ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-15
    Description: The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF 〈/= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Hou-Feng -- Forgetta, Vincenzo -- Hsu, Yi-Hsiang -- Estrada, Karol -- Rosello-Diez, Alberto -- Leo, Paul J -- Dahia, Chitra L -- Park-Min, Kyung Hyun -- Tobias, Jonathan H -- Kooperberg, Charles -- Kleinman, Aaron -- Styrkarsdottir, Unnur -- Liu, Ching-Ti -- Uggla, Charlotta -- Evans, Daniel S -- Nielson, Carrie M -- Walter, Klaudia -- Pettersson-Kymmer, Ulrika -- McCarthy, Shane -- Eriksson, Joel -- Kwan, Tony -- Jhamai, Mila -- Trajanoska, Katerina -- Memari, Yasin -- Min, Josine -- Huang, Jie -- Danecek, Petr -- Wilmot, Beth -- Li, Rui -- Chou, Wen-Chi -- Mokry, Lauren E -- Moayyeri, Alireza -- Claussnitzer, Melina -- Cheng, Chia-Ho -- Cheung, Warren -- Medina-Gomez, Carolina -- Ge, Bing -- Chen, Shu-Huang -- Choi, Kwangbom -- Oei, Ling -- Fraser, James -- Kraaij, Robert -- Hibbs, Matthew A -- Gregson, Celia L -- Paquette, Denis -- Hofman, Albert -- Wibom, Carl -- Tranah, Gregory J -- Marshall, Mhairi -- Gardiner, Brooke B -- Cremin, Katie -- Auer, Paul -- Hsu, Li -- Ring, Sue -- Tung, Joyce Y -- Thorleifsson, Gudmar -- Enneman, Anke W -- van Schoor, Natasja M -- de Groot, Lisette C P G M -- van der Velde, Nathalie -- Melin, Beatrice -- Kemp, John P -- Christiansen, Claus -- Sayers, Adrian -- Zhou, Yanhua -- Calderari, Sophie -- van Rooij, Jeroen -- Carlson, Chris -- Peters, Ulrike -- Berlivet, Soizik -- Dostie, Josee -- Uitterlinden, Andre G -- Williams, Stephen R -- Farber, Charles -- Grinberg, Daniel -- LaCroix, Andrea Z -- Haessler, Jeff -- Chasman, Daniel I -- Giulianini, Franco -- Rose, Lynda M -- Ridker, Paul M -- Eisman, John A -- Nguyen, Tuan V -- Center, Jacqueline R -- Nogues, Xavier -- Garcia-Giralt, Natalia -- Launer, Lenore L -- Gudnason, Vilmunder -- Mellstrom, Dan -- Vandenput, Liesbeth -- Amin, Najaf -- van Duijn, Cornelia M -- Karlsson, Magnus K -- Ljunggren, Osten -- Svensson, Olle -- Hallmans, Goran -- Rousseau, Francois -- Giroux, Sylvie -- Bussiere, Johanne -- Arp, Pascal P -- Koromani, Fjorda -- Prince, Richard L -- Lewis, Joshua R -- Langdahl, Bente L -- Hermann, A Pernille -- Jensen, Jens-Erik B -- Kaptoge, Stephen -- Khaw, Kay-Tee -- Reeve, Jonathan -- Formosa, Melissa M -- Xuereb-Anastasi, Angela -- Akesson, Kristina -- McGuigan, Fiona E -- Garg, Gaurav -- Olmos, Jose M -- Zarrabeitia, Maria T -- Riancho, Jose A -- Ralston, Stuart H -- Alonso, Nerea -- Jiang, Xi -- Goltzman, David -- Pastinen, Tomi -- Grundberg, Elin -- Gauguier, Dominique -- Orwoll, Eric S -- Karasik, David -- Davey-Smith, George -- AOGC Consortium -- Smith, Albert V -- Siggeirsdottir, Kristin -- Harris, Tamara B -- Zillikens, M Carola -- van Meurs, Joyce B J -- Thorsteinsdottir, Unnur -- Maurano, Matthew T -- Timpson, Nicholas J -- Soranzo, Nicole -- Durbin, Richard -- Wilson, Scott G -- Ntzani, Evangelia E -- Brown, Matthew A -- Stefansson, Kari -- Hinds, David A -- Spector, Tim -- Cupples, L Adrienne -- Ohlsson, Claes -- Greenwood, Celia M T -- UK10K Consortium -- Jackson, Rebecca D -- Rowe, David W -- Loomis, Cynthia A -- Evans, David M -- Ackert-Bicknell, Cheryl L -- Joyner, Alexandra L -- Duncan, Emma L -- Kiel, Douglas P -- Rivadeneira, Fernando -- Richards, J Brent -- G1000143/Medical Research Council/United Kingdom -- K01 AR062655/AR/NIAMS NIH HHS/ -- MC_UU_12013/3/Medical Research Council/United Kingdom -- R01 AG005394/AG/NIA NIH HHS/ -- R01 AG005407/AG/NIA NIH HHS/ -- R01 AG027574/AG/NIA NIH HHS/ -- R01 AG027576/AG/NIA NIH HHS/ -- R01 AR035582/AR/NIAMS NIH HHS/ -- R01 AR035583/AR/NIAMS NIH HHS/ -- RC2 AR058973/AR/NIAMS NIH HHS/ -- U01 AG018197/AG/NIA NIH HHS/ -- U01 AG042140/AG/NIA NIH HHS/ -- U01 AG042143/AG/NIA NIH HHS/ -- U01 AR045580/AR/NIAMS NIH HHS/ -- U01 AR045583/AR/NIAMS NIH HHS/ -- U01 AR045614/AR/NIAMS NIH HHS/ -- U01 AR045632/AR/NIAMS NIH HHS/ -- U01 AR045647/AR/NIAMS NIH HHS/ -- U01 AR045654/AR/NIAMS NIH HHS/ -- U01 AR066160/AR/NIAMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):112-7. doi: 10.1038/nature14878. Epub 2015 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montreal H3A 1A2, Canada. ; Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal H3T 1E2, Canada. ; Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts 02131, USA. ; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Boston, Massachusetts 02115, USA. ; Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA. ; The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane 4102, Australia. ; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA. ; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York 10021, USA. ; Rheumatology Divison, Hospital for Special Surgery New York, New York 10021, USA. ; School of Clinical Science, University of Bristol, Bristol BS10 5NB, UK. ; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. ; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Department of Research, 23andMe, Mountain View, California 94041, USA. ; Department of Population Genomics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; California Pacific Medical Center Research Institute, San Francisco, California 94158, USA. ; Department of Public Health and Preventive Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Bone &Mineral Unit, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK. ; Departments of Pharmacology and Clinical Neurosciences, Umea University, Umea S-901 87, Sweden. ; Department of Public Health and Clinical Medicine, Umea University, Umea SE-901 87, Sweden. ; Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; McGill University and Genome Quebec Innovation Centre, Montreal H3A 0G1, Canada. ; Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Oregon Clinical and Translational Research Institute, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Department of Medical and Clinical Informatics, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Farr Institute of Health Informatics Research, University College London, London NW1 2DA, UK. ; Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Department of Human Genetics, McGill University, Montreal H3A 1B1, Canada. ; Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden 2300RC, The Netherlands. ; Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal H3G 1Y6, Canada. ; Department of Computer Science, Trinity University, San Antonio, Texas 78212, USA. ; Musculoskeletal Research Unit, University of Bristol, Bristol BS10 5NB, UK. ; Department of Radiation Sciences, Umea University, Umea S-901 87, Sweden. ; School of Public Health, University of Wisconsin, Milwaukee, Wisconsin 53726, USA. ; School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK. ; Department of Statistics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam 1007 MB, The Netherlands. ; Department of Human Nutrition, Wageningen University, Wageningen 6700 EV, The Netherlands. ; Department of Internal Medicine, Section Geriatrics, Academic Medical Center, Amsterdam 1105, The Netherlands. ; Nordic Bioscience, Herlev 2730, Denmark. ; Cordeliers Research Centre, INSERM UMRS 1138, Paris 75006, France. ; Institute of Cardiometabolism and Nutrition, University Pierre &Marie Curie, Paris 75013, France. ; Departments of Medicine (Cardiovascular Medicine), Centre for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Genetics, University of Barcelona, Barcelona 08028, Spain. ; U-720, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona 28029, Spain. ; Department of Human Molecular Genetics, The Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain. ; Women's Health Center of Excellence Family Medicine and Public Health, University of California - San Diego, San Diego, California 92093, USA. ; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; Osteoporosis &Bone Biology Program, Garvan Institute of Medical Research, Sydney 2010, Australia. ; School of Medicine Sydney, University of Notre Dame Australia, Sydney 6959, Australia. ; St. Vincent's Hospital &Clinical School, NSW University, Sydney 2010, Australia. ; Musculoskeletal Research Group, Institut Hospital del Mar d'Investigacions Mediques, Barcelona 08003, Spain. ; Cooperative Research Network on Aging and Fragility (RETICEF), Institute of Health Carlos III, 28029, Spain. ; Department of Internal Medicine, Hospital del Mar, Universitat Autonoma de Barcelona, Barcelona 08193, Spain. ; Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Icelandic Heart Association, Kopavogur IS-201, Iceland. ; Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland. ; Genetic epidemiology unit, Department of Epidemiology, Erasmus MC, Rotterdam 3000CA, The Netherlands. ; Department of Orthopaedics, Skane University Hospital Malmo 205 02, Sweden. ; Department of Medical Sciences, University of Uppsala, Uppsala 751 85, Sweden. ; Department of Surgical and Perioperative Sciences, Umea Unviersity, Umea 901 85, Sweden. ; Department of Molecular Biology, Medical Biochemistry and Pathology, Universite Laval, Quebec City G1V 0A6, Canada. ; Axe Sante des Populations et Pratiques Optimales en Sante, Centre de recherche du CHU de Quebec, Quebec City G1V 4G2, Canada. ; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands 6009, Australia. ; Department of Medicine, University of Western Australia, Perth 6009, Australia. ; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C 8000, Denmark. ; Department of Endocrinology, Odense University Hospital, Odense C 5000, Denmark. ; Department of Endocrinology, Hvidovre University Hospital, Hvidovre 2650, Denmark. ; Clinical Gerontology Unit, University of Cambridge, Cambridge CB2 2QQ, UK. ; Medicine and Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. ; Institute of Musculoskeletal Sciences, The Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK. ; Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta. ; Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmo, Lund University, 205 02, Sweden. ; Department of Medicine and Psychiatry, University of Cantabria, Santander 39011, Spain. ; Department of Internal Medicine, Hospital U.M. Valdecilla- IDIVAL, Santander 39008, Spain. ; Department of Legal Medicine, University of Cantabria, Santander 39011, Spain. ; Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; Department of Medicine and Physiology, McGill University, Montreal H4A 3J1, Canada. ; Department of Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 13010, Israel. ; Laboratory of Epidemiology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; School of Medicine and Pharmacology, University of Western Australia, Crawley 6009, Australia. ; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece. ; Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island 02903, USA. ; deCODE Genetics, Reykjavik IS-101, Iceland. ; Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal H3A 1A2, Canada. ; Department of Oncology, Gerald Bronfman Centre, McGill University, Montreal H2W 1S6, Canada. ; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio 43210, USA. ; The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA. ; Department of Diabetes and Endocrinology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26367794" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*genetics ; Bone and Bones/metabolism ; Disease Models, Animal ; Europe/ethnology ; European Continental Ancestry Group/genetics ; Exome/genetics ; Female ; Fractures, Bone/*genetics ; Gene Frequency/genetics ; Genetic Predisposition to Disease/genetics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genomics ; Genotype ; Homeodomain Proteins/*genetics ; Humans ; Mice ; Sequence Analysis, DNA ; Wnt Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-24
    Description: MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNA target sites (poly-miRTS)- centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)- and femoral neck (FN)-bone mineral density (BMD). In stage I, 41 102 poly-miRTSs were meta-analyzed in seven cohorts with a genome-wide significance (GWS) α = 0.05/41 102 = 1.22 x 10 –6 . By applying α = 5 x 10 –5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD ( P = 7.67 x 10 –6 and 1.58 x 10 –5 ) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD ( P = 5.08 x 10 –3 ) at α = 0.10/11 = 9.09 x 10 -3 . PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD ( P = 7.55 x 10 –6 ) at α = 0.05/2 = 0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD ( P = 8.87 x 10 –12 ). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-10
    Description: Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive ( MESP2, DLL3, LFNG, HES7 ) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T〉G), with minor allele frequency 〈0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    facet.materialart.
    Moayyeri, A., Hsu, Y.-H., Karasik, D., Estrada, K., Xiao, S.-M., Nielson, C., Srikanth, P., Giroux, S., Wilson, S. G., Zheng, H.-F., Smith, A. V., Pye, S. R., Leo, P. J., Teumer, A., Hwang, J.-Y., Ohlsson, C., McGuigan, F., Minster, R. L., Hayward, C., Olmos, J. M., Lyytikainen, L.-P., Lewis, J. R., Swart, K. M. A., Masi, L., Oldmeadow, C., Holliday, E. G., Cheng, S., van Schoor, N. M., Harvey, N. C., Kruk, M., del Greco M, F., Igl, W., Trummer, O., Grigoriou, E., Luben, R., Liu, C.-T., Zhou, Y., Oei, L., Medina-Gomez, C., Zmuda, J., Tranah, G., Brown, S. J., Williams, F. M., Soranzo, N., Jakobsdottir, J., Siggeirsdottir, K., Holliday, K. L., Hannemann, A., Go, M. J., Garcia, M., Polasek, O., Laaksonen, M., Zhu, K., Enneman, A. W., McEvoy, M., Peel, R., Sham, P. C., Jaworski, M., Johansson, A., Hicks, A. A., Pludowski, P., Scott, R., Dhonukshe-Rutten, R. A. M., van der Velde, N., Kahonen, M., Viikari, J. S., Sievanen, H., Raitakari, O. T., Gonzalez-Macias, J., Hernandez, J. L., Mellstrom, D., Ljunggren, O., Cho, Y. S., Volker, U., Nauck, M., Homuth, G., Volzke, H., Haring, R., Brown, M. A., McCloskey, E., Nicholson, G. C., Eastell, R., Eisman, J. A., Jones, G., Reid, I. R., Dennison, E. M., Wark, J., Boonen, S., Vanderschueren, D., Wu, F. C. W., Aspelund, T., Richards, J. B., Bauer, D., Hofman, A., Khaw, K.-T., Dedoussis, G., Obermayer-Pietsch, B., Gyllensten, U., Pramstaller, P. P., Lorenc, R. S., Cooper, C., Kung, A. W. C., Lips, P., Alen, M., Attia, J., Brandi, M. L., de Groot, L. C. P. G. M., Lehtimaki, T., Riancho, J. A., Campbell, H., Liu, Y., Harris, T. B., Akesson, K., Karlsson, M., Lee, J.-Y., Wallaschofski, H., Duncan, E. L., O'Neill, T. W., Gudnason, V., Spector, T. D., Rousseau, F., Orwoll, E., Cummings, S. R., Wareham, N. J., Rivadeneira, F., Uitterlinden, A. G., Prince, R. L., Kiel, D. P., Reeve, J., Kaptoge, S. K.
    Oxford University Press
    Publication Date: 2014-05-09
    Description: Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD ( n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data ( in silico n = 11 452) and new genotyping in 15 cohorts ( de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant ( P 〈 5 x 10 –8 ) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135 , a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS ( P 〈 8.23 x 10 –14 ). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P 〈 5 x 10 –6 also had the expected direction of association with any fracture ( P 〈 0.05), including three SNPs with P 〈 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-23
    Description: In humans, congenital spinal defects occur with an incidence of 0.5–1 per 1000 live births. One of the most severe syndromes with such defects is spondylocostal dysostosis (SCD). Over the past decade, the genetic basis of several forms of autosomal recessive SCD cases has been solved with the identification of four causative genes ( DLL3 , MESP2 , LFNG and HES7 ). Autosomal dominant forms of SCD have also been reported, but to date no genetic etiology has been described for these. Here, we have used exome capture and next-generation sequencing to identify a stoploss mutation in TBX6 that segregates with disease in two generations of one family. We show that this mutation has a deleterious effect on the transcriptional activation activity of the TBX6 protein, likely due to haploinsufficiency. In mouse, Tbx6 is essential for the patterning of the vertebral precursor tissues, somites; thus, mutation of TBX6 is likely to be causative of SCD in this family. This is the first identification of the genetic cause of an autosomal dominant form of SCD, and also demonstrates the potential of exome sequencing to identify genetic causes of dominant diseases even in small families with few affected individuals.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-06
    Description: Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 x 10 –8 ) level: 14q24.2 ( rs227425 , P -value 3.98 x 10 –13 , SMOC1 ) in the combined sample of males and females and 21q22.13 ( rs170183 , P -value 4.15 x 10 –9 , CLDN14 ) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n = 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 ( ZBTB40 ), 1p31.3 ( GPR177 ), 4p16.3 ( FGFRL1 ), 4q22.1 ( MEPE ), 5q14.3 ( MEF2C ), 6q25.1 ( C6orf97 , ESR1 ), 7q21.3 ( FLJ42280 , SHFM1 ), 7q31.31 ( FAM3C , WNT16 ), 8q24.12 ( TNFRSF11B ), 11p15.3 ( SOX6 ), 11q13.4 ( LRP5 ), 13q14.11 ( AKAP11 ) and 16q24 ( FOXL1 ). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes ( SMOC1 and CLDN14 ) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...