ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-18
    Description: Haematopoietic stem cells (HSCs) are widely studied by HSC transplantation into immune- and blood-cell-depleted recipients. Single HSCs can rebuild the system after transplantation. Chromosomal marking, viral integration and barcoding of transplanted HSCs suggest that very low numbers of HSCs perpetuate a continuous stream of differentiating cells. However, the numbers of productive HSCs during normal haematopoiesis, and the flux of differentiating progeny remain unknown. Here we devise a mouse model allowing inducible genetic labelling of the most primitive Tie2(+) HSCs in bone marrow, and quantify label progression along haematopoietic development by limiting dilution analysis and data-driven modelling. During maintenance of the haematopoietic system, at least 30% or approximately 5,000 HSCs are productive in the adult mouse after label induction. However, the time to approach equilibrium between labelled HSCs and their progeny is surprisingly long, a time scale that would exceed the mouse's life. Indeed, we find that adult haematopoiesis is largely sustained by previously designated 'short-term' stem cells downstream of HSCs that nearly fully self-renew, and receive rare but polyclonal HSC input. By contrast, in fetal and early postnatal life, HSCs are rapidly used to establish the immune and blood system. In the adult mouse, 5-fluoruracil-induced leukopenia enhances the output of HSCs and of downstream compartments, thus accelerating haematopoietic flux. Label tracing also identifies a strong lineage bias in adult mice, with several-hundred-fold larger myeloid than lymphoid output, which is only marginally accentuated with age. Finally, we show that transplantation imposes severe constraints on HSC engraftment, consistent with the previously observed oligoclonal HSC activity under these conditions. Thus, we uncover fundamental differences between the normal maintenance of the haematopoietic system, its regulation by challenge, and its re-establishment after transplantation. HSC fate mapping and its linked modelling provide a quantitative framework for studying in situ the regulation of haematopoiesis in health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busch, Katrin -- Klapproth, Kay -- Barile, Melania -- Flossdorf, Michael -- Holland-Letz, Tim -- Schlenner, Susan M -- Reth, Michael -- Hofer, Thomas -- Rodewald, Hans-Reimer -- England -- Nature. 2015 Feb 26;518(7540):542-6. doi: 10.1038/nature14242. Epub 2015 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. ; Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. ; Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. ; 1] Department of Microbiology and Immunology, University of Leuven, B-3000 Leuven, Belgium [2] Autoimmune Genetics Laboratory, VIB, B-3000 Leuven, Belgium. ; 1] BIOSS, Centre For Biological Signaling Studies, University of Freiburg, Schanzlestrasse 18, D-79104 Freiburg, Germany [2] Department of Molecular Immunology, BioIII, Faculty of Biology, University of Freiburg, and Max-Planck Institute of Immunobiology and Epigenetics, Stubeweg 51, D-79108 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686605" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Animals, Newborn ; Bone Marrow Transplantation ; Cell Lineage/*physiology ; Cell Proliferation ; Cell Tracking ; Female ; Fetus/cytology/embryology ; Fluorouracil ; *Hematopoiesis ; Hematopoietic Stem Cells/*cytology/metabolism ; Male ; Mice ; Receptor, TIE-2/metabolism ; Stem Cells/*cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-25
    Description: Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walter, Dagmar -- Lier, Amelie -- Geiselhart, Anja -- Thalheimer, Frederic B -- Huntscha, Sina -- Sobotta, Mirko C -- Moehrle, Bettina -- Brocks, David -- Bayindir, Irem -- Kaschutnig, Paul -- Muedder, Katja -- Klein, Corinna -- Jauch, Anna -- Schroeder, Timm -- Geiger, Hartmut -- Dick, Tobias P -- Holland-Letz, Tim -- Schmezer, Peter -- Lane, Steven W -- Rieger, Michael A -- Essers, Marieke A G -- Williams, David A -- Trumpp, Andreas -- Milsom, Michael D -- England -- Nature. 2015 Apr 23;520(7548):549-52. doi: 10.1038/nature14131. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany. ; Deutsches Krebsforschungszentrum (DKFZ), Division of Stem Cells and Cancer, Experimental Hematology Group, 69120 Heidelberg, Germany. ; LOEWE Center for Cell and Gene Therapy and Department of Hematology/Oncology, Goethe University Frankfurt, 60595 Frankfurt am Main, Germany. ; Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Division of Redox Regulation, 69120 Heidelberg, Germany. ; Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany. ; Deutsches Krebsforschungszentrum (DKFZ), Division of Stem Cells and Cancer, 69120 Heidelberg, Germany. ; Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany. ; ETH Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland. ; 1] Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany [2] Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA. ; Deutsches Krebsforschungszentrum (DKFZ), Division of Biostatistics, 69120 Heidelberg, Germany. ; Deutsches Krebsforschungszentrum (DKFZ), Division of Epigenomics and Cancer Risk Factors, 69120 Heidelberg, Germany. ; QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane 4006, Australia. ; 1] Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany [2] Deutsches Krebsforschungszentrum (DKFZ), Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, 69120 Heidelberg, Germany. ; 1] Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Dana-Faber Cancer Institute, Boston, Massachusetts 02115, USA [3] Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA [4] Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany [2] Deutsches Krebsforschungszentrum (DKFZ), Division of Stem Cells and Cancer, 69120 Heidelberg, Germany. ; 1] Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany [2] Deutsches Krebsforschungszentrum (DKFZ), Division of Stem Cells and Cancer, Experimental Hematology Group, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707806" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow/pathology ; *Cell Cycle ; Cell Death ; Cell Proliferation ; *DNA Damage ; Fanconi Anemia/metabolism ; Hematopoietic Stem Cells/*cytology/*metabolism ; Mice ; Reactive Oxygen Species/metabolism ; Stress, Physiological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-01
    Print ISSN: 0167-9473
    Electronic ISSN: 1872-7352
    Topics: Mathematics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...