- to 16-fold higher age-corrected death hazard for SIVcpz-infected (n = 17) compared to uninfected (n = 77) chimpanzees. We also found that SIVcpz-infected females were less likely to give birth and had a higher infant mortality rate than uninfected females. Immunohistochemistry and in situ hybridization of post-mortem spleen and lymph node samples from three infected and two uninfected chimpanzees revealed significant CD4(+) T-cell depletion in all infected individuals, with evidence of high viral replication and extensive follicular dendritic cell virus trapping in one of them. One female, who died within 3 years of acquiring SIVcpz, had histopathological findings consistent with end-stage AIDS. These results indicate that SIVcpz, like HIV-1, is associated with progressive CD4(+) T-cell loss, lymphatic tissue destruction and premature death. These findings challenge the prevailing view that all natural SIV infections are non-pathogenic and suggest that SIVcpz has a substantial negative impact on the health, reproduction and lifespan of chimpanzees in the wild.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keele, Brandon F -- Jones, James Holland -- Terio, Karen A -- Estes, Jacob D -- Rudicell, Rebecca S -- Wilson, Michael L -- Li, Yingying -- Learn, Gerald H -- Beasley, T Mark -- Schumacher-Stankey, Joann -- Wroblewski, Emily -- Mosser, Anna -- Raphael, Jane -- Kamenya, Shadrack -- Lonsdorf, Elizabeth V -- Travis, Dominic A -- Mlengeya, Titus -- Kinsel, Michael J -- Else, James G -- Silvestri, Guido -- Goodall, Jane -- Sharp, Paul M -- Shaw, George M -- Pusey, Anne E -- Hahn, Beatrice H -- HHSN266200400088C/PHS HHS/ -- P30 AI 27767/AI/NIAID NIH HHS/ -- P30 AI027767/AI/NIAID NIH HHS/ -- P30 AI027767-21A17134/AI/NIAID NIH HHS/ -- R01 AI058715/AI/NIAID NIH HHS/ -- R01 AI058715-06A1/AI/NIAID NIH HHS/ -- R01 AI50529/AI/NIAID NIH HHS/ -- R01 AI58715/AI/NIAID NIH HHS/ -- R37 AI050529/AI/NIAID NIH HHS/ -- R37 AI050529-06A1/AI/NIAID NIH HHS/ -- RR-00165/RR/NCRR NIH HHS/ -- T32 GM008111/GM/NIGMS NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- U19 AI067854-059010/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 23;460(7254):515-9. doi: 10.1038/nature08200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19626114" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/pathology ; Africa ; Animals ; Animals, Wild ; CD4-Positive T-Lymphocytes/immunology ; Female ; Humans ; Male ; Molecular Sequence Data ; Pan troglodytes/*virology ; Prevalence ; Simian Acquired Immunodeficiency ; Syndrome/epidemiology/immunology/*mortality/*pathology ; Simian Immunodeficiency Virus/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2009-11-13
    Description: Experience-dependent plasticity in the brain requires balanced excitation-inhibition. How individual circuit elements contribute to plasticity outcome in complex neocortical networks remains unknown. Here we report an intracellular analysis of ocular dominance plasticity-the loss of acuity and cortical responsiveness for an eye deprived of vision in early life. Unlike the typical progressive loss of pyramidal-cell bias, direct recording from fast-spiking cells in vivo reveals a counterintuitive initial shift towards the occluded eye followed by a late preference for the open eye, consistent with a spike-timing-dependent plasticity rule for these inhibitory neurons. Intracellular pharmacology confirms a dynamic switch of GABA (gamma-aminobutyric acid) impact to pyramidal cells following deprivation in juvenile mice only. Together these results suggest that the bidirectional recruitment of an initially binocular GABA circuit may contribute to experience-dependent plasticity in the developing visual cortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yazaki-Sugiyama, Yoko -- Kang, Siu -- Cateau, Hideyuki -- Fukai, Tomoki -- Hensch, Takao K -- England -- Nature. 2009 Nov 12;462(7270):218-21. doi: 10.1038/nature08485.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CREST, JST, Toyonaka, Osaka 560-0082, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907494" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/*physiology ; Aging/physiology ; Animals ; Dominance, Ocular/*physiology ; Interneurons/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neuronal Plasticity/*physiology ; Neurons/*metabolism ; Photic Stimulation ; Pyramidal Cells/metabolism ; Receptors, GABA/metabolism ; Visual Cortex/cytology/physiology ; Visual Pathways/physiology ; Visual Perception/*physiology ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2009-08-21
    Description: A decision is a commitment to a proposition or plan of action based on evidence and the expected costs and benefits associated with the outcome. Progress in a variety of fields has led to a quantitative understanding of the mechanisms that evaluate evidence and reach a decision. Several formalisms propose that a representation of noisy evidence is evaluated against a criterion to produce a decision. Without additional evidence, however, these formalisms fail to explain why a decision-maker would change their mind. Here we extend a model, developed to account for both the timing and the accuracy of the initial decision, to explain subsequent changes of mind. Subjects made decisions about a noisy visual stimulus, which they indicated by moving a handle. Although they received no additional information after initiating their movement, their hand trajectories betrayed a change of mind in some trials. We propose that noisy evidence is accumulated over time until it reaches a criterion level, or bound, which determines the initial decision, and that the brain exploits information that is in the processing pipeline when the initial decision is made to subsequently either reverse or reaffirm the initial decision. The model explains both the frequency of changes of mind as well as their dependence on both task difficulty and whether the initial decision was accurate or erroneous. The theoretical and experimental findings advance the understanding of decision-making to the highly flexible and cognitive acts of vacillation and self-correction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Resulaj, Arbora -- Kiani, Roozbeh -- Wolpert, Daniel M -- Shadlen, Michael N -- 077730/Wellcome Trust/United Kingdom -- EY11378/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Sep 10;461(7261):263-6. doi: 10.1038/nature08275. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693010" target="_blank"〉PubMed〈/a〉
    Keywords: Computers ; Cues ; Decision Making/*physiology ; Female ; Hand/physiology ; Humans ; Male ; Models, Neurological ; Models, Psychological ; Motion ; Movement ; Photic Stimulation ; Psychomotor Performance ; Reaction Time ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-08-28
    Description: Mitochondria are found in all eukaryotic cells and contain their own genome (mitochondrial DNA or mtDNA). Unlike the nuclear genome, which is derived from both the egg and sperm at fertilization, the mtDNA in the embryo is derived almost exclusively from the egg; that is, it is of maternal origin. Mutations in mtDNA contribute to a diverse range of currently incurable human diseases and disorders. To establish preclinical models for new therapeutic approaches, we demonstrate here that the mitochondrial genome can be efficiently replaced in mature non-human primate oocytes (Macaca mulatta) by spindle-chromosomal complex transfer from one egg to an enucleated, mitochondrial-replete egg. The reconstructed oocytes with the mitochondrial replacement were capable of supporting normal fertilization, embryo development and produced healthy offspring. Genetic analysis confirmed that nuclear DNA in the three infants born so far originated from the spindle donors whereas mtDNA came from the cytoplast donors. No contribution of spindle donor mtDNA was detected in offspring. Spindle replacement is shown here as an efficient protocol replacing the full complement of mitochondria in newly generated embryonic stem cell lines. This approach may offer a reproductive option to prevent mtDNA disease transmission in affected families.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachibana, Masahito -- Sparman, Michelle -- Sritanaudomchai, Hathaitip -- Ma, Hong -- Clepper, Lisa -- Woodward, Joy -- Li, Ying -- Ramsey, Cathy -- Kolotushkina, Olena -- Mitalipov, Shoukhrat -- P01 HD047675/HD/NICHD NIH HHS/ -- P01 HD047675-01A17045/HD/NICHD NIH HHS/ -- P01 HD047675-04/HD/NICHD NIH HHS/ -- P51 RR000163/RR/NCRR NIH HHS/ -- P51 RR000163-486766/RR/NCRR NIH HHS/ -- P51 RR000163-486775/RR/NCRR NIH HHS/ -- P51 RR000163-486819/RR/NCRR NIH HHS/ -- P51 RR000163-496038/RR/NCRR NIH HHS/ -- P51 RR000163-496045/RR/NCRR NIH HHS/ -- P51 RR000163-496074/RR/NCRR NIH HHS/ -- P51 RR000163-496133/RR/NCRR NIH HHS/ -- P51 RR000163-496134/RR/NCRR NIH HHS/ -- P51 RR000163-496136/RR/NCRR NIH HHS/ -- P51 RR000163-496137/RR/NCRR NIH HHS/ -- R01 HD057121/HD/NICHD NIH HHS/ -- R01 HD057121-01A2/HD/NICHD NIH HHS/ -- R01 NS044330/NS/NINDS NIH HHS/ -- R01 NS044330-05/NS/NINDS NIH HHS/ -- R24 RR013632/RR/NCRR NIH HHS/ -- R24 RR013632-10/RR/NCRR NIH HHS/ -- England -- Nature. 2009 Sep 17;461(7262):367-72. doi: 10.1038/nature08368. Epub 2009 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oregon National Primate Research Center, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19710649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/genetics ; DNA, Mitochondrial/analysis/*genetics ; Embryo Transfer ; Embryonic Stem Cells/*cytology/*metabolism/transplantation ; Female ; Fertilization in Vitro ; Genes, Mitochondrial/*genetics ; Genome, Mitochondrial/*genetics ; Macaca mulatta/embryology/*genetics ; Male ; Meiosis ; Mitochondrial Diseases/genetics/prevention & control ; Mutation ; Oocytes/cytology/metabolism ; Pregnancy ; *Reproductive Techniques, Assisted
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gowans, James -- England -- Nature. 2009 May 28;459(7246):506. doi: 10.1038/459506c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478763" target="_blank"〉PubMed〈/a〉
    Keywords: Clinical Trials as Topic/history ; Correspondence as Topic/history ; Female ; Great Britain ; History, 20th Century ; Humans ; Periodicals as Topic/*history
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2009-06-16
    Description: Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularisation (CNV). Here we show that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in choroidal neovascular endothelial cells in humans with AMD, and that despite the expression of its ligands eotaxin-1, -2 and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation because it occurred in mice lacking eosinophils or mast cells, and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor A (VEGF-A) neutralization, which is in clinical use at present, and, unlike VEGF-A blockade, is not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712122/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712122/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Atsunobu -- Baffi, Judit Z -- Kleinman, Mark E -- Cho, Won Gil -- Nozaki, Miho -- Yamada, Kiyoshi -- Kaneko, Hiroki -- Albuquerque, Romulo J C -- Dridi, Sami -- Saito, Kuniharu -- Raisler, Brian J -- Budd, Steven J -- Geisen, Pete -- Munitz, Ariel -- Ambati, Balamurali K -- Green, Martha G -- Ishibashi, Tatsuro -- Wright, John D -- Humbles, Alison A -- Gerard, Craig J -- Ogura, Yuichiro -- Pan, Yuzhen -- Smith, Justine R -- Grisanti, Salvatore -- Hartnett, M Elizabeth -- Rothenberg, Marc E -- Ambati, Jayakrishna -- AI039759/AI/NIAID NIH HHS/ -- AI45898/AI/NIAID NIH HHS/ -- DK076893/DK/NIDDK NIH HHS/ -- EY010572/EY/NEI NIH HHS/ -- EY015130/EY/NEI NIH HHS/ -- EY015422/EY/NEI NIH HHS/ -- EY017011/EY/NEI NIH HHS/ -- EY017182/EY/NEI NIH HHS/ -- EY017950/EY/NEI NIH HHS/ -- EY018350/EY/NEI NIH HHS/ -- EY018836/EY/NEI NIH HHS/ -- R01 DK076893/DK/NIDDK NIH HHS/ -- R01 EY015422/EY/NEI NIH HHS/ -- R01 EY015422-04/EY/NEI NIH HHS/ -- R01 EY018350/EY/NEI NIH HHS/ -- R01 EY018350-02/EY/NEI NIH HHS/ -- R01 EY018836/EY/NEI NIH HHS/ -- R01 EY018836-02/EY/NEI NIH HHS/ -- England -- Nature. 2009 Jul 9;460(7252):225-30. doi: 10.1038/nature08151. Epub 2009 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology & Visual Science, University of Kentucky, Lexington, Kentucky 40506, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19525930" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Chemokine CCL11/antagonists & inhibitors/metabolism ; Chemokine CCL24/antagonists & inhibitors/metabolism ; Chemokines, CC/antagonists & inhibitors/metabolism ; Choroid/blood supply/cytology/metabolism ; Choroidal Neovascularization/diagnosis/metabolism ; Disease Models, Animal ; Endothelial Cells/cytology/metabolism ; Humans ; Inflammation ; Leukocytes ; Ligands ; Macular Degeneration/*diagnosis/metabolism/*therapy ; Mice ; Mice, Inbred C57BL ; Quantum Dots ; Receptors, CCR3/analysis/*antagonists & ; inhibitors/genetics/immunology/*metabolism ; Retina/drug effects/pathology ; Vascular Endothelial Growth Factor A/antagonists & inhibitors/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2009-08-21
    Description: Activity is thought to guide the patterning of synaptic connections in the developing nervous system. Specifically, differences in the activity of converging inputs are thought to cause the elimination of synapses from less active inputs and increase connectivity with more active inputs. Here we present findings that challenge the generality of this notion and offer a new view of the role of activity in synapse development. To imbalance neurotransmission from different sets of inputs in vivo, we generated transgenic mice in which ON but not OFF types of bipolar cells in the retina express tetanus toxin (TeNT). During development, retinal ganglion cells (RGCs) select between ON and OFF bipolar cell inputs (ON or OFF RGCs) or establish a similar number of synapses with both on separate dendritic arborizations (ON-OFF RGCs). In TeNT retinas, ON RGCs correctly selected the silenced ON bipolar cell inputs over the transmitting OFF bipolar cells, but were connected with them through fewer synapses at maturity. Time-lapse imaging revealed that this was caused by a reduced rate of synapse formation rather than an increase in synapse elimination. Similarly, TeNT-expressing ON bipolar cell axons generated fewer presynaptic active zones. The remaining active zones often recruited multiple, instead of single, synaptic ribbons. ON-OFF RGCs in TeNT mice maintained convergence of ON and OFF bipolar cells inputs and had fewer synapses on their ON arbor without changes to OFF arbor synapses. Our results reveal an unexpected and remarkably selective role for activity in circuit development in vivo, regulating synapse formation but not elimination, affecting synapse number but not dendritic or axonal patterning, and mediating independently the refinement of connections from parallel (ON and OFF) processing streams even where they converge onto the same postsynaptic cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerschensteiner, Daniel -- Morgan, Josh L -- Parker, Edward D -- Lewis, Renate M -- Wong, Rachel O L -- EY01730/EY/NEI NIH HHS/ -- EY10699/EY/NEI NIH HHS/ -- R01 EY010699/EY/NEI NIH HHS/ -- R01 EY010699-16/EY/NEI NIH HHS/ -- T32 EY07031/EY/NEI NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1016-20. doi: 10.1038/nature08236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. KerschensteinerD@vision.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693082" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Dendrites/metabolism ; Female ; Glutamic Acid/metabolism ; Male ; Mice ; Mice, Transgenic ; Receptors, Kainic Acid/genetics/metabolism ; Retinal Bipolar Cells/cytology/metabolism ; Retinal Ganglion Cells/cytology/metabolism ; Synapses/*metabolism ; Synaptic Transmission/*physiology ; Tetanus Toxin/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2009-12-04
    Description: Dietary restriction extends healthy lifespan in diverse organisms and reduces fecundity. It is widely assumed to induce adaptive reallocation of nutrients from reproduction to somatic maintenance, aiding survival of food shortages in nature. If this were the case, long life under dietary restriction and high fecundity under full feeding would be mutually exclusive, through competition for the same limiting nutrients. Here we report a test of this idea in which we identified the nutrients producing the responses of lifespan and fecundity to dietary restriction in Drosophila. Adding essential amino acids to the dietary restriction condition increased fecundity and decreased lifespan, similar to the effects of full feeding, with other nutrients having little or no effect. However, methionine alone was necessary and sufficient to increase fecundity as much as did full feeding, but without reducing lifespan. Reallocation of nutrients therefore does not explain the responses to dietary restriction. Lifespan was decreased by the addition of amino acids, with an interaction between methionine and other essential amino acids having a key role. Hence, an imbalance in dietary amino acids away from the ratio optimal for reproduction shortens lifespan during full feeding and limits fecundity during dietary restriction. Reduced activity of the insulin/insulin-like growth factor signalling pathway extends lifespan in diverse organisms, and we find that it also protects against the shortening of lifespan with full feeding. In other organisms, including mammals, it may be possible to obtain the benefits to lifespan of dietary restriction without incurring a reduction in fecundity, through a suitable balance of nutrients in the diet.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grandison, Richard C -- Piper, Matthew D W -- Partridge, Linda -- 081394/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Dec 24;462(7276):1061-4. doi: 10.1038/nature08619. Epub 2009 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Healthy Ageing, Department of Genetics Evolution and Environment, University College London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19956092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; *Diet ; Drosophila melanogaster/metabolism/*physiology ; Female ; Insulin/metabolism ; Longevity/*physiology ; Methionine/metabolism ; Oviposition/physiology ; Random Allocation ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mellars, Paul -- England -- Nature. 2009 May 14;459(7244):176-7. doi: 10.1038/459176a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19444200" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Archaeology ; Female ; Germany ; History, Ancient ; Horns/chemistry ; Humans ; Sculpture/*history ; Sex Characteristics ; Symbolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2009-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khalil, Ahmad M -- England -- Nature. 2009 Mar 19;458(7236):263. doi: 10.1038/458263f.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Models, Genetic ; RNA Interference ; RNA, Long Noncoding ; RNA, Untranslated/*genetics ; Ribonuclease III/deficiency ; X Chromosome Inactivation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2009-12-18
    Description: An important challenge in systems biology is to quantitatively describe microbial growth using a few measurable parameters that capture the essence of this complex phenomenon. Two key events at the cell membrane-extracellular glucose sensing and uptake-initiate the budding yeast's growth on glucose. However, conventional growth models focus almost exclusively on glucose uptake. Here we present results from growth-rate experiments that cannot be explained by focusing on glucose uptake alone. By imposing a glucose uptake rate independent of the sensed extracellular glucose level, we show that despite increasing both the sensed glucose concentration and uptake rate, the cell's growth rate can decrease or even approach zero. We resolve this puzzle by showing that the interaction between glucose perception and import, not their individual actions, determines the central features of growth, and characterize this interaction using a quantitative model. Disrupting this interaction by knocking out two key glucose sensors significantly changes the cell's growth rate, yet uptake rates are unchanged. This is due to a decrease in burden that glucose perception places on the cells. Our work shows that glucose perception and import are separate and pivotal modules of yeast growth, the interaction of which can be precisely tuned and measured.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796206/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796206/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Youk, Hyun -- van Oudenaarden, Alexander -- DP1 OD003936/OD/NIH HHS/ -- DP1 OD003936-01/OD/NIH HHS/ -- DP1 OD003936-02/OD/NIH HHS/ -- R01 GM068957/GM/NIGMS NIH HHS/ -- R01 GM068957-06/GM/NIGMS NIH HHS/ -- R01 GM068957-07/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):875-9. doi: 10.1038/nature08653.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016593" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport/drug effects ; Cell Growth Processes/drug effects ; Cell Membrane/drug effects/metabolism ; Doxycycline/pharmacology ; Glucose/*metabolism/pharmacology ; Kinetics ; Models, Biological ; Saccharomyces cerevisiae/cytology/drug effects/*growth & development/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, Jennifer A Marshall -- England -- Nature. 2009 Sep 10;461(7261):177-8. doi: 10.1038/461177a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741690" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chick Embryo ; Chickens/*genetics/*physiology ; Disorders of Sex Development ; Evolution, Molecular ; Female ; Gene Dosage/genetics ; Humans ; Male ; Models, Genetic ; Ovary/embryology/metabolism ; RNA Interference ; SOX9 Transcription Factor/genetics/metabolism ; Sex Chromosomes/*genetics ; *Sex Determination Processes ; Testis/embryology/metabolism ; Transcription Factors/deficiency/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Larry J -- England -- Nature. 2009 Jan 8;457(7226):148. doi: 10.1038/457148a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA. lyoun03@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19129828" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arvicolinae/genetics/physiology ; Dopamine/metabolism ; Female ; Humans ; *Love ; Male ; Maternal Behavior/physiology ; Oxytocin/*metabolism ; Pair Bond ; Paternal Behavior ; Receptors, Vasopressin/genetics/metabolism ; Sexual Behavior/drug effects/physiology ; Vasopressins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2009-09-11
    Description: It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Shuizi Rachel -- Burkhardt, Markus -- Nowak, Matthias -- Ries, Jonas -- Petrasek, Zdenek -- Scholpp, Steffen -- Schwille, Petra -- Brand, Michael -- England -- Nature. 2009 Sep 24;461(7263):533-6. doi: 10.1038/nature08391. Epub 2009 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Genetics, Biotechnology Center, TUD, Tatzberg 47-49, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741606" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diffusion ; Embryo, Nonmammalian/*cytology/embryology/*metabolism ; *Endocytosis ; Extracellular Space/metabolism ; Fibroblast Growth Factors/genetics/*metabolism ; Gastrulation ; Green Fluorescent Proteins/genetics/metabolism ; Models, Biological ; Morphogenesis/*physiology ; Receptors, Fibroblast Growth Factor/metabolism ; Zebrafish/*embryology/*metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2009-02-06
    Description: Recent studies indicate that the methylation state of histones can be dynamically regulated by histone methyltransferases and demethylases. The H3K9-specific demethylase Jhdm2a (also known as Jmjd1a and Kdm3a) has an important role in nuclear hormone receptor-mediated gene activation and male germ cell development. Through disruption of the Jhdm2a gene in mice, here we demonstrate that Jhdm2a is critically important in regulating the expression of metabolic genes. The loss of Jhdm2a function results in obesity and hyperlipidemia in mice. We provide evidence that the loss of Jhdm2a function disrupts beta-adrenergic-stimulated glycerol release and oxygen consumption in brown fat, and decreases fat oxidation and glycerol release in skeletal muscles. We show that Jhdm2a expression is induced by beta-adrenergic stimulation, and that Jhdm2a directly regulates peroxisome proliferator-activated receptor alpha (Ppara) and Ucp1 expression. Furthermore, we demonstrate that beta-adrenergic activation-induced binding of Jhdm2a to the PPAR responsive element (PPRE) of the Ucp1 gene not only decreases levels of H3K9me2 (dimethylation of lysine 9 of histone H3) at the PPRE, but also facilitates the recruitment of Ppargamma and Rxralpha and their co-activators Pgc1alpha (also known as Ppargc1a), CBP/p300 (Crebbp) and Src1 (Ncoa1) to the PPRE. Our studies thus demonstrate an essential role for Jhdm2a in regulating metabolic gene expression and normal weight control in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085783/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085783/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tateishi, Keisuke -- Okada, Yuki -- Kallin, Eric M -- Zhang, Yi -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Apr 9;458(7239):757-61. doi: 10.1038/nature07777. Epub 2009 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194461" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/metabolism ; Animals ; Cells, Cultured ; Energy Metabolism/*physiology ; Gene Expression Profiling ; *Gene Expression Regulation ; Glycerol/metabolism ; Ion Channels/metabolism ; Jumonji Domain-Containing Histone Demethylases ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondrial Proteins/metabolism ; Muscle, Skeletal/metabolism ; Obesity/*metabolism ; Oxidation-Reduction ; Oxidoreductases, N-Demethylating/*genetics/*metabolism ; Phenotype ; Receptors, Adrenergic, beta/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buchen, Lizzie -- England -- Nature. 2009 Dec 3;462(7273):562-4. doi: 10.1038/462562a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19956235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior/physiology ; *Behavior, Animal ; Behavioral Research/*instrumentation/methods ; Drosophila melanogaster/*physiology ; Female ; Humans ; Male ; Software ; Video Recording/instrumentation/methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2009-09-18
    Description: Molecules such as vascular endothelial growth factor (VEGF) or placental growth factor-critical regulators of tumour angiogenesis-are also thought to mobilize into blood circulation bone marrow-derived cells (BMDCs), which may subsequently be recruited to tumours and facilitate tumour growth and metastasis. A study has suggested that BMDCs form 'metastatic niches' in lungs before arrival of cancer cells, and showed that pharmacological inhibition of VEGF receptor 1 (VEGFR1, also known as Flt1)-cognate receptor for VEGF and placental growth factor-prevented BMDC infiltration in lungs and 'metastatic niche' formation. Here we report that blockade of VEGFR1 activity does not affect the rate of spontaneous metastasis formation in a clinically relevant and widely used preclinical model. Therefore, alternative pathways probably mediate the priming of tissues for metastasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065241/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065241/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Michelle R -- Duda, Dan G -- Fukumura, Dai -- Jain, Rakesh K -- P01 CA080124/CA/NCI NIH HHS/ -- P01 CA080124-05/CA/NCI NIH HHS/ -- P01 CA080124-06A2/CA/NCI NIH HHS/ -- P01 CA080124-07/CA/NCI NIH HHS/ -- P01 CA080124-08/CA/NCI NIH HHS/ -- P01 CA080124-09/CA/NCI NIH HHS/ -- R01 CA085140/CA/NCI NIH HHS/ -- R01 CA085140-06/CA/NCI NIH HHS/ -- R01 CA085140-07/CA/NCI NIH HHS/ -- R01 CA085140-08/CA/NCI NIH HHS/ -- R01 CA085140-09/CA/NCI NIH HHS/ -- R01 CA096915/CA/NCI NIH HHS/ -- R01 CA096915-04/CA/NCI NIH HHS/ -- R01 CA096915-05/CA/NCI NIH HHS/ -- R01 CA096915-06A1/CA/NCI NIH HHS/ -- R01 CA096915-07/CA/NCI NIH HHS/ -- R01 CA096915-08/CA/NCI NIH HHS/ -- R01 CA115767/CA/NCI NIH HHS/ -- R01 CA115767-01A1/CA/NCI NIH HHS/ -- R01 CA115767-02/CA/NCI NIH HHS/ -- R01 CA115767-03/CA/NCI NIH HHS/ -- R01 CA115767-04/CA/NCI NIH HHS/ -- R01 CA126642/CA/NCI NIH HHS/ -- R01 CA126642-01A1/CA/NCI NIH HHS/ -- R01 CA126642-02/CA/NCI NIH HHS/ -- R24 CA085140/CA/NCI NIH HHS/ -- R24 CA085140-05/CA/NCI NIH HHS/ -- T32 CA073479/CA/NCI NIH HHS/ -- T32 CA073479-08/CA/NCI NIH HHS/ -- T32 CA073479-09/CA/NCI NIH HHS/ -- T32 CA073479-10/CA/NCI NIH HHS/ -- T32 CA073479-11/CA/NCI NIH HHS/ -- T32 CA073479-12/CA/NCI NIH HHS/ -- England -- Nature. 2009 Sep 17;461(7262):E4; discussion E5. doi: 10.1038/nature08254.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Steele Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759568" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/cytology ; Cell Movement ; Lung/pathology ; Lung Neoplasms/*secondary ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; Neoplasms/*pathology ; Vascular Endothelial Growth Factor Receptor-1/*antagonists & ; inhibitors/deficiency/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2009-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rockenbach, Bettina -- Milinski, Manfred -- England -- Nature. 2009 Jan 1;457(7225):39-40. doi: 10.1038/457039a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19122632" target="_blank"〉PubMed〈/a〉
    Keywords: Altruism ; Biological Evolution ; *Cooperative Behavior ; Cost-Benefit Analysis ; Female ; *Game Theory ; Humans ; Male ; Models, Psychological ; *Punishment/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2009-06-19
    Description: Several hundred malaria parasite proteins are exported beyond an encasing vacuole and into the cytosol of the host erythrocyte, a process that is central to the virulence and viability of the causative Plasmodium species. The trafficking machinery responsible for this export is unknown. Here we identify in Plasmodium falciparum a translocon of exported proteins (PTEX), which is located in the vacuole membrane. The PTEX complex is ATP-powered, and comprises heat shock protein 101 (HSP101; a ClpA/B-like ATPase from the AAA+ superfamily, of a type commonly associated with protein translocons), a novel protein termed PTEX150 and a known parasite protein, exported protein 2 (EXP2). EXP2 is the potential channel, as it is the membrane-associated component of the core PTEX complex. Two other proteins, a new protein PTEX88 and thioredoxin 2 (TRX2), were also identified as PTEX components. As a common portal for numerous crucial processes, this translocon offers a new avenue for therapeutic intervention.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Koning-Ward, Tania F -- Gilson, Paul R -- Boddey, Justin A -- Rug, Melanie -- Smith, Brian J -- Papenfuss, Anthony T -- Sanders, Paul R -- Lundie, Rachel J -- Maier, Alexander G -- Cowman, Alan F -- Crabb, Brendan S -- R01 AI044008-11/AI/NIAID NIH HHS/ -- R01 AI44008/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jun 18;459(7249):945-9. doi: 10.1038/nature08104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter & Eliza Hall Institute of Medical Research, Melbourne 3052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536257" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Malaria, Falciparum/*parasitology ; Models, Biological ; Multiprotein Complexes/*chemistry/*metabolism ; Plasmodium falciparum/*metabolism ; Protein Binding ; Protein Transport ; Protozoan Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2009-07-17
    Description: In recent years, strikingly consistent patterns of biodiversity have been identified over space, time, organism type and geographical region. A neutral theory (assuming no environmental selection or organismal interactions) has been shown to predict many patterns of ecological biodiversity. This theory is based on a mechanism by which new species arise similarly to point mutations in a population without sexual reproduction. Here we report the simulation of populations with sexual reproduction, mutation and dispersal. We found simulated time dependence of speciation rates, species-area relationships and species abundance distributions consistent with the behaviours found in nature. From our results, we predict steady speciation rates, more species in one-dimensional environments than two-dimensional environments, three scaling regimes of species-area relationships and lognormal distributions of species abundance with an excess of rare species and a tail that may be approximated by Fisher's logarithmic series. These are consistent with dependences reported for, among others, global birds and flowering plants, marine invertebrate fossils, ray-finned fishes, British birds and moths, North American songbirds, mammal fossils from Kansas and Panamanian shrubs. Quantitative comparisons of specific cases are remarkably successful. Our biodiversity results provide additional evidence that species diversity arises without specific physical barriers. This is similar to heavy traffic flows, where traffic jams can form even without accidents or barriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Aguiar, M A M -- Baranger, M -- Baptestini, E M -- Kaufman, L -- Bar-Yam, Y -- England -- Nature. 2009 Jul 16;460(7253):384-7. doi: 10.1038/nature08168.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New England Complex Systems Institute, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19606148" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Disorders of Sex Development ; Extinction, Biological ; *Genetic Speciation ; Genotype ; Haploidy ; Models, Biological ; Mutation/genetics ; Population Dynamics ; Reproduction/genetics/*physiology ; Sexual Behavior, Animal ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2009-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rose, Steven -- England -- Nature. 2009 Nov 5;462(7269):35. doi: 10.1038/462035c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890309" target="_blank"〉PubMed〈/a〉
    Keywords: Continental Population Groups/*genetics ; *Ethics, Research ; Female ; Humans ; Intelligence/*genetics ; Male ; Reproducibility of Results ; *Sex Characteristics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2009-01-06
    Description: Metastatic progression depends on genetic alterations intrinsic to cancer cells as well as the inflammatory microenvironment of advanced tumours. To understand how cancer cells affect the inflammatory microenvironment, we conducted a biochemical screen for macrophage-activating factors secreted by metastatic carcinomas. Here we show that, among the cell lines screened, Lewis lung carcinoma (LLC) were the most potent macrophage activators leading to production of interleukin-6 (IL-6) and tumour-necrosis factor-alpha (TNF-alpha) through activation of the Toll-like receptor (TLR) family members TLR2 and TLR6. Both TNF-alpha and TLR2 were found to be required for LLC metastasis. Biochemical purification of LLC-conditioned medium (LCM) led to identification of the extracellular matrix proteoglycan versican, which is upregulated in many human tumours including lung cancer, as a macrophage activator that acts through TLR2 and its co-receptors TLR6 and CD14. By activating TLR2:TLR6 complexes and inducing TNF-alpha secretion by myeloid cells, versican strongly enhances LLC metastatic growth. These results explain how advanced cancer cells usurp components of the host innate immune system, including bone-marrow-derived myeloid progenitors, to generate an inflammatory microenvironment hospitable for metastatic growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746432/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746432/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sunhwa -- Takahashi, Hiroyuki -- Lin, Wan-Wan -- Descargues, Pascal -- Grivennikov, Sergei -- Kim, Youngjun -- Luo, Jun-Li -- Karin, Michael -- R01 CA118165/CA/NCI NIH HHS/ -- R01 CA118165-02/CA/NCI NIH HHS/ -- R01 CA132586/CA/NCI NIH HHS/ -- R01 ES006376/ES/NIEHS NIH HHS/ -- R01 ES006376-14/ES/NIEHS NIH HHS/ -- T32 CA121938/CA/NCI NIH HHS/ -- England -- Nature. 2009 Jan 1;457(7225):102-6. doi: 10.1038/nature07623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Center, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0723, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19122641" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD14/metabolism ; Carcinoma, Lewis Lung/*metabolism/pathology/secretion ; Culture Media, Conditioned/metabolism/pharmacology ; Culture Media, Serum-Free/metabolism ; Interleukin-6/metabolism/secretion ; Liver Neoplasms/secondary ; Lung Neoplasms/metabolism/pathology/secondary ; *Macrophage Activation ; Macrophages/*metabolism/secretion ; Mice ; Mice, Inbred C57BL ; *Neoplasm Metastasis/pathology ; Neoplasm Transplantation ; Toll-Like Receptor 2/agonists/*metabolism ; Toll-Like Receptor 6/metabolism ; Tumor Necrosis Factor-alpha/metabolism/secretion ; Versicans/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2009-06-19
    Description: T-cell acute lymphoblastic leukaemia (T-ALL) is a blood malignancy afflicting mainly children and adolescents. T-ALL patients present at diagnosis with increased white cell counts and hepatosplenomegaly, and are at an increased risk of central nervous system (CNS) relapse. For that reason, T-ALL patients usually receive cranial irradiation in addition to intensified intrathecal chemotherapy. The marked increase in survival is thought to be worth the considerable side-effects associated with this therapy. Such complications include secondary tumours, neurocognitive deficits, endocrine disorders and growth impairment. Little is known about the mechanism of leukaemic cell infiltration of the CNS, despite its clinical importance. Here we show, using T-ALL animal modelling and gene-expression profiling, that the chemokine receptor CCR7 (ref. 5) is the essential adhesion signal required for the targeting of leukaemic T-cells into the CNS. Ccr7 gene expression is controlled by the activity of the T-ALL oncogene Notch1 and is expressed in human tumours carrying Notch1-activating mutations. Silencing of either CCR7 or its chemokine ligand CCL19 (ref. 6) in an animal model of T-ALL specifically inhibits CNS infiltration. Furthermore, murine CNS-targeting by human T-ALL cells depends on their ability to express CCR7. These studies identify a single chemokine-receptor interaction as a CNS 'entry' signal, and open the way for future pharmacological targeting. Targeted inhibition of CNS involvement in T-ALL could potentially decrease the intensity of CNS-targeted therapy, thus reducing its associated short- and long-term complications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750496/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750496/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buonamici, Silvia -- Trimarchi, Thomas -- Ruocco, Maria Grazia -- Reavie, Linsey -- Cathelin, Severine -- Mar, Brenton G -- Klinakis, Apostolos -- Lukyanov, Yevgeniy -- Tseng, Jen-Chieh -- Sen, Filiz -- Gehrie, Eric -- Li, Mengling -- Newcomb, Elizabeth -- Zavadil, Jiri -- Meruelo, Daniel -- Lipp, Martin -- Ibrahim, Sherif -- Efstratiadis, Argiris -- Zagzag, David -- Bromberg, Jonathan S -- Dustin, Michael L -- Aifantis, Iannis -- 1 P01 CA97403/CA/NCI NIH HHS/ -- P30CA016087/CA/NCI NIH HHS/ -- R01 AI041428/AI/NIAID NIH HHS/ -- R01 AI062765/AI/NIAID NIH HHS/ -- R01 AI072039/AI/NIAID NIH HHS/ -- R01 CA105129/CA/NCI NIH HHS/ -- R01 CA149655/CA/NCI NIH HHS/ -- R01AI072039/AI/NIAID NIH HHS/ -- R01AI41428/AI/NIAID NIH HHS/ -- R01CA105129/CA/NCI NIH HHS/ -- R01CA133379/CA/NCI NIH HHS/ -- R21 CA141399/CA/NCI NIH HHS/ -- R56AI070310/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jun 18;459(7249):1000-4. doi: 10.1038/nature08020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and New York University Cancer Institute, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536265" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Line, Tumor ; Central Nervous System/*metabolism/*pathology ; Chemokine CCL19/deficiency/metabolism ; Chemokine CCL21/metabolism ; Humans ; Leukemia, T-Cell/*metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism/pathology ; Receptor, Notch1/genetics/metabolism ; Receptors, CCR7/deficiency/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2009-09-18
    Description: Hepatitis C virus (HCV) infection is the most common blood-borne infection in the United States, with estimates of 4 million HCV-infected individuals in the United States and 170 million worldwide. Most (70-80%) HCV infections persist and about 30% of individuals with persistent infection develop chronic liver disease, including cirrhosis and hepatocellular carcinoma. Epidemiological, viral and host factors have been associated with the differences in HCV clearance or persistence, and studies have demonstrated that a strong host immune response against HCV favours viral clearance. Thus, variation in genes involved in the immune response may contribute to the ability to clear the virus. In a recent genome-wide association study, a single nucleotide polymorphism (rs12979860) 3 kilobases upstream of the IL28B gene, which encodes the type III interferon IFN-3, was shown to associate strongly with more than a twofold difference in response to HCV drug treatment. To determine the potential effect of rs12979860 variation on outcome to HCV infection in a natural history setting, we genotyped this variant in HCV cohorts comprised of individuals who spontaneously cleared the virus (n = 388) or had persistent infection (n = 620). We show that the C/C genotype strongly enhances resolution of HCV infection among individuals of both European and African ancestry. To our knowledge, this is the strongest and most significant genetic effect associated with natural clearance of HCV, and these results implicate a primary role for IL28B in resolution of HCV infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172006/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172006/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas, David L -- Thio, Chloe L -- Martin, Maureen P -- Qi, Ying -- Ge, Dongliang -- O'Huigin, Colm -- Kidd, Judith -- Kidd, Kenneth -- Khakoo, Salim I -- Alexander, Graeme -- Goedert, James J -- Kirk, Gregory D -- Donfield, Sharyne M -- Rosen, Hugo R -- Tobler, Leslie H -- Busch, Michael P -- McHutchison, John G -- Goldstein, David B -- Carrington, Mary -- HHSN261200800001E/CO/NCI NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- R01 DA004334/DA/NIDA NIH HHS/ -- R01DA004334/DA/NIDA NIH HHS/ -- R01DA013324/DA/NIDA NIH HHS/ -- R01DK60590/DK/NIDDK NIH HHS/ -- R01HD41224/HD/NICHD NIH HHS/ -- R01HL076902/HL/NHLBI NIH HHS/ -- R56 DA004334/DA/NIDA NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2009 Oct 8;461(7265):798-801. doi: 10.1038/nature08463.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johns Hopkins University, Division of Infectious Diseases, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759533" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Africa/ethnology ; Europe/ethnology ; Female ; Gene Frequency ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Genotype ; Hepacivirus/drug effects/*immunology/physiology ; Hepatitis C/drug therapy/*genetics/*immunology/virology ; Humans ; Interleukins/*genetics/*immunology ; Male ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2009-06-16
    Description: Toll-like receptors (TLRs) are the best characterized pattern recognition receptors. Individual TLRs recruit diverse combinations of adaptor proteins, triggering signal transduction pathways and leading to the activation of various transcription factors, including nuclear factor kappaB, activation protein 1 and interferon regulatory factors. Interleukin-2 is one of the molecules produced by mouse dendritic cells after stimulation by different pattern recognition receptor agonists. By analogy with the events after T-cell receptor engagement leading to interleukin-2 production, it is therefore plausible that the stimulation of TLRs on dendritic cells may lead to activation of the Ca(2+)/calcineurin and NFAT (nuclear factor of activated T cells) pathway. Here we show that mouse dendritic cell stimulation with lipopolysaccharide (LPS) induces Src-family kinase and phospholipase Cgamma2 activation, influx of extracellular Ca(2+) and calcineurin-dependent nuclear NFAT translocation. The initiation of this pathway is independent of TLR4 engagement, and dependent exclusively on CD14. We also show that LPS-induced NFAT activation via CD14 is necessary to cause the apoptotic death of terminally differentiated dendritic cells, an event that is essential for maintaining self-tolerance and preventing autoimmunity. Consequently, blocking this pathway in vivo causes prolonged dendritic cell survival and an increase in T-cell priming capability. Our findings reveal novel aspects of molecular signalling triggered by LPS in dendritic cells, and identify a new role for CD14: the regulation of the dendritic cell life cycle through NFAT activation. Given the involvement of CD14 in disease, including sepsis and chronic heart failure, the discovery of signal transduction pathways activated exclusively via CD14 is an important step towards the development of potential treatments involving interference with CD14 functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanoni, Ivan -- Ostuni, Renato -- Capuano, Giusy -- Collini, Maddalena -- Caccia, Michele -- Ronchi, Antonella Ellena -- Rocchetti, Marcella -- Mingozzi, Francesca -- Foti, Maria -- Chirico, Giuseppe -- Costa, Barbara -- Zaza, Antonio -- Ricciardi-Castagnoli, Paola -- Granucci, Francesca -- England -- Nature. 2009 Jul 9;460(7252):264-8. doi: 10.1038/nature08118. Epub 2009 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19525933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD14/*metabolism ; Apoptosis/drug effects ; Bone Marrow Cells/drug effects ; CD4-Positive T-Lymphocytes/drug effects/immunology ; Calcium/metabolism ; Calcium Signaling/drug effects ; Cell Differentiation ; Cell Survival/drug effects ; Dendritic Cells/*cytology/drug effects/*immunology/metabolism ; Lipopolysaccharides/*immunology/pharmacology ; Macrophages/cytology/drug effects/immunology ; Mice ; Mice, Inbred C57BL ; NFATC Transcription Factors/*metabolism ; Phospholipase C gamma/metabolism ; src-Family Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2009-02-27
    Description: Lung disease is the major cause of morbidity and mortality in cystic fibrosis, an autosomal recessive disease caused by mutations in CFTR. In cystic fibrosis, chronic infection and dysregulated neutrophilic inflammation lead to progressive airway destruction. The severity of cystic fibrosis lung disease has considerable heritability, independent of CFTR genotype. To identify genetic modifiers, here we performed a genome-wide single nucleotide polymorphism scan in one cohort of cystic fibrosis patients, replicating top candidates in an independent cohort. This approach identified IFRD1 as a modifier of cystic fibrosis lung disease severity. IFRD1 is a histone-deacetylase-dependent transcriptional co-regulator expressed during terminal neutrophil differentiation. Neutrophils, but not macrophages, from Ifrd1-deficient mice showed blunted effector function, associated with decreased NF-kappaB p65 transactivation. In vivo, IFRD1 deficiency caused delayed bacterial clearance from the airway, but also less inflammation and disease-a phenotype primarily dependent on haematopoietic cell expression, or lack of expression, of IFRD1. In humans, IFRD1 polymorphisms were significantly associated with variation in neutrophil effector function. These data indicate that IFRD1 modulates the pathogenesis of cystic fibrosis lung disease through the regulation of neutrophil effector function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, YuanYuan -- Harley, Isaac T W -- Henderson, Lindsay B -- Aronow, Bruce J -- Vietor, Ilja -- Huber, Lukas A -- Harley, John B -- Kilpatrick, Jeffrey R -- Langefeld, Carl D -- Williams, Adrienne H -- Jegga, Anil G -- Chen, Jing -- Wills-Karp, Marsha -- Arshad, S Hasan -- Ewart, Susan L -- Thio, Chloe L -- Flick, Leah M -- Filippi, Marie-Dominique -- Grimes, H Leighton -- Drumm, Mitchell L -- Cutting, Garry R -- Knowles, Michael R -- Karp, Christopher L -- R01 AI024717/AI/NIAID NIH HHS/ -- R01 HL068890/HL/NHLBI NIH HHS/ -- R01 HL068890-01/HL/NHLBI NIH HHS/ -- R01 HL068927/HL/NHLBI NIH HHS/ -- R01 HL068927-01/HL/NHLBI NIH HHS/ -- R01 HL079312/HL/NHLBI NIH HHS/ -- R01 HL079312-01A1/HL/NHLBI NIH HHS/ -- R37 AI024717/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Apr 23;458(7241):1039-42. doi: 10.1038/nature07811. Epub 2009 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cohort Studies ; Cystic Fibrosis/*genetics/*pathology ; Disease Models, Animal ; Genotype ; Humans ; Immediate-Early Proteins/deficiency/*genetics ; Inflammation/genetics/pathology ; Mice ; Mice, Inbred C57BL ; Neutrophils/immunology/metabolism ; Polymorphism, Single Nucleotide/genetics ; Pseudomonas aeruginosa/immunology/pathogenicity ; Transcription Factor RelA/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2009-09-29
    Description: Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitano, Jun -- Ross, Joseph A -- Mori, Seiichi -- Kume, Manabu -- Jones, Felicity C -- Chan, Yingguang F -- Absher, Devin M -- Grimwood, Jane -- Schmutz, Jeremy -- Myers, Richard M -- Kingsley, David M -- Peichel, Catherine L -- P50 HG002568/HG/NHGRI NIH HHS/ -- P50 HG002568-08/HG/NHGRI NIH HHS/ -- P50 HG02568/HG/NHGRI NIH HHS/ -- R01 GM071854/GM/NIGMS NIH HHS/ -- R01 GM071854-05/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1079-83. doi: 10.1038/nature08441. Epub 2009 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19783981" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Crosses, Genetic ; Female ; *Genetic Speciation ; Hybridization, Genetic ; Infertility, Male/genetics ; Japan ; Male ; Mating Preference, Animal ; Oceans and Seas ; Pacific Ocean ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Reproduction/genetics/physiology ; Sex Characteristics ; Sex Chromosomes/*genetics ; Smegmamorpha/anatomy & histology/classification/*genetics/*physiology ; Social Isolation ; Y Chromosome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2009-02-03
    Description: After an infection, T cells that carry the CD8 marker are activated and undergo a characteristic kinetic sequence of rapid expansion, subsequent contraction and formation of memory cells. The pool of naive T-cell clones is diverse and contains cells bearing T-cell antigen receptors (TCRs) that differ in their affinity for the same antigen. How these differences in affinity affect the function and the response kinetics of individual T-cell clones was previously unknown. Here we show that during the in vivo response to microbial infection, even very weak TCR-ligand interactions are sufficient to activate naive T cells, induce rapid initial proliferation and generate effector and memory cells. The strength of the TCR-ligand interaction critically affects when expansion stops, when the cells exit lymphoid organs and when contraction begins; that is, strongly stimulated T cells contract and exit lymphoid organs later than weakly stimulated cells. Our data challenge the prevailing view that strong TCR ligation is a prerequisite for CD8(+) T-cell activation. Instead, very weak interactions are sufficient for activation, but strong TCR ligation is required to sustain T-cell expansion. We propose that in response to microbial challenge, T-cell clones with a broad range of avidities for foreign ligands are initially recruited, and that the pool of T cells subsequently matures in affinity owing to the more prolonged expansion of high-affinity T-cell clones.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735344/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735344/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zehn, Dietmar -- Lee, Sarah Y -- Bevan, Michael J -- R01 AI019335/AI/NIAID NIH HHS/ -- R01 AI019335-27/AI/NIAID NIH HHS/ -- R01 AI019335-28/AI/NIAID NIH HHS/ -- R01 AI019335-29/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Mar 12;458(7235):211-4. doi: 10.1038/nature07657. Epub 2009 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182777" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Affinity/*immunology ; Antigens, Bacterial/*immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Movement/immunology ; Immunologic Memory/immunology ; Ligands ; Listeria monocytogenes/immunology ; Listeriosis/immunology ; Mice ; Mice, Inbred C57BL ; T-Lymphocytes/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2009-05-09
    Description: Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Ji-Song -- Haggarty, Stephen J -- Giacometti, Emanuela -- Dannenberg, Jan-Hermen -- Joseph, Nadine -- Gao, Jun -- Nieland, Thomas J F -- Zhou, Ying -- Wang, Xinyu -- Mazitschek, Ralph -- Bradner, James E -- DePinho, Ronald A -- Jaenisch, Rudolf -- Tsai, Li-Huei -- R01 DA028301/DA/NIDA NIH HHS/ -- R01 DA028301-02/DA/NIDA NIH HHS/ -- R01 NS051874/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 May 7;459(7243):55-60. doi: 10.1038/nature07925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Butyrates/pharmacology ; Dendritic Spines/physiology ; Electrical Synapses/*physiology ; Female ; Gene Expression Regulation ; Hippocampus/metabolism ; Histone Deacetylase 1 ; Histone Deacetylase 2 ; Histone Deacetylase Inhibitors ; Histone Deacetylases/deficiency/genetics/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Male ; Memory/drug effects/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons/metabolism ; Promoter Regions, Genetic/genetics ; Repressor Proteins/antagonists & inhibitors/genetics/*metabolism ; Sodium/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2009-06-06
    Description: Inflammation is a protective attempt by the host to remove injurious stimuli and initiate the tissue healing process. The inflammatory response must be actively terminated, however, because failure to do so can result in 'bystander' damage to tissues and diseases such as arthritis or type-2 diabetes. Yet the mechanisms controlling excessive inflammatory responses are still poorly understood. Here we show that mouse effector and memory CD4(+) T cells abolish macrophage inflammasome-mediated caspase-1 activation and subsequent interleukin 1beta release in a cognate manner. Inflammasome inhibition is observed for all tested NLRP1 (commonly called NALP1) and NLRP3 (NALP3 or cryopyrin) activators, whereas NLRC4 (IPAF) inflammasome function and release of other inflammatory mediators such as CXCL2, interleukin 6 and tumour necrosis factor are not affected. Suppression of the NLRP3 inflammasome requires cell-to-cell contact and can be mimicked by macrophage stimulation with selected ligands of the tumour necrosis factor family, such as CD40L (also known as CD40LG). In a NLRP3-dependent peritonitis model, effector CD4(+) T cells are responsible for decreasing neutrophil recruitment in an antigen-dependent manner. Our findings reveal an unexpected mechanism of inflammasome inhibition, whereby effector and memory T cells suppress potentially damaging inflammation, yet leave the primary inflammatory response, crucial for the onset of immunity, intact.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guarda, Greta -- Dostert, Catherine -- Staehli, Francesco -- Cabalzar, Katrin -- Castillo, Rosa -- Tardivel, Aubry -- Schneider, Pascal -- Tschopp, Jurg -- England -- Nature. 2009 Jul 9;460(7252):269-73. doi: 10.1038/nature08100. Epub 2009 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19494813" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*antagonists & inhibitors/metabolism ; Animals ; Antigens/immunology ; Apoptosis Regulatory Proteins/*antagonists & inhibitors/metabolism ; Bone Marrow Cells/cytology ; CD4-Positive T-Lymphocytes/*immunology ; Carrier Proteins/*antagonists & inhibitors/metabolism ; Caspase 1/metabolism ; Cells, Cultured ; Immunity, Innate/*immunology ; Immunologic Memory ; Inflammation/immunology/*metabolism/pathology ; Interleukin-1beta/immunology ; Ligands ; Macrophages/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutrophils/immunology ; Peritoneal Cavity/cytology ; Tumor Necrosis Factors/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2009-07-31
    Description: Mutations in the presenilin genes are the main cause of familial Alzheimer's disease. Loss of presenilin activity and/or accumulation of amyloid-beta peptides have been proposed to mediate the pathogenesis of Alzheimer's disease by impairing synaptic function. However, the precise site and nature of the synaptic dysfunction remain unknown. Here we use a genetic approach to inactivate presenilins conditionally in either presynaptic (CA3) or postsynaptic (CA1) neurons of the hippocampal Schaeffer-collateral pathway. We show that long-term potentiation induced by theta-burst stimulation is decreased after presynaptic but not postsynaptic deletion of presenilins. Moreover, we found that presynaptic but not postsynaptic inactivation of presenilins alters short-term plasticity and synaptic facilitation. The probability of evoked glutamate release, measured with the open-channel NMDA (N-methyl-D-aspartate) receptor antagonist MK-801, is reduced by presynaptic inactivation of presenilins. Notably, depletion of endoplasmic reticulum Ca(2+) stores by thapsigargin, or blockade of Ca(2+) release from these stores by ryanodine receptor inhibitors, mimics and occludes the effects of presynaptic presenilin inactivation. Collectively, these results indicate a selective role for presenilins in the activity-dependent regulation of neurotransmitter release and long-term potentiation induction by modulation of intracellular Ca(2+) release in presynaptic terminals, and further suggest that presynaptic dysfunction might be an early pathogenic event leading to dementia and neurodegeneration in Alzheimer's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Chen -- Wu, Bei -- Beglopoulos, Vassilios -- Wines-Samuelson, Mary -- Zhang, Dawei -- Dragatsis, Ioannis -- Sudhof, Thomas C -- Shen, Jie -- R01 NS041783/NS/NINDS NIH HHS/ -- R01 NS041783-04/NS/NINDS NIH HHS/ -- R01 NS041783-08/NS/NINDS NIH HHS/ -- R01NS041783/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Jul 30;460(7255):632-6. doi: 10.1038/nature08177.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurologic Diseases, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641596" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cells, Cultured ; *Gene Expression Regulation ; Glutamic Acid/metabolism ; Hippocampus/cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Neurons/*metabolism ; Neurotransmitter Agents/*metabolism ; Presenilins/*genetics/*metabolism ; Presynaptic Terminals/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2009-01-17
    Description: Autonomous and self-sustained oscillator circuits mediating the periodic induction of specific target genes are minimal genetic time-keeping devices found in the central and peripheral circadian clocks. They have attracted significant attention because of their intriguing dynamics and their importance in controlling critical repair, metabolic and signalling pathways. The precise molecular mechanism and expression dynamics of this mammalian circadian clock are still not fully understood. Here we describe a synthetic mammalian oscillator based on an auto-regulated sense-antisense transcription control circuit encoding a positive and a time-delayed negative feedback loop, enabling autonomous, self-sustained and tunable oscillatory gene expression. After detailed systems design with experimental analyses and mathematical modelling, we monitored oscillating concentrations of green fluorescent protein with tunable frequency and amplitude by time-lapse microscopy in real time in individual Chinese hamster ovary cells. The synthetic mammalian clock may provide an insight into the dynamics of natural periodic processes and foster advances in the design of prosthetic networks in future gene and cell therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tigges, Marcel -- Marquez-Lago, Tatiana T -- Stelling, Jorg -- Fussenegger, Martin -- England -- Nature. 2009 Jan 15;457(7227):309-12. doi: 10.1038/nature07616.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; CHO Cells ; Circadian Rhythm/*physiology ; Cricetinae ; Cricetulus ; Feedback, Physiological ; Fluorescence ; Gene Expression Regulation/*genetics ; Genes, Synthetic/*genetics ; *Genetic Engineering ; Green Fluorescent Proteins/analysis/genetics/metabolism ; Models, Biological ; Reproducibility of Results ; Time Factors ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2009-08-13
    Description: Since the initial description of induced pluripotent stem (iPS) cells created by forced expression of four transcription factors in mouse fibroblasts, the technique has been used to generate embryonic stem (ES)-cell-like pluripotent cells from a variety of cell types in other species, including primates and rat. It has become a popular means to reprogram somatic genomes into an embryonic-like pluripotent state, and a preferred alternative to somatic-cell nuclear transfer and somatic-cell fusion with ES cells. However, iPS cell reprogramming remains slow and inefficient. Notably, no live animals have been produced by the most stringent tetraploid complementation assay, indicative of a failure to create fully pluripotent cells. Here we report the generation of several iPS cell lines that are capable of generating viable, fertile live-born progeny by tetraploid complementation. These iPS cells maintain a pluripotent potential that is very close to ES cells generated from in vivo or nuclear transfer embryos. We demonstrate the practicality of using iPS cells as useful tools for the characterization of cellular reprogramming and developmental potency, and confirm that iPS cells can attain true pluripotency that is similar to that of ES cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Xiao-yang -- Li, Wei -- Lv, Zhuo -- Liu, Lei -- Tong, Man -- Hai, Tang -- Hao, Jie -- Guo, Chang-long -- Ma, Qing-wen -- Wang, Liu -- Zeng, Fanyi -- Zhou, Qi -- England -- Nature. 2009 Sep 3;461(7260):86-90. doi: 10.1038/nature08267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19672241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/cytology/physiology ; Cell Dedifferentiation/physiology ; Cell Line ; Cell Lineage ; Cellular Reprogramming ; Embryo, Mammalian/cytology/embryology/metabolism ; Embryonic Stem Cells/cytology/physiology ; Female ; Fibroblasts/cytology ; Gene Expression Profiling ; Genetic Complementation Test ; Male ; Mice ; Mice, SCID ; Pluripotent Stem Cells/cytology/*physiology ; *Polyploidy ; Pregnancy ; *Reproductive Techniques ; Survival Rate ; Teratoma
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2009-12-17
    Description: Male animals are typically more elaborately ornamented than females. Classic sexual selection theory notes that because sperm are cheaper to produce than eggs, and because males generally compete more intensely for reproductive opportunities and invest less in parental care than females, males can obtain greater fitness benefits from mating multiply. Therefore, sexual selection typically results in male-biased sex differences in secondary sexual characters. This generality has recently been questioned, because in cooperatively breeding vertebrates, the strength of selection on traits used in intrasexual competition for access to mates (sexual selection) or other resources linked to reproduction (social selection) is similar in males and females. Because selection is acting with comparable intensity in both sexes in cooperatively breeding species, the degree of sexual dimorphism in traits used in intrasexual competition should be reduced in cooperative breeders. Here we use the socially diverse African starlings (Sturnidae) to demonstrate that the degree of sexual dimorphism in plumage and body size is reduced in cooperatively breeding species as a result of increased selection on females for traits that increase access to reproductive opportunities, other resources, or higher social status. In cooperative breeders such as these, where there is unequal sharing of reproduction (reproductive skew) among females, and where female dominance rank influences access to mates and other resources, intrasexual competition among females may be intense and ultimately select for female trait elaboration. Selection is thereby acting with different intensities on males and females in cooperatively versus non-cooperatively breeding species, and female-female interactions in group-living vertebrates will have important consequences for the evolution of female morphological, physiological and behavioural traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubenstein, Dustin R -- Lovette, Irby J -- England -- Nature. 2009 Dec 10;462(7274):786-9. doi: 10.1038/nature08614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Columbia University, Department of Ecology, Evolution and Environmental Biology, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, New York 10027, USA. dr2497@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010686" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Bayes Theorem ; Body Size/physiology ; Competitive Behavior ; Cooperative Behavior ; Feathers/anatomy & histology/physiology ; Female ; Male ; Markov Chains ; Mating Preference, Animal/*physiology ; Monte Carlo Method ; Phylogeny ; Reproduction/*physiology ; Selection, Genetic ; *Sex Characteristics ; *Social Behavior ; Social Dominance ; Starlings/*anatomy & histology/*physiology ; Wings, Animal/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Jan 15;457(7227):236. doi: 10.1038/457236a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148049" target="_blank"〉PubMed〈/a〉
    Keywords: *Acquired Immunodeficiency Syndrome/drug ; therapy/economics/epidemiology/prevention & control ; *Federal Government ; Female ; Humans ; International Cooperation ; *Leadership ; Male ; Sexual Abstinence ; United States/epidemiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todes, Daniel -- England -- Nature. 2009 Nov 5;462(7269):36-7. doi: 10.1038/462036a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of the History of Medicine at Johns Hopkins University, 1900 East Monument Street, Baltimore, Maryland 21205, USA. dtodes@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Biological Science Disciplines/*history ; *Competitive Behavior ; Cooperative Behavior ; *Cultural Diversity ; Food Supply ; Great Britain ; History, 19th Century ; History, 20th Century ; Humans ; Literature, Modern/history ; Metaphor ; Models, Biological ; Population Density ; Russia ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2009-02-03
    Description: In the course of infection or autoimmunity, particular transcription factors orchestrate the differentiation of T(H)1, T(H)2 or T(H)17 effector cells, the responses of which are limited by a distinct lineage of suppressive regulatory T cells (T(reg)). T(reg) cell differentiation and function are guided by the transcription factor Foxp3, and their deficiency due to mutations in Foxp3 results in aggressive fatal autoimmune disease associated with sharply augmented T(H)1 and T(H)2 cytokine production. Recent studies suggested that Foxp3 regulates the bulk of the Foxp3-dependent transcriptional program indirectly through a set of transcriptional regulators serving as direct Foxp3 targets. Here we show that in mouse T(reg) cells, high amounts of interferon regulatory factor-4 (IRF4), a transcription factor essential for T(H)2 effector cell differentiation, is dependent on Foxp3 expression. We proposed that IRF4 expression endows T(reg) cells with the ability to suppress T(H)2 responses. Indeed, ablation of a conditional Irf4 allele in T(reg) cells resulted in selective dysregulation of T(H)2 responses, IL4-dependent immunoglobulin isotype production, and tissue lesions with pronounced plasma cell infiltration, in contrast to the mononuclear-cell-dominated pathology typical of mice lacking T(reg) cells. Our results indicate that T(reg) cells use components of the transcriptional machinery, promoting a particular type of effector CD4(+) T cell differentiation, to efficiently restrain the corresponding type of the immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Ye -- Chaudhry, Ashutosh -- Kas, Arnold -- deRoos, Paul -- Kim, Jeong M -- Chu, Tin-Tin -- Corcoran, Lynn -- Treuting, Piper -- Klein, Ulf -- Rudensky, Alexander Y -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Mar 19;458(7236):351-6. doi: 10.1038/nature07674. Epub 2009 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182775" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmune Diseases/pathology ; CD4 Lymphocyte Count ; Cell Differentiation ; Forkhead Transcription Factors/deficiency/genetics/metabolism ; Immunoglobulin E/blood/immunology ; Immunoglobulin G/blood/immunology ; Interferon Regulatory Factors/deficiency/genetics/*metabolism ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; T-Lymphocytes, Regulatory/*immunology ; Th2 Cells/cytology/*immunology/metabolism ; Thymus Gland/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2009-12-18
    Description: Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Augustine -- Steinthorsdottir, Valgerdur -- Masson, Gisli -- Thorleifsson, Gudmar -- Sulem, Patrick -- Besenbacher, Soren -- Jonasdottir, Aslaug -- Sigurdsson, Asgeir -- Kristinsson, Kari Th -- Jonasdottir, Adalbjorg -- Frigge, Michael L -- Gylfason, Arnaldur -- Olason, Pall I -- Gudjonsson, Sigurjon A -- Sverrisson, Sverrir -- Stacey, Simon N -- Sigurgeirsson, Bardur -- Benediktsdottir, Kristrun R -- Sigurdsson, Helgi -- Jonsson, Thorvaldur -- Benediktsson, Rafn -- Olafsson, Jon H -- Johannsson, Oskar Th -- Hreidarsson, Astradur B -- Sigurdsson, Gunnar -- DIAGRAM Consortium -- Ferguson-Smith, Anne C -- Gudbjartsson, Daniel F -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- 077016/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- G9723500/Medical Research Council/United Kingdom -- K08 AR055688/AR/NIAMS NIH HHS/ -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106179474/Medical Research Council/United Kingdom -- MC_U127592696/Medical Research Council/United Kingdom -- R01 DK029867/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):868-74. doi: 10.1038/nature08625.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland. kong@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016592" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Binding Sites ; Breast Neoplasms/genetics ; Carcinoma, Basal Cell/genetics ; Chromosomes, Human, Pair 11/genetics ; Chromosomes, Human, Pair 7/genetics ; DNA Methylation/genetics ; Diabetes Mellitus, Type 2/genetics ; *Fathers ; Female ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomic Imprinting/genetics ; Haplotypes ; Humans ; Iceland ; Male ; *Mothers ; Pedigree ; Polymorphism, Single Nucleotide/*genetics ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2009-02-06
    Description: The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diehn, Maximilian -- Cho, Robert W -- Lobo, Neethan A -- Kalisky, Tomer -- Dorie, Mary Jo -- Kulp, Angela N -- Qian, Dalong -- Lam, Jessica S -- Ailles, Laurie E -- Wong, Manzhi -- Joshua, Benzion -- Kaplan, Michael J -- Wapnir, Irene -- Dirbas, Frederick M -- Somlo, George -- Garberoglio, Carlos -- Paz, Benjamin -- Shen, Jeannie -- Lau, Sean K -- Quake, Stephen R -- Brown, J Martin -- Weissman, Irving L -- Clarke, Michael F -- R01 CA100225/CA/NCI NIH HHS/ -- R01 CA100225-05/CA/NCI NIH HHS/ -- U54 CA126524/CA/NCI NIH HHS/ -- U54 CA126524-04/CA/NCI NIH HHS/ -- England -- Nature. 2009 Apr 9;458(7239):780-3. doi: 10.1038/nature07733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194462" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/physiopathology ; Cells, Cultured ; DNA Damage/genetics/radiation effects ; Female ; Gene Expression ; Humans ; Mammary Glands, Human/cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Neoplastic Stem Cells/*metabolism/*radiation effects ; Radiation Tolerance/*physiology ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2009-01-02
    Description: A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centres for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behaviour remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 10(4)-fold lower than that of rod and cone pigments, resulting in a very low photon catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Notably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Do, Michael Tri H -- Kang, Shin H -- Xue, Tian -- Zhong, Haining -- Liao, Hsi-Wen -- Bergles, Dwight E -- Yau, King-Wai -- F32 EY016959/EY/NEI NIH HHS/ -- F32 EY016959-01/EY/NEI NIH HHS/ -- F32 EY016959-02/EY/NEI NIH HHS/ -- F32 EY016959-03/EY/NEI NIH HHS/ -- R01 DC006904/DC/NIDCD NIH HHS/ -- R01 DC006904-01/DC/NIDCD NIH HHS/ -- R01 DC006904-02/DC/NIDCD NIH HHS/ -- R01 DC006904-03/DC/NIDCD NIH HHS/ -- R01 DC006904-04/DC/NIDCD NIH HHS/ -- R01 DC006904-05/DC/NIDCD NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY006837-16A1/EY/NEI NIH HHS/ -- R01 EY006837-18/EY/NEI NIH HHS/ -- R01 EY006837-20A1/EY/NEI NIH HHS/ -- R01 EY006837-21/EY/NEI NIH HHS/ -- R01 EY006837-22/EY/NEI NIH HHS/ -- R01 EY014596/EY/NEI NIH HHS/ -- R01 EY014596-01/EY/NEI NIH HHS/ -- R01 EY014596-02/EY/NEI NIH HHS/ -- R01 EY014596-03/EY/NEI NIH HHS/ -- R01 EY014596-04/EY/NEI NIH HHS/ -- R01 EY014596-05/EY/NEI NIH HHS/ -- R01 EY014596-06/EY/NEI NIH HHS/ -- R01 EY014596-07/EY/NEI NIH HHS/ -- R01 EY014596-07S1/EY/NEI NIH HHS/ -- R01 NS051509/NS/NINDS NIH HHS/ -- R01 NS051509-01A1/NS/NINDS NIH HHS/ -- R01 NS051509-02/NS/NINDS NIH HHS/ -- R01 NS051509-03/NS/NINDS NIH HHS/ -- R01 NS051509-04/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Jan 15;457(7227):281-7. doi: 10.1038/nature07682. Epub 2008 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. mdo@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19118382" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/radiation effects ; Animals ; Brain/metabolism ; Kinetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; *Photons ; Pupil/physiology/radiation effects ; Reflex, Pupillary/radiation effects ; Retinal Ganglion Cells/*metabolism/*radiation effects ; Rod Opsins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2009-10-09
    Description: PIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, primary piRNA processing remains elusive. Here we analysed piRNA processing in a Drosophila ovarian somatic cell line where Piwi, but not Aub or AGO3, is expressed; thus, only the primary piRNAs exist. In addition to flamenco, a Piwi-specific piRNA cluster, traffic jam (tj), a large Maf gene, was determined as a new piRNA cluster. piRNAs arising from tj correspond to the untranslated regions of tj messenger RNA and are sense-oriented. piRNA loading on to Piwi may occur in the cytoplasm. zucchini, a gene encoding a putative cytoplasmic nuclease, is required for tj-derived piRNA production. In tj and piwi mutant ovaries, somatic cells fail to intermingle with germ cells and Fasciclin III is overexpressed. Loss of tj abolishes Piwi expression in gonadal somatic cells. Thus, in gonadal somatic cells, tj gives rise simultaneously to two different molecules: the TJ protein, which activates Piwi expression, and piRNAs, which define the Piwi targets for silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saito, Kuniaki -- Inagaki, Sachi -- Mituyama, Toutai -- Kawamura, Yoshinori -- Ono, Yukiteru -- Sakota, Eri -- Kotani, Hazuki -- Asai, Kiyoshi -- Siomi, Haruhiko -- Siomi, Mikiko C -- England -- Nature. 2009 Oct 29;461(7268):1296-9. doi: 10.1038/nature08501. Epub 2009 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Keio University School of Medicine, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Cell Adhesion Molecules, Neuronal/metabolism ; Cell Line ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Endoribonucleases/metabolism ; Female ; Genes, Insect/genetics ; Genetic Loci/genetics ; Maf Transcription Factors, Large/genetics/*metabolism ; Male ; Ovary/cytology/metabolism ; Phenotype ; Proto-Oncogene Proteins/genetics/*metabolism ; RNA/biosynthesis/genetics/*metabolism ; RNA Interference ; RNA Processing, Post-Transcriptional ; RNA-Induced Silencing Complex/genetics/*metabolism ; Testis/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2009-04-17
    Description: During cell division microtubules capture chromosomes by binding to the kinetochore assembled in the centromeric region of chromosomes. In mitosis sister chromatids are captured by microtubules emanating from both spindle poles, a process called bipolar attachment, whereas in meiosis I sisters are attached to microtubules originating from one spindle pole, called monopolar attachment. For determining chromosome orientation, kinetochore geometry or structure might be an important target of regulation. However, the molecular basis of this regulation has remained elusive. Here we show the link between kinetochore orientation and cohesion within the centromere in fission yeast Schizosaccharomyces pombe by strategies developed to visualize the concealed cohesion within the centromere, and to introduce artificial tethers that can influence kinetochore geometry. Our data imply that cohesion at the core centromere induces the mono-orientation of kinetochores whereas cohesion at the peri-centromeric region promotes bi-orientation. Our study may reveal a general mechanism for the geometric regulation of kinetochores, which collaborates with previously defined tension-dependent reorientation machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakuno, Takeshi -- Tada, Kenji -- Watanabe, Yoshinori -- England -- Nature. 2009 Apr 16;458(7240):852-8. doi: 10.1038/nature07876.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370027" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/genetics/*metabolism ; Chromosome Segregation ; Kinetochores/*metabolism ; Meiosis ; Microtubules/metabolism ; Mitosis ; Models, Biological ; Schizosaccharomyces/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolgin, Elie -- England -- Nature. 2009 Dec 17;462(7275):843-5. doi: 10.1038/462843a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016572" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Genome, Human/*genetics ; History, 20th Century ; History, 21st Century ; *Human Genome Project/history ; Humans ; Male ; Reproducibility of Results ; Research Design ; *Research Personnel ; Research Subjects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2009-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbondanzieri, Elio A -- Zhuang, Xiaowei -- England -- Nature. 2009 Jan 22;457(7228):392-3. doi: 10.1038/457392a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158782" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Bacillus Phages/*enzymology ; DNA, Viral/chemistry/metabolism ; Hydrolysis ; Models, Biological ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Virus Assembly
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2009-07-22
    Description: Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl(-/-) haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl(+/+) HSPCs, and transduction of C-CBL mutants into c-Cbl(-/-) HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl(+/+) background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Masashi -- Suzuki, Takahiro -- Shih, Lee-Yung -- Otsu, Makoto -- Kato, Motohiro -- Yamazaki, Satoshi -- Tamura, Azusa -- Honda, Hiroaki -- Sakata-Yanagimoto, Mamiko -- Kumano, Keiki -- Oda, Hideaki -- Yamagata, Tetsuya -- Takita, Junko -- Gotoh, Noriko -- Nakazaki, Kumi -- Kawamata, Norihiko -- Onodera, Masafumi -- Nobuyoshi, Masaharu -- Hayashi, Yasuhide -- Harada, Hiroshi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Hiraku -- Ozawa, Keiya -- Omine, Mitsuhiro -- Hirai, Hisamaru -- Nakauchi, Hiromitsu -- Koeffler, H Phillip -- Ogawa, Seishi -- 2R01CA026038-30/CA/NCI NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):904-8. doi: 10.1038/nature08240. Epub 2009 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19620960" target="_blank"〉PubMed〈/a〉
    Keywords: Allelic Imbalance ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosomes, Human, Pair 11/genetics ; Female ; *Genes, Tumor Suppressor ; Humans ; Leukemia, Myeloid/*genetics/metabolism/pathology ; Male ; Mice ; Mice, Knockout ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/*metabolism ; Mutation ; NIH 3T3 Cells ; Neoplasm Transplantation ; Oncogenes/genetics ; Phosphorylation ; Protein Conformation ; Proto-Oncogene Proteins c-cbl/antagonists & ; inhibitors/chemistry/deficiency/*genetics/*metabolism ; Ubiquitination ; Uniparental Disomy/genetics ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2009-11-27
    Description: Receptor-activator of NF-kappaB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rank(floxed) deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rank(floxed) deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1beta and TNFalpha. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE(2)/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rank(floxed) mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanada, Reiko -- Leibbrandt, Andreas -- Hanada, Toshikatsu -- Kitaoka, Shiho -- Furuyashiki, Tomoyuki -- Fujihara, Hiroaki -- Trichereau, Jean -- Paolino, Magdalena -- Qadri, Fatimunnisa -- Plehm, Ralph -- Klaere, Steffen -- Komnenovic, Vukoslav -- Mimata, Hiromitsu -- Yoshimatsu, Hironobu -- Takahashi, Naoyuki -- von Haeseler, Arndt -- Bader, Michael -- Kilic, Sara Sebnem -- Ueta, Yoichi -- Pifl, Christian -- Narumiya, Shuh -- Penninger, Josef M -- England -- Nature. 2009 Nov 26;462(7272):505-9. doi: 10.1038/nature08596.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/drug effects/metabolism ; Body Temperature Regulation/*drug effects/*physiology ; Child ; Dinoprostone/metabolism ; Female ; Fever/*chemically induced/complications/*metabolism ; Gene Expression Profiling ; Humans ; Injections, Intraventricular ; Male ; Mice ; Mice, Inbred C57BL ; Pneumonia/complications/metabolism ; RANK Ligand/administration & dosage/antagonists & ; inhibitors/metabolism/*pharmacology ; Rats ; Rats, Wistar ; Receptor Activator of Nuclear Factor-kappa B/genetics/*metabolism ; Receptors, Prostaglandin E/metabolism ; Receptors, Prostaglandin E, EP3 Subtype ; *Sex Characteristics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2009-06-19
    Description: Pluripotency of embryonic stem (ES) cells is controlled by defined transcription factors. During differentiation, mouse ES cells undergo global epigenetic reprogramming, as exemplified by X-chromosome inactivation (XCI) in which one female X chromosome is silenced to achieve gene dosage parity between the sexes. Somatic XCI is regulated by homologous X-chromosome pairing and counting, and by the random choice of future active and inactive X chromosomes. XCI and cell differentiation are tightly coupled, as blocking one process compromises the other and dedifferentiation of somatic cells to induced pluripotent stem cells is accompanied by X chromosome reactivation. Recent evidence suggests coupling of Xist expression to pluripotency factors occurs, but how the two are interconnected remains unknown. Here we show that Oct4 (also known as Pou5f1) lies at the top of the XCI hierarchy, and regulates XCI by triggering X-chromosome pairing and counting. Oct4 directly binds Tsix and Xite, two regulatory noncoding RNA genes of the X-inactivation centre, and also complexes with XCI trans-factors, Ctcf and Yy1 (ref. 17), through protein-protein interactions. Depletion of Oct4 blocks homologous X-chromosome pairing and results in the inactivation of both X chromosomes in female cells. Thus, we have identified the first trans-factor that regulates counting, and ascribed new functions to Oct4 during X-chromosome reprogramming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Donohoe, Mary E -- Silva, Susana S -- Pinter, Stefan F -- Xu, Na -- Lee, Jeannie T -- GM58839/GM/NIGMS NIH HHS/ -- R01 GM058839/GM/NIGMS NIH HHS/ -- R01 GM058839-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 2;460(7251):128-32. doi: 10.1038/nature08098. Epub 2009 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536159" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Chromosome Pairing ; Female ; Humans ; Male ; Mice ; Octamer Transcription Factor-3/deficiency/genetics/*metabolism ; Protein Binding ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; Repressor Proteins/*metabolism ; SOXB1 Transcription Factors ; Transcriptional Activation ; X Chromosome/*genetics/*metabolism ; X Chromosome Inactivation/*genetics ; YY1 Transcription Factor/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller-Landau, Helene C -- England -- Nature. 2009 Feb 19;457(7232):969-70. doi: 10.1038/457969a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225510" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Atmosphere/chemistry ; Biomass ; Carbon/analysis/*metabolism ; Carbon Dioxide/analysis/metabolism ; Models, Biological ; Trees/chemistry/growth & development/*metabolism ; *Tropical Climate ; Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2009-01-20
    Description: The computational power of single neurons is greatly enhanced by active dendritic conductances that have a large influence on their spike activity. In cortical output neurons such as the large pyramidal cells of layer 5 (L5), activation of apical dendritic calcium channels leads to plateau potentials that increase the gain of the input/output function and switch the cell to burst-firing mode. The apical dendrites are innervated by local excitatory and inhibitory inputs as well as thalamic and corticocortical projections, which makes it a formidable task to predict how these inputs influence active dendritic properties in vivo. Here we investigate activity in populations of L5 pyramidal dendrites of the somatosensory cortex in awake and anaesthetized rats following sensory stimulation using a new fibre-optic method for recording dendritic calcium changes. We show that the strength of sensory stimulation is encoded in the combined dendritic calcium response of a local population of L5 pyramidal cells in a graded manner. The slope of the stimulus-response function was under the control of a particular subset of inhibitory neurons activated by synaptic inputs predominantly in L5. Recordings from single apical tuft dendrites in vitro showed that activity in L5 pyramidal neurons disynaptically coupled via interneurons directly blocks the initiation of dendritic calcium spikes in neighbouring pyramidal neurons. The results constitute a functional description of a cortical microcircuit in awake animals that relies on the active properties of L5 pyramidal dendrites and their very high sensitivity to inhibition. The microcircuit is organized so that local populations of apical dendrites can adaptively encode bottom-up sensory stimuli linearly across their full dynamic range.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murayama, Masanori -- Perez-Garci, Enrique -- Nevian, Thomas -- Bock, Tobias -- Senn, Walter -- Larkum, Matthew E -- England -- Nature. 2009 Feb 26;457(7233):1137-41. doi: 10.1038/nature07663. Epub 2009 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiologisches Institut, Universitat Bern, Buhlplatz 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19151696" target="_blank"〉PubMed〈/a〉
    Keywords: Anesthesia ; Animals ; Calcium/metabolism ; Dendrites/*physiology ; Electric Stimulation ; Excitatory Postsynaptic Potentials/physiology ; Female ; Interneurons/*physiology ; Models, Neurological ; Rats ; Rats, Wistar ; Somatosensory Cortex/*cytology/*physiology ; Wakefulness/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanderson, Katharine -- England -- Nature. 2009 Mar 19;458(7236):269. doi: 10.1038/458269a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295573" target="_blank"〉PubMed〈/a〉
    Keywords: Clinical Trials, Phase I as Topic ; Cyclohexanols/chemistry/economics/pharmacokinetics ; Deuterium/*chemistry ; Drug Industry/*economics ; Female ; Humans ; Paroxetine/analogs & derivatives/chemistry/economics/pharmacokinetics ; Patents as Topic/legislation & jurisprudence ; Pharmaceutical Preparations/*chemistry/economics/*metabolism ; Venlafaxine Hydrochloride
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2009-08-08
    Description: During the twentieth century, the global population has gone through unprecedented increases in economic and social development that coincided with substantial declines in human fertility and population growth rates. The negative association of fertility with economic and social development has therefore become one of the most solidly established and generally accepted empirical regularities in the social sciences. As a result of this close connection between development and fertility decline, more than half of the global population now lives in regions with below-replacement fertility (less than 2.1 children per woman). In many highly developed countries, the trend towards low fertility has also been deemed irreversible. Rapid population ageing, and in some cases the prospect of significant population decline, have therefore become a central socioeconomic concern and policy challenge. Here we show, using new cross-sectional and longitudinal analyses of the total fertility rate and the human development index (HDI), a fundamental change in the well-established negative relationship between fertility and development as the global population entered the twenty-first century. Although development continues to promote fertility decline at low and medium HDI levels, our analyses show that at advanced HDI levels, further development can reverse the declining trend in fertility. The previously negative development-fertility relationship has become J-shaped, with the HDI being positively associated with fertility among highly developed countries. This reversal of fertility decline as a result of continued economic and social development has the potential to slow the rates of population ageing, thereby ameliorating the social and economic problems that have been associated with the emergence and persistence of very low fertility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myrskyla, Mikko -- Kohler, Hans-Peter -- Billari, Francesco C -- England -- Nature. 2009 Aug 6;460(7256):741-3. doi: 10.1038/nature08230.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Population Studies Center, University of Pennsylvania, 3718 Locust Walk, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661915" target="_blank"〉PubMed〈/a〉
    Keywords: Age Distribution ; *Birth Rate/trends ; Cross-Sectional Studies ; Developed Countries/economics/*statistics & numerical data ; Education ; Female ; Fertility/physiology ; History, 20th Century ; History, 21st Century ; Humans ; Income ; Life Expectancy ; Longitudinal Studies ; Male ; Maternal Age ; *Population Growth ; Reproductive Behavior/history/*statistics & numerical data ; Technology/history/statistics & numerical data/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2009-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuroiwa, Asato -- England -- Nature. 2009 Nov 5;462(7269):34. doi: 10.1038/462034b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890307" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; Chick Embryo ; Chickens/*genetics ; Female ; Humans ; Male ; *Models, Biological ; Sex Chromosomes/genetics ; *Sex Determination Processes ; Testis/embryology/metabolism ; Transcription Factors/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonzani, Stefano -- England -- Nature. 2009 Feb 19;457(7232):974. doi: 10.1038/457974a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225516" target="_blank"〉PubMed〈/a〉
    Keywords: Colloids/*chemistry ; *Magnetics ; Models, Biological ; Nanostructures/chemistry/ultrastructure ; Particle Size ; Water/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2009-03-06
    Description: Adaptive immune responses rely on differentiation of CD4 T helper cells into subsets with distinct effector functions best suited for host defence against the invading pathogen. Interleukin (IL)-17-producing T helper cells (T(H)17) are a recently identified subset, separate from the T helper type 1 (T(H)1) and T helper type 2 (T(H)2) subsets. Synergy between the cytokines transforming growth factor-beta and IL-6 in vitro induces development of T(H)17 cells in mouse and human systems, whereas IL-23 supports expansion of these cells. However, it is not known which conditions in vivo would induce this combination of cytokines. Furthermore, it is enigmatic that a combination of pro-inflammatory and anti-inflammatory cytokines would be required to generate an effector T(H)17 response. Here we show that the relevant physiological stimulus triggering this combination of cytokines is the recognition and phagocytosis of infected apoptotic cells by dendritic cells. Phagocytosis of infected apoptotic cells uniquely triggers the combination of IL-6 and transforming growth factor-beta through recognition of pathogen-associated molecular patterns and phosphatidylserine exposed on apoptotic cells, respectively. Conversely, phagocytosis of apoptotic cells in the absence of microbial signals induces differentiation of the closely related regulatory T cells, which are important for controlling autoimmunity. Blocking apoptosis during infection of the mouse intestinal epithelium with the rodent pathogen Citrobacter rodentium, which models human infections with the attaching and effacing enteropathogenic and enterohaemorrhagic Escherichia coli, impairs the characteristic T(H)17 response in the lamina propria. Our results demonstrate that infected apoptotic cells are a critical component of the innate immune signals instructing T(H)17 differentiation, and point to pathogens particularly adept at triggering apoptosis that might preferentially induce T(H)17-mediated immunity. Because T(H)17 cells have been correlated with autoimmune diseases, investigation of the pathways of innate recognition of infected apoptotic cells might lead to improved understanding of the causative defects in autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Torchinsky, Miriam Beer -- Garaude, Johan -- Martin, Andrea P -- Blander, J Magarian -- AI073899/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Mar 5;458(7234):78-82. doi: 10.1038/nature07781.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262671" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; *Cell Differentiation ; Citrobacter rodentium/*immunology/physiology ; Dendritic Cells/immunology/metabolism ; Immunity, Innate/*immunology ; Interleukin-10/biosynthesis/immunology ; Interleukin-17/*immunology/metabolism ; Interleukin-23/immunology ; Interleukin-6/biosynthesis ; Ligands ; Mice ; Mice, Inbred C57BL ; Phagocytosis ; T-Lymphocytes, Helper-Inducer/*cytology/*immunology/metabolism ; Toll-Like Receptors/immunology/metabolism ; Transforming Growth Factor beta/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2009-04-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kutschera, U -- England -- Nature. 2009 Apr 23;458(7241):967. doi: 10.1038/458967c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Competitive Behavior ; Cooperative Behavior ; History, 19th Century ; Models, Biological ; *Selection, Genetic ; *Translating ; *Translations
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2009-11-10
    Description: CD4(+) T helper cells are well known for their role in providing critical signals during priming of cytotoxic CD8(+) T lymphocyte (CTL) responses in vivo. T-cell help is required for the generation of primary CTL responses as well as in promoting protective CD8(+) memory T-cell development. However, the role of CD4 help in the control of CTL responses at the effector stage is unknown. Here we show that fully helped effector CTLs are themselves not self-sufficient for entry into the infected tissue, but rely on the CD4(+) T cells to provide the necessary cue. CD4(+) T helper cells control the migration of CTL indirectly through the secretion of IFN-gamma and induction of local chemokine secretion in the infected tissue. Our results reveal a previously unappreciated role of CD4 help in mobilizing effector CTL to the peripheral sites of infection where they help to eliminate infected cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789415/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789415/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakanishi, Yusuke -- Lu, Bao -- Gerard, Craig -- Iwasaki, Akiko -- AI054359/AI/NIAID NIH HHS/ -- AI062428/AI/NIAID NIH HHS/ -- AI39759/AI/NIAID NIH HHS/ -- HL51366/HL/NHLBI NIH HHS/ -- R01 AI054359/AI/NIAID NIH HHS/ -- R01 AI054359-06A2/AI/NIAID NIH HHS/ -- R01 AI062428/AI/NIAID NIH HHS/ -- R01 AI062428-05/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Nov 26;462(7272):510-3. doi: 10.1038/nature08511. Epub 2009 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19898495" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Chemokines/immunology/secretion ; *Chemotaxis ; Female ; Herpes Simplex/immunology/virology ; Herpesvirus 2, Human/*immunology ; Immunity, Mucosal/immunology ; Interferon-gamma/antagonists & inhibitors/immunology/secretion ; Mice ; Mice, Inbred C57BL ; Models, Immunological ; Mucous Membrane/immunology/virology ; Receptors, CXCR3/metabolism ; T-Lymphocytes, Cytotoxic/*cytology/*immunology ; T-Lymphocytes, Helper-Inducer/*immunology/secretion ; Vagina/*immunology/*virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2009-10-16
    Description: Language is a uniquely human ability that evolved at some point in the roughly 6,000,000 years since human and chimpanzee lines diverged. Even in the most linguistically impoverished environments, children naturally develop sophisticated language systems. In contrast, reading is a learnt skill that does not develop without intensive tuition and practice. Learning to read is likely to involve ontogenic structural brain changes, but these are nearly impossible to isolate in children owing to concurrent biological, environmental and social maturational changes. In Colombia, guerrillas are re-integrating into mainstream society and learning to read for the first time as adults. This presents a unique opportunity to investigate how literacy changes the brain, without the maturational complications present in children. Here we compare structural brain scans from those who learnt to read as adults (late-literates) with those from a carefully matched set of illiterates. Late-literates had more white matter in the splenium of the corpus callosum and more grey matter in bilateral angular, dorsal occipital, middle temporal, left supramarginal and superior temporal gyri. The importance of these brain regions for skilled reading was investigated in early literates, who learnt to read as children. We found anatomical connections linking the left and right angular and dorsal occipital gyri through the area of the corpus callosum where white matter was higher in late-literates than in illiterates; that reading, relative to object naming, increased the interhemispheric functional connectivity between the left and right angular gyri; and that activation in the left angular gyrus exerts top-down modulation on information flow from the left dorsal occipital gyrus to the left supramarginal gyrus. These findings demonstrate how the regions identified in late-literates interact during reading, relative to object naming, in early literates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carreiras, Manuel -- Seghier, Mohamed L -- Baquero, Silvia -- Estevez, Adelina -- Lozano, Alfonso -- Devlin, Joseph T -- Price, Cathy J -- 082420/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Oct 15;461(7266):983-6. doi: 10.1038/nature08461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basque Center on Cognition Brain and Language, Donostia-San Sebastian 20009, Spain [2] IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain. m.carreiras@bcbl.eu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829380" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Brain/*anatomy & histology/*physiology ; Child ; Colombia ; Corpus Callosum/anatomy & histology/physiology ; Educational Status ; Female ; Humans ; Language ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Models, Neurological ; Neural Pathways/physiology ; *Reading ; Speech/physiology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2009-10-02
    Description: Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, and its receptor Fas are critical for the shutdown of chronic immune responses and prevention of autoimmunity. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice and humans. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding. Here we generated gene-targeted mice that selectively lack either secreted FasL (sFasL) or membrane-bound FasL (mFasL) to resolve which of these forms is required for cell killing and to explore their hypothesized non-apoptotic activities. Mice lacking sFasL (FasL(Deltas/Deltas)) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasL(Deltam/Deltam)) could not kill cells through Fas activation. FasL(Deltam/Deltam) mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasL(gld/gld) mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, FasL(Deltam/Deltam) mice (on a C57BL/6 background) succumbed to systemic lupus erythematosus (SLE)-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and much later in FasL(gld/gld) mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer, whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785124/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785124/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O' Reilly, Lorraine A -- Tai, Lin -- Lee, Lily -- Kruse, Elizabeth A -- Grabow, Stephanie -- Fairlie, W Douglas -- Haynes, Nicole M -- Tarlinton, David M -- Zhang, Jian-Guo -- Belz, Gabrielle T -- Smyth, Mark J -- Bouillet, Philippe -- Robb, Lorraine -- Strasser, Andreas -- CA043540-18/CA/NCI NIH HHS/ -- CA80188-6/CA/NCI NIH HHS/ -- R01 CA043540/CA/NCI NIH HHS/ -- R01 CA043540-18/CA/NCI NIH HHS/ -- R01 CA080188-06/CA/NCI NIH HHS/ -- England -- Nature. 2009 Oct 1;461(7264):659-63. doi: 10.1038/nature08402.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Antinuclear/immunology ; Antigens, CD95/*metabolism ; *Apoptosis ; Cell Membrane/*metabolism ; Cytidine Deaminase/metabolism ; Cytotoxicity, Immunologic ; Fas Ligand Protein/deficiency/genetics/*metabolism/secretion ; Glomerulonephritis/metabolism ; Histiocytic Sarcoma/metabolism ; Hypergammaglobulinemia/metabolism ; Lupus Erythematosus, Systemic/metabolism ; Lymphatic Diseases/metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Splenomegaly/metabolism ; T-Lymphocytes/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2009-12-17
    Description: The majority of excitatory synapses in the mammalian CNS (central nervous system) are formed on dendritic spines, and spine morphology and distribution are critical for synaptic transmission, synaptic integration and plasticity. Here, we show that a secreted semaphorin, Sema3F, is a negative regulator of spine development and synaptic structure. Mice with null mutations in genes encoding Sema3F, and its holoreceptor components neuropilin-2 (Npn-2, also known as Nrp2) and plexin A3 (PlexA3, also known as Plxna3), exhibit increased dentate gyrus (DG) granule cell (GC) and cortical layer V pyramidal neuron spine number and size, and also aberrant spine distribution. Moreover, Sema3F promotes loss of spines and excitatory synapses in dissociated neurons in vitro, and in Npn-2(-/-) brain slices cortical layer V and DG GCs exhibit increased mEPSC (miniature excitatory postsynaptic current) frequency. In contrast, a distinct Sema3A-Npn-1/PlexA4 signalling cascade controls basal dendritic arborization in layer V cortical neurons, but does not influence spine morphogenesis or distribution. These disparate effects of secreted semaphorins are reflected in the restricted dendritic localization of Npn-2 to apical dendrites and of Npn-1 (also known as Nrp1) to all dendrites of cortical pyramidal neurons. Therefore, Sema3F signalling controls spine distribution along select dendritic processes, and distinct secreted semaphorin signalling events orchestrate CNS connectivity through the differential control of spine morphogenesis, synapse formation, and the elaboration of dendritic morphology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842559/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842559/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Tracy S -- Rubio, Maria E -- Clem, Roger L -- Johnson, Dontais -- Case, Lauren -- Tessier-Lavigne, Marc -- Huganir, Richard L -- Ginty, David D -- Kolodkin, Alex L -- F32 NS051003/NS/NINDS NIH HHS/ -- P50 MH06883/MH/NIMH NIH HHS/ -- R01 DC-006881/DC/NIDCD NIH HHS/ -- R01 MH059199/MH/NIMH NIH HHS/ -- R01 MH059199-07/MH/NIMH NIH HHS/ -- R01 MH059199-08/MH/NIMH NIH HHS/ -- R01 MH059199-09/MH/NIMH NIH HHS/ -- R01 MH059199-10/MH/NIMH NIH HHS/ -- R01 MH59199/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Dec 24;462(7276):1065-9. doi: 10.1038/nature08628. Epub 2009 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Central Nervous System/cytology/drug effects/*growth & ; development/*metabolism/ultrastructure ; Female ; Gene Expression Regulation, Developmental ; Male ; Mice ; Mice, Knockout ; Neuropilin-1/metabolism ; Neuropilin-2/metabolism ; Pyramidal Cells/*cytology/drug effects/*growth & development/ultrastructure ; Recombinant Proteins/pharmacology ; Semaphorins/genetics/*metabolism/pharmacology ; Signal Transduction ; Synapses/drug effects/*physiology/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2009-06-12
    Description: Osteoblasts and endothelium constitute functional niches that support haematopoietic stem cells in mammalian bone marrow. Adult bone marrow also contains adipocytes, the number of which correlates inversely with the haematopoietic activity of the marrow. Fatty infiltration of haematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia. To explore whether adipocytes influence haematopoiesis or simply fill marrow space, we compared the haematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. Here we show, by flow cytometry, colony-forming activity and competitive repopulation assay, that haematopoietic stem cells and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 'fatless' mice, which are genetically incapable of forming adipocytes, and in mice treated with the peroxisome proliferator-activated receptor-gamma inhibitor bisphenol A diglycidyl ether, which inhibits adipogenesis, marrow engraftment after irradiation is accelerated relative to wild-type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone-marrow microenvironment, and indicate that antagonizing marrow adipogenesis may enhance haematopoietic recovery in clinical bone-marrow transplantation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831539/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831539/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naveiras, Olaia -- Nardi, Valentina -- Wenzel, Pamela L -- Hauschka, Peter V -- Fahey, Frederic -- Daley, George Q -- DP1 OD000256/OD/NIH HHS/ -- DP1 OD000256-01/OD/NIH HHS/ -- R01 DK059279/DK/NIDDK NIH HHS/ -- R01 DK059279-06/DK/NIDDK NIH HHS/ -- R01 DK070055/DK/NIDDK NIH HHS/ -- R01 DK070055-01/DK/NIDDK NIH HHS/ -- T32- HL -7623/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 9;460(7252):259-63. doi: 10.1038/nature08099. Epub 2009 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516257" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects/*physiology ; Adipogenesis/drug effects ; Adiposity/physiology ; Animals ; Benzhydryl Compounds ; Bone Marrow Cells/*cytology/*metabolism ; Bone Marrow Transplantation ; Cell Line ; Epoxy Compounds/pharmacology ; Femur ; *Hematopoiesis/drug effects ; Hematopoietic Stem Cells/cytology/metabolism ; Homeostasis ; Mice ; Mice, Inbred C57BL ; Osteogenesis ; Spine/cytology/metabolism ; Stromal Cells ; Tail ; Thorax ; Tibia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2009-02-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehrenfeld, Joan G -- England -- Nature. 2009 Feb 26;457(7233):1079. doi: 10.1038/4571079d.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242450" target="_blank"〉PubMed〈/a〉
    Keywords: Aphrodisiacs/*history ; *Drama ; England ; Female ; History, 16th Century ; Humans ; *Literature, Modern ; *Love ; Male ; Wit and Humor as Topic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2009-11-10
    Description: Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc transcription factors, but only a minority of donor somatic cells can be reprogrammed to pluripotency. Here we demonstrate that reprogramming by these transcription factors is a continuous stochastic process where almost all mouse donor cells eventually give rise to iPS cells on continued growth and transcription factor expression. Additional inhibition of the p53/p21 pathway or overexpression of Lin28 increased the cell division rate and resulted in an accelerated kinetics of iPS cell formation that was directly proportional to the increase in cell proliferation. In contrast, Nanog overexpression accelerated reprogramming in a predominantly cell-division-rate-independent manner. Quantitative analyses define distinct cell-division-rate-dependent and -independent modes for accelerating the stochastic course of reprogramming, and suggest that the number of cell divisions is a key parameter driving epigenetic reprogramming to pluripotency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789972/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789972/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanna, Jacob -- Saha, Krishanu -- Pando, Bernardo -- van Zon, Jeroen -- Lengner, Christopher J -- Creyghton, Menno P -- van Oudenaarden, Alexander -- Jaenisch, Rudolf -- R01 CA087869/CA/NCI NIH HHS/ -- R01 CA087869-09/CA/NCI NIH HHS/ -- R01 HD045022/HD/NICHD NIH HHS/ -- R01 HD045022-06/HD/NICHD NIH HHS/ -- R01-CA087869/CA/NCI NIH HHS/ -- R01-HDO45022/PHS HHS/ -- R37 CA084198/CA/NCI NIH HHS/ -- R37 CA084198-09/CA/NCI NIH HHS/ -- R37-CA084198/CA/NCI NIH HHS/ -- U54CA143874/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 3;462(7273):595-601. doi: 10.1038/nature08592. Epub 2009 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. Hanna@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19898493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Division ; Cell Line ; *Cellular Reprogramming ; Gene Expression Regulation, Developmental ; Mice ; Mice, SCID ; Models, Biological ; Pluripotent Stem Cells/*cytology/*metabolism ; Time Factors ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2009-05-15
    Description: Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41(+)c-Kit(+) haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adamo, Luigi -- Naveiras, Olaia -- Wenzel, Pamela L -- McKinney-Freeman, Shannon -- Mack, Peter J -- Gracia-Sancho, Jorge -- Suchy-Dicey, Astrid -- Yoshimoto, Momoko -- Lensch, M William -- Yoder, Mervin C -- Garcia-Cardena, Guillermo -- Daley, George Q -- R01 AI080759/AI/NIAID NIH HHS/ -- R01 AI080759-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jun 25;459(7250):1131-5. doi: 10.1038/nature08073. Epub 2009 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19440194" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/embryology ; *Cell Differentiation ; Cell Line ; Cells, Cultured ; Core Binding Factor Alpha 2 Subunit/genetics ; Embryonic Stem Cells ; Endothelium-Dependent Relaxing Factors/pharmacology ; Female ; Gene Expression Regulation, Developmental ; Hematopoiesis/*physiology ; Hematopoietic Stem Cells/*cytology/drug effects ; Mice ; Nitric Oxide/pharmacology ; Pregnancy ; *Stress, Mechanical
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2009-04-03
    Description: Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harmon, Luke J -- Matthews, Blake -- Des Roches, Simone -- Chase, Jonathan M -- Shurin, Jonathan B -- Schluter, Dolph -- England -- Nature. 2009 Apr 30;458(7242):1167-70. doi: 10.1038/nature07974. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA. lukeh@uidaho.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; Biomass ; British Columbia ; *Ecosystem ; Fishes/*classification/*physiology ; Food Chain ; Fresh Water ; Genetic Speciation ; Models, Biological ; Population Density ; Predatory Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2009-03-27
    Description: Haematopoietic stem and progenitor cells (HSPCs) change location during development and circulate in mammals throughout life, moving into and out of the bloodstream to engage bone marrow niches in sequential steps of homing, engraftment and retention. Here we show that HSPC engraftment of bone marrow in fetal development is dependent on the guanine-nucleotide-binding protein stimulatory alpha subunit (Galpha(s)). HSPCs from adult mice deficient in Galpha(s) (Galpha(s)(-/-)) differentiate and undergo chemotaxis, but also do not home to or engraft in the bone marrow in adult mice and demonstrate a marked inability to engage the marrow microvasculature. If deleted after engraftment, Galpha(s) deficiency did not lead to lack of retention in the marrow, rather cytokine-induced mobilization into the blood was impaired. Testing whether activation of Galpha(s) affects HSPCs, pharmacological activators enhanced homing and engraftment in vivo. Galpha(s) governs specific aspects of HSPC localization under physiological conditions in vivo and may be pharmacologically targeted to improve transplantation efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761017/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761017/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, Gregor B -- Alley, Ian R -- Chung, Ung-Il -- Chabner, Karissa T -- Jeanson, Nathaniel T -- Lo Celso, Cristina -- Marsters, Emily S -- Chen, Min -- Weinstein, Lee S -- Lin, Charles P -- Kronenberg, Henry M -- Scadden, David T -- U54 HL081030/HL/NHLBI NIH HHS/ -- U54 HL081030-01/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 May 7;459(7243):103-7. doi: 10.1038/nature07859. Epub 2009 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19322176" target="_blank"〉PubMed〈/a〉
    Keywords: Adjuvants, Immunologic/pharmacology ; Animals ; Bone Marrow/drug effects/embryology/*physiology ; Bone Marrow Transplantation/physiology ; Cell Movement/drug effects/physiology ; Cholera Toxin/pharmacology ; GTP-Binding Protein alpha Subunits, Gs/genetics/*metabolism ; Granulocyte Colony-Stimulating Factor/metabolism ; Hematopoietic Stem Cells/*physiology ; Mice ; Mice, Inbred C57BL ; Signal Transduction/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuljapurkar, Shripad -- England -- Nature. 2009 Aug 6;460(7256):693-4. doi: 10.1038/460693a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661903" target="_blank"〉PubMed〈/a〉
    Keywords: Age Distribution ; *Birth Rate/trends ; Developed Countries/economics/*statistics & numerical data ; Education ; Female ; Fertility/physiology ; Humans ; Income ; Life Expectancy ; Male ; Maternal Age ; *Population Growth ; Reproductive Behavior/*statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2009-07-10
    Description: Inhibition of the TOR signalling pathway by genetic or pharmacological intervention extends lifespan in invertebrates, including yeast, nematodes and fruitflies; however, whether inhibition of mTOR signalling can extend lifespan in a mammalian species was unknown. Here we report that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age. On the basis of age at 90% mortality, rapamycin led to an increase of 14% for females and 9% for males. The effect was seen at three independent test sites in genetically heterogeneous mice, chosen to avoid genotype-specific effects on disease susceptibility. Disease patterns of rapamycin-treated mice did not differ from those of control mice. In a separate study, rapamycin fed to mice beginning at 270 days of age also increased survival in both males and females, based on an interim analysis conducted near the median survival point. Rapamycin may extend lifespan by postponing death from cancer, by retarding mechanisms of ageing, or both. To our knowledge, these are the first results to demonstrate a role for mTOR signalling in the regulation of mammalian lifespan, as well as pharmacological extension of lifespan in both genders. These findings have implications for further development of interventions targeting mTOR for the treatment and prevention of age-related diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, David E -- Strong, Randy -- Sharp, Zelton Dave -- Nelson, James F -- Astle, Clinton M -- Flurkey, Kevin -- Nadon, Nancy L -- Wilkinson, J Erby -- Frenkel, Krystyna -- Carter, Christy S -- Pahor, Marco -- Javors, Martin A -- Fernandez, Elizabeth -- Miller, Richard A -- AG022303/AG/NIA NIH HHS/ -- AG022307/AG/NIA NIH HHS/ -- AG022308/AG/NIA NIH HHS/ -- AG025707/AG/NIA NIH HHS/ -- AG13319/AG/NIA NIH HHS/ -- P30 AG013319/AG/NIA NIH HHS/ -- P30 AG013319-119002/AG/NIA NIH HHS/ -- P30 AG013319-129002/AG/NIA NIH HHS/ -- P30 AG013319-139002/AG/NIA NIH HHS/ -- P30 AG013319-149002/AG/NIA NIH HHS/ -- P30 AG025707/AG/NIA NIH HHS/ -- U01 AG022303/AG/NIA NIH HHS/ -- U01 AG022307/AG/NIA NIH HHS/ -- U01 AG022307-01/AG/NIA NIH HHS/ -- U01 AG022307-02/AG/NIA NIH HHS/ -- U01 AG022307-03/AG/NIA NIH HHS/ -- U01 AG022307-04/AG/NIA NIH HHS/ -- U01 AG022307-05/AG/NIA NIH HHS/ -- U01 AG022307-05S1/AG/NIA NIH HHS/ -- U01 AG022308/AG/NIA NIH HHS/ -- England -- Nature. 2009 Jul 16;460(7253):392-5. doi: 10.1038/nature08221. Epub 2009 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, Maine 04609, USA. david.harrison@jax.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587680" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Aging/*drug effects/genetics/*physiology ; Animals ; Carrier Proteins/antagonists & inhibitors/metabolism ; Diet ; Disease Susceptibility ; Female ; Longevity/*drug effects/*genetics/physiology ; Male ; Mice ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/metabolism ; Sirolimus/*administration & dosage/*pharmacology ; Specific Pathogen-Free Organisms ; Survival Analysis ; TOR Serine-Threonine Kinases ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chakravarti, Aravinda -- England -- Nature. 2009 Sep 24;461(7263):487-8. doi: 10.1038/461487a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779444" target="_blank"〉PubMed〈/a〉
    Keywords: Asia/ethnology ; Continental Population Groups/genetics/history ; Ethnic Groups/*genetics/history ; Europe/ethnology ; Female ; Founder Effect ; Genetics, Population ; Genome, Human/genetics ; Genomics ; Genotype ; History, 16th Century ; History, 20th Century ; History, Ancient ; Humans ; India ; Language ; Male ; *Phylogeny ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2009-09-11
    Description: Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable. This is thought to be due to the release of 'find-me' signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages and dendritic cells, leading to the prompt clearance of the dying cells. However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to that of apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or the expression of ectopic CD39) abrogated the ability of apoptotic cell supernatants to recruit monocytes in vitro and in vivo. We then identified the ATP/UTP receptor P2Y(2) as a critical sensor of nucleotides released by apoptotic cells using RNA interference-mediated depletion studies in monocytes, and macrophages from P2Y(2)-null mice. The relevance of nucleotides in apoptotic cell clearance in vivo was revealed by two approaches. First, in a murine air-pouch model, apoptotic cell supernatants induced a threefold greater recruitment of monocytes and macrophages than supernatants from healthy cells did; this recruitment was abolished by depletion of nucleotides and was significantly decreased in P2Y(2)(-/-) (also known as P2ry2(-/-)) mice. Second, clearance of apoptotic thymocytes was significantly impaired by either depletion of nucleotides or interference with P2Y receptor function (by pharmacological inhibition or in P2Y(2)(-/-) mice). These results identify nucleotides as a critical find-me cue released by apoptotic cells to promote P2Y(2)-dependent recruitment of phagocytes, and provide evidence for a clear relationship between a find-me signal and efficient corpse clearance in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elliott, Michael R -- Chekeni, Faraaz B -- Trampont, Paul C -- Lazarowski, Eduardo R -- Kadl, Alexandra -- Walk, Scott F -- Park, Daeho -- Woodson, Robin I -- Ostankovich, Marina -- Sharma, Poonam -- Lysiak, Jeffrey J -- Harden, T Kendall -- Leitinger, Norbert -- Ravichandran, Kodi S -- R01 GM064709/GM/NIGMS NIH HHS/ -- R01 GM064709-07/GM/NIGMS NIH HHS/ -- R01 GM069998/GM/NIGMS NIH HHS/ -- R01 GM069998-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Sep 10;461(7261):282-6. doi: 10.1038/nature08296.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741708" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism/pharmacology/secretion ; Animals ; Apoptosis/*physiology ; Cell Line ; Cells, Cultured ; Chemotactic Factors/metabolism/pharmacology/secretion ; Chemotaxis/drug effects ; Culture Media, Conditioned/chemistry/metabolism/pharmacology ; Humans ; Jurkat Cells ; Macrophage Activation/drug effects ; Macrophages/cytology/drug effects/metabolism ; Mice ; Mice, Inbred C57BL ; Monocytes/cytology/drug effects/metabolism ; Phagocytes/*cytology/drug effects/metabolism ; Phagocytosis/drug effects/*physiology ; Purinergic P2 Receptor Antagonists ; Receptors, Purinergic P2/deficiency/genetics/metabolism ; Receptors, Purinergic P2Y2 ; *Signal Transduction/drug effects ; Thymus Gland/*cytology ; Uridine Triphosphate/*metabolism/pharmacology/secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2009-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ng, Pauline C -- Murray, Sarah S -- Levy, Samuel -- Venter, J Craig -- England -- Nature. 2009 Oct 8;461(7265):724-6. doi: 10.1038/461724a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Science Center Drive, San Diego, California 92121, USA. png@jcvi.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812653" target="_blank"〉PubMed〈/a〉
    Keywords: Ethnic Groups/genetics ; False Negative Reactions ; Female ; Gene Frequency/genetics ; Genetic Counseling/methods/*standards ; Genetic Markers/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Testing/methods/*standards ; Genetics, Medical/methods/*standards ; Genome, Human/*genetics ; Genome-Wide Association Study ; Genotype ; Health Behavior ; Humans ; Male ; Odds Ratio ; Pharmacogenetics ; *Practice Guidelines as Topic ; Prospective Studies ; Reproducibility of Results ; Sequence Analysis, DNA/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-06-12
    Description: With 8.9 million new cases and 1.7 million deaths per year, tuberculosis is a leading global killer that has not been effectively controlled. The causative agent, Mycobacterium tuberculosis, proliferates within host macrophages where it modifies both its intracellular and local tissue environment, resulting in caseous granulomas with incomplete bacterial sterilization. Although infection by various mycobacterial species produces a cyclic AMP burst within macrophages that influences cell signalling, the underlying mechanism for the cAMP burst remains unclear. Here we show that among the 17 adenylate cyclase genes present in M. tuberculosis, at least one (Rv0386) is required for virulence. Furthermore, we demonstrate that the Rv0386 adenylate cyclase facilitates delivery of bacterial-derived cAMP into the macrophage cytoplasm. Loss of Rv0386 and the intramacrophage cAMP it delivers results in reductions in TNF-alpha production via the protein kinase A and cAMP response-element-binding protein pathway, decreased immunopathology in animal tissues, and diminished bacterial survival. Direct intoxication of host cells by bacterial-derived cAMP may enable M. tuberculosis to modify both its intracellular and tissue environments to facilitate its long-term survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agarwal, Nisheeth -- Lamichhane, Gyanu -- Gupta, Radhika -- Nolan, Scott -- Bishai, William R -- AI30036/AI/NIAID NIH HHS/ -- AI36973/AI/NIAID NIH HHS/ -- AI37856/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jul 2;460(7251):98-102. doi: 10.1038/nature08123. Epub 2009 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins School of Medicine, CRB2, Room 1.08, 1550 Orleans Street, Baltimore, Maryland 21231-1044, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516256" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/*metabolism ; Animals ; Cell Line ; Cyclic AMP/*metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cytosol/metabolism/microbiology ; Macrophages/immunology/*metabolism/microbiology/*pathology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mycobacterium tuberculosis/*enzymology/genetics/growth & ; development/*pathogenicity ; Phosphoric Diester Hydrolases/genetics/metabolism ; Phosphorylation ; Tuberculosis/immunology/microbiology/*pathology ; Tumor Necrosis Factor-alpha/biosynthesis/secretion ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2009-11-13
    Description: The mucosal immune system forms the largest part of the entire immune system, containing about three-quarters of all lymphocytes and producing grams of secretory IgA daily to protect the mucosal surface from pathogens. To evoke the mucosal immune response, antigens on the mucosal surface must be transported across the epithelial barrier into organized lymphoid structures such as Peyer's patches. This function, called antigen transcytosis, is mediated by specialized epithelial M cells. The molecular mechanisms promoting this antigen uptake, however, are largely unknown. Here we report that glycoprotein 2 (GP2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for mucosal antigens. Recombinant GP2 protein selectively bound a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane. Consistently, these bacteria were colocalized with endogenous GP2 on the apical plasma membrane as well as in cytoplasmic vesicles in M cells. Moreover, deficiency of bacterial FimH or host GP2 led to defects in transcytosis of type-I-piliated bacteria through M cells, resulting in an attenuation of antigen-specific immune responses in Peyer's patches. GP2 is therefore a previously unrecognized transcytotic receptor on M cells for type-I-piliated bacteria and is a prerequisite for the mucosal immune response to these bacteria. Given that M cells are considered a promising target for oral vaccination against various infectious diseases, the GP2-dependent transcytotic pathway could provide a new target for the development of M-cell-targeted mucosal vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hase, Koji -- Kawano, Kazuya -- Nochi, Tomonori -- Pontes, Gemilson Soares -- Fukuda, Shinji -- Ebisawa, Masashi -- Kadokura, Kazunori -- Tobe, Toru -- Fujimura, Yumiko -- Kawano, Sayaka -- Yabashi, Atsuko -- Waguri, Satoshi -- Nakato, Gaku -- Kimura, Shunsuke -- Murakami, Takaya -- Iimura, Mitsutoshi -- Hamura, Kimiyo -- Fukuoka, Shin-Ichi -- Lowe, Anson W -- Itoh, Kikuji -- Kiyono, Hiroshi -- Ohno, Hiroshi -- DK43294/DK/NIDDK NIH HHS/ -- DK56339/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):226-30. doi: 10.1038/nature08529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, Kanagawa 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907495" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Escherichia coli/genetics/immunology/*metabolism ; Animals ; Antigens, Bacterial/genetics/immunology/*metabolism ; Cell Line ; Epithelial Cells/*immunology/metabolism ; Escherichia coli/immunology/metabolism ; Fimbriae Proteins/genetics/immunology/*metabolism ; GPI-Linked Proteins ; Glycoproteins ; HeLa Cells ; Humans ; Immunity, Mucosal/*immunology ; Intestines/cytology ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peyer's Patches/*cytology/immunology ; Salmonella typhimurium/genetics/immunology/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aguzzi, Adriano -- England -- Nature. 2009 Jun 18;459(7249):924-5. doi: 10.1038/459924a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536253" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/metabolism ; Animals ; Humans ; Models, Biological ; Peptides/metabolism ; Prion Diseases/*metabolism/pathology/transmission ; Prions/*chemistry/*metabolism ; Protein Denaturation ; tau Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2009-10-16
    Description: Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, here we measured the intracellular dynamics of place cells by combining in vivo whole-cell recordings with a virtual-reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviours. Robust place-cell activity was present during movement along a virtual linear track. From whole-cell recordings, we identified three subthreshold signatures of place fields: an asymmetric ramp-like depolarization of the baseline membrane potential, an increase in the amplitude of intracellular theta oscillations, and a phase precession of the intracellular theta oscillation relative to the extracellularly recorded theta rhythm. These intracellular dynamics underlie the primary features of place-cell rate and temporal codes. The virtual-reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771429/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771429/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvey, Christopher D -- Collman, Forrest -- Dombeck, Daniel A -- Tank, David W -- 1R01MH083686-01/MH/NIMH NIH HHS/ -- 5R01MH060651-09/MH/NIMH NIH HHS/ -- R01 MH060651/MH/NIMH NIH HHS/ -- R01 MH060651-09/MH/NIMH NIH HHS/ -- R01 MH083686/MH/NIMH NIH HHS/ -- R01 MH083686-02/MH/NIMH NIH HHS/ -- R01 MH083686-02S1/MH/NIMH NIH HHS/ -- England -- Nature. 2009 Oct 15;461(7266):941-6. doi: 10.1038/nature08499.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princeton Neuroscience Institute, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829374" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Hippocampus/*cytology/physiology ; Intracellular Space/*metabolism ; Locomotion/physiology ; Male ; Membrane Potentials/physiology ; Mice ; Mice, Inbred C57BL ; Neurons/*metabolism ; Pyramidal Cells/metabolism ; Space Perception/*physiology ; Theta Rhythm ; *User-Computer Interface
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2009-07-15
    Description: Recent finds demonstrate that internal fertilization and viviparity (live birth) were more widespread in the Placodermi, an extinct group of armoured fishes, than was previously realized. Placoderms represent the sister group of the crown group jawed vertebrates (Gnathostomata), making their mode(s) of reproduction potentially informative about primitive gnathostome conditions. An ossified pelvic fin basipterygium discovered in the arthrodire Incisoscutum ritchiei was hypothesized to be identical in males and females, with males presumed to have an additional cartilaginous element or series forming a clasper. Here we report the discovery of a completely ossified pelvic clasper in Incisoscutum ritchiei (WAM 03.3.28) which shows that this interpretation was incorrect: the basipterygium described previously is in fact unique to females. The male clasper is a slender rod attached to a square basal plate that articulates directly with the pelvis. It carries a small cap of dermal bone covered in denticles and small hooks that may be homologous with the much larger dermal component of the ptyctodont clasper.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahlberg, Per -- Trinajstic, Kate -- Johanson, Zerina -- Long, John -- England -- Nature. 2009 Aug 13;460(7257):888-9. doi: 10.1038/nature08176. Epub 2009 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Subdepartment of Evolutionary Organismal Biology, Department of Physiology and Developmental Biology, Uppsala University, Norbyvagen 18A, 752 36 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19597477" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/anatomy & histology/*physiology ; Animals ; Female ; Fertilization/*physiology ; Fishes/*anatomy & histology/*physiology ; Fossils ; History, Ancient ; Male ; Pelvis/anatomy & histology ; Viviparity, Nonmammalian/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-10-02
    Description: Down Syndrome cell adhesion molecule (Dscam) genes encode neuronal cell recognition proteins of the immunoglobulin superfamily. In Drosophila, Dscam1 generates 19,008 different ectodomains by alternative splicing of three exon clusters, each encoding half or a complete variable immunoglobulin domain. Identical isoforms bind to each other, but rarely to isoforms differing at any one of the variable immunoglobulin domains. Binding between isoforms on opposing membranes promotes repulsion. Isoform diversity provides the molecular basis for neurite self-avoidance. Self-avoidance refers to the tendency of branches from the same neuron (self-branches) to selectively avoid one another. To ensure that repulsion is restricted to self-branches, different neurons express different sets of isoforms in a biased stochastic fashion. Genetic studies demonstrated that Dscam1 diversity has a profound role in wiring the fly brain. Here we show how many isoforms are required to provide an identification system that prevents non-self branches from inappropriately recognizing each other. Using homologous recombination, we generated mutant animals encoding 12, 24, 576 and 1,152 potential isoforms. Mutant animals with deletions encoding 4,752 and 14,256 isoforms were also analysed. Branching phenotypes were assessed in three classes of neurons. Branching patterns improved as the potential number of isoforms increased, and this was independent of the identity of the isoforms. Although branching defects in animals with 1,152 potential isoforms remained substantial, animals with 4,752 isoforms were indistinguishable from wild-type controls. Mathematical modelling studies were consistent with the experimental results that thousands of isoforms are necessary to ensure acquisition of unique Dscam1 identities in many neurons. We conclude that thousands of isoforms are essential to provide neurons with a robust discrimination mechanism to distinguish between self and non-self during self-avoidance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836808/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836808/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hattori, Daisuke -- Chen, Yi -- Matthews, Benjamin J -- Salwinski, Lukasz -- Sabatti, Chiara -- Grueber, Wesley B -- Zipursky, S Lawrence -- F31 NS060341/NS/NINDS NIH HHS/ -- R01 DC006485/DC/NIDCD NIH HHS/ -- R01 DC006485-07/DC/NIDCD NIH HHS/ -- R01 HD040279/HD/NICHD NIH HHS/ -- R01 HD040279-05/HD/NICHD NIH HHS/ -- T32 HD007430/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 1;461(7264):644-8. doi: 10.1038/nature08431.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794492" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Alternative Splicing ; Animals ; Brain/cytology/metabolism ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Drosophila Proteins/*chemistry/genetics/*metabolism ; Drosophila melanogaster/*cytology/genetics/*metabolism ; Female ; Male ; Models, Biological ; Mushroom Bodies/cytology/metabolism ; Neurites/*metabolism ; Protein Isoforms/chemistry/genetics/metabolism ; Sequence Deletion ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2009-02-27
    Description: A pathological hallmark of Alzheimer's disease is an accumulation of insoluble plaque containing the amyloid-beta peptide of 40-42 amino acid residues. Prefibrillar, soluble oligomers of amyloid-beta have been recognized to be early and key intermediates in Alzheimer's-disease-related synaptic dysfunction. At nanomolar concentrations, soluble amyloid-beta oligomers block hippocampal long-term potentiation, cause dendritic spine retraction from pyramidal cells and impair rodent spatial memory. Soluble amyloid-beta oligomers have been prepared from chemical syntheses, transfected cell culture supernatants, transgenic mouse brain and human Alzheimer's disease brain. Together, these data imply a high-affinity cell-surface receptor for soluble amyloid-beta oligomers on neurons-one that is central to the pathophysiological process in Alzheimer's disease. Here we identify the cellular prion protein (PrP(C)) as an amyloid-beta-oligomer receptor by expression cloning. Amyloid-beta oligomers bind with nanomolar affinity to PrP(C), but the interaction does not require the infectious PrP(Sc) conformation. Synaptic responsiveness in hippocampal slices from young adult PrP null mice is normal, but the amyloid-beta oligomer blockade of long-term potentiation is absent. Anti-PrP antibodies prevent amyloid-beta-oligomer binding to PrP(C) and rescue synaptic plasticity in hippocampal slices from oligomeric amyloid-beta. Thus, PrP(C) is a mediator of amyloid-beta-oligomer-induced synaptic dysfunction, and PrP(C)-specific pharmaceuticals may have therapeutic potential for Alzheimer's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lauren, Juha -- Gimbel, David A -- Nygaard, Haakon B -- Gilbert, John W -- Strittmatter, Stephen M -- 5T32GN07205/PHS HHS/ -- P30 DA018343/DA/NIDA NIH HHS/ -- R01 NS039962/NS/NINDS NIH HHS/ -- R01 NS039962-09/NS/NINDS NIH HHS/ -- R01 NS042304/NS/NINDS NIH HHS/ -- R01 NS042304-08/NS/NINDS NIH HHS/ -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-17/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Feb 26;457(7233):1128-32. doi: 10.1038/nature07761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, Connecticut 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242475" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism/pathology/physiopathology ; Amyloid Precursor Protein Secretases/metabolism ; Amyloid beta-Peptides/*chemistry/*metabolism ; Amyloidosis/metabolism ; Animals ; COS Cells ; Cercopithecus aethiops ; Hippocampus/cytology/metabolism ; Humans ; Long-Term Potentiation/physiology ; Mice ; Mice, Inbred C57BL ; *Neuronal Plasticity ; Neurons/metabolism ; Peptide Fragments/*chemistry/*metabolism ; Prions/genetics/*metabolism ; Protein Binding ; *Protein Multimerization ; Receptors, Cell Surface/genetics/metabolism ; Synapses/*metabolism/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicholls, Henry -- England -- Nature. 2009 Sep 10;461(7261):164-6. doi: 10.1038/461164a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Developmental Biology ; Fossils ; Hagfishes/*anatomy & histology/*classification/embryology/genetics ; Head/anatomy & histology ; Humans ; Lampreys/*anatomy & histology/*classification/embryology/genetics ; MicroRNAs/genetics/metabolism ; Models, Biological ; Phylogeny ; Sharks/anatomy & histology/classification/embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2009-02-20
    Description: The assembly of complex structures out of simple colloidal building blocks is of practical interest for building materials with unique optical properties (for example photonic crystals and DNA biosensors) and is of fundamental importance in improving our understanding of self-assembly processes occurring on molecular to macroscopic length scales. Here we demonstrate a self-assembly principle that is capable of organizing a diverse set of colloidal particles into highly reproducible, rotationally symmetric arrangements. The structures are assembled using the magnetostatic interaction between effectively diamagnetic and paramagnetic particles within a magnetized ferrofluid. The resulting multipolar geometries resemble electrostatic charge configurations such as axial quadrupoles ('Saturn rings'), axial octupoles ('flowers'), linear quadrupoles (poles) and mixed multipole arrangements ('two tone'), which represent just a few examples of the type of structure that can be built using this technique.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erb, Randall M -- Son, Hui S -- Samanta, Bappaditya -- Rotello, Vincent M -- Yellen, Benjamin B -- England -- Nature. 2009 Feb 19;457(7232):999-1002. doi: 10.1038/nature07766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke University, Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems, Box 90300, Hudson Hall, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225522" target="_blank"〉PubMed〈/a〉
    Keywords: Colloids/*chemistry ; *Magnetics ; Microscopy, Electron, Scanning ; Microspheres ; Models, Biological ; Nanostructures/chemistry/ultrastructure ; Particle Size ; Water/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2009-08-29
    Description: The air we breathe is filled with thousands of fungal spores (conidia) per cubic metre, which in certain composting environments can easily exceed 10(9) per cubic metre. They originate from more than a hundred fungal species belonging mainly to the genera Cladosporium, Penicillium, Alternaria and Aspergillus. Although these conidia contain many antigens and allergens, it is not known why airborne fungal microflora do not activate the host innate immune cells continuously and do not induce detrimental inflammatory responses following their inhalation. Here we show that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response. To explore this, we used several fungal members of the airborne microflora, including the human opportunistic fungal pathogen Aspergillus fumigatus, in in vitro assays with dendritic cells and alveolar macrophages and in in vivo murine experiments. In A. fumigatus, this surface 'rodlet layer' is composed of hydrophobic RodA protein covalently bound to the conidial cell wall through glycosylphosphatidylinositol-remnants. RodA extracted from conidia of A. fumigatus was immunologically inert and did not induce dendritic cell or alveolar macrophage maturation and activation, and failed to activate helper T-cell immune responses in vivo. The removal of this surface 'rodlet/hydrophobin layer' either chemically (using hydrofluoric acid), genetically (DeltarodA mutant) or biologically (germination) resulted in conidial morphotypes inducing immune activation. All these observations show that the hydrophobic rodlet layer on the conidial cell surface immunologically silences airborne moulds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aimanianda, Vishukumar -- Bayry, Jagadeesh -- Bozza, Silvia -- Kniemeyer, Olaf -- Perruccio, Katia -- Elluru, Sri Ramulu -- Clavaud, Cecile -- Paris, Sophie -- Brakhage, Axel A -- Kaveri, Srini V -- Romani, Luigina -- Latge, Jean-Paul -- England -- Nature. 2009 Aug 27;460(7259):1117-21. doi: 10.1038/nature08264.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite des Aspergillus, Institut Pasteur, Paris F-75015, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713928" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Air Microbiology ; Allergens ; Animals ; Antigens, Fungal/chemistry/genetics/*immunology ; Antigens, Plant ; Aspergillus fumigatus/chemistry/immunology/physiology ; CD4-Positive T-Lymphocytes/immunology ; Cathepsins ; Cells, Cultured ; Dendritic Cells/cytology/immunology/transplantation ; Fungal Proteins ; Humans ; Hydrofluoric Acid/chemistry ; Immune System/immunology ; Lymphocyte Activation ; Macrophages, Alveolar/immunology ; Mice ; Mice, Inbred C57BL ; Spores, Fungal/chemistry/genetics/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2009 Aug 20;460(7258):940-1. doi: 10.1038/460940a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693052" target="_blank"〉PubMed〈/a〉
    Keywords: Anticoagulants/administration & dosage/adverse effects/therapeutic use ; Cardiovascular Diseases/*drug therapy/*genetics ; Clinical Trials as Topic ; Female ; Genetic Predisposition to Disease/*genetics ; Genetic Testing ; Genetic Variation ; Genome-Wide Association Study ; Genomics/trends ; Humans ; Pharmacogenetics/*trends ; Piperazines/administration & dosage/therapeutic use ; Platelet Aggregation Inhibitors/administration & dosage/adverse ; effects/therapeutic use ; Prasugrel Hydrochloride ; Thiophenes/administration & dosage/therapeutic use ; Ticlopidine/administration & dosage/adverse effects/analogs & ; derivatives/therapeutic use ; Warfarin/administration & dosage/adverse effects/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-02-13
    Description: Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-alpha (IFNalpha), HSCs efficiently exit G(0) and enter an active cell cycle. HSCs respond to IFNalpha treatment by the increased phosphorylation of STAT1 and PKB/Akt (also known as AKT1), the expression of IFNalpha target genes, and the upregulation of stem cell antigen-1 (Sca-1, also known as LY6A). HSCs lacking the IFNalpha/beta receptor (IFNAR), STAT1 (ref. 3) or Sca-1 (ref. 4) are insensitive to IFNalpha stimulation, demonstrating that STAT1 and Sca-1 mediate IFNalpha-induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-fluoro-uracil, HSCs pre-treated (primed) with IFNalpha and thus induced to proliferate are efficiently eliminated by 5-fluoro-uracil exposure in vivo. Conversely, HSCs chronically activated by IFNalpha are functionally compromised and are rapidly out-competed by non-activatable Ifnar(-/-) cells in competitive repopulation assays. Whereas chronic activation of the IFNalpha pathway in HSCs impairs their function, acute IFNalpha treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFNalpha on leukaemic cells, and raise the possibility for new applications of type I interferons to target cancer stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Essers, Marieke A G -- Offner, Sandra -- Blanco-Bose, William E -- Waibler, Zoe -- Kalinke, Ulrich -- Duchosal, Michel A -- Trumpp, Andreas -- England -- Nature. 2009 Apr 16;458(7240):904-8. doi: 10.1038/nature07815. Epub 2009 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212321" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Ly/metabolism ; Cell Count ; Cell Cycle/*drug effects ; Cell Proliferation/drug effects ; Fluorouracil/pharmacology ; Hematopoietic Stem Cells/*cytology/*drug effects ; Interferon-alpha/*pharmacology ; Membrane Proteins/deficiency/metabolism ; Mice ; Mice, Inbred C57BL ; Phosphorylation/drug effects ; Receptor, Interferon alpha-beta/deficiency/metabolism ; STAT1 Transcription Factor/deficiency/metabolism ; Signal Transduction/drug effects ; Up-Regulation/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2009-06-02
    Description: Diverse histone modifications are catalysed and recognized by various specific proteins, establishing unique modification patterns that act as transcription signals. In particular, histone H3 trimethylation at lysine 36 (H3K36me3) is associated with actively transcribed regions and has been proposed to provide landmarks for continuing transcription; however, the control mechanisms and functions of H3K36me3 in higher eukaryotes are unknown. Here we show that the H3K36me3-specific histone methyltransferase (HMTase) Wolf-Hirschhorn syndrome candidate 1 (WHSC1, also known as NSD2 or MMSET) functions in transcriptional regulation together with developmental transcription factors whose defects overlap with the human disease Wolf-Hirschhorn syndrome (WHS). We found that mouse Whsc1, one of five putative Set2 homologues, governed H3K36me3 along euchromatin by associating with the cell-type-specific transcription factors Sall1, Sall4 and Nanog in embryonic stem cells, and Nkx2-5 in embryonic hearts, regulating the expression of their target genes. Whsc1-deficient mice showed growth retardation and various WHS-like midline defects, including congenital cardiovascular anomalies. The effects of Whsc1 haploinsufficiency were increased in Nkx2-5 heterozygous mutant hearts, indicating their functional link. We propose that WHSC1 functions together with developmental transcription factors to prevent the inappropriate transcription that can lead to various pathophysiologies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nimura, Keisuke -- Ura, Kiyoe -- Shiratori, Hidetaka -- Ikawa, Masato -- Okabe, Masaru -- Schwartz, Robert J -- Kaneda, Yasufumi -- England -- Nature. 2009 Jul 9;460(7252):287-91. doi: 10.1038/nature08086. Epub 2009 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19483677" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/metabolism ; Gene Expression Regulation ; Histone-Lysine N-Methyltransferase/deficiency/genetics/*metabolism ; Histones/*metabolism ; Homeodomain Proteins/genetics/*metabolism ; Lysine/metabolism ; Methylation ; Mice ; Mice, Inbred C57BL ; Protein Binding ; Repressor Proteins/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Wolf-Hirschhorn Syndrome/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2009-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, Nicola J -- Barres, Ben A -- England -- Nature. 2009 Feb 5;457(7230):675-7. doi: 10.1038/457675a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194443" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/physiology ; Biological Evolution ; Brain/*cytology/embryology/pathology/*physiology ; Cell Communication ; Cell Lineage ; Homeostasis ; Humans ; Models, Biological ; Nerve Net/physiology ; Nervous System Diseases/pathology/physiopathology ; Neural Pathways/physiology ; Neuroglia/classification/cytology/pathology/*physiology ; Neurons/cytology/physiology ; Oligodendroglia/pathology/physiology ; Schwann Cells/pathology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2009 Jan 15;457(7227):254-6. doi: 10.1038/457254a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148076" target="_blank"〉PubMed〈/a〉
    Keywords: *Federal Government ; Female ; *Global Health ; HIV Infections/*drug therapy/*economics/prevention & control ; Humans ; United States ; World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ledford, Heidi -- England -- Nature. 2009 Feb 5;457(7230):642. doi: 10.1038/457642b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19205093" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cell Nucleus/metabolism ; Cellular Reprogramming/genetics/physiology ; Embryo, Mammalian/*cytology/*embryology ; Embryonic Stem Cells/*cytology ; Female ; Humans ; Mice ; *Nuclear Transfer Techniques ; Pluripotent Stem Cells/metabolism ; Rabbits ; Sheep ; Swine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farmer, Stephen R -- England -- Nature. 2009 Apr 16;458(7240):839-40. doi: 10.1038/458839a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370020" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/anatomy & histology/cytology/*metabolism ; *Cold Temperature ; Female ; Humans ; Male ; Obesity/drug therapy/*metabolism ; Sex Characteristics ; Weight Loss/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-08-21
    Description: The isolation of human induced pluripotent stem cells (iPSCs) offers a new strategy for modelling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy, caused by a point mutation in the IKBKAP gene involved in transcriptional elongation. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood owing to the lack of an appropriate model system. Here we report the derivation of patient-specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC-derived lineages demonstrates tissue-specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript, suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell-based assays revealing marked defects in neurogenic differentiation and migration behaviour. Furthermore, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining new insights into human disease pathogenesis and treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Gabsang -- Papapetrou, Eirini P -- Kim, Hyesoo -- Chambers, Stuart M -- Tomishima, Mark J -- Fasano, Christopher A -- Ganat, Yosif M -- Menon, Jayanthi -- Shimizu, Fumiko -- Viale, Agnes -- Tabar, Viviane -- Sadelain, Michel -- Studer, Lorenz -- R01 NS052671/NS/NINDS NIH HHS/ -- R01 NS052671-03/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Sep 17;461(7262):402-6. doi: 10.1038/nature08320. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Program, Sloan-Kettering Institute, 1275 York Ave, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693009" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alternative Splicing/drug effects/genetics ; Animals ; Carrier Proteins/genetics ; Cell Dedifferentiation ; Cell Differentiation ; Cell Lineage ; Cell Movement ; Cells, Cultured ; Child ; Dysautonomia, Familial/drug therapy/genetics/*pathology/*therapy ; Female ; Fibroblasts/cytology/metabolism ; Gene Expression Profiling ; Humans ; Kinetin/pharmacology/therapeutic use ; Male ; Mice ; *Models, Biological ; Neural Crest/cytology/drug effects ; Organ Specificity ; Phenotype ; Pluripotent Stem Cells/cytology/drug effects/*metabolism/*transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-01-09
    Description: Haematopoietic stem cells (HSCs) are the founder cells of the adult haematopoietic system, and thus knowledge of the molecular program directing their generation during development is important for regenerative haematopoietic strategies. Runx1 is a pivotal transcription factor required for HSC generation in the vascular regions of the mouse conceptus-the aorta, vitelline and umbilical arteries, yolk sac and placenta. It is thought that HSCs emerge from vascular endothelial cells through the formation of intra-arterial clusters and that Runx1 functions during the transition from 'haemogenic endothelium' to HSCs. Here we show by conditional deletion that Runx1 activity in vascular-endothelial-cadherin-positive endothelial cells is indeed essential for intra-arterial cluster, haematopoietic progenitor and HSC formation in mice. In contrast, Runx1 is not required in cells expressing Vav1, one of the first pan-haematopoietic genes expressed in HSCs. Collectively these data show that Runx1 function is essential in endothelial cells for haematopoietic progenitor and HSC formation from the vasculature, but its requirement ends once or before Vav is expressed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744041/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744041/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Michael J -- Yokomizo, Tomomasa -- Zeigler, Brandon M -- Dzierzak, Elaine -- Speck, Nancy A -- CA23108/CA/NCI NIH HHS/ -- R01 CA058343/CA/NCI NIH HHS/ -- R01DK54077/DK/NIDDK NIH HHS/ -- R01HL091724/HL/NHLBI NIH HHS/ -- R37 DK054077/DK/NIDDK NIH HHS/ -- R37 DK054077-09/DK/NIDDK NIH HHS/ -- T32 AI-07519/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Feb 12;457(7231):887-91. doi: 10.1038/nature07619. Epub 2009 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19129762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Cadherins/metabolism ; *Cell Differentiation ; Core Binding Factor Alpha 2 Subunit/genetics/*metabolism ; Endothelial Cells/*cytology ; Female ; *Gene Expression Regulation, Developmental ; Hematopoietic Stem Cells/*cytology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Proto-Oncogene Proteins c-vav/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...