ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-31
    Description: For bacteria, cysteine thiol groups in proteins are commonly used as thiol-based switches for redox sensing to activate specific detoxification pathways and restore the redox balance. Among the known thiol-based regulatory systems, the MarR/DUF24 family regulators have been reported to sense and respond to reactive electrophilic species, including diamide, quinones,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-24
    Description: Thermal budget, stack thickness, and dipolar offset field control are crucial for seamless integration of perpendicular magnetic junctions (pMTJ) into semiconductor integrated circuits to build scalable spin-transfer-torque magnetoresistive random access memory. This paper is concerned with materials and process tuning to deliver thermally robust (400 °C, 30 min) and thin (i.e., fewer layers and integration-friendly) pMTJ utilizing Co/Pt-based bottom pinned layers. Interlayer roughness control is identified as a key enabler to achieve high thermal budgets. The dipolar offset fields of the developed film stacks at scaled dimensions are evaluated by micromagnetic simulations. This paper shows a path towards achieving sub-15 nm-thick pMTJ with tunneling magnetoresistance ratio higher than 150% after 30 min of thermal excursion at 400 °C.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Foxp3 and its protein partners establish a regulatory T (T〈sub〉reg〈/sub〉) cell transcription profile and promote immunological tolerance. However, molecular features contributing to a T〈sub〉reg〈/sub〉-specific gene expression program are still incompletely understood. We find that the transcription factor Bcl11b is a prominent Foxp3 cofactor with multifaceted functions in T〈sub〉reg〈/sub〉 biology. Optimal genomic recruitment of Foxp3 and Bcl11b is critically interdependent. Genome-wide occupancy studies coupled with gene expression profiling reveal that Bcl11b, in association with Foxp3, is primarily responsible in establishing a T〈sub〉reg〈/sub〉-specific gene activation program. Furthermore, Bcl11b restricts misdirected recruitment of Foxp3 to sites, which would otherwise result in an altered T〈sub〉reg〈/sub〉 transcriptome profile. Consequently, T〈sub〉reg〈/sub〉-specific ablation of Bcl11b results in marked breakdown of immune tolerance, leading to aggressive systemic autoimmunity. Our study provides previously underappreciated mechanistic insights into molecular events contributing to basic aspects of T〈sub〉reg〈/sub〉 function. Furthermore, it establishes a therapeutic target with potential implications in autoimmunity and cancer.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-12
    Description: We investigated the low-temperature transport mechanism for poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene] (PBTTT). The temperature-dependent transport behavior was studied by varying the drain–source electric field and gate bias. The results suggest that low-temperature charge transport is dominated by direct tunneling at low electric fields, while field emission is prevailing for high electric fields with high carrier densities. However, the obtained barrier heights are remarkably greater than expected in a conventional field emission. We propose a simplified model of field emission through quasi-one-dimensional path with multiple barriers which shows good agreement with the results more clearly. Field emission across the domain boundaries may assist in overcoming the transport barriers induced by the interchain disorder, which results in the weak temperature dependence of conductivities and nonlinear current–voltage relation at low temperatures. Scientific Reports 5 doi: 10.1038/srep08396
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-30
    Description: Gene amplification is a hallmark of cancer with chromosomal instability although the underlying mechanism by which altered copy numbers are maintained is largely unclear. Cohesin, involved in sister chromatid cohesion, DNA repair, cell cycle progression and transcriptional regulation of key developmental genes, is frequently overexpressed in human cancer. Here we show that cohesin-dependent change in DNA replication controls the copy numbers of amplified genes in cancer cells with chromosomal instability. We found that the down-regulation of elevated cohesin leads to copy number-associated gene expression changes without disturbing chromosomal segregation. Highly amplified genes form typical long-range chromatin interactions, which are stabilized by enriched cohesin. The spatial proximities among cohesin binding sites within amplified genes are decreased by RAD21 -knockdown, resulting in the rapid decline of amplified gene expression. After several passages, cohesin depletion inhibits DNA replication initiation by reducing the recruitment of pre-replication complexes such as minichromosome maintenance subunits 7 (MCM7), DNA polymerase α, and CDC45 at replication origins near the amplified regions, and as a result, decreases the DNA copy numbers of highly amplified genes. Collectively, our data demonstrate that cohesin-mediated chromatin organization and DNA replication are important for stabilizing gene amplification in cancer cells with chromosomal instability.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-01-02
    Description: A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centres for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behaviour remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 10(4)-fold lower than that of rod and cone pigments, resulting in a very low photon catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Notably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Do, Michael Tri H -- Kang, Shin H -- Xue, Tian -- Zhong, Haining -- Liao, Hsi-Wen -- Bergles, Dwight E -- Yau, King-Wai -- F32 EY016959/EY/NEI NIH HHS/ -- F32 EY016959-01/EY/NEI NIH HHS/ -- F32 EY016959-02/EY/NEI NIH HHS/ -- F32 EY016959-03/EY/NEI NIH HHS/ -- R01 DC006904/DC/NIDCD NIH HHS/ -- R01 DC006904-01/DC/NIDCD NIH HHS/ -- R01 DC006904-02/DC/NIDCD NIH HHS/ -- R01 DC006904-03/DC/NIDCD NIH HHS/ -- R01 DC006904-04/DC/NIDCD NIH HHS/ -- R01 DC006904-05/DC/NIDCD NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY006837-16A1/EY/NEI NIH HHS/ -- R01 EY006837-18/EY/NEI NIH HHS/ -- R01 EY006837-20A1/EY/NEI NIH HHS/ -- R01 EY006837-21/EY/NEI NIH HHS/ -- R01 EY006837-22/EY/NEI NIH HHS/ -- R01 EY014596/EY/NEI NIH HHS/ -- R01 EY014596-01/EY/NEI NIH HHS/ -- R01 EY014596-02/EY/NEI NIH HHS/ -- R01 EY014596-03/EY/NEI NIH HHS/ -- R01 EY014596-04/EY/NEI NIH HHS/ -- R01 EY014596-05/EY/NEI NIH HHS/ -- R01 EY014596-06/EY/NEI NIH HHS/ -- R01 EY014596-07/EY/NEI NIH HHS/ -- R01 EY014596-07S1/EY/NEI NIH HHS/ -- R01 NS051509/NS/NINDS NIH HHS/ -- R01 NS051509-01A1/NS/NINDS NIH HHS/ -- R01 NS051509-02/NS/NINDS NIH HHS/ -- R01 NS051509-03/NS/NINDS NIH HHS/ -- R01 NS051509-04/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Jan 15;457(7227):281-7. doi: 10.1038/nature07682. Epub 2008 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. mdo@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19118382" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/radiation effects ; Animals ; Brain/metabolism ; Kinetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; *Photons ; Pupil/physiology/radiation effects ; Reflex, Pupillary/radiation effects ; Retinal Ganglion Cells/*metabolism/*radiation effects ; Rod Opsins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-22
    Description: Discovery of a novel target for renal cell carcinoma: transglutaminase 2 Cell Death and Disease 7, e2200 (April 2016). doi:10.1038/cddis.2016.99 Authors: J H Kang, S-H Lee & S-Y Kim
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-23
    Description: Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (〈2.5 degrees ), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and transportation, optical sensing, medicine, and as self-cleaning and anti-fouling materials operating in extreme environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Tak-Sing -- Kang, Sung Hoon -- Tang, Sindy K Y -- Smythe, Elizabeth J -- Hatton, Benjamin D -- Grinthal, Alison -- Aizenberg, Joanna -- England -- Nature. 2011 Sep 21;477(7365):443-7. doi: 10.1038/nature10447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21938066" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/anatomy & histology/*chemistry ; Animals ; Ants/physiology ; Biomimetic Materials/*chemistry ; Blood ; Hydrocarbons/chemistry ; Ice ; Lotus/anatomy & histology/chemistry ; Lubricants/*chemistry/pharmacology ; Lubrication ; Nanostructures ; Petroleum ; Porosity ; *Pressure ; *Surface Properties/drug effects ; Water/chemistry ; *Wettability
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-01-10
    Description: Mesoscale hierarchical helical structures with diverse functions are abundant in nature. Here we show how spontaneous helicity can be induced in a synthetic polymeric nanobristle assembling in an evaporating liquid. We use a simple theoretical model to characterize the geometry, stiffness, and surface properties of the pillars that favor the adhesive self-organization of bundles with pillars wound around each other. The process can be controlled to yield highly ordered helical clusters with a unique structural hierarchy that arises from the sequential assembly of self-similar coiled building blocks over multiple length scales. We demonstrate their function in the context of self-assembly into previously unseen structures with uniform, periodic patterns and controlled handedness and as an efficient particle-trapping and adhesive system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pokroy, Boaz -- Kang, Sung H -- Mahadevan, L -- Aizenberg, Joanna -- New York, N.Y. -- Science. 2009 Jan 9;323(5911):237-40. doi: 10.1126/science.1165607.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131625" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-19
    Description: Author(s): Evan S. H. Kang, Duk Y. Kim, Hyoung Chan Kim, and Eunseong Kim The shear modulus of solid 4 He below 200 mK exhibits an unusual increase, the characteristics of which show remarkable similarities to those of the period reduction in torsional oscillator experiments. We systematically studied the drive strain and temperature dependence of the shear modulus at low ... [Phys. Rev. B 87, 094512] Published Mon Mar 18, 2013
    Keywords: Superfluidity and superconductivity
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...