ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-05
    Description: We present a statistical analysis of the environments of 11 supernovae (SNe) which occurred in six nearby galaxies ( z 0.016). All galaxies were observed with MUSE, the high spatial resolution integral-field spectrograph mounted to the 8 m VLT UT4. These data enable us to map the full spatial extent of host galaxies up to ~3 effective radii. In this way, not only can one characterize the specific host environment of each SN, one can compare their properties with stellar populations within the full range of other environments within the host. We present a method that consists of selecting all H ii regions found within host galaxies from 2D extinction-corrected Hα emission maps. These regions are then characterized in terms of their Hα equivalent widths, star formation rates and oxygen abundances. Identifying H ii regions spatially coincident with SN explosion sites, we are thus able to determine where within the distributions of host galaxy e.g. metallicities and ages each SN is found, thus providing new constraints on SN progenitor properties. This initial pilot study using MUSE opens the way for a revolution in SN environment studies where we are now able to study multiple environment SN progenitor dependencies using a single instrument and single pointing.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-03-20
    Description: Endocytosis has a crucial role during Notch signalling after the asymmetric division of fly sensory organ precursors (SOPs): directional signalling is mediated by differential endocytosis of the ligand Delta and the Notch effector Sanpodo in one of the SOP daughters, pIIb. Here we show a new mechanism of directional signalling on the basis of the trafficking of Delta and Notch molecules already internalized in the SOP and subsequently targeted to the other daughter cell, pIIa. Internalized Delta and Notch traffic to an endosome marked by the protein Sara. During SOP mitosis, Sara endosomes containing Notch and Delta move to the central spindle and then to pIIa. Subsequently, in pIIa (but not in pIIb) Notch appears cleaved in Sara endosomes in a gamma-secretase- and Delta internalization-dependent manner, indicating that the release of the intracellular Notch tail to activate Notch target genes has occurred. We thus uncover a new mechanism to bias signalling even before asymmetric endocytosis of Sanpodo and Delta takes place in the daughter cells: already during SOP mitosis, asymmetric targeting of Delta and Notch-containing Sara endosomes will increase Notch signalling in pIIa and decrease it in pIIb.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coumailleau, F -- Furthauer, M -- Knoblich, J A -- Gonzalez-Gaitan, M -- England -- Nature. 2009 Apr 23;458(7241):1051-5. doi: 10.1038/nature07854. Epub 2009 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295516" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid Precursor Protein Secretases/metabolism ; Animal Structures/cytology/metabolism ; Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/anatomy & histology/*cytology/genetics/*metabolism ; Endocytosis ; Endosomes/*metabolism ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/*metabolism ; Mice ; Microfilament Proteins/metabolism ; Mitosis ; Protein Transport ; Receptors, Notch/*metabolism ; Signal Transduction ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-15
    Description: During asymmetric division, fate determinants at the cell cortex segregate unequally into the two daughter cells. It has recently been shown that Sara (Smad anchor for receptor activation) signalling endosomes in the cytoplasm also segregate asymmetrically during asymmetric division. Biased dispatch of Sara endosomes mediates asymmetric Notch/Delta signalling during the asymmetric division of sensory organ precursors in Drosophila. In flies, this has been generalized to stem cells in the gut and the central nervous system, and, in zebrafish, to neural precursors of the spinal cord. However, the mechanism of asymmetric endosome segregation is not understood. Here we show that the plus-end kinesin motor Klp98A targets Sara endosomes to the central spindle, where they move bidirectionally on an antiparallel array of microtubules. The microtubule depolymerizing kinesin Klp10A and its antagonist Patronin generate central spindle asymmetry. This asymmetric spindle, in turn, polarizes endosome motility, ultimately causing asymmetric endosome dispatch into one daughter cell. We demonstrate this mechanism by inverting the polarity of the central spindle by polar targeting of Patronin using nanobodies (single-domain antibodies). This spindle inversion targets the endosomes to the wrong cell. Our data uncover the molecular and physical mechanism by which organelles localized away from the cellular cortex can be dispatched asymmetrically during asymmetric division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derivery, Emmanuel -- Seum, Carole -- Daeden, Alicia -- Loubery, Sylvain -- Holtzer, Laurent -- Julicher, Frank -- Gonzalez-Gaitan, Marcos -- England -- Nature. 2015 Dec 10;528(7581):280-5. doi: 10.1038/nature16443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland. ; Max Planck Institute for the Physics of Complex Systems, Nothnitzer Strasse 38, 01187 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asymmetric Cell Division/*physiology ; Cell Polarity ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*cytology/genetics ; Endosomes/*metabolism ; Kinesin/genetics/*metabolism ; Microtubule-Associated Proteins/metabolism ; Sequence Deletion ; Single-Domain Antibodies ; Spindle Apparatus/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-11-18
    Description: During development, cells acquire positional information by reading the concentration of morphogens. In the developing fly wing, a gradient of the transforming growth factor-beta (TGF-beta)-type morphogen decapentaplegic (Dpp) is transduced into a gradient of concentration of the phosphorylated form of the R-Smad transcription factor Mad. The endosomal protein Sara (Smad anchor for receptor activation) recruits R-Smads for phosphorylation by the type I TGF-beta receptor. We found that Sara, Dpp, and its type I receptor Thickveins were targeted to a subpopulation of apical endosomes in the developing wing epithelial cells. During mitosis, the Sara endosomes and the receptors therein associated with the spindle machinery to segregate into the two daughter cells. Daughter cells thereby inherited equal amounts of signaling molecules and thus retained the Dpp signaling levels of the mother cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokel, Christian -- Schwabedissen, Anja -- Entchev, Eugeni -- Renaud, Olivier -- Gonzalez-Gaitan, Marcos -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1135-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Division ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/*metabolism ; Endosomes/*metabolism ; Epithelial Cells/cytology/metabolism ; *Mitosis ; Phosphorylation ; Point Mutation ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction ; Smad Proteins, Receptor-Regulated/metabolism ; Transcription Factors/metabolism ; Transforming Growth Factor beta/*metabolism ; Wings, Animal/cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-01-27
    Description: In the developing fly wing, secreted morphogens such as Decapentaplegic (Dpp) and Wingless (Wg) form gradients of concentration providing positional information. Dpp forms a longer-range gradient than Wg. To understand how the range is controlled, we measured the four key kinetic parameters governing morphogen spreading: the production rate, the effective diffusion coefficient, the degradation rate, and the immobile fraction. The four parameters had different values for Dpp versus Wg. In addition, Dynamin-dependent endocytosis was required for spreading of Dpp, but not Wg. Thus, the cellular mechanisms of Dpp and Wingless spreading are different: Dpp spreading requires endocytic, intracellular trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kicheva, Anna -- Pantazis, Periklis -- Bollenbach, Tobias -- Kalaidzidis, Yannis -- Bittig, Thomas -- Julicher, Frank -- Gonzalez-Gaitan, Marcos -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):521-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255514" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Diffusion ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/growth & development/*metabolism ; Endocytosis ; Fluorescence Recovery After Photobleaching ; Kinetics ; Mathematics ; Proto-Oncogene Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Temperature ; Wings, Animal/*growth & development/*metabolism ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-10
    Description: Morphogens, such as Decapentaplegic (Dpp) in the fly imaginal discs, form graded concentration profiles that control patterning and growth of developing organs. In the imaginal discs, proliferative growth is homogeneous in space, posing the conundrum of how morphogen concentration gradients could control position-independent growth. To understand the mechanism of proliferation control by the Dpp gradient, we quantified Dpp concentration and signaling levels during wing disc growth. Both Dpp concentration and signaling gradients scale with tissue size during development. On average, cells divide when Dpp signaling levels have increased by 50%. Our observations are consistent with a growth control mechanism based on temporal changes of cellular morphogen signaling levels. For a scaling gradient, this mechanism generates position-independent growth rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wartlick, O -- Mumcu, P -- Kicheva, A -- Bittig, T -- Seum, C -- Julicher, F -- Gonzalez-Gaitan, M -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1154-9. doi: 10.1126/science.1200037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Faculty of Sciences, Geneva University, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; *Cell Proliferation ; Computer Simulation ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/genetics/*growth & development/*metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Models, Biological ; Morphogenesis ; Mutation ; *Signal Transduction ; Wings, Animal/anatomy & histology/cytology/*growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-29
    Description: A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na i D absorption lines, interpreted as evidence of circumstellar material surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass-loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the European Southern Observatory Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (~20 per cent) of SNe Ia displaying blueshifted narrow Na i D absorption features compared to redshifted Na i D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na i D absorption and SNe Ia displaying blueshifted narrow Na i D absorption features have broader light curves. The strength of the Na i D absorption is stronger in SNe Ia displaying blueshifted Na i D absorption features than those without blueshifted features, and the strength of the blueshifted Na i D is correlated with the B  – V colour of the SN at maximum light. This strongly suggests the absorbing material is local to the SN. In the context of the progenitor systems of SNe Ia, we discuss the significance of these findings and other recent observational evidence on the nature of SN Ia progenitors. We present a summary that suggests that there are at least two distinct populations of normal, cosmologically useful SNe Ia.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Mechanisms of Development 46 (1994), S. 183-200 
    ISSN: 0925-4773
    Keywords: Cell proliferation centers ; Compartments ; Morphogenesis ; Venation pattern
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0925-4773
    Keywords: Blastoderm ; Drosophila ; Segmentation genes ; Spatial regulation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Trends in Genetics 9 (1993), S. 371-373 
    ISSN: 0168-9525
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...