ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-19
    Description: T-cell acute lymphoblastic leukaemia (T-ALL) is a blood malignancy afflicting mainly children and adolescents. T-ALL patients present at diagnosis with increased white cell counts and hepatosplenomegaly, and are at an increased risk of central nervous system (CNS) relapse. For that reason, T-ALL patients usually receive cranial irradiation in addition to intensified intrathecal chemotherapy. The marked increase in survival is thought to be worth the considerable side-effects associated with this therapy. Such complications include secondary tumours, neurocognitive deficits, endocrine disorders and growth impairment. Little is known about the mechanism of leukaemic cell infiltration of the CNS, despite its clinical importance. Here we show, using T-ALL animal modelling and gene-expression profiling, that the chemokine receptor CCR7 (ref. 5) is the essential adhesion signal required for the targeting of leukaemic T-cells into the CNS. Ccr7 gene expression is controlled by the activity of the T-ALL oncogene Notch1 and is expressed in human tumours carrying Notch1-activating mutations. Silencing of either CCR7 or its chemokine ligand CCL19 (ref. 6) in an animal model of T-ALL specifically inhibits CNS infiltration. Furthermore, murine CNS-targeting by human T-ALL cells depends on their ability to express CCR7. These studies identify a single chemokine-receptor interaction as a CNS 'entry' signal, and open the way for future pharmacological targeting. Targeted inhibition of CNS involvement in T-ALL could potentially decrease the intensity of CNS-targeted therapy, thus reducing its associated short- and long-term complications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750496/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750496/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buonamici, Silvia -- Trimarchi, Thomas -- Ruocco, Maria Grazia -- Reavie, Linsey -- Cathelin, Severine -- Mar, Brenton G -- Klinakis, Apostolos -- Lukyanov, Yevgeniy -- Tseng, Jen-Chieh -- Sen, Filiz -- Gehrie, Eric -- Li, Mengling -- Newcomb, Elizabeth -- Zavadil, Jiri -- Meruelo, Daniel -- Lipp, Martin -- Ibrahim, Sherif -- Efstratiadis, Argiris -- Zagzag, David -- Bromberg, Jonathan S -- Dustin, Michael L -- Aifantis, Iannis -- 1 P01 CA97403/CA/NCI NIH HHS/ -- P30CA016087/CA/NCI NIH HHS/ -- R01 AI041428/AI/NIAID NIH HHS/ -- R01 AI062765/AI/NIAID NIH HHS/ -- R01 AI072039/AI/NIAID NIH HHS/ -- R01 CA105129/CA/NCI NIH HHS/ -- R01 CA149655/CA/NCI NIH HHS/ -- R01AI072039/AI/NIAID NIH HHS/ -- R01AI41428/AI/NIAID NIH HHS/ -- R01CA105129/CA/NCI NIH HHS/ -- R01CA133379/CA/NCI NIH HHS/ -- R21 CA141399/CA/NCI NIH HHS/ -- R56AI070310/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jun 18;459(7249):1000-4. doi: 10.1038/nature08020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and New York University Cancer Institute, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536265" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Line, Tumor ; Central Nervous System/*metabolism/*pathology ; Chemokine CCL19/deficiency/metabolism ; Chemokine CCL21/metabolism ; Humans ; Leukemia, T-Cell/*metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism/pathology ; Receptor, Notch1/genetics/metabolism ; Receptors, CCR7/deficiency/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-13
    Description: Notch signalling is a central regulator of differentiation in a variety of organisms and tissue types. Its activity is controlled by the multi-subunit gamma-secretase (gammaSE) complex. Although Notch signalling can play both oncogenic and tumour-suppressor roles in solid tumours, in the haematopoietic system it is exclusively oncogenic, notably in T-cell acute lymphoblastic leukaemia, a disease characterized by Notch1-activating mutations. Here we identify novel somatic-inactivating Notch pathway mutations in a fraction of patients with chronic myelomonocytic leukaemia (CMML). Inactivation of Notch signalling in mouse haematopoietic stem cells (HSCs) results in an aberrant accumulation of granulocyte/monocyte progenitors (GMPs), extramedullary haematopoieisis and the induction of CMML-like disease. Transcriptome analysis revealed that Notch signalling regulates an extensive myelomonocytic-specific gene signature, through the direct suppression of gene transcription by the Notch target Hes1. Our studies identify a novel role for Notch signalling during early haematopoietic stem cell differentiation and suggest that the Notch pathway can play both tumour-promoting and -suppressive roles within the same tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093658/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093658/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klinakis, Apostolos -- Lobry, Camille -- Abdel-Wahab, Omar -- Oh, Philmo -- Haeno, Hiroshi -- Buonamici, Silvia -- van De Walle, Inge -- Cathelin, Severine -- Trimarchi, Thomas -- Araldi, Elisa -- Liu, Cynthia -- Ibrahim, Sherif -- Beran, Miroslav -- Zavadil, Jiri -- Efstratiadis, Argiris -- Taghon, Tom -- Michor, Franziska -- Levine, Ross L -- Aifantis, Iannis -- 1P01CA97403/CA/NCI NIH HHS/ -- R01 CA105129/CA/NCI NIH HHS/ -- R01 CA105129-07/CA/NCI NIH HHS/ -- R01 CA133379/CA/NCI NIH HHS/ -- R01 CA133379-04/CA/NCI NIH HHS/ -- R01 CA149655/CA/NCI NIH HHS/ -- R01 CA149655-03/CA/NCI NIH HHS/ -- R01CA105129/CA/NCI NIH HHS/ -- R01CA1328234/CA/NCI NIH HHS/ -- R01CA133379/CA/NCI NIH HHS/ -- R01CA149655/CA/NCI NIH HHS/ -- R21 CA141399/CA/NCI NIH HHS/ -- R21 CA141399-02/CA/NCI NIH HHS/ -- R21CA141399/CA/NCI NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 12;473(7346):230-3. doi: 10.1038/nature09999.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedical Research Foundation, Academy of Athens, Athens, Greece.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21562564" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Cell Differentiation ; Cells, Cultured ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Gene Silencing ; Genes, Tumor Suppressor/*physiology ; Granulocyte-Macrophage Progenitor Cells/cytology/metabolism ; Hematopoietic Stem Cells/cytology/metabolism ; Homeodomain Proteins/metabolism ; Humans ; Leukemia, Myelomonocytic, Chronic/*genetics/*pathology ; Mice ; Mice, Inbred C57BL ; Mutation ; Receptors, Notch/deficiency/*genetics/*metabolism ; *Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...