ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goyal, Sidhartha -- Zandstra, Peter W -- England -- Nature. 2015 Feb 26;518(7540):488-90. doi: 10.1038/nature14203. Epub 2015 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada. ; Institute of Biomaterials and Biomedical Engineering, University of Toronto, and at the Donnelly Centre for Cellular and Biomolecular Research, University of Toronto.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686602" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage/*physiology ; Female ; *Hematopoiesis ; Hematopoietic Stem Cells/*cytology ; Male ; Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-27
    Description: Stem cell fate is influenced by a number of factors and interactions that require robust control for safe and effective regeneration of functional tissue. Coordinated interactions with soluble factors, other cells, and extracellular matrices define a local biochemical and mechanical niche with complex and dynamic regulation that stem cells sense. Decellularized tissue matrices and synthetic polymer niches are being used in the clinic, and they are also beginning to clarify fundamental aspects of how stem cells contribute to homeostasis and repair, for example, at sites of fibrosis. Multifaceted technologies are increasingly required to produce and interrogate cells ex vivo, to build predictive models, and, ultimately, to enhance stem cell integration in vivo for therapeutic benefit.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847855/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847855/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Discher, Dennis E -- Mooney, David J -- Zandstra, Peter W -- R37 DE013033/DE/NIDCR NIH HHS/ -- R37 DE013033-12/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1673-7. doi: 10.1126/science.1171643.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysical Engineering and Nanobiopolymers Laboratory, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA. discher@seas.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19556500" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Differentiation ; Cell Proliferation ; Cell Survival ; Extracellular Matrix/*physiology ; Fibrosis ; Humans ; Intercellular Signaling Peptides and Proteins/*metabolism/pharmacology ; Stem Cell Niche/*physiology ; Stem Cell Transplantation ; Stem Cells/*cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-23
    Description: The small number of hematopoietic stem and progenitor cells in cord blood units limits their widespread use in human transplant protocols. We identified a family of chemically related small molecules that stimulates the expansion ex vivo of human cord blood cells capable of reconstituting human hematopoiesis for at least 6 months in immunocompromised mice. The potent activity of these newly identified compounds, UM171 being the prototype, is independent of suppression of the aryl hydrocarbon receptor, which targets cells with more-limited regenerative potential. The properties of UM171 make it a potential candidate for hematopoietic stem cell transplantation and gene therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fares, Iman -- Chagraoui, Jalila -- Gareau, Yves -- Gingras, Stephane -- Ruel, Rejean -- Mayotte, Nadine -- Csaszar, Elizabeth -- Knapp, David J H F -- Miller, Paul -- Ngom, Mor -- Imren, Suzan -- Roy, Denis-Claude -- Watts, Kori L -- Kiem, Hans-Peter -- Herrington, Robert -- Iscove, Norman N -- Humphries, R Keith -- Eaves, Connie J -- Cohen, Sandra -- Marinier, Anne -- Zandstra, Peter W -- Sauvageau, Guy -- HL84345/HL/NHLBI NIH HHS/ -- R01 HL084345/HL/NHLBI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1509-12. doi: 10.1126/science.1256337.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics of Stem Cells Laboratory, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada. ; Medicinal Chemistry, IRIC, University of Montreal, Montreal, QC, Canada. ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada. ; Terry Fox Laboratory, British Columbia Cancer Agency and University of British Columbia, Vancouver, BC, Canada. ; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada. Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada. ; Clinical Research Division, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA. ; Clinical Research Division, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA. Department of Medicine and Pathology, University of Washington, Seattle, WA, USA. ; Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. ; Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. Department of Immunology, University of Toronto, Toronto, ON, Canada. ; Molecular Genetics of Stem Cells Laboratory, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada. Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada. Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada. guy.sauvageau@umontreal.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237102" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques ; Fetal Blood/cytology/*drug effects/physiology ; Genetic Therapy/methods ; Hematopoiesis/*drug effects/physiology ; Hematopoietic Stem Cell Transplantation/methods ; Hematopoietic Stem Cells/*drug effects/physiology ; Humans ; Immunocompromised Host ; Indoles/chemistry/*pharmacology ; Mice ; Pyrimidines/chemistry/*pharmacology ; Receptors, Aryl Hydrocarbon/*antagonists & inhibitors ; Regeneration/*drug effects ; Small Molecule Libraries/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-17
    Description: Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hussein, Samer M I -- Puri, Mira C -- Tonge, Peter D -- Benevento, Marco -- Corso, Andrew J -- Clancy, Jennifer L -- Mosbergen, Rowland -- Li, Mira -- Lee, Dong-Sung -- Cloonan, Nicole -- Wood, David L A -- Munoz, Javier -- Middleton, Robert -- Korn, Othmar -- Patel, Hardip R -- White, Carl A -- Shin, Jong-Yeon -- Gauthier, Maely E -- Le Cao, Kim-Anh -- Kim, Jong-Il -- Mar, Jessica C -- Shakiba, Nika -- Ritchie, William -- Rasko, John E J -- Grimmond, Sean M -- Zandstra, Peter W -- Wells, Christine A -- Preiss, Thomas -- Seo, Jeong-Sun -- Heck, Albert J R -- Rogers, Ian M -- Nagy, Andras -- MOP102575/Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Dec 11;516(7530):198-206. doi: 10.1038/nature14046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands [2] Netherlands Proteomics Centre, Padualaan 8, 3584CH Utrecht, The Netherlands. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia. ; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences and Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Gene and Stem Cell Therapy Program and Bioinformatics Lab, Centenary Institute, Camperdown 2050, NSW, Australia &Sydney Medical School, 31 University of Sydney 2006, New South Wales, Australia. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia [2] Genome Discovery Unit, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra) 2601, ACT, Australia. ; 1] Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto M5S-3G9, Canada [2] The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto M5S 3E1, Canada. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; Department of Systems &Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA. ; Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto M5S-3G9, Canada. ; 1] Gene and Stem Cell Therapy Program and Bioinformatics Lab, Centenary Institute, Camperdown 2050, NSW, Australia &Sydney Medical School, 31 University of Sydney 2006, New South Wales, Australia [2] Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, New South Wales, Australia. ; 1] Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia [2] College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia [2] Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences and Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5S 1E2, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5S 1E2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503233" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics ; Chromatin/chemistry/genetics/metabolism ; Chromatin Assembly and Disassembly ; DNA Methylation ; Embryonic Stem Cells/cytology/metabolism ; Epistasis, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Genome/*genetics ; Histones/chemistry/metabolism ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Internet ; Mice ; Proteome/genetics ; Proteomics ; RNA, Long Noncoding/genetics ; Transcription Factors/genetics/metabolism ; Transcription, Genetic/genetics ; Transcriptome/genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-15
    Description: InVERT molding for scalable control of tissue microarchitecture Nature Communications 4, 1847 (2013). doi:10.1038/ncomms2853 Authors: K. R. Stevens, M. D. Ungrin, R. E. Schwartz, S. Ng, B. Carvalho, K. S. Christine, R. R. Chaturvedi, C. Y. Li, P. W. Zandstra, C S Chen & S N Bhatia
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hussein, Samer M I -- Puri, Mira C -- Tonge, Peter D -- Benevento, Marco -- Corso, Andrew J -- Clancy, Jennifer L -- Mosbergen, Rowland -- Li, Mira -- Lee, Dong-Sung -- Cloonan, Nicole -- Wood, David L A -- Munoz, Javier -- Middleton, Robert -- Korn, Othmar -- Patel, Hardip R -- White, Carl A -- Shin, Jong-Yeon -- Gauthier, Maely E -- Cao, Kim-Anh Le -- Kim, Jong-Il -- Mar, Jessica C -- Shakiba, Nika -- Ritchie, William -- Rasko, John E J -- Grimmond, Sean M -- Zandstra, Peter W -- Wells, Christine A -- Preiss, Thomas -- Seo, Jeong-Sun -- Heck, Albert J R -- Rogers, Ian M -- Nagy, Andras -- England -- Nature. 2015 Jul 30;523(7562):626. doi: 10.1038/nature14606. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083747" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 58-66 
    ISSN: 0006-3592
    Keywords: stem cells ; LTC-IC ; expansion ; cytokine depletion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The present study was undertaken to define parameters that may limit the cytokine-mediated expansion of primitive hematopoietic cells in stirred suspension cultures of normal human marrow cells. In a first series of experiments, parallel measurements of the rate and extent of progenitor expansion and cytokine depletion from the medium were made for such cultures in which the cells were exposed to different cytokine concentrations. Supplementation of the medium with 2 ng/mL of interleukin-3 (IL-3), IL-6 and IL-11 plus 10 ng/mL of Flt-3 ligand (FL) and Steel factor (SF) allowed a 45-fold expansion of directly clonogenic cell (CFC) numbers within 2 weeks along with a 2.5-fold expansion of their precursors, detectable as longterm culture-initiating cells (LTC-IC). The addition of 5-fold higher levels of these cytokines enhanced the 2 week output of both CFC and LTC-IC numbers (to 66-fold and 9-fold above input respectively). However, this was also associated with an increase in the individual average rates of depletion of immunoreactive IL-3, SF and FL. As a result, even biweekly addition of fresh medium supplemented with the highest concentrations of cytokines tested failed to prevent a continuing decline in their levels relative to the input medium levels. A similar dependence of the IL-3 depletion rate on its extracellular concentration was demonstrable in suspension cultures of Mo7e cells, an IL-3-dependent human leukemic cell line.Additional experiments with various highly purified marrow cell fractions showed that the rate of cytokine depletion varied according to the type of responding cell as well as the specific cytokine. CD34+CD38- cells exhibited the greatest average cell-specific cytokine depletion rates (35-fold higher than unseparated bone marrow cells). These findings establish new principles that will be important for the optimization of hematopoietic cell bioreactors. In addition, they suggest that cytokine depletion may provide a novel feedback control mechanism in vivo which would contribute to the control of primitive hematopoietic cell proliferation and differentiation. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 58-66, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2012-02-14
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-04-29
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...