ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 101
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Charlie -- England -- Nature. 2015 Nov 5;527(7576):S10-1. doi: 10.1038/527S10a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536216" target="_blank"〉PubMed〈/a〉
    Keywords: Clinical Trials as Topic ; DNA Mutational Analysis ; Databases, Factual ; Drug Costs ; Drug Discovery ; Electronic Health Records ; Genetics, Medical/*trends ; Genomics/*trends ; Glioblastoma/genetics ; Humans ; Neoplasms/drug therapy/*genetics ; Precision Medicine/methods ; Translational Medical Research/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Feb 5;518(7537):6. doi: 10.1038/518006a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652960" target="_blank"〉PubMed〈/a〉
    Keywords: Accidents, Traffic/prevention & control ; Algorithms ; Automation/*instrumentation ; *Automobile Driving ; *Automobiles ; Great Britain ; Humans ; Public Opinion ; Safety
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Charles -- England -- Nature. 2015 Feb 26;518(7540):S12-5. doi: 10.1038/518S13a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25715275" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/diet therapy/microbiology/therapy ; Autistic Disorder/microbiology/physiopathology/psychology ; Bacteroides fragilis/physiology ; Bifidobacterium/physiology ; Blood-Brain Barrier/microbiology/physiology ; Brain/drug effects/*physiology ; Citalopram/therapeutic use ; Depression/diet therapy/microbiology/therapy ; Germ-Free Life ; Humans ; Immune System/immunology/microbiology ; Intestines/immunology/*microbiology/*physiology ; Irritable Bowel Syndrome/etiology/microbiology/physiopathology/psychology ; Magnetic Resonance Imaging ; *Mental Health ; Mice ; Microbiota/*physiology ; Neurotransmitter Agents/metabolism ; Personality ; Probiotics/pharmacology/therapeutic use ; Stress, Psychological/metabolism/microbiology ; *Symbiosis ; Vagus Nerve/physiology ; Yogurt/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2015-04-10
    Description: Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533874/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533874/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Dohoon -- Fiske, Brian P -- Birsoy, Kivanc -- Freinkman, Elizaveta -- Kami, Kenjiro -- Possemato, Richard L -- Chudnovsky, Yakov -- Pacold, Michael E -- Chen, Walter W -- Cantor, Jason R -- Shelton, Laura M -- Gui, Dan Y -- Kwon, Manjae -- Ramkissoon, Shakti H -- Ligon, Keith L -- Kang, Seong Woo -- Snuderl, Matija -- Vander Heiden, Matthew G -- Sabatini, David M -- 5P30CA14051/CA/NCI NIH HHS/ -- AI07389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- K08 NS087118/NS/NINDS NIH HHS/ -- K08-NS087118/NS/NINDS NIH HHS/ -- K99 CA168940/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA168653/CA/NCI NIH HHS/ -- R01CA168653/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 16;520(7547):363-7. doi: 10.1038/nature14363. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [4] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [5] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [3] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Human Metabolome Technologies, Inc., Tsuruoka 997-0052, Japan. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [4] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [5] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA [6] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Human Metabolome Technologies America, Inc., Boston, Massachusetts 02134, USA. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ; 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Pathology, NYU Langone Medical Center and Medical School, New York, New York 10016, USA. ; 1] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [3] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA [4] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855294" target="_blank"〉PubMed〈/a〉
    Keywords: Acetone/analogs & derivatives/metabolism/toxicity ; Animals ; Brain Neoplasms/blood supply/enzymology/*metabolism/*pathology ; Cell Hypoxia ; Cell Line, Tumor ; Cell Survival ; Female ; Glioblastoma/blood supply/enzymology/*metabolism/*pathology ; Glycine/*metabolism ; Glycine Dehydrogenase (Decarboxylating)/antagonists & inhibitors/metabolism ; Glycine Hydroxymethyltransferase/*metabolism ; Humans ; Ischemia/enzymology/*metabolism/pathology ; Mice ; Necrosis ; Oxygen Consumption ; Pyruvaldehyde/metabolism/toxicity ; Pyruvate Kinase/metabolism ; Tumor Microenvironment ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2015-06-18
    Description: Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685948/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685948/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buenrostro, Jason D -- Wu, Beijing -- Litzenburger, Ulrike M -- Ruff, Dave -- Gonzales, Michael L -- Snyder, Michael P -- Chang, Howard Y -- Greenleaf, William J -- 5U54HG00455805/HG/NHGRI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50HG007735/HG/NHGRI NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- T32HG000044/HG/NHGRI NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19AI057266/AI/NIAID NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- UH2 AR067676/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 23;523(7561):486-90. doi: 10.1038/nature14590. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Fluidigm Corporation, South San Francisco, California 94080, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Applied Physics, Stanford University, Stanford, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Compartmentation ; Cell Cycle/genetics ; Cell Line ; Cells/classification/*metabolism ; Chromatin/*genetics/*metabolism ; DNA/genetics/metabolism ; Epigenesis, Genetic ; *Epigenomics ; Genome, Human/genetics ; Humans ; Microfluidics ; Signal Transduction ; Single-Cell Analysis/*methods ; Transcription Factors/metabolism ; Transposases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2015-01-07
    Description: Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Bergeijk, Petra -- Adrian, Max -- Hoogenraad, Casper C -- Kapitein, Lukas C -- England -- Nature. 2015 Feb 5;518(7537):111-4. doi: 10.1038/nature14128. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25561173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology/radiation effects ; Biological Transport/radiation effects ; Cell Compartmentation/*physiology/radiation effects ; Cells, Cultured ; Cytoskeleton/metabolism/radiation effects ; Dendritic Spines/metabolism/radiation effects ; Dyneins/metabolism/radiation effects ; Endosomes/*metabolism/radiation effects ; Hippocampus/cytology ; Intracellular Space/metabolism/radiation effects ; Kinesin/metabolism/radiation effects ; Microtubules/metabolism/radiation effects ; Mitochondria/*metabolism/radiation effects ; Myosin Type V/metabolism/radiation effects ; Optogenetics/*methods ; Peroxisomes/*metabolism/radiation effects ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2015-12-15
    Description: During asymmetric division, fate determinants at the cell cortex segregate unequally into the two daughter cells. It has recently been shown that Sara (Smad anchor for receptor activation) signalling endosomes in the cytoplasm also segregate asymmetrically during asymmetric division. Biased dispatch of Sara endosomes mediates asymmetric Notch/Delta signalling during the asymmetric division of sensory organ precursors in Drosophila. In flies, this has been generalized to stem cells in the gut and the central nervous system, and, in zebrafish, to neural precursors of the spinal cord. However, the mechanism of asymmetric endosome segregation is not understood. Here we show that the plus-end kinesin motor Klp98A targets Sara endosomes to the central spindle, where they move bidirectionally on an antiparallel array of microtubules. The microtubule depolymerizing kinesin Klp10A and its antagonist Patronin generate central spindle asymmetry. This asymmetric spindle, in turn, polarizes endosome motility, ultimately causing asymmetric endosome dispatch into one daughter cell. We demonstrate this mechanism by inverting the polarity of the central spindle by polar targeting of Patronin using nanobodies (single-domain antibodies). This spindle inversion targets the endosomes to the wrong cell. Our data uncover the molecular and physical mechanism by which organelles localized away from the cellular cortex can be dispatched asymmetrically during asymmetric division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derivery, Emmanuel -- Seum, Carole -- Daeden, Alicia -- Loubery, Sylvain -- Holtzer, Laurent -- Julicher, Frank -- Gonzalez-Gaitan, Marcos -- England -- Nature. 2015 Dec 10;528(7581):280-5. doi: 10.1038/nature16443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland. ; Max Planck Institute for the Physics of Complex Systems, Nothnitzer Strasse 38, 01187 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asymmetric Cell Division/*physiology ; Cell Polarity ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*cytology/genetics ; Endosomes/*metabolism ; Kinesin/genetics/*metabolism ; Microtubule-Associated Proteins/metabolism ; Sequence Deletion ; Single-Domain Antibodies ; Spindle Apparatus/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gould, Julie -- England -- Nature. 2015 May 21;521(7552):S48-9. doi: 10.1038/521S48a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25992670" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/classification/*physiology ; Biodiversity ; *Pollination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2015-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paxton, Robert -- Brown, Mark -- Kuhlmann, Michael -- Goulson, Dave -- Decourtye, Axel -- Willmer, Pat -- Bonmatin, Jean-Mark -- England -- Nature. 2015 May 21;521(7552):S57-9. doi: 10.1038/521S57a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Martin Luther University Halle-Wittenberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25992674" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Diseases/epidemiology/parasitology/virology ; Animals ; Animals, Wild ; Beekeeping/manpower/methods ; *Bees/classification/parasitology/physiology/virology ; Biodiversity ; Classification ; Conservation of Natural Resources/methods/trends ; Endangered Species ; Insecticides/adverse effects/toxicity ; Introduced Species ; Organic Agriculture/methods/trends ; Population Density ; Research/*trends ; Research Personnel ; Stress, Physiological ; Varroidae/pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2015-04-10
    Description: The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to approximately 4 A resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paulsen, Candice E -- Armache, Jean-Paul -- Gao, Yuan -- Cheng, Yifan -- Julius, David -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01 NS055299/NS/NINDS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R01NS055299/NS/NINDS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 23;520(7548):511-7. doi: 10.1038/nature14367. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, California 94158-2517, USA. ; Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA. ; 1] Department of Physiology, University of California, San Francisco, California 94158-2517, USA [2] Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855297" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Analgesics ; Ankyrin Repeat ; Anti-Inflammatory Agents ; Binding Sites ; Calcium Channels/*chemistry/metabolism/*ultrastructure ; *Cryoelectron Microscopy ; Cytosol/metabolism ; Humans ; Models, Molecular ; Nerve Tissue Proteins/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure ; Polyphosphates/metabolism/pharmacology ; Protein Stability/drug effects ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Transient Receptor Potential Channels/antagonists & ; inhibitors/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deroy, Ophelia -- England -- Nature. 2015 May 28;521(7553):395. doi: 10.1038/521395a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the Study of the Senses at the School of Advanced Study, University of London.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017408" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/methods ; Diet/*psychology ; Eating/*psychology ; Environmental Policy ; Food Preferences/*psychology ; Humans ; *Insects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2015-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bull, James J -- England -- Nature. 2015 Jul 2;523(7558):43-4. doi: 10.1038/523043a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, the Center for Computational Biology and Bioinformatics and the Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26135445" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Female ; Male ; Sex Determination Processes/*physiology ; *Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2015-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnorr, Stephanie L -- England -- Nature. 2015 Feb 26;518(7540):S14-5. doi: 10.1038/518S14a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Group on Plant Foods in Hominin Dietary Ecology at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25715276" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; *Biodiversity ; Diet ; Dietary Fiber/metabolism/microbiology ; Feeding Behavior/*physiology ; Female ; Fertility ; Health ; Humans ; Intestines/*microbiology ; Male ; Microbiota/*physiology ; *Population Groups ; Seasons ; Sex Factors ; *Symbiosis ; Tanzania ; *Wilderness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2015-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Li -- England -- Nature. 2015 Nov 12;527(7577):135. doi: 10.1038/527135a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560263" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; China ; Commerce/*legislation & jurisprudence ; Conservation of Natural Resources/*legislation & jurisprudence/*methods ; Crime/*legislation & jurisprudence ; *Elephants ; Endangered Species/*legislation & jurisprudence ; Horns/*chemistry ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2015-08-27
    Description: The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ke -- Donnelly, Christopher J -- Haeusler, Aaron R -- Grima, Jonathan C -- Machamer, James B -- Steinwald, Peter -- Daley, Elizabeth L -- Miller, Sean J -- Cunningham, Kathleen M -- Vidensky, Svetlana -- Gupta, Saksham -- Thomas, Michael A -- Hong, Ingie -- Chiu, Shu-Ling -- Huganir, Richard L -- Ostrow, Lyle W -- Matunis, Michael J -- Wang, Jiou -- Sattler, Rita -- Lloyd, Thomas E -- Rothstein, Jeffrey D -- CA009110/CA/NCI NIH HHS/ -- K99 NS091486/NS/NINDS NIH HHS/ -- NS089616/NS/NINDS NIH HHS/ -- NS091046/NS/NINDS NIH HHS/ -- P01 AG012992/AG/NIA NIH HHS/ -- P40OD018537/OD/NIH HHS/ -- R01 NS074324/NS/NINDS NIH HHS/ -- R01 NS082563/NS/NINDS NIH HHS/ -- R01 NS085207/NS/NINDS NIH HHS/ -- R01 NS089616/NS/NINDS NIH HHS/ -- R01-GM084947/GM/NIGMS NIH HHS/ -- R01NS085207/NS/NINDS NIH HHS/ -- RC2 NS069395/NS/NINDS NIH HHS/ -- T32 CA009110/CA/NCI NIH HHS/ -- U24 NS078736/NS/NINDS NIH HHS/ -- U54 NS091046/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Sep 3;525(7567):56-61. doi: 10.1038/nature14973. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, School of Medicine, Johns Hopkins University, Maryland 21205, USA. ; Brain Science Institute, School of Medicine, Johns Hopkins University, Maryland 21205, USA. ; Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Maryland 21205, USA. ; Department of Neuroscience, School of Medicine, Johns Hopkins University, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308891" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus/*genetics ; Amyotrophic Lateral Sclerosis/genetics/pathology ; Animals ; Brain/metabolism/pathology ; Cell Nucleus/*metabolism ; DNA Repeat Expansion/*genetics ; Drosophila Proteins/metabolism ; Drosophila melanogaster/cytology/metabolism ; Female ; Frontotemporal Dementia/genetics/pathology ; G-Quadruplexes ; GTPase-Activating Proteins/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Neurons/metabolism/pathology ; Nuclear Pore/chemistry/metabolism ; Nuclear Proteins/metabolism ; Oligonucleotides, Antisense/genetics ; Open Reading Frames/*genetics ; Proteins/*genetics ; RNA/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2015-10-20
    Description: The development of life-threatening cancer metastases at distant organs requires disseminated tumour cells' adaptation to, and co-evolution with, the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interaction between metastatic tumour cells and extrinsic signals at individual metastatic organ sites critically effects the subsequent metastatic outgrowth. Yet, it is unclear when and how disseminated tumour cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that both human and mouse tumour cells with normal expression of PTEN, an important tumour suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumour cells is restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation is epigenetically regulated by microRNAs from brain astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting microRNAs to metastatic tumour cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumour cells leads to an increased secretion of the chemokine CCL2, which recruits IBA1-expressing myeloid cells that reciprocally enhance the outgrowth of brain metastatic tumour cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumour cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic outgrowth. Our findings signify the dynamic and reciprocal cross-talk between tumour cells and the metastatic niche; importantly, they provide new opportunities for effective anti-metastasis therapies, especially of consequence for brain metastasis patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Lin -- Zhang, Siyuan -- Yao, Jun -- Lowery, Frank J -- Zhang, Qingling -- Huang, Wen-Chien -- Li, Ping -- Li, Min -- Wang, Xiao -- Zhang, Chenyu -- Wang, Hai -- Ellis, Kenneth -- Cheerathodi, Mujeeburahiman -- McCarty, Joseph H -- Palmieri, Diane -- Saunus, Jodi -- Lakhani, Sunil -- Huang, Suyun -- Sahin, Aysegul A -- Aldape, Kenneth D -- Steeg, Patricia S -- Yu, Dihua -- 5R00CA158066-05/CA/NCI NIH HHS/ -- P01-CA099031/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R00 CA158066/CA/NCI NIH HHS/ -- R01 CA194697/CA/NCI NIH HHS/ -- R01-CA112567-06/CA/NCI NIH HHS/ -- R01CA184836/CA/NCI NIH HHS/ -- England -- Nature. 2015 Nov 5;527(7576):100-4. doi: 10.1038/nature15376. Epub 2015 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. ; Cancer Biology Program, Graduate School of Biomedical Sciences, Houston, Texas 77030, USA. ; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA. ; Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. ; Woman's Malignancies Branch, National Cancer Institute, Bethesda, Maryland 20892, USA. ; The University of Queensland Centre for Clinical Research, Brisbane, Queensland 4029, Australia. ; The School of Medicine and Pathology Queensland, Brisbane, Queensland 4029, Australia. ; The Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia. ; Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. ; Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26479035" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Animals ; Astrocytes/cytology/metabolism ; Brain/metabolism/pathology ; Brain Neoplasms/metabolism/*pathology/*secondary ; Cell Proliferation/genetics ; Chemokine CCL2/secretion ; DNA-Binding Proteins/metabolism ; Down-Regulation/genetics ; Evolution, Molecular ; Exosomes/*genetics/metabolism/secretion ; Female ; *Gene Expression Regulation, Neoplastic ; *Gene Silencing ; Genes, Tumor Suppressor ; Humans ; Male ; Mice ; MicroRNAs/*genetics ; PTEN Phosphohydrolase/*deficiency/genetics ; RNA, Messenger/analysis/genetics ; *Tumor Microenvironment/genetics ; Tumor Suppressor Proteins/deficiency/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, Brian -- England -- Nature. 2015 Jun 11;522(7555):159-60. doi: 10.1038/nature14527. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Medical Biology, 138648 Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040718" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Endosomal Sorting Complexes Required for Transport/*metabolism ; Humans ; *Membrane Fusion ; Nuclear Envelope/*metabolism ; Spindle Apparatus/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gould, Julie -- England -- Nature. 2015 Mar 26;519(7544):S2-3. doi: 10.1038/519S2a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25806495" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesiveness ; Adhesives/chemistry ; Animals ; Bioartificial Organs ; Biocompatible Materials/*chemistry ; Biomimetic Materials/*chemistry ; *Biomimetics ; Clothing ; Friction ; Humans ; Humidity ; Nanostructures/chemistry ; Pinus/chemistry ; Sharks/anatomy & histology ; Silk/*chemistry ; Skin/*anatomy & histology/chemistry ; Spiders/chemistry ; Surface Properties ; Swimming ; Tendons/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2015-04-04
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544703/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544703/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van der Lee, Sven J -- Holstege, Henne -- Wong, Tsz Hang -- Jakobsdottir, Johanna -- Bis, Joshua C -- Chouraki, Vincent -- van Rooij, Jeroen G J -- Grove, Megan L -- Smith, Albert V -- Amin, Najaf -- Choi, Seung-Hoan -- Beiser, Alexa S -- Garcia, Melissa E -- van IJcken, Wilfred F J -- Pijnenburg, Yolande A L -- Louwersheimer, Eva -- Brouwer, Rutger W W -- van den Hout, Mirjam C G N -- Oole, Edwin -- Eirkisdottir, Gudny -- Levy, Daniel -- Rotter, Jerome I -- Emilsson, Valur -- O'Donnell, Christopher J -- Aspelund, Thor -- Uitterlinden, Andre G -- Launer, Lenore J -- Hofman, Albert -- Boerwinkle, Eric -- Psaty, Bruce M -- DeStefano, Anita L -- Scheltens, Philip -- Seshadri, Sudha -- van Swieten, John C -- Gudnason, Vilmundur -- van der Flier, Wiesje M -- Ikram, M Arfan -- van Duijn, Cornelia M -- R01 HL105756/HL/NHLBI NIH HHS/ -- UL1 TR000124/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):E2-3. doi: 10.1038/nature14038.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands. ; 1] Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam 1081 HZ, The Netherlands [2] Department of Clinical Genetics, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam 1081 HZ, The Netherlands. ; Department of Neurology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands. ; Icelandic Heart Association, Kopavogur 201, Iceland. ; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98101, USA. ; 1] National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA [2] Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands. ; School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA. ; 1] Icelandic Heart Association, Kopavogur 201, Iceland [2] Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland. ; 1] National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA [2] Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland 20892, USA. ; Center for Biomics, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands. ; Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam 1081 HZ, The Netherlands. ; 1] National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA [2] Boston University School of Medicine, Boston, Massachusetts 02118, USA [3] National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA. ; 1] Icelandic Heart Association, Kopavogur 201, Iceland [2] Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik 101, Iceland. ; 1] National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA [2] National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Icelandic Heart Association, Kopavogur 201, Iceland [2] Centre for Public Health, University of Iceland, Reykjavik 101, Iceland. ; 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands [2] Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands [3] Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden 2300 RC, The Netherlands. ; 1] School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA [2] Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98101, USA [2] Department of Epidemiology, University of Washington, Seattle, Washington 98101, USA [3] Group Health Research Institute, Seattle, Washington 98101-1448, USA. ; 1] Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam 1081 HZ, The Netherlands [2] Department of Neurology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands. ; 1] Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam 1081 HZ, The Netherlands [2] Department of Epidemiology &Biostatistics, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam 1081 HZ, The Netherlands. ; 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands [2] Department of Neurology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands [3] Departments of Radiology, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25832410" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Humans ; Male ; Phospholipase D/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2015-01-30
    Description: The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311405/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311405/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cancer Genome Atlas Network -- K08 DE024774/DE/NIDCR NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50CA097190/CA/NCI NIH HHS/ -- P50CA16672/CA/NCI NIH HHS/ -- R01 CA 095419/CA/NCI NIH HHS/ -- R01 DE023685/DE/NIDCR NIH HHS/ -- U24 CA143799/CA/NCI NIH HHS/ -- U24 CA143835/CA/NCI NIH HHS/ -- U24 CA143840/CA/NCI NIH HHS/ -- U24 CA143843/CA/NCI NIH HHS/ -- U24 CA143845/CA/NCI NIH HHS/ -- U24 CA143848/CA/NCI NIH HHS/ -- U24 CA143858/CA/NCI NIH HHS/ -- U24 CA143866/CA/NCI NIH HHS/ -- U24 CA143867/CA/NCI NIH HHS/ -- U24 CA143882/CA/NCI NIH HHS/ -- U24 CA143883/CA/NCI NIH HHS/ -- U24 CA144025/CA/NCI NIH HHS/ -- U24 CA180951/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- UL1 TR000433/TR/NCATS NIH HHS/ -- ZIA-DC-000016/DC/NIDCD NIH HHS/ -- ZIA-DC-000073/DC/NIDCD NIH HHS/ -- ZIA-DC-000074/DC/NIDCD NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Jan 29;517(7536):576-82. doi: 10.1038/nature14129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25631445" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Squamous Cell/*genetics ; DNA Copy Number Variations/genetics ; DNA, Neoplasm/genetics ; Female ; Gene Expression Regulation, Neoplastic/genetics ; Genome, Human/*genetics ; *Genomics ; Head and Neck Neoplasms/*genetics ; Humans ; Male ; Molecular Targeted Therapy ; Mutation/genetics ; Oncogenes/genetics ; RNA, Neoplasm/genetics ; Signal Transduction/genetics ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2015-09-08
    Description: During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 13 subunits and participates in nearly all steps of translation initiation. Eight subunits having PCI (proteasome, COP9 signalosome, eIF3) or MPN (Mpr1, Pad1, amino-terminal) domains constitute the structural core of eIF3, to which five peripheral subunits are flexibly linked. Here we present a cryo-electron microscopy structure of eIF3 in the context of the DHX29-bound 43S complex, showing the PCI/MPN core at approximately 6 A resolution. It reveals the organization of the individual subunits and their interactions with components of the 43S complex. We were able to build near-complete polyalanine-level models of the eIF3 PCI/MPN core and of two peripheral subunits. The implications for understanding mRNA ribosomal attachment and scanning are discussed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719162/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉des Georges, Amedee -- Dhote, Vidya -- Kuhn, Lauriane -- Hellen, Christopher U T -- Pestova, Tatyana V -- Frank, Joachim -- Hashem, Yaser -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 GM059660/GM/NIGMS NIH HHS/ -- R01 GM29169/GM/NIGMS NIH HHS/ -- R01 GM59660/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 24;525(7570):491-5. doi: 10.1038/nature14891. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA. ; CNRS, Proteomic Platform Strasbourg - Esplanade, Strasbourg 67084, France. ; Department of Biological Sciences, Columbia University, New York, New York 10032, USA. ; CNRS, Architecture et Reactivite de l'ARN, Universite de Strasbourg, Strasbourg 67084, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344199" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Codon, Initiator/genetics ; Cryoelectron Microscopy ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; Eukaryotic Initiation Factor-3/*chemistry/*metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; *Peptide Chain Initiation, Translational ; Peptide Initiation Factors/metabolism ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; RNA Helicases/chemistry/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Transfer, Met/metabolism ; Ribosome Subunits, Small, Eukaryotic/chemistry/metabolism ; Ribosomes/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 29;517(7536):542-6. doi: 10.1038/517542a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25631428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification ; Chemistry/instrumentation ; Computational Biology/manpower ; *Databases, Factual ; Decapodiformes/anatomy & histology/cytology ; Expeditions ; *Glass ; Humans ; *Laboratory Personnel ; Models, Animal ; Nerve Fibers ; Research/instrumentation/*manpower ; Skates (Fish) ; Snake Venoms/*isolation & purification ; Snakes/physiology ; Western Australia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2015-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deutsch, David -- Sainani, Kristin Lynn -- England -- Nature. 2015 Oct 8;526(7572):S16. doi: 10.1038/526S16a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26444370" target="_blank"〉PubMed〈/a〉
    Keywords: Art ; *Beauty ; Culture ; Esthetics/psychology ; Humans ; *Models, Biological ; Morals ; Sexual Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2015-01-21
    Description: The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnupf, Pamela -- Gaboriau-Routhiau, Valerie -- Gros, Marine -- Friedman, Robin -- Moya-Nilges, Maryse -- Nigro, Giulia -- Cerf-Bensussan, Nadine -- Sansonetti, Philippe J -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 2;520(7545):99-103. doi: 10.1038/nature14027. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Institut national de la recherche agronomique (INRA) Micalis UMR1319, 78350 Jouy-en-Josas, France [3] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France [2] Ecole Normale Superieure de Lyon, Department of Biology, 69007 Lyon, France. ; Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; Imagopole, Ultrastructural Microscopy Platform, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] Microbiologie et Maladies Infectieuses, College de France, 11 Marcelin Berthelot Square, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600271" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Bacteria/cytology/*growth & development/*immunology ; Cell Line ; Coculture Techniques/*methods ; Escherichia coli/cytology/growth & development/immunology ; Feces/microbiology ; Female ; Germ-Free Life ; Humans ; Immunity, Mucosal/immunology ; Intestinal Mucosa/cytology/immunology/microbiology ; Intestines/cytology/*immunology/*microbiology ; Lymphocytes/cytology/*immunology ; Male ; Mice ; Microbial Viability ; Peyer's Patches/immunology ; Symbiosis/*immunology ; Th17 Cells/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2015-06-25
    Description: The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The approximately 220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the approximately 260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period ( approximately 240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoch, Rainer R -- Sues, Hans-Dieter -- England -- Nature. 2015 Jul 30;523(7562):584-7. doi: 10.1038/nature14472. Epub 2015 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Staatliches Museum fur Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany. ; Department of Paleobiology, National Museum of Natural History, MRC 121, PO Box 37012, Washington, District of Columbia 20013-7012, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26106865" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Shells ; Animals ; *Biological Evolution ; *Fossils ; Germany ; Phylogeny ; Skull/anatomy & histology ; Turtles/*anatomy & histology/classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2015-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce-Higgins, James W -- England -- Nature. 2015 Sep 24;525(7570):455. doi: 10.1038/525455b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉British Trust for Ornithology, Thetford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26399822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds ; *Conflict of Interest ; Cost-Benefit Analysis ; Data Collection ; Great Britain ; *Hobbies ; Motivation ; *Research Design ; Science/*manpower ; *Volunteers/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goyal, Sidhartha -- Zandstra, Peter W -- England -- Nature. 2015 Feb 26;518(7540):488-90. doi: 10.1038/nature14203. Epub 2015 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada. ; Institute of Biomaterials and Biomedical Engineering, University of Toronto, and at the Donnelly Centre for Cellular and Biomolecular Research, University of Toronto.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686602" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage/*physiology ; Female ; *Hematopoiesis ; Hematopoietic Stem Cells/*cytology ; Male ; Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grafton, Anthony -- England -- Nature. 2015 Dec 3;528(7580):40. doi: 10.1038/528040a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princeton University in Princeton, New Jersey, USA. He collaborated extensively with Lisa Jardine.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26632582" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Great Britain ; History, 15th Century ; History, 16th Century ; History, 17th Century ; History, 20th Century ; History, 21st Century ; Humans ; Knowledge ; Literature, Modern/*history ; Male ; Mitochondrial Replacement Therapy ; Science/*history ; Teaching/history ; Writing
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2015-08-13
    Description: Breast cancer is the most frequent cancer in women and consists of heterogeneous types of tumours that are classified into different histological and molecular subtypes. PIK3CA and P53 (also known as TP53) are the two most frequently mutated genes and are associated with different types of human breast cancers. The cellular origin and the mechanisms leading to PIK3CA-induced tumour heterogeneity remain unknown. Here we used a genetic approach in mice to define the cellular origin of Pik3ca-derived tumours and the impact of mutations in this gene on tumour heterogeneity. Surprisingly, oncogenic Pik3ca(H1047R) mutant expression at physiological levels in basal cells using keratin (K)5-CreER(T2) mice induced the formation of luminal oestrogen receptor (ER)-positive/progesterone receptor (PR)-positive tumours, while its expression in luminal cells using K8-CReER(T2) mice gave rise to luminal ER(+)PR(+) tumours or basal-like ER(-)PR(-) tumours. Concomitant deletion of p53 and expression of Pik3ca(H1047R) accelerated tumour development and induced more aggressive mammary tumours. Interestingly, expression of Pik3ca(H1047R) in unipotent basal cells gave rise to luminal-like cells, while its expression in unipotent luminal cells gave rise to basal-like cells before progressing into invasive tumours. Transcriptional profiling of cells that underwent cell fate transition upon Pik3ca(H1047R) expression in unipotent progenitors demonstrated a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures characteristic of the different cell fate switches that occur upon Pik3ca(H1047R) expression in basal and luminal cells, which correlated with the cell of origin, tumour type and different clinical outcomes. Altogether our study identifies the cellular origin of Pik3ca-induced tumours and reveals that oncogenic Pik3ca(H1047R) activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumour initiation, setting the stage for future intratumoural heterogeneity. These results have important implications for our understanding of the mechanisms controlling tumour heterogeneity and the development of new strategies to block PIK3CA breast cancer initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Keymeulen, Alexandra -- Lee, May Yin -- Ousset, Marielle -- Brohee, Sylvain -- Rorive, Sandrine -- Giraddi, Rajshekhar R -- Wuidart, Aline -- Bouvencourt, Gaelle -- Dubois, Christine -- Salmon, Isabelle -- Sotiriou, Christos -- Phillips, Wayne A -- Blanpain, Cedric -- England -- Nature. 2015 Sep 3;525(7567):119-23. doi: 10.1038/nature14665. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium. ; Institut Jules Bordet, Universite Libre de Bruxelles, Brussels B-1000, Belgium. ; Department of Pathology, Erasme Hospital, Universite Libre de Bruxelles, Brussels B-1070, Belgium. ; DIAPATH - Center for Microscopy and Molecular Imaging (CMMI), Gosselies B-6041, Belgium. ; Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne 3002, Australia. ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3002, Australia. ; WELBIO, Universite Libre de Bruxelles, Brussels B-1070, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266985" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism/*pathology ; Cell Differentiation/genetics ; Cell Division ; Cell Lineage ; Cell Transformation, Neoplastic ; Female ; Genes, p53/genetics ; Humans ; Mammary Neoplasms, Animal/*genetics/metabolism/*pathology ; Mice ; Mutation/genetics ; Neoplasm Invasiveness/genetics ; Phenotype ; Phosphatidylinositol 3-Kinases/*genetics/metabolism ; Receptors, Estrogen/metabolism ; Receptors, Progesterone/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2015-08-20
    Description: Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IkappaBzeta, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IkappaBzeta at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qian -- Zhao, Kai -- Shen, Qicong -- Han, Yanmei -- Gu, Yan -- Li, Xia -- Zhao, Dezhi -- Liu, Yiqi -- Wang, Chunmei -- Zhang, Xiang -- Su, Xiaoping -- Liu, Juan -- Ge, Wei -- Levine, Ross L -- Li, Nan -- Cao, Xuetao -- P30 CA008748/CA/NCI NIH HHS/ -- R01 CA173636/CA/NCI NIH HHS/ -- England -- Nature. 2015 Sep 17;525(7569):389-93. doi: 10.1038/nature15252. Epub 2015 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Medical Molecular Biology &Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China. ; National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai 200433, China. ; Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26287468" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Chromatin/chemistry/genetics/metabolism ; Colitis/enzymology/immunology/metabolism ; DNA Methylation ; DNA-Binding Proteins/deficiency/*metabolism ; Dendritic Cells/cytology/metabolism ; Down-Regulation/genetics ; Epigenesis, Genetic ; Female ; HEK293 Cells ; Histone Deacetylase 2/*metabolism ; Histones/chemistry/metabolism ; Humans ; I-kappa B Proteins/metabolism ; Inflammation/enzymology/immunology/*metabolism ; Interleukin-6/*antagonists & inhibitors/*biosynthesis/genetics/immunology ; Macrophages/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins/deficiency/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2015-02-25
    Description: V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1-RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1-RAG2 complex at 3.2 A resolution. The 230-kilodalton RAG1-RAG2 heterotetramer is 'Y-shaped', with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1-RAG2 heterodimer composes one arm of the 'Y', with the active site in the middle and RAG2 at its tip. The RAG1-RAG2 structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Min-Sung -- Lapkouski, Mikalai -- Yang, Wei -- Gellert, Martin -- Z01 DK036147-01/Intramural NIH HHS/ -- Z01 DK036147-02/Intramural NIH HHS/ -- Z01 DK036167-01/Intramural NIH HHS/ -- Z01 DK036167-02/Intramural NIH HHS/ -- ZIA DK036147-03/Intramural NIH HHS/ -- ZIA DK036147-04/Intramural NIH HHS/ -- ZIA DK036147-05/Intramural NIH HHS/ -- ZIA DK036147-06/Intramural NIH HHS/ -- ZIA DK036147-07/Intramural NIH HHS/ -- ZIA DK036147-08/Intramural NIH HHS/ -- ZIA DK036167-03/Intramural NIH HHS/ -- ZIA DK036167-04/Intramural NIH HHS/ -- ZIA DK036167-05/Intramural NIH HHS/ -- ZIA DK036167-06/Intramural NIH HHS/ -- ZIA DK036167-07/Intramural NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):507-11. doi: 10.1038/nature14174. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Homeodomain Proteins/*chemistry/genetics/metabolism ; Humans ; Mice ; Models, Molecular ; Mutation/genetics ; Protein Multimerization ; Protein Structure, Quaternary ; Severe Combined Immunodeficiency/genetics ; Transposases/chemistry ; VDJ Recombinases/*chemistry/metabolism ; X-Linked Combined Immunodeficiency Diseases/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2015-09-01
    Description: Eukaryotic DNA replication terminates when replisomes from adjacent replication origins converge. Termination involves local completion of DNA synthesis, decatenation of daughter molecules and replisome disassembly. Termination has been difficult to study because termination events are generally asynchronous and sequence nonspecific. To overcome these challenges, we paused converging replisomes with a site-specific barrier in Xenopus egg extracts. Upon removal of the barrier, forks underwent synchronous and site-specific termination, allowing mechanistic dissection of this process. We show that DNA synthesis does not slow detectably as forks approach each other, and that leading strands pass each other unhindered before undergoing ligation to downstream lagging strands. Dissociation of the replicative CMG helicase (comprising CDC45, MCM2-7 and GINS) occurs only after the final ligation step, and is not required for completion of DNA synthesis, strongly suggesting that converging CMGs pass one another and dissociate from double-stranded DNA. This termination mechanism allows rapid completion of DNA synthesis while avoiding premature replisome disassembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575634/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575634/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dewar, James M -- Budzowska, Magda -- Walter, Johannes C -- GM62267/GM/NIGMS NIH HHS/ -- GM80676/GM/NIGMS NIH HHS/ -- R01 GM062267/GM/NIGMS NIH HHS/ -- R01 GM080676/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 17;525(7569):345-50. doi: 10.1038/nature14887. Epub 2015 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26322582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Extracts/pharmacology ; DNA/biosynthesis/metabolism ; DNA Helicases/metabolism ; *DNA Replication/drug effects ; DNA-Binding Proteins/metabolism ; DNA-Directed DNA Polymerase/metabolism ; Multienzyme Complexes/metabolism ; Oocytes/*metabolism ; *Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2015-10-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearson, Helen -- England -- Nature. 2015 Oct 22;526(7574):492-6. doi: 10.1038/526492a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26490601" target="_blank"〉PubMed〈/a〉
    Keywords: Archives ; Great Britain ; Human Activities/*statistics & numerical data ; Humans ; Laboratories ; Quality of Life/psychology ; *Research/trends ; Self Report ; *Time Management ; Workload/statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2015-11-26
    Description: Improvements in nitrogen use efficiency in crop production are critical for addressing the triple challenges of food security, environmental degradation and climate change. Such improvements are conditional not only on technological innovation, but also on socio-economic factors that are at present poorly understood. Here we examine historical patterns of agricultural nitrogen-use efficiency and find a broad range of national approaches to agricultural development and related pollution. We analyse examples of nitrogen use and propose targets, by geographic region and crop type, to meet the 2050 global food demand projected by the Food and Agriculture Organization while also meeting the Sustainable Development Goals pertaining to agriculture recently adopted by the United Nations General Assembly. Furthermore, we discuss socio-economic policies and technological innovations that may help achieve them.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xin -- Davidson, Eric A -- Mauzerall, Denise L -- Searchinger, Timothy D -- Dumas, Patrice -- Shen, Ye -- England -- Nature. 2015 Dec 3;528(7580):51-9. doi: 10.1038/nature15743. Epub 2015 Nov 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey 08544, USA. ; Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA. ; Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland 21532, USA. ; Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, USA. ; Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), 75116, Paris, France. ; Centre International de Recherche sur l'Environnement et le Developpement (CIRED), 94736 Nogent-sur-Marne, France. ; Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26595273" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture/economics/standards/statistics & numerical data/trends ; Climate Change ; *Conservation of Natural Resources/trends ; Crops, Agricultural/economics/*metabolism/supply & distribution ; Ecology ; Environmental Pollution/statistics & numerical data ; Fertilizers/economics/supply & distribution/utilization ; Food Supply ; Gross Domestic Product ; Humans ; Internationality ; Nitrogen/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 29;517(7536):527. doi: 10.1038/517527a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25631406" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Fossils ; Humans ; Israel ; Neanderthals/genetics ; *Skull/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeWeerdt, Sarah -- England -- Nature. 2015 Dec 17;528(7582):S124-5. doi: 10.1038/528S124a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26672783" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Neoplasm/urine ; Biomarkers, Tumor/blood/urine ; Diagnostic Tests, Routine/*methods/trends ; Humans ; Male ; Oncogene Proteins, Fusion/urine ; Precision Medicine/*methods ; Prognosis ; Prostate-Specific Antigen/blood ; Prostatic Neoplasms/blood/*diagnosis/pathology/urine ; Risk Assessment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearson, Helen -- England -- Nature. 2015 Feb 26;518(7540):463-4. doi: 10.1038/518463a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719641" target="_blank"〉PubMed〈/a〉
    Keywords: Cohort Studies ; Female ; Great Britain ; *Health Surveys/trends ; Humans ; Infant, Newborn ; *Patient Selection ; Pregnancy ; Research Design ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2015-12-10
    Description: Mycobacterium tuberculosis, a major global health threat, replicates in macrophages in part by inhibiting phagosome-lysosome fusion, until interferon-gamma (IFNgamma) activates the macrophage to traffic M. tuberculosis to the lysosome. How IFNgamma elicits this effect is unknown, but many studies suggest a role for macroautophagy (herein termed autophagy), a process by which cytoplasmic contents are targeted for lysosomal degradation. The involvement of autophagy has been defined based on studies in cultured cells where M. tuberculosis co-localizes with autophagy factors ATG5, ATG12, ATG16L1, p62, NDP52, BECN1 and LC3 (refs 2-6), stimulation of autophagy increases bacterial killing, and inhibition of autophagy increases bacterial survival. Notably, these studies reveal modest (~1.5-3-fold change) effects on M. tuberculosis replication. By contrast, mice lacking ATG5 in monocyte-derived cells and neutrophils (polymorponuclear cells, PMNs) succumb to M. tuberculosis within 30 days, an extremely severe phenotype similar to mice lacking IFNgamma signalling. Importantly, ATG5 is the only autophagy factor that has been studied during M. tuberculosis infection in vivo and autophagy-independent functions of ATG5 have been described. For this reason, we used a genetic approach to elucidate the role for multiple autophagy-related genes and the requirement for autophagy in resistance to M. tuberculosis infection in vivo. Here we show that, contrary to expectation, autophagic capacity does not correlate with the outcome of M. tuberculosis infection. Instead, ATG5 plays a unique role in protection against M. tuberculosis by preventing PMN-mediated immunopathology. Furthermore, while Atg5 is dispensable in alveolar macrophages during M. tuberculosis infection, loss of Atg5 in PMNs can sensitize mice to M. tuberculosis. These findings shift our understanding of the role of ATG5 during M. tuberculosis infection, reveal new outcomes of ATG5 activity, and shed light on early events in innate immunity that are required to regulate disease pathology and bacterial replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimmey, Jacqueline M -- Huynh, Jeremy P -- Weiss, Leslie A -- Park, Sunmin -- Kambal, Amal -- Debnath, Jayanta -- Virgin, Herbert W -- Stallings, Christina L -- GM007067/GM/NIGMS NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):565-9. doi: 10.1038/nature16451. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649827" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics ; Dendritic Cells/immunology/metabolism ; Female ; Immunity, Innate/immunology ; Interferon-gamma/deficiency/immunology ; Macrophages, Alveolar/immunology/metabolism ; Male ; Mice ; Microtubule-Associated Proteins/deficiency/*metabolism ; *Mycobacterium tuberculosis/immunology/physiology ; Neutrophils/*immunology/metabolism ; Tuberculosis/*immunology/microbiology/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2015-02-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scholkopf, Bernhard -- England -- Nature. 2015 Feb 26;518(7540):486-7. doi: 10.1038/518486a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Intelligent Systems, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719660" target="_blank"〉PubMed〈/a〉
    Keywords: *Artificial Intelligence ; Humans ; *Reinforcement (Psychology) ; *Video Games
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeWeerdt, Sarah -- England -- Nature. 2015 May 21;521(7552):S50-1. doi: 10.1038/521S50a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25992671" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beekeeping/*history ; Bees/classification/genetics/*physiology ; Colony Collapse/history ; Diet/*history/veterinary ; Genome, Insect/genetics ; History, 16th Century ; History, 17th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; Honey/*history/supply & distribution ; Humans ; Phylogeny ; Primates ; Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2015-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scholl, Benjamin -- Priebe, Nicholas J -- England -- Nature. 2015 Feb 19;518(7539):306-7. doi: 10.1038/nature14201. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, The University of Texas, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652821" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Excitatory Postsynaptic Potentials/*physiology ; Female ; Male ; Synapses/*physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2015-02-18
    Description: Haematopoietic stem cells (HSCs) are widely studied by HSC transplantation into immune- and blood-cell-depleted recipients. Single HSCs can rebuild the system after transplantation. Chromosomal marking, viral integration and barcoding of transplanted HSCs suggest that very low numbers of HSCs perpetuate a continuous stream of differentiating cells. However, the numbers of productive HSCs during normal haematopoiesis, and the flux of differentiating progeny remain unknown. Here we devise a mouse model allowing inducible genetic labelling of the most primitive Tie2(+) HSCs in bone marrow, and quantify label progression along haematopoietic development by limiting dilution analysis and data-driven modelling. During maintenance of the haematopoietic system, at least 30% or approximately 5,000 HSCs are productive in the adult mouse after label induction. However, the time to approach equilibrium between labelled HSCs and their progeny is surprisingly long, a time scale that would exceed the mouse's life. Indeed, we find that adult haematopoiesis is largely sustained by previously designated 'short-term' stem cells downstream of HSCs that nearly fully self-renew, and receive rare but polyclonal HSC input. By contrast, in fetal and early postnatal life, HSCs are rapidly used to establish the immune and blood system. In the adult mouse, 5-fluoruracil-induced leukopenia enhances the output of HSCs and of downstream compartments, thus accelerating haematopoietic flux. Label tracing also identifies a strong lineage bias in adult mice, with several-hundred-fold larger myeloid than lymphoid output, which is only marginally accentuated with age. Finally, we show that transplantation imposes severe constraints on HSC engraftment, consistent with the previously observed oligoclonal HSC activity under these conditions. Thus, we uncover fundamental differences between the normal maintenance of the haematopoietic system, its regulation by challenge, and its re-establishment after transplantation. HSC fate mapping and its linked modelling provide a quantitative framework for studying in situ the regulation of haematopoiesis in health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busch, Katrin -- Klapproth, Kay -- Barile, Melania -- Flossdorf, Michael -- Holland-Letz, Tim -- Schlenner, Susan M -- Reth, Michael -- Hofer, Thomas -- Rodewald, Hans-Reimer -- England -- Nature. 2015 Feb 26;518(7540):542-6. doi: 10.1038/nature14242. Epub 2015 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. ; Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. ; Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. ; 1] Department of Microbiology and Immunology, University of Leuven, B-3000 Leuven, Belgium [2] Autoimmune Genetics Laboratory, VIB, B-3000 Leuven, Belgium. ; 1] BIOSS, Centre For Biological Signaling Studies, University of Freiburg, Schanzlestrasse 18, D-79104 Freiburg, Germany [2] Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg, and Max-Planck Institute of Immunobiology and Epigenetics, Stubeweg 51, D-79108 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686605" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Animals, Newborn ; Bone Marrow Transplantation ; Cell Lineage/*physiology ; Cell Proliferation ; Cell Tracking ; Female ; Fetus/cytology/embryology ; Fluorouracil ; *Hematopoiesis ; Hematopoietic Stem Cells/*cytology/metabolism ; Male ; Mice ; Receptor, TIE-2/metabolism ; Stem Cells/*cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2015-06-11
    Description: Misfolded protein aggregates represent a continuum with overlapping features in neurodegenerative diseases, but differences in protein components and affected brain regions. The molecular hallmark of synucleinopathies such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are megadalton alpha-synuclein-rich deposits suggestive of one molecular event causing distinct disease phenotypes. Glial alpha-synuclein (alpha-SYN) filamentous deposits are prominent in multiple system atrophy and neuronal alpha-SYN inclusions are found in Parkinson's disease and dementia with Lewy bodies. The discovery of alpha-SYN assemblies with different structural characteristics or 'strains' has led to the hypothesis that strains could account for the different clinico-pathological traits within synucleinopathies. In this study we show that alpha-SYN strain conformation and seeding propensity lead to distinct histopathological and behavioural phenotypes. We assess the properties of structurally well-defined alpha-SYN assemblies (oligomers, ribbons and fibrils) after injection in rat brain. We prove that alpha-SYN strains amplify in vivo. Fibrils seem to be the major toxic strain, resulting in progressive motor impairment and cell death, whereas ribbons cause a distinct histopathological phenotype displaying Parkinson's disease and multiple system atrophy traits. Additionally, we show that alpha-SYN assemblies cross the blood-brain barrier and distribute to the central nervous system after intravenous injection. Our results demonstrate that distinct alpha-SYN strains display differential seeding capacities, inducing strain-specific pathology and neurotoxic phenotypes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peelaerts, W -- Bousset, L -- Van der Perren, A -- Moskalyuk, A -- Pulizzi, R -- Giugliano, M -- Van den Haute, C -- Melki, R -- Baekelandt, V -- England -- Nature. 2015 Jun 18;522(7556):340-4. doi: 10.1038/nature14547. Epub 2015 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, 3000 Leuven, Belgium. ; Paris-Saclay Institute of Neuroscience, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France. ; Theoretical Neurobiology &Neuroengineering Laboratory, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium. ; 1] Theoretical Neurobiology &Neuroengineering Laboratory, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium [2] Department of Computer Science, University of Sheffield, S1 4DP Sheffield, UK [3] Brain Mind Institute, Swiss Federal Institute of Technology of Lausanne, 1015 Lausanne, Switzerland [4] Neuro-Electronics Research Flanders (NERF), 3001 Leuven, Belgium. ; 1] KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, 3000 Leuven, Belgium [2] KU Leuven, Leuven Viral Vector Core, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26061766" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood-Brain Barrier ; Brain/drug effects/metabolism ; Female ; Humans ; Lewy Body Disease/*chemically induced/metabolism/pathology ; Multiple System Atrophy/*chemically induced/metabolism/pathology ; Parkinson Disease/metabolism/*pathology ; Phenotype ; Rats ; Rats, Wistar ; Substantia Nigra/drug effects/metabolism/pathology ; Synapses/metabolism/pathology ; alpha-Synuclein/*administration & dosage/chemistry/classification/*toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2015-01-22
    Description: Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of 〉90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graham, Nicholas A J -- Jennings, Simon -- MacNeil, M Aaron -- Mouillot, David -- Wilson, Shaun K -- England -- Nature. 2015 Feb 5;518(7537):94-7. doi: 10.1038/nature14140. Epub 2015 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia. ; 1] Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 OHT, UK [2] School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. ; 1] Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia [2] Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland 4810, Australia. ; 1] Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia [2] ECOSYM, UMR CNRS-UM2 5119, Universite Montpellier 2, 34095 Montpellier Cedex, France. ; 1] Department of Parks and Wildlife, Kensington, Perth, Western Australia 6151, Australia [2] School of Plant Biology, Oceans Institute, University of Western Australia, Crawley, Western Australia 6009, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607371" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Animals ; Anthozoa/*growth & development/*physiology ; Biodiversity ; *Climate Change ; *Coral Reefs ; *Ecosystem ; Fishes/physiology ; Indian Ocean ; Pacific Ocean ; Population Dynamics ; Seawater/analysis ; Seaweed/physiology ; Seychelles ; Symbiosis ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2015-03-04
    Description: Long-standing evidence indicates that human immunodeficiency virus type 1 (HIV-1) preferentially integrates into a subset of transcriptionally active genes of the host cell genome. However, the reason why the virus selects only certain genes among all transcriptionally active regions in a target cell remains largely unknown. Here we show that HIV-1 integration occurs in the outer shell of the nucleus in close correspondence with the nuclear pore. This region contains a series of cellular genes, which are preferentially targeted by the virus, and characterized by the presence of active transcription chromatin marks before viral infection. In contrast, the virus strongly disfavours the heterochromatic regions in the nuclear lamin-associated domains and other transcriptionally active regions located centrally in the nucleus. Functional viral integrase and the presence of the cellular Nup153 and LEDGF/p75 integration cofactors are indispensable for the peripheral integration of the virus. Once integrated at the nuclear pore, the HIV-1 DNA makes contact with various nucleoporins; this association takes part in the transcriptional regulation of the viral genome. These results indicate that nuclear topography is an essential determinant of the HIV-1 life cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marini, Bruna -- Kertesz-Farkas, Attila -- Ali, Hashim -- Lucic, Bojana -- Lisek, Kamil -- Manganaro, Lara -- Pongor, Sandor -- Luzzati, Roberto -- Recchia, Alessandra -- Mavilio, Fulvio -- Giacca, Mauro -- Lusic, Marina -- England -- Nature. 2015 May 14;521(7551):227-31. doi: 10.1038/nature14226. Epub 2015 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy. ; Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy. ; 1] Struttura Complessa Malattie Infettive, Azienda Ospedaliero-Universitaria, 34134 Trieste, Italy [2] Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy. ; Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy. ; 1] Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy [2] Genethon, 91002 Evry, France. ; 1] Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy [2] Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731161" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; CD4-Positive T-Lymphocytes/cytology/metabolism ; Cell Nucleus/*genetics/*metabolism ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chromosome Positioning/*genetics ; Genetic Loci/*genetics ; HIV Integrase/metabolism ; HIV-1/*genetics/*physiology ; Half-Life ; Humans ; Nuclear Pore/genetics/metabolism ; Nuclear Pore Complex Proteins/metabolism ; Transcription Factors/metabolism ; Transcriptional Activation/genetics ; Virus Integration/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2015-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schonfelder, Gilbert -- England -- Nature. 2015 Mar 5;519(7541):33. doi: 10.1038/519033d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BfR, Berlin; and Charite - University Medicine Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739621" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information ; Animal Experimentation/ethics/*standards ; Animal Welfare/ethics/*standards ; Animals ; *Animals, Laboratory ; European Union ; Germany ; Internet
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2015-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2015 Dec 3;528(7580):20-1. doi: 10.1038/528020a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26632570" target="_blank"〉PubMed〈/a〉
    Keywords: Anger ; Emigrants and Immigrants/psychology/statistics & numerical data ; Entrepreneurship/organization & administration ; Europe ; Humans ; Islam/*psychology ; Male ; Narcissism ; Prisoners/psychology/statistics & numerical data ; Prisons ; Terrorism/prevention & control/*psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeWeerdt, Sarah -- England -- Nature. 2015 May 14;521(7551):S10-1. doi: 10.1038/521S10a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970451" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/microbiology ; Animals ; Anti-Bacterial Agents/pharmacology ; Anti-Inflammatory Agents/metabolism/pharmacology ; Bacterial Toxins/genetics/isolation & purification ; Bacteroides fragilis/drug effects/isolation & ; purification/pathogenicity/physiology ; Butyrates/metabolism/pharmacology ; Case-Control Studies ; Cell Proliferation/drug effects ; Colorectal Neoplasms/*etiology/genetics/*microbiology/pathology ; Diet/adverse effects ; Disease Models, Animal ; Escherichia coli/drug effects/isolation & purification/pathogenicity/physiology ; Fusobacterium/drug effects/isolation & purification/physiology ; Germ-Free Life ; Healthy Volunteers ; Humans ; Inflammatory Bowel Diseases/microbiology/pathology ; Interleukin-17/adverse effects/immunology ; Metagenome/genetics/physiology ; Metalloendopeptidases/genetics/isolation & purification ; Mice ; Microbiota/genetics/*physiology ; Mutagens/pharmacology ; Probiotics/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 22;517(7535):411-2. doi: 10.1038/517411b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25612014" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/trends ; Floods ; Food Supply ; Fossils ; Geologic Sediments/chemistry ; Goals ; Humans ; Oil and Gas Fields/chemistry ; Soil/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2015-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grammer, Karl -- Sainani, Kristin Lynn -- England -- Nature. 2015 Oct 8;526(7572):S11. doi: 10.1038/526S11a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26444367" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Anthropometry ; *Beauty ; *Biological Evolution ; *Courtship ; Cultural Characteristics ; Female ; Health ; Humans ; Male ; Odors ; Selection, Genetic ; Surgery, Plastic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2015-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schonfelder, Gilbert -- Grune, Barbara -- Hensel, Andreas -- England -- Nature. 2015 Nov 5;527(7576):38. doi: 10.1038/527038e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Federal Institute for Risk Assessment (BfR); and Charite - University Medicine Berlin, Germany. ; BfR, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536951" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Testing Alternatives/legislation & jurisprudence/methods ; Animal Welfare/*legislation & jurisprudence/*standards ; Animals ; *Animals, Laboratory ; Europe
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 15;517(7534):244. doi: 10.1038/517244b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25592497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cat Diseases/*genetics ; Cats ; Dogs ; Genomics/*trends ; Humans ; *Personality ; Pets/*psychology ; Research Personnel/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2015-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Lorenzo, Emanuele -- England -- Nature. 2015 Feb 19;518(7539):310-1. doi: 10.1038/518310a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Climate Change ; *Ecosystem ; *Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-07-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiser, Barbara -- England -- Nature. 2015 Jul 16;523(7560):286-9. doi: 10.1038/523286a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26178952" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/cytology/growth & development/physiology ; *Child Development ; Child, Preschool ; *Environment ; Humans ; Infant ; *Learning ; Nature ; *Play and Playthings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2015-03-13
    Description: Exceptionally preserved fossils from the Palaeozoic era provide crucial insights into arthropod evolution, with recent discoveries bringing phylogeny and character homology into sharp focus. Integral to such studies are anomalocaridids, a clade of stem arthropods whose remarkable morphology illuminates early arthropod relationships and Cambrian ecology. Although recent work has focused on the anomalocaridid head, the nature of their trunk has been debated widely. Here we describe new anomalocaridid specimens from the Early Ordovician Fezouata Biota of Morocco, which not only show well-preserved head appendages providing key ecological data, but also elucidate the nature of anomalocaridid trunk flaps, resolving their homology with arthropod trunk limbs. The new material shows that each trunk segment bears a separate dorsal and ventral pair of flaps, with a series of setal blades attached at the base of the dorsal flaps. Comparisons with other stem lineage arthropods indicate that anomalocaridid ventral flaps are homologous with lobopodous walking limbs and the endopod of the euarthropod biramous limb, whereas the dorsal flaps and associated setal blades are homologous with the flaps of gilled lobopodians (for example, Kerygmachela kierkegaardi, Pambdelurion whittingtoni) and exites of the 'Cambrian biramous limb'. This evidence shows that anomalocaridids represent a stage before the fusion of exite and endopod into the 'Cambrian biramous limb', confirming their basal placement in the euarthropod stem, rather than in the arthropod crown or with cycloneuralian worms. Unlike other anomalocaridids, the Fezouata taxon combines head appendages convergently adapted for filter-feeding with an unprecedented body length exceeding 2 m, indicating a new direction in the feeding ecology of the clade. The evolution of giant filter-feeding anomalocaridids may reflect the establishment of highly developed planktic ecosystems during the Great Ordovician Biodiversification Event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Roy, Peter -- Daley, Allison C -- Briggs, Derek E G -- England -- Nature. 2015 Jun 4;522(7554):77-80. doi: 10.1038/nature14256. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520, USA [2] Research Unit Palaeontology, Department of Geology and Soil Science, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium. ; 1] Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK [2] Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. ; 1] Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520, USA [2] Yale Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/*anatomy & histology/classification ; *Biological Evolution ; Extremities/*anatomy & histology ; *Fossils ; Gills/*anatomy & histology ; Head/anatomy & histology ; Morocco ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 15;517(7534):244. doi: 10.1038/517244a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25592496" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Coral Reefs ; Disasters/statistics & numerical data ; Fishes ; Global Warming ; Oceanography/*trends ; Seawater/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2015-08-11
    Description: The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Lan -- Oliver, Eduardo -- Maratou, Klio -- Atanur, Santosh S -- Dubois, Olivier D -- Cotroneo, Emanuele -- Chen, Chien-Nien -- Wang, Lei -- Arce, Cristina -- Chabosseau, Pauline L -- Ponsa-Cobas, Joan -- Frid, Maria G -- Moyon, Benjamin -- Webster, Zoe -- Aldashev, Almaz -- Ferrer, Jorge -- Rutter, Guy A -- Stenmark, Kurt R -- Aitman, Timothy J -- Wilkins, Martin R -- 098424/Wellcome Trust/United Kingdom -- 101033/Wellcome Trust/United Kingdom -- MR/J0003042/1/Medical Research Council/United Kingdom -- P01 HL014985/HL/NHLBI NIH HHS/ -- PG/04/035/16912/British Heart Foundation/United Kingdom -- PG/10/59/28478/British Heart Foundation/United Kingdom -- PG/12/61/29818/British Heart Foundation/United Kingdom -- PG/2000137/British Heart Foundation/United Kingdom -- PG/95170/British Heart Foundation/United Kingdom -- PG/98018/British Heart Foundation/United Kingdom -- RG/10/16/28575/British Heart Foundation/United Kingdom -- WT098424AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):356-60. doi: 10.1038/nature14620. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, Colorado 80045, USA. ; Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Institute of Molecular Biology and Medicine, 3 Togolok Moldo Street, Bishkek 720040, Kyrgyzstan. ; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Anoxia/genetics/*metabolism ; Arterioles/metabolism ; Cation Transport Proteins/deficiency/genetics/*metabolism ; Cattle ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Chromosomes, Mammalian/genetics ; Chronic Disease ; Female ; Gene Knockdown Techniques ; Homeostasis ; Humans ; Hypertension, Pulmonary/genetics/*metabolism ; Intracellular Space/metabolism ; Male ; Muscle, Smooth, Vascular/cytology/*metabolism ; Rats ; Rats, Inbred F344 ; Rats, Inbred WKY ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2015-06-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2015 Jun 11;522(7555):139-40. doi: 10.1038/522139a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26062490" target="_blank"〉PubMed〈/a〉
    Keywords: Africa/epidemiology ; Animals ; *Biomedical Research ; Camels/virology ; Contact Tracing ; *Coronavirus/isolation & purification ; Coronavirus Infections/*epidemiology/*transmission/veterinary/virology ; Disease Outbreaks/statistics & numerical data/veterinary ; Humans ; Republic of Korea/epidemiology ; Saudi Arabia/epidemiology ; Uncertainty ; *Virology ; Zoonoses/epidemiology/*transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2015-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Noia, Javier M -- England -- Nature. 2015 Sep 3;525(7567):44-5. doi: 10.1038/nature15209. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherches Cliniques de Montreal and Department of Medicine, Universite de Montreal, Montreal, Quebec H2W 1R7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*metabolism ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair/*genetics ; Immunoglobulin Class Switching/*genetics ; Immunoglobulin Constant Regions/*genetics ; Immunoglobulin Heavy Chains/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2015-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, Jennifer A Marshall -- England -- Nature. 2015 Dec 17;528(7582):343-4. doi: 10.1038/528343a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia, and at the Research School of Biology, Australian National University, Canberra.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26672550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Evolution, Molecular ; Female ; *Genes, sry ; Humans ; Kruppel-Like Transcription Factors/genetics ; Male ; SOX9 Transcription Factor/metabolism ; Sex Determination Processes/*genetics ; Sex-Determining Region Y Protein/genetics/metabolism ; Testis/growth & development/metabolism ; X Chromosome/genetics ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2015-04-02
    Description: The cave infills at Sterkfontein contain one of the richest assemblages of Australopithecus fossils in the world, including the nearly complete skeleton StW 573 ('Little Foot') in its lower section, as well as early stone tools in higher sections. However, the chronology of the site remains controversial owing to the complex history of cave infilling. Much of the existing chronology based on uranium-lead dating and palaeomagnetic stratigraphy has recently been called into question by the recognition that dated flowstones fill cavities formed within previously cemented breccias and therefore do not form a stratigraphic sequence. Earlier dating with cosmogenic nuclides suffered a high degree of uncertainty and has been questioned on grounds of sediment reworking. Here we use isochron burial dating with cosmogenic aluminium-26 and beryllium-10 to show that the breccia containing StW 573 did not undergo significant reworking, and that it was deposited 3.67 +/- 0.16 million years ago, far earlier than the 2.2 million year flowstones found within it. The skeleton is thus coeval with early Australopithecus afarensis in eastern Africa. We also date the earliest stone tools at Sterkfontein to 2.18 +/- 0.21 million years ago, placing them in the Oldowan at a time similar to that found elsewhere in South Africa at Swartkans and Wonderwerk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Granger, Darryl E -- Gibbon, Ryan J -- Kuman, Kathleen -- Clarke, Ronald J -- Bruxelles, Laurent -- Caffee, Marc W -- England -- Nature. 2015 Jun 4;522(7554):85-8. doi: 10.1038/nature14268. Epub 2015 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA. ; Department of Anthropology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. ; 1] Evolutionary Studies Institute, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa [2] School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa. ; Evolutionary Studies Institute, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa. ; 1] School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa [2] French National Institute for Preventive Archaeological Research (Inrap), 561 rue Etienne Lenoir, km delta, 30900 Nimes, France [3] University of Toulouse Jean Jaures, UMR 5608 du CNRS (TRACES), Maison de la Recherche, 5 Allees Antonio Matchado, F-31058 Toulouse, France. ; 1] Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA [2] Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25830884" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Eastern ; Aluminum ; Animals ; Beryllium ; Burial ; *Fossils ; Geologic Sediments/analysis/chemistry ; *Hominidae/anatomy & histology/classification ; Paleontology/*methods ; Radioisotopes ; Radiometric Dating/*methods ; *Skeleton ; Skull/anatomy & histology ; South Africa ; Time Factors ; Tool Use Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2015-06-23
    Description: Although the adult mammalian heart is incapable of meaningful functional recovery following substantial cardiomyocyte loss, it is now clear that modest cardiomyocyte turnover occurs in adult mouse and human hearts, mediated primarily by proliferation of pre-existing cardiomyocytes. However, fate mapping of these cycling cardiomyocytes has not been possible thus far owing to the lack of identifiable genetic markers. In several organs, stem or progenitor cells reside in relatively hypoxic microenvironments where the stabilization of the hypoxia-inducible factor 1 alpha (Hif-1alpha) subunit is critical for their maintenance and function. Here we report fate mapping of hypoxic cells and their progenies by generating a transgenic mouse expressing a chimaeric protein in which the oxygen-dependent degradation (ODD) domain of Hif-1alpha is fused to the tamoxifen-inducible CreERT2 recombinase. In mice bearing the creERT2-ODD transgene driven by either the ubiquitous CAG promoter or the cardiomyocyte-specific alpha myosin heavy chain promoter, we identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage. Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart. These results indicate that hypoxia signalling is an important hallmark of cycling cardiomyocytes, and suggest that hypoxia fate mapping can be a powerful tool for identifying cycling cells in adult mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, Wataru -- Xiao, Feng -- Canseco, Diana C -- Muralidhar, Shalini -- Thet, SuWannee -- Zhang, Helen M -- Abderrahman, Yezan -- Chen, Rui -- Garcia, Joseph A -- Shelton, John M -- Richardson, James A -- Ashour, Abdelrahman M -- Asaithamby, Aroumougame -- Liang, Hanquan -- Xing, Chao -- Lu, Zhigang -- Zhang, Cheng Cheng -- Sadek, Hesham A -- I01 BX000446/BX/BLRD VA/ -- R01 HL108104/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):226-30. doi: 10.1038/nature14582. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan. ; Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Departments of Physiology and Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Medicine, VA North Texas Health Care System, 4600 South Lancaster Road, Dallas, Texas 75216, USA. ; 1] Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Hypoxia ; Cell Proliferation/genetics ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Myocardium/*cytology ; Myocytes, Cardiac/*cytology/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/genetics/*metabolism ; Recombinases/genetics/metabolism ; Signal Transduction ; Stem Cells/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2015-02-18
    Description: The BCR-ABL1 fusion gene is a driver oncogene in chronic myeloid leukaemia and 30-50% of cases of adult acute lymphoblastic leukaemia. Introduction of ABL1 kinase inhibitors (for example, imatinib) has markedly improved patient survival, but acquired drug resistance remains a challenge. Point mutations in the ABL1 kinase domain weaken inhibitor binding and represent the most common clinical resistance mechanism. The BCR-ABL1 kinase domain gatekeeper mutation Thr315Ile (T315I) confers resistance to all approved ABL1 inhibitors except ponatinib, which has toxicity limitations. Here we combine comprehensive drug sensitivity and resistance profiling of patient cells ex vivo with structural analysis to establish the VEGFR tyrosine kinase inhibitor axitinib as a selective and effective inhibitor for T315I-mutant BCR-ABL1-driven leukaemia. Axitinib potently inhibited BCR-ABL1(T315I), at both biochemical and cellular levels, by binding to the active form of ABL1(T315I) in a mutation-selective binding mode. These findings suggest that the T315I mutation shifts the conformational equilibrium of the kinase in favour of an active (DFG-in) A-loop conformation, which has more optimal binding interactions with axitinib. Treatment of a T315I chronic myeloid leukaemia patient with axitinib resulted in a rapid reduction of T315I-positive cells from bone marrow. Taken together, our findings demonstrate an unexpected opportunity to repurpose axitinib, an anti-angiogenic drug approved for renal cancer, as an inhibitor for ABL1 gatekeeper mutant drug-resistant leukaemia patients. This study shows that wild-type proteins do not always sample the conformations available to disease-relevant mutant proteins and that comprehensive drug testing of patient-derived cells can identify unpredictable, clinically significant drug-repositioning opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pemovska, Tea -- Johnson, Eric -- Kontro, Mika -- Repasky, Gretchen A -- Chen, Jeffrey -- Wells, Peter -- Cronin, Ciaran N -- McTigue, Michele -- Kallioniemi, Olli -- Porkka, Kimmo -- Murray, Brion W -- Wennerberg, Krister -- England -- Nature. 2015 Mar 5;519(7541):102-5. doi: 10.1038/nature14119. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; La Jolla Laboratories, Pfizer Worldwide Research &Development, San Diego, California 92121, USA. ; Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, 00290 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686603" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/chemistry/pharmacology/therapeutic use ; Cell Line ; Cell Proliferation/drug effects ; Crystallization ; Crystallography, X-Ray ; Drug Repositioning ; Drug Resistance, Neoplasm/genetics ; Drug Screening Assays, Antitumor ; Fusion Proteins, bcr-abl/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Imidazoles/*chemistry/*pharmacology/therapeutic use ; Indazoles/*chemistry/*pharmacology/therapeutic use ; Kidney Neoplasms/drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy/genetics/metabolism ; Models, Molecular ; Molecular Conformation ; Phosphorylation/drug effects ; Protein Binding ; Protein Kinase Inhibitors/chemistry/pharmacology/therapeutic use ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor Receptor-2/antagonists & ; inhibitors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2015-04-02
    Description: The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413024/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413024/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoors, Sandra -- Bruning, Ulrike -- Missiaen, Rindert -- Queiroz, Karla C S -- Borgers, Gitte -- Elia, Ilaria -- Zecchin, Annalisa -- Cantelmo, Anna Rita -- Christen, Stefan -- Goveia, Jermaine -- Heggermont, Ward -- Godde, Lucica -- Vinckier, Stefan -- Van Veldhoven, Paul P -- Eelen, Guy -- Schoonjans, Luc -- Gerhardt, Holger -- Dewerchin, Mieke -- Baes, Myriam -- De Bock, Katrien -- Ghesquiere, Bart -- Lunt, Sophia Y -- Fendt, Sarah-Maria -- Carmeliet, Peter -- 269073/European Research Council/International -- England -- Nature. 2015 Apr 9;520(7546):192-7. doi: 10.1038/nature14362. Epub 2015 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium [2] Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium. ; 1] Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium [2] Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, B-3000 Leuven, Belgium. ; Center for Molecular &Vascular Biology, Department of Cardiovascular Research, KU Leuven; Division of Clinical Cardiology, UZ Leuven, B-3000 Leuven, Belgium. ; Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, B-3000 Leuven, Belgium. ; 1] Vascular Patterning Laboratory, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium [2] Vascular Patterning Laboratory, Vesalius Research Center, VIB, B-3000 Leuven, Belgium [3] Integrative Vascular Biology Laboratory, Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany. ; Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium. ; 1] Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium [2] Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium [3] Exercise Physiology Research Group, Department of Kinesiology, KU Leuven, B-3001 Leuven, Belgium. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25830893" target="_blank"〉PubMed〈/a〉
    Keywords: Acetic Acid/pharmacology ; Adenosine Triphosphate/metabolism ; Animals ; Blood Vessels/cytology/drug effects/metabolism/pathology ; Carbon/*metabolism ; Carnitine O-Palmitoyltransferase/antagonists & ; inhibitors/deficiency/genetics/metabolism ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Citric Acid Cycle ; DNA/biosynthesis ; Disease Models, Animal ; Endothelial Cells/cytology/drug effects/enzymology/*metabolism ; Fatty Acids/*chemistry/*metabolism ; Gene Silencing ; Glucose/metabolism ; Human Umbilical Vein Endothelial Cells/cytology/drug effects/metabolism/pathology ; Humans ; Mice ; Neovascularization, Pathologic/drug therapy/metabolism/pathology ; Nucleotides/*biosynthesis/chemistry/pharmacology ; Oxidation-Reduction/drug effects ; Retinopathy of Prematurity/drug therapy/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gravitz, Lauren -- England -- Nature. 2015 May 21;521(7552):S60-1. doi: 10.1038/521S60a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25992675" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/genetics/*physiology ; *Behavior, Animal ; DNA Methylation ; Epigenesis, Genetic/genetics/physiology ; Feeding Behavior ; Female ; Humans ; Instinct ; Male ; Models, Biological ; Reproduction/genetics/physiology ; Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Harvey G -- Cortes-Puch, Irene -- Natanson, Charles -- England -- Nature. 2015 May 21;521(7552):289. doi: 10.1038/521289b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institutes of Health, Bethesda, Maryland, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993950" target="_blank"〉PubMed〈/a〉
    Keywords: Blood Transfusion/*utilization ; *Evidence-Based Medicine ; Humans ; *Practice Guidelines as Topic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2015-05-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schork, Nicholas J -- England -- Nature. 2015 Apr 30;520(7549):609-11. doi: 10.1038/520609a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute in La Jolla, California, USA. He is also professor at the University of California, San Diego, and at the Translational Genomics Research Institute (TGen) in Phoenix, Arizona, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25925459" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal, Humanized/pharmacology ; Benzamides/pharmacology ; Biomarkers/analysis ; Cetuximab ; Clinical Trials as Topic/*methods/*trends ; Humans ; Imatinib Mesylate ; Indoles/pharmacology ; Pharmacogenetics/trends ; Piperazines/pharmacology ; Precision Medicine/*methods/*trends ; Pyrimidines/pharmacology ; *Research Design ; Sample Size ; Sulfonamides/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2015 May 21;521(7552):269. doi: 10.1038/nature.2015.17560.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993935" target="_blank"〉PubMed〈/a〉
    Keywords: Bangladesh ; Ethiopia ; Evaluation Studies as Topic ; Humans ; *International Cooperation ; Pilot Projects ; Poverty/*economics/*prevention & control/statistics & numerical data/trends ; Program Evaluation ; Random Allocation ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2015-10-28
    Description: Epigenetic silencing including histone modifications and DNA methylation is an important tumorigenic mechanism. However, its role in cancer immunopathology and immunotherapy is poorly understood. Using human ovarian cancers as our model, here we show that enhancer of zeste homologue 2 (EZH2)-mediated histone H3 lysine 27 trimethylation (H3K27me3) and DNA methyltransferase 1 (DNMT1)-mediated DNA methylation repress the tumour production of T helper 1 (TH1)-type chemokines CXCL9 and CXCL10, and subsequently determine effector T-cell trafficking to the tumour microenvironment. Treatment with epigenetic modulators removes the repression and increases effector T-cell tumour infiltration, slows down tumour progression, and improves the therapeutic efficacy of programmed death-ligand 1 (PD-L1; also known as B7-H1) checkpoint blockade and adoptive T-cell transfusion in tumour-bearing mice. Moreover, tumour EZH2 and DNMT1 are negatively associated with tumour-infiltrating CD8(+) T cells and patient outcome. Thus, epigenetic silencing of TH1-type chemokines is a novel immune-evasion mechanism of tumours. Selective epigenetic reprogramming alters the T-cell landscape in cancer and may enhance the clinical efficacy of cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779053/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779053/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peng, Dongjun -- Kryczek, Ilona -- Nagarsheth, Nisha -- Zhao, Lili -- Wei, Shuang -- Wang, Weimin -- Sun, Yuqing -- Zhao, Ende -- Vatan, Linda -- Szeliga, Wojciech -- Kotarski, Jan -- Tarkowski, Rafal -- Dou, Yali -- Cho, Kathleen -- Hensley-Alford, Sharon -- Munkarah, Adnan -- Liu, Rebecca -- Zou, Weiping -- 5P30CA46592/CA/NCI NIH HHS/ -- CA099985/CA/NCI NIH HHS/ -- CA123088/CA/NCI NIH HHS/ -- CA152470/CA/NCI NIH HHS/ -- CA156685/CA/NCI NIH HHS/ -- CA171306/CA/NCI NIH HHS/ -- CA190176/CA/NCI NIH HHS/ -- CA193136/CA/NCI NIH HHS/ -- R01 CA099985/CA/NCI NIH HHS/ -- R01 CA123088/CA/NCI NIH HHS/ -- R01 CA152470/CA/NCI NIH HHS/ -- R01 CA156685/CA/NCI NIH HHS/ -- R01 CA171306/CA/NCI NIH HHS/ -- R01 CA190176/CA/NCI NIH HHS/ -- R01 CA193136/CA/NCI NIH HHS/ -- England -- Nature. 2015 Nov 12;527(7577):249-53. doi: 10.1038/nature15520. Epub 2015 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA. ; Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Biostatistics, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA. ; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA. ; The First Department of Gynecologic Oncology and Gynecology, Medical University in Lublin, Lublin 20-081, Poland. ; The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Women's Health Services, Henry Ford Health System, Detroit, Michigan 48202, USA. ; Department of Obstetrics and Gynecology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA. ; Graduate Program in Tumor Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD274/metabolism ; CD8-Positive T-Lymphocytes/cytology/immunology ; Chemokine CXCL10/biosynthesis/genetics/immunology ; Chemokine CXCL9/biosynthesis/genetics/immunology ; Chemokines/biosynthesis/*genetics/immunology ; DNA (Cytosine-5-)-Methyltransferase/antagonists & inhibitors/metabolism ; DNA Methylation/drug effects ; *Epigenesis, Genetic/drug effects ; Female ; *Gene Silencing ; Histones/chemistry/metabolism ; Humans ; *Immunotherapy/methods ; Lymphocytes, Tumor-Infiltrating/immunology ; Lysine/metabolism ; Mice ; Ovarian Neoplasms/enzymology/*immunology/pathology/*therapy ; Polycomb Repressive Complex 2/antagonists & inhibitors/metabolism ; Prognosis ; Th1 Cells/immunology/*metabolism ; Tumor Cells, Cultured ; Tumor Escape/immunology ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2015-01-13
    Description: Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320033/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320033/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Minglei -- Wu, Shenping -- Zhou, Qiangjun -- Vivona, Sandro -- Cipriano, Daniel J -- Cheng, Yifan -- Brunger, Axel T -- 5-U01AI082051-05/AI/NIAID NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50GM082250/GM/NIGMS NIH HHS/ -- R01 GM082893/GM/NIGMS NIH HHS/ -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01GM082893/GM/NIGMS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- R37MH63105/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 5;518(7537):61-7. doi: 10.1038/nature14148. Epub 2015 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA. ; 1] Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25581794" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cricetulus ; Cryoelectron Microscopy ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism/ultrastructure ; N-Ethylmaleimide-Sensitive Proteins/chemistry/metabolism/ultrastructure ; Protein Binding ; Protein Structure, Tertiary ; Rats ; SNARE Proteins/*chemistry/*metabolism/ultrastructure ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment ; Proteins/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2015-04-16
    Description: Oxytocin is important for social interactions and maternal behaviour. However, little is known about when, where and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behaviour in female mice by enhancing auditory cortical pup call responses. Retrieval behaviour required the left but not right auditory cortex, was accelerated by oxytocin in the left auditory cortex, and oxytocin receptors were preferentially expressed in the left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally precise excitatory and inhibitory responses in the left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marlin, Bianca J -- Mitre, Mariela -- D'amour, James A -- Chao, Moses V -- Froemke, Robert C -- DC009635/DC/NIDCD NIH HHS/ -- DC12557/DC/NIDCD NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R00 DC009635/DC/NIDCD NIH HHS/ -- R01 DC012557/DC/NIDCD NIH HHS/ -- T32 MH019524/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):499-504. doi: 10.1038/nature14402. Epub 2015 Apr 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Otolaryngology, New York University School of Medicine, New York, New York 10016, USA [4] Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016, USA. ; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Otolaryngology, New York University School of Medicine, New York, New York 10016, USA [4] Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016, USA [5] Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA [6] Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA. ; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016, USA [4] Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA [5] Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA [6] Center for Neural Science, New York University, New York, New York 10003, USA. ; 1] Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA [2] Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA [3] Department of Otolaryngology, New York University School of Medicine, New York, New York 10016, USA [4] Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016, USA [5] Center for Neural Science, New York University, New York, New York 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25874674" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Animals, Newborn ; Auditory Cortex/cytology/*physiology ; Auditory Perception/physiology ; Evoked Potentials, Auditory ; Female ; Male ; Maternal Behavior/*physiology ; Mice ; Mice, Inbred C57BL ; Neural Inhibition/*physiology ; Neuronal Plasticity ; Oxytocin/*metabolism ; Receptors, Oxytocin/metabolism ; Sexual Abstinence ; Vocalization, Animal
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gravitz, Lauren -- England -- Nature. 2015 May 14;521(7551):S6-8. doi: 10.1038/521S6a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970457" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/immunology/metabolism/prevention & control ; Anti-Inflammatory Agents, Non-Steroidal/*pharmacology ; Cancer Vaccines/administration & dosage/*immunology ; Clinical Trials as Topic ; Colonic Polyps/drug therapy/pathology/prevention & control ; Colorectal Neoplasms/genetics/immunology/pathology/*prevention & control ; *Diet/adverse effects ; Dietary Supplements ; Exercise/*physiology ; Glucose/metabolism ; Humans ; Insulin/metabolism ; *Life Style ; Meat/adverse effects ; Metformin/*pharmacology ; Mucin-1/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 8;517(7533):121. doi: 10.1038/517121a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567246" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Depression/drug therapy ; Depsipeptides/pharmacology ; Drug Discovery/*trends ; Drug Resistance, Microbial/drug effects/genetics ; Humans ; Ketamine/therapeutic use ; Research Personnel/*psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2015-01-17
    Description: Cytosine methylation is a DNA modification generally associated with transcriptional silencing. Factors that regulate methylation have been linked to human disease, yet how they contribute to malignances remains largely unknown. Genomic maps of DNA methylation have revealed unexpected dynamics at gene regulatory regions, including active demethylation by TET proteins at binding sites for transcription factors. These observations indicate that the underlying DNA sequence largely accounts for local patterns of methylation. As a result, this mark is highly informative when studying gene regulation in normal and diseased cells, and it can potentially function as a biomarker. Although these findings challenge the view that methylation is generally instructive for gene silencing, several open questions remain, including how methylation is targeted and recognized and in what context it affects genome readout.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schubeler, Dirk -- England -- Nature. 2015 Jan 15;517(7534):321-6. doi: 10.1038/nature14192.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. [2] University of Basel, Faculty of Science, Petersplatz 1, CH-4003 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25592537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CpG Islands/genetics ; Cytosine/chemistry/metabolism ; *DNA Methylation ; Disease ; Genome/genetics ; Humans ; Invertebrates/genetics ; Transcription Factors/metabolism ; Vertebrates/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 8;517(7533):121. doi: 10.1038/517121b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567245" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Chiroptera/physiology ; Echolocation/*physiology ; Female ; Humans ; Music ; Noise ; *Periodicals as Topic ; Public Health ; *Sound ; *Webcasts as Topic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-09-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grayson, Michelle -- England -- Nature. 2015 Sep 24;525(7570):S1. doi: 10.1038/525S1a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26398730" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/*trends ; Cannabis/adverse effects/*chemistry/classification ; Dronabinol/pharmacology ; Humans ; Medical Marijuana/adverse effects/chemistry/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kling, Jim -- England -- Nature. 2015 Feb 19;518(7539):439-43. doi: 10.1038/518439a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693572" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies/analysis/immunology ; Cell Biology/*instrumentation/trends ; Coloring Agents/analysis/chemistry ; Flow Cytometry/instrumentation/*methods/trends ; Humans ; Vaccines/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2015-06-23
    Description: Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540238/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540238/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleinstiver, Benjamin P -- Prew, Michelle S -- Tsai, Shengdar Q -- Topkar, Ved V -- Nguyen, Nhu T -- Zheng, Zongli -- Gonzales, Andrew P W -- Li, Zhuyun -- Peterson, Randall T -- Yeh, Jing-Ruey Joanna -- Aryee, Martin J -- Joung, J Keith -- DP1 GM105378/DP/NCCDPHP CDC HHS/ -- DP1 GM105378/GM/NIGMS NIH HHS/ -- R01 GM088040/GM/NIGMS NIH HHS/ -- R01 GM107427/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [3] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden. ; 1] Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Broad Institute, Cambridge, Massachusetts 02142, USA. ; Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098369" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution/genetics ; Animals ; CRISPR-Associated Proteins/*genetics/*metabolism ; CRISPR-Cas Systems ; Cell Line ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Directed Molecular Evolution ; Genome/genetics ; Humans ; Mutation/genetics ; *Nucleotide Motifs ; Protein Engineering/*methods ; Staphylococcus aureus/enzymology ; Streptococcus pyogenes/*enzymology ; Streptococcus thermophilus/enzymology ; Substrate Specificity/genetics ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2015-07-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maron, Martine -- Gordon, Ascelin -- Mackey, Brendan G -- Possingham, Hugh P -- Watson, James E M -- England -- Nature. 2015 Jul 23;523(7561):401-3. doi: 10.1038/523401a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Geography, Planning and Environmental Management at the University of Queensland, Brisbane, Australia. ; School of Global, Urban and Social Studies at RMIT University, Melbourne, Victoria. ; Griffith University, Gold Coast, Australia. ; University of Queensland, Brisbane, Australia, and professor of conservation decisions at Imperial College London, UK. ; University of Queensland, Brisbane, Australia, and director of the Science and Research Initiative at the Wildlife Conservation Society.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201581" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources/economics/*methods/statistics & numerical data ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2015-10-06
    Description: Postnatal tissue quiescence is thought to be a default state in the absence of a proliferative stimulus such as injury. Although previous studies have demonstrated that certain embryonic developmental programs are reactivated aberrantly in adult organs to drive repair and regeneration, it is not well understood how quiescence is maintained in organs such as the lung, which displays a remarkably low level of cellular turnover. Here we demonstrate that quiescence in the adult lung is an actively maintained state and is regulated by hedgehog signalling. Epithelial-specific deletion of sonic hedgehog (Shh) during postnatal homeostasis in the murine lung results in a proliferative expansion of the adjacent lung mesenchyme. Hedgehog signalling is initially downregulated during the acute phase of epithelial injury as the mesenchyme proliferates in response, but returns to baseline during injury resolution as quiescence is restored. Activation of hedgehog during acute epithelial injury attenuates the proliferative expansion of the lung mesenchyme, whereas inactivation of hedgehog signalling prevents the restoration of quiescence during injury resolution. Finally, we show that hedgehog also regulates epithelial quiescence and regeneration in response to injury via a mesenchymal feedback mechanism. These results demonstrate that epithelial-mesenchymal interactions coordinated by hedgehog actively maintain postnatal tissue homeostasis, and deregulation of hedgehog during injury leads to aberrant repair and regeneration in the lung.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peng, Tien -- Frank, David B -- Kadzik, Rachel S -- Morley, Michael P -- Rathi, Komal S -- Wang, Tao -- Zhou, Su -- Cheng, Lan -- Lu, Min Min -- Morrisey, Edward E -- HL087825/HL/NHLBI NIH HHS/ -- HL100405/HL/NHLBI NIH HHS/ -- HL110942/HL/NHLBI NIH HHS/ -- K08-HL121146/HL/NHLBI NIH HHS/ -- R01 HL087825/HL/NHLBI NIH HHS/ -- T32 HL007915/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- U01 HL110942/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Oct 22;526(7574):578-82. doi: 10.1038/nature14984. Epub 2015 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26436454" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Down-Regulation ; Epithelial Cells/cytology/metabolism/pathology ; Feedback, Physiological ; Hedgehog Proteins/deficiency/genetics/*metabolism ; Homeostasis ; Lung/*cytology/*metabolism/pathology ; Lung Injury/*metabolism/*pathology ; Male ; Mesoderm/cytology/metabolism ; Mice ; Paracrine Communication ; *Regeneration ; *Wound Healing
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2015-04-02
    Description: Maternal age is a risk factor for congenital heart disease even in the absence of any chromosomal abnormality in the newborn. Whether the basis of this risk resides with the mother or oocyte is unknown. The impact of maternal age on congenital heart disease can be modelled in mouse pups that harbour a mutation of the cardiac transcription factor gene Nkx2-5 (ref. 8). Here, reciprocal ovarian transplants between young and old mothers establish a maternal basis for the age-associated risk in mice. A high-fat diet does not accelerate the effect of maternal ageing, so hyperglycaemia and obesity do not simply explain the mechanism. The age-associated risk varies with the mother's strain background, making it a quantitative genetic trait. Most remarkably, voluntary exercise, whether begun by mothers at a young age or later in life, can mitigate the risk when they are older. Thus, even when the offspring carry a causal mutation, an intervention aimed at the mother can meaningfully reduce their risk of congenital heart disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393370/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393370/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulkey, Claire E -- Regmi, Suk D -- Magnan, Rachel A -- Danzo, Megan T -- Luther, Herman -- Hutchinson, Alayna K -- Panzer, Adam A -- Grady, Mary M -- Wilson, David B -- Jay, Patrick Y -- P30 DK020579/DK/NIDDK NIH HHS/ -- P30 DK052574/DK/NIDDK NIH HHS/ -- P30 DK52574/DK/NIDDK NIH HHS/ -- R01 HL105857/HL/NHLBI NIH HHS/ -- T32 HL007873/HL/NHLBI NIH HHS/ -- T32HL007873/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Apr 9;520(7546):230-3. doi: 10.1038/nature14361. Epub 2015 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110 USA. ; 1] Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110 USA. [2] Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110 USA. ; 1] Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110 USA. [2] Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25830876" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Aging/genetics/*physiology ; Animals ; Animals, Newborn ; Diet, High-Fat ; Female ; Genetic Predisposition to Disease ; Heart/physiology/physiopathology ; Heart Diseases/*congenital/etiology/genetics/*prevention & control ; Homeodomain Proteins/genetics ; Hyperglycemia ; *Maternal Age ; Mice ; Obesity ; Ovary/transplantation ; Phenotype ; Physical Conditioning, Animal/*physiology ; Pregnancy ; Pregnancy, Animal/genetics/*physiology ; Quantitative Trait Loci/genetics ; Risk ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 1;517(7532):15-7. doi: 10.1038/517015a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25557702" target="_blank"〉PubMed〈/a〉
    Keywords: Astronauts ; Biomedical Research ; Blogging ; Climate Change/statistics & numerical data ; Community-Institutional Relations ; Drug Industry ; Drug Resistance, Bacterial/drug effects ; Foundations/organization & administration ; *Goals ; Hemorrhagic Fever, Ebola/epidemiology/prevention & control ; Humans ; International Cooperation ; Latin America ; *Leadership ; Liver Cirrhosis/genetics/microbiology ; Mars ; Physics/instrumentation/organization & administration ; Renewable Energy ; Science/education/manpower ; Sexism/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2015 Mar 12;519(7542):137. doi: 10.1038/519137a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762259" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*virology ; China/epidemiology ; *Evolution, Molecular ; Genome, Viral/*genetics ; Humans ; Influenza A Virus, H7N9 Subtype/*genetics/*isolation & purification ; Influenza in Birds/epidemiology/transmission/*virology ; Influenza, Human/epidemiology/transmission/*virology ; Zoonoses/epidemiology/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2015-02-18
    Description: Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diao, Jiajie -- Liu, Rong -- Rong, Yueguang -- Zhao, Minglei -- Zhang, Jing -- Lai, Ying -- Zhou, Qiangjun -- Wilz, Livia M -- Li, Jianxu -- Vivona, Sandro -- Pfuetzner, Richard A -- Brunger, Axel T -- Zhong, Qing -- 5P30CA142543/CA/NCI NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 CA133228/CA/NCI NIH HHS/ -- R01 R37-MH63105/MH/NIMH NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- T32 GM007232/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 23;520(7548):563-6. doi: 10.1038/nature14147. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [3] College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China. ; 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686604" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/*chemistry/*metabolism ; *Autophagy ; Endosomes/*metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Lysosomes/*metabolism ; *Membrane Fusion ; Phagosomes/chemistry/*metabolism ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Qa-SNARE Proteins/metabolism ; Qb-SNARE Proteins/metabolism ; Qc-SNARE Proteins/metabolism ; R-SNARE Proteins/metabolism ; SNARE Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2015-01-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vasquez, Claudia G -- Martin, Adam C -- England -- Nature. 2015 Feb 12;518(7538):171-3. doi: 10.1038/nature14198. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607370" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; *Cell Polarity ; Drosophila melanogaster/*cytology/*embryology ; Epithelial Cells/*cytology ; Epithelium/*embryology ; *Morphogenesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2015-11-19
    Description: Taste is responsible for evaluating the nutritious content of food, guiding essential appetitive behaviours, preventing the ingestion of toxic substances, and helping to ensure the maintenance of a healthy diet. Sweet and bitter are two of the most salient sensory percepts for humans and other animals; sweet taste allows the identification of energy-rich nutrients whereas bitter warns against the intake of potentially noxious chemicals. In mammals, information from taste receptor cells in the tongue is transmitted through multiple neural stations to the primary gustatory cortex in the brain. Recent imaging studies have shown that sweet and bitter are represented in the primary gustatory cortex by neurons organized in a spatial map, with each taste quality encoded by distinct cortical fields. Here we demonstrate that by manipulating the brain fields representing sweet and bitter taste we directly control an animal's internal representation, sensory perception, and behavioural actions. These results substantiate the segregation of taste qualities in the cortex, expose the innate nature of appetitive and aversive taste responses, and illustrate the ability of gustatory cortex to recapitulate complex behaviours in the absence of sensory input.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712381/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712381/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peng, Yueqing -- Gillis-Smith, Sarah -- Jin, Hao -- Trankner, Dimitri -- Ryba, Nicholas J P -- Zuker, Charles S -- DA035025/DA/NIDA NIH HHS/ -- R01 DA035025/DA/NIDA NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):512-5. doi: 10.1038/nature15763. Epub 2015 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; Departments of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; HHMI/Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26580015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetitive Behavior/*physiology/radiation effects ; Avoidance Learning/*physiology/radiation effects ; Brain Mapping ; Cerebral Cortex/*cytology/*physiology/radiation effects ; Discrimination (Psychology)/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Optogenetics ; Stereotaxic Techniques ; Taste/*physiology ; Taste Perception/*physiology/radiation effects ; Wakefulness/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2015-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kloor, Keith -- England -- Nature. 2015 Aug 13;524(7564):145-6. doi: 10.1038/nature.2015.18146.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26268173" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information/*legislation & jurisprudence ; Biotechnology/*ethics/manpower ; *Conflict of Interest/legislation & jurisprudence ; *Crops, Agricultural ; *Electronic Mail ; Female ; Food Industry/*ethics/manpower ; *Food, Genetically Modified ; Humans ; Plants, Genetically Modified ; Public-Private Sector Partnerships ; Research Personnel/*ethics ; Universities/ethics/manpower
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grayson, Michelle -- England -- Nature. 2015 May 21;521(7552):S47. doi: 10.1038/521S47a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25992669" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/drug effects/microbiology/*physiology ; Humans ; Insecticides/adverse effects ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2015 Feb 12;518(7538):148-9. doi: 10.1038/518148a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25673392" target="_blank"〉PubMed〈/a〉
    Keywords: Disease Eradication/*statistics & numerical data ; Disease Outbreaks ; Humans ; Internationality ; Measles/*epidemiology/mortality/prevention & control ; Measles Vaccine/administration & dosage ; United States/epidemiology ; Vaccination/statistics & numerical data ; World Health Organization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2015-09-15
    Description: The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF 〈/= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Hou-Feng -- Forgetta, Vincenzo -- Hsu, Yi-Hsiang -- Estrada, Karol -- Rosello-Diez, Alberto -- Leo, Paul J -- Dahia, Chitra L -- Park-Min, Kyung Hyun -- Tobias, Jonathan H -- Kooperberg, Charles -- Kleinman, Aaron -- Styrkarsdottir, Unnur -- Liu, Ching-Ti -- Uggla, Charlotta -- Evans, Daniel S -- Nielson, Carrie M -- Walter, Klaudia -- Pettersson-Kymmer, Ulrika -- McCarthy, Shane -- Eriksson, Joel -- Kwan, Tony -- Jhamai, Mila -- Trajanoska, Katerina -- Memari, Yasin -- Min, Josine -- Huang, Jie -- Danecek, Petr -- Wilmot, Beth -- Li, Rui -- Chou, Wen-Chi -- Mokry, Lauren E -- Moayyeri, Alireza -- Claussnitzer, Melina -- Cheng, Chia-Ho -- Cheung, Warren -- Medina-Gomez, Carolina -- Ge, Bing -- Chen, Shu-Huang -- Choi, Kwangbom -- Oei, Ling -- Fraser, James -- Kraaij, Robert -- Hibbs, Matthew A -- Gregson, Celia L -- Paquette, Denis -- Hofman, Albert -- Wibom, Carl -- Tranah, Gregory J -- Marshall, Mhairi -- Gardiner, Brooke B -- Cremin, Katie -- Auer, Paul -- Hsu, Li -- Ring, Sue -- Tung, Joyce Y -- Thorleifsson, Gudmar -- Enneman, Anke W -- van Schoor, Natasja M -- de Groot, Lisette C P G M -- van der Velde, Nathalie -- Melin, Beatrice -- Kemp, John P -- Christiansen, Claus -- Sayers, Adrian -- Zhou, Yanhua -- Calderari, Sophie -- van Rooij, Jeroen -- Carlson, Chris -- Peters, Ulrike -- Berlivet, Soizik -- Dostie, Josee -- Uitterlinden, Andre G -- Williams, Stephen R -- Farber, Charles -- Grinberg, Daniel -- LaCroix, Andrea Z -- Haessler, Jeff -- Chasman, Daniel I -- Giulianini, Franco -- Rose, Lynda M -- Ridker, Paul M -- Eisman, John A -- Nguyen, Tuan V -- Center, Jacqueline R -- Nogues, Xavier -- Garcia-Giralt, Natalia -- Launer, Lenore L -- Gudnason, Vilmunder -- Mellstrom, Dan -- Vandenput, Liesbeth -- Amin, Najaf -- van Duijn, Cornelia M -- Karlsson, Magnus K -- Ljunggren, Osten -- Svensson, Olle -- Hallmans, Goran -- Rousseau, Francois -- Giroux, Sylvie -- Bussiere, Johanne -- Arp, Pascal P -- Koromani, Fjorda -- Prince, Richard L -- Lewis, Joshua R -- Langdahl, Bente L -- Hermann, A Pernille -- Jensen, Jens-Erik B -- Kaptoge, Stephen -- Khaw, Kay-Tee -- Reeve, Jonathan -- Formosa, Melissa M -- Xuereb-Anastasi, Angela -- Akesson, Kristina -- McGuigan, Fiona E -- Garg, Gaurav -- Olmos, Jose M -- Zarrabeitia, Maria T -- Riancho, Jose A -- Ralston, Stuart H -- Alonso, Nerea -- Jiang, Xi -- Goltzman, David -- Pastinen, Tomi -- Grundberg, Elin -- Gauguier, Dominique -- Orwoll, Eric S -- Karasik, David -- Davey-Smith, George -- AOGC Consortium -- Smith, Albert V -- Siggeirsdottir, Kristin -- Harris, Tamara B -- Zillikens, M Carola -- van Meurs, Joyce B J -- Thorsteinsdottir, Unnur -- Maurano, Matthew T -- Timpson, Nicholas J -- Soranzo, Nicole -- Durbin, Richard -- Wilson, Scott G -- Ntzani, Evangelia E -- Brown, Matthew A -- Stefansson, Kari -- Hinds, David A -- Spector, Tim -- Cupples, L Adrienne -- Ohlsson, Claes -- Greenwood, Celia M T -- UK10K Consortium -- Jackson, Rebecca D -- Rowe, David W -- Loomis, Cynthia A -- Evans, David M -- Ackert-Bicknell, Cheryl L -- Joyner, Alexandra L -- Duncan, Emma L -- Kiel, Douglas P -- Rivadeneira, Fernando -- Richards, J Brent -- G1000143/Medical Research Council/United Kingdom -- K01 AR062655/AR/NIAMS NIH HHS/ -- MC_UU_12013/3/Medical Research Council/United Kingdom -- R01 AG005394/AG/NIA NIH HHS/ -- R01 AG005407/AG/NIA NIH HHS/ -- R01 AG027574/AG/NIA NIH HHS/ -- R01 AG027576/AG/NIA NIH HHS/ -- R01 AR035582/AR/NIAMS NIH HHS/ -- R01 AR035583/AR/NIAMS NIH HHS/ -- RC2 AR058973/AR/NIAMS NIH HHS/ -- U01 AG018197/AG/NIA NIH HHS/ -- U01 AG042140/AG/NIA NIH HHS/ -- U01 AG042143/AG/NIA NIH HHS/ -- U01 AR045580/AR/NIAMS NIH HHS/ -- U01 AR045583/AR/NIAMS NIH HHS/ -- U01 AR045614/AR/NIAMS NIH HHS/ -- U01 AR045632/AR/NIAMS NIH HHS/ -- U01 AR045647/AR/NIAMS NIH HHS/ -- U01 AR045654/AR/NIAMS NIH HHS/ -- U01 AR066160/AR/NIAMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):112-7. doi: 10.1038/nature14878. Epub 2015 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montreal H3A 1A2, Canada. ; Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal H3T 1E2, Canada. ; Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts 02131, USA. ; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Boston, Massachusetts 02115, USA. ; Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA. ; The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane 4102, Australia. ; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA. ; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York 10021, USA. ; Rheumatology Divison, Hospital for Special Surgery New York, New York 10021, USA. ; School of Clinical Science, University of Bristol, Bristol BS10 5NB, UK. ; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. ; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Department of Research, 23andMe, Mountain View, California 94041, USA. ; Department of Population Genomics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; California Pacific Medical Center Research Institute, San Francisco, California 94158, USA. ; Department of Public Health and Preventive Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Bone &Mineral Unit, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK. ; Departments of Pharmacology and Clinical Neurosciences, Umea University, Umea S-901 87, Sweden. ; Department of Public Health and Clinical Medicine, Umea University, Umea SE-901 87, Sweden. ; Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; McGill University and Genome Quebec Innovation Centre, Montreal H3A 0G1, Canada. ; Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Oregon Clinical and Translational Research Institute, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Department of Medical and Clinical Informatics, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Farr Institute of Health Informatics Research, University College London, London NW1 2DA, UK. ; Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Department of Human Genetics, McGill University, Montreal H3A 1B1, Canada. ; Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden 2300RC, The Netherlands. ; Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal H3G 1Y6, Canada. ; Department of Computer Science, Trinity University, San Antonio, Texas 78212, USA. ; Musculoskeletal Research Unit, University of Bristol, Bristol BS10 5NB, UK. ; Department of Radiation Sciences, Umea University, Umea S-901 87, Sweden. ; School of Public Health, University of Wisconsin, Milwaukee, Wisconsin 53726, USA. ; School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK. ; Department of Statistics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam 1007 MB, The Netherlands. ; Department of Human Nutrition, Wageningen University, Wageningen 6700 EV, The Netherlands. ; Department of Internal Medicine, Section Geriatrics, Academic Medical Center, Amsterdam 1105, The Netherlands. ; Nordic Bioscience, Herlev 2730, Denmark. ; Cordeliers Research Centre, INSERM UMRS 1138, Paris 75006, France. ; Institute of Cardiometabolism and Nutrition, University Pierre &Marie Curie, Paris 75013, France. ; Departments of Medicine (Cardiovascular Medicine), Centre for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Genetics, University of Barcelona, Barcelona 08028, Spain. ; U-720, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona 28029, Spain. ; Department of Human Molecular Genetics, The Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain. ; Women's Health Center of Excellence Family Medicine and Public Health, University of California - San Diego, San Diego, California 92093, USA. ; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; Osteoporosis &Bone Biology Program, Garvan Institute of Medical Research, Sydney 2010, Australia. ; School of Medicine Sydney, University of Notre Dame Australia, Sydney 6959, Australia. ; St. Vincent's Hospital &Clinical School, NSW University, Sydney 2010, Australia. ; Musculoskeletal Research Group, Institut Hospital del Mar d'Investigacions Mediques, Barcelona 08003, Spain. ; Cooperative Research Network on Aging and Fragility (RETICEF), Institute of Health Carlos III, 28029, Spain. ; Department of Internal Medicine, Hospital del Mar, Universitat Autonoma de Barcelona, Barcelona 08193, Spain. ; Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Icelandic Heart Association, Kopavogur IS-201, Iceland. ; Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland. ; Genetic epidemiology unit, Department of Epidemiology, Erasmus MC, Rotterdam 3000CA, The Netherlands. ; Department of Orthopaedics, Skane University Hospital Malmo 205 02, Sweden. ; Department of Medical Sciences, University of Uppsala, Uppsala 751 85, Sweden. ; Department of Surgical and Perioperative Sciences, Umea Unviersity, Umea 901 85, Sweden. ; Department of Molecular Biology, Medical Biochemistry and Pathology, Universite Laval, Quebec City G1V 0A6, Canada. ; Axe Sante des Populations et Pratiques Optimales en Sante, Centre de recherche du CHU de Quebec, Quebec City G1V 4G2, Canada. ; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands 6009, Australia. ; Department of Medicine, University of Western Australia, Perth 6009, Australia. ; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C 8000, Denmark. ; Department of Endocrinology, Odense University Hospital, Odense C 5000, Denmark. ; Department of Endocrinology, Hvidovre University Hospital, Hvidovre 2650, Denmark. ; Clinical Gerontology Unit, University of Cambridge, Cambridge CB2 2QQ, UK. ; Medicine and Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. ; Institute of Musculoskeletal Sciences, The Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK. ; Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta. ; Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmo, Lund University, 205 02, Sweden. ; Department of Medicine and Psychiatry, University of Cantabria, Santander 39011, Spain. ; Department of Internal Medicine, Hospital U.M. Valdecilla- IDIVAL, Santander 39008, Spain. ; Department of Legal Medicine, University of Cantabria, Santander 39011, Spain. ; Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; Department of Medicine and Physiology, McGill University, Montreal H4A 3J1, Canada. ; Department of Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 13010, Israel. ; Laboratory of Epidemiology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; School of Medicine and Pharmacology, University of Western Australia, Crawley 6009, Australia. ; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece. ; Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island 02903, USA. ; deCODE Genetics, Reykjavik IS-101, Iceland. ; Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal H3A 1A2, Canada. ; Department of Oncology, Gerald Bronfman Centre, McGill University, Montreal H2W 1S6, Canada. ; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio 43210, USA. ; The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA. ; Department of Diabetes and Endocrinology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26367794" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*genetics ; Bone and Bones/metabolism ; Disease Models, Animal ; Europe/ethnology ; European Continental Ancestry Group/genetics ; Exome/genetics ; Female ; Fractures, Bone/*genetics ; Gene Frequency/genetics ; Genetic Predisposition to Disease/genetics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genomics ; Genotype ; Homeodomain Proteins/*genetics ; Humans ; Mice ; Sequence Analysis, DNA ; Wnt Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-04-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grayson, Michelle -- England -- Nature. 2015 Apr 30;520(7549):S10-2. doi: 10.1038/520S10a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25924192" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes/standards ; China ; Commerce/economics ; Evaluation Studies as Topic ; Great Britain ; Humans ; Research/economics/manpower/*standards/trends ; Research Personnel/standards ; Social Change
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2015-05-21
    Description: The lymphatic vasculature is a blind-ended network crucial for tissue-fluid homeostasis, immune surveillance and lipid absorption from the gut. Recent evidence has proposed an entirely venous-derived mammalian lymphatic system. By contrast, here we show that cardiac lymphatic vessels in mice have a heterogeneous cellular origin, whereby formation of at least part of the cardiac lymphatic network is independent of sprouting from veins. Multiple Cre-lox-based lineage tracing revealed a potential contribution from the putative haemogenic endothelium during development, and discrete lymphatic endothelial progenitor populations were confirmed by conditional knockout of Prox1 in Tie2+ and Vav1+ compartments. In the adult heart, myocardial infarction promoted a significant lymphangiogenic response, which was augmented by treatment with VEGF-C, resulting in improved cardiac function. These data prompt the re-evaluation of a century-long debate on the origin of lymphatic vessels and suggest that lymphangiogenesis may represent a therapeutic target to promote cardiac repair following injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klotz, Linda -- Norman, Sophie -- Vieira, Joaquim Miguel -- Masters, Megan -- Rohling, Mala -- Dube, Karina N -- Bollini, Sveva -- Matsuzaki, Fumio -- Carr, Carolyn A -- Riley, Paul R -- CH/11/1/28798/British Heart Foundation/United Kingdom -- PG/13/34/30216/British Heart Foundation/United Kingdom -- RG/08/003/25264/British Heart Foundation/United Kingdom -- RM/13/3/30159/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2015 Jun 4;522(7554):62-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25992544" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Endothelial Cells/cytology/metabolism ; Female ; Heart/physiology/physiopathology ; Homeodomain Proteins/metabolism ; *Lymphangiogenesis ; Lymphatic Vessels/*cytology/*injuries/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Myocardial Infarction/metabolism/physiopathology ; Myocardium/*cytology/metabolism ; Proto-Oncogene Proteins c-vav/metabolism ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Receptor, TIE-2/metabolism ; Spatio-Temporal Analysis ; Tumor Suppressor Proteins/deficiency/metabolism ; Vascular Endothelial Growth Factor C/metabolism ; Veins/cytology ; Yolk Sac/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veiseh, Omid -- Langer, Robert -- England -- Nature. 2015 Aug 6;524(7563):39-40. doi: 10.1038/524039a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, and at the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, and in the Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/*analysis ; Diabetes Mellitus, Experimental/*drug therapy ; Diabetes Mellitus, Type 1/*drug therapy ; Drug Delivery Systems/*methods ; Humans ; Insulin/*administration & dosage ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knight, Rob -- England -- Nature. 2015 Feb 26;518(7540):S5. doi: 10.1038/518S5a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, San Diego.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25715279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Computer Simulation ; Crowdsourcing ; Disease Models, Animal ; Germ-Free Life ; Humans ; Kwashiorkor/etiology/genetics/microbiology/therapy ; Mice ; Microbiota/genetics/*physiology ; Obesity/etiology/*microbiology/*therapy ; Sequence Analysis, DNA ; Thinness/microbiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2015-11-13
    Description: Diagnosis of pancreatic ductal adenocarcinoma (PDAC) is associated with a dismal prognosis despite current best therapies; therefore new treatment strategies are urgently required. Numerous studies have suggested that epithelial-to-mesenchymal transition (EMT) contributes to early-stage dissemination of cancer cells and is pivotal for invasion and metastasis of PDAC. EMT is associated with phenotypic conversion of epithelial cells into mesenchymal-like cells in cell culture conditions, although such defined mesenchymal conversion (with spindle-shaped morphology) of epithelial cells in vivo is rare, with quasi-mesenchymal phenotypes occasionally observed in the tumour (partial EMT). Most studies exploring the functional role of EMT in tumours have depended on cell-culture-induced loss-of-function and gain-of-function experiments involving EMT-inducing transcription factors such as Twist, Snail and Zeb1 (refs 2, 3, 7-10). Therefore, the functional contribution of EMT to invasion and metastasis remains unclear, and genetically engineered mouse models to address a causal connection are lacking. Here we functionally probe the role of EMT in PDAC by generating mouse models of PDAC with deletion of Snail or Twist, two key transcription factors responsible for EMT. EMT suppression in the primary tumour does not alter the emergence of invasive PDAC, systemic dissemination or metastasis. Suppression of EMT leads to an increase in cancer cell proliferation with enhanced expression of nucleoside transporters in tumours, contributing to enhanced sensitivity to gemcitabine treatment and increased overall survival of mice. Collectively, our study suggests that Snail- or Twist-induced EMT is not rate-limiting for invasion and metastasis, but highlights the importance of combining EMT inhibition with chemotherapy for the treatment of pancreatic cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Xiaofeng -- Carstens, Julienne L -- Kim, Jiha -- Scheible, Matthew -- Kaye, Judith -- Sugimoto, Hikaru -- Wu, Chia-Chin -- LeBleu, Valerie S -- Kalluri, Raghu -- P30 CA016672/CA/NCI NIH HHS/ -- P30CA16672/CA/NCI NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):525-30. doi: 10.1038/nature16064. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA. ; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA. ; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Bioengineering, Rice University, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560028" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/metabolism/pathology ; Animals ; Carcinoma, Pancreatic Ductal/drug therapy/metabolism/pathology ; Cell Proliferation/drug effects ; Deoxycytidine/analogs & derivatives/pharmacology/therapeutic use ; Disease Models, Animal ; Disease Progression ; Drug Resistance, Neoplasm/*drug effects ; *Epithelial-Mesenchymal Transition ; Female ; Male ; Mice ; Neoplasm Invasiveness/pathology ; Neoplasm Metastasis/*pathology ; Nucleoside Transport Proteins/metabolism ; Pancreatic Neoplasms/*drug therapy/genetics/metabolism/*pathology ; Survival Analysis ; Transcription Factors/deficiency/genetics/metabolism ; Twist Transcription Factor/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2015 Jan 1;517(7532):9-10. doi: 10.1038/517009a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25557698" target="_blank"〉PubMed〈/a〉
    Keywords: *Adoptive Transfer ; Africa, Western ; Antibodies, Viral/immunology ; *Blood Transfusion ; Clinical Trials as Topic ; Communicable Diseases, Emerging/blood/immunology/therapy ; Hemorrhagic Fever, Ebola/blood/*immunology/*therapy ; Humans ; Plasma/immunology ; *Survivors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2015-01-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knott, Graham -- England -- Nature. 2015 Feb 12;518(7538):177-8. doi: 10.1038/nature14195. Epub 2015 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Life Sciences, EPFL, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607369" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cold Temperature ; Cold-Shock Response/*physiology ; Male ; Neurodegenerative Diseases/*metabolism/*pathology ; *Neuronal Plasticity ; *Neuroprotective Agents ; RNA-Binding Proteins/*metabolism ; Synapses/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2015-04-24
    Description: It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diogo, Rui -- Kelly, Robert G -- Christiaen, Lionel -- Levine, Michael -- Ziermann, Janine M -- Molnar, Julia L -- Noden, Drew M -- Tzahor, Eldad -- NS076542/NS/NINDS NIH HHS/ -- R01 NS076542/NS/NINDS NIH HHS/ -- R01GM096032/GM/NIGMS NIH HHS/ -- R01HL108643/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):466-73. doi: 10.1038/nature14435.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Howard University College of Medicine, Washington DC 20059, USA. ; Aix Marseille Universite, Centre National de la Recherche Scientifique, Institut de Biologie du Developpement de Marseille UMR 7288, 13288 Marseille, France. ; Center for Developmental Genetics, Department of Biology, New York University, New York 10003, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, California 94720, USA. ; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA. ; Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903628" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Branchial Region/anatomy & histology/cytology/*embryology ; Head/*anatomy & histology/*embryology ; Heart/*anatomy & histology/*embryology ; Mesoderm/cytology ; Models, Biological ; Muscles/anatomy & histology/cytology/embryology ; Neural Crest/cytology ; Vertebrates/*anatomy & histology/*embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...