ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (210)
  • Molecular Sequence Data  (126)
  • Protein Structure, Tertiary  (103)
  • 2015-2019
  • 2010-2014  (210)
  • 2010  (210)
  • Chemistry and Pharmacology  (210)
  • Computer Science  (99)
Collection
  • Articles  (210)
Keywords
Years
  • 2015-2019
  • 2010-2014  (210)
Year
Topic
  • 1
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-09
    Description: In the ovules of most sexual flowering plants female gametogenesis is initiated from a single surviving gametic cell, the functional megaspore, formed after meiosis of the somatically derived megaspore mother cell (MMC). Because some mutants and certain sexual species exhibit more than one MMC, and many others are able to form gametes without meiosis (by apomixis), it has been suggested that somatic cells in the ovule are competent to respond to a local signal likely to have an important function in determination. Here we show that the Arabidopsis protein ARGONAUTE 9 (AGO9) controls female gamete formation by restricting the specification of gametophyte precursors in a dosage-dependent, non-cell-autonomous manner. Mutations in AGO9 lead to the differentiation of multiple gametic cells that are able to initiate gametogenesis. The AGO9 protein is not expressed in the gamete lineage; instead, it is expressed in cytoplasmic foci of somatic companion cells. Mutations in SUPPRESSOR OF GENE SILENCING 3 and RNA-DEPENDENT RNA POLYMERASE 6 exhibit an identical defect to ago9 mutants, indicating that the movement of small RNA (sRNAs) silencing out of somatic companion cells is necessary for controlling the specification of gametic cells. AGO9 preferentially interacts with 24-nucleotide sRNAs derived from transposable elements (TEs), and its activity is necessary to silence TEs in female gametes and their accessory cells. Our results show that AGO9-dependent sRNA silencing is crucial to specify cell fate in the Arabidopsis ovule, and that epigenetic reprogramming in companion cells is necessary for sRNA-dependent silencing in plant gametes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olmedo-Monfil, Vianey -- Duran-Figueroa, Noe -- Arteaga-Vazquez, Mario -- Demesa-Arevalo, Edgar -- Autran, Daphne -- Grimanelli, Daniel -- Slotkin, R Keith -- Martienssen, Robert A -- Vielle-Calzada, Jean-Philippe -- R01 GM067014/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 25;464(7288):628-32. doi: 10.1038/nature08828. Epub 2010 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genomica para la Biodiversidad y Departamento de Ingenieria Genetica de Plantas, Cinvestav Irapuato CP36500 Guanajuato, Mexico.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20208518" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Argonaute Proteins ; DNA Transposable Elements/genetics ; Gametogenesis, Plant/*physiology ; Gene Expression Regulation, Plant ; Gene Silencing ; Meiosis ; Molecular Sequence Data ; Mutagenesis, Insertional/genetics ; Ovule/growth & development/*metabolism ; Phenotype ; RNA, Plant/*metabolism ; RNA-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-02-19
    Description: E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Shaun K -- Capili, Allan D -- Lu, Xuequan -- Tan, Derek S -- Lima, Christopher D -- F32 GM075695/GM/NIGMS NIH HHS/ -- F32 GM075695-03/GM/NIGMS NIH HHS/ -- R01 AI068038/AI/NIAID NIH HHS/ -- R01 AI068038-02/AI/NIAID NIH HHS/ -- R01 AI068038-03/AI/NIAID NIH HHS/ -- R01 GM065872/GM/NIGMS NIH HHS/ -- R01 GM065872-09/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):906-12. doi: 10.1038/nature08765.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164921" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; *Biocatalysis ; Catalytic Domain/*physiology ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; Humans ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; SUMO-1 Protein/*chemistry/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Sulfides/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Activating Enzymes/*chemistry/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-21
    Description: MyD88, IRAK4 and IRAK2 are critical signalling mediators of the TLR/IL1-R superfamily. Here we report the crystal structure of the MyD88-IRAK4-IRAK2 death domain (DD) complex, which surprisingly reveals a left-handed helical oligomer that consists of 6 MyD88, 4 IRAK4 and 4 IRAK2 DDs. Assembly of this helical signalling tower is hierarchical, in which MyD88 recruits IRAK4 and the MyD88-IRAK4 complex recruits the IRAK4 substrates IRAK2 or the related IRAK1. Formation of these Myddosome complexes brings the kinase domains of IRAKs into proximity for phosphorylation and activation. Composite binding sites are required for recruitment of the individual DDs in the complex, which are confirmed by mutagenesis and previously identified signalling mutations. Specificities in Myddosome formation are dictated by both molecular complementarity and correspondence of surface electrostatics. The MyD88-IRAK4-IRAK2 complex provides a template for Toll signalling in Drosophila and an elegant mechanism for versatile assembly and regulation of DD complexes in signal transduction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Su-Chang -- Lo, Yu-Chih -- Wu, Hao -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI050872/AI/NIAID NIH HHS/ -- R01 AI050872-09/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):885-90. doi: 10.1038/nature09121. Epub 2010 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485341" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; *Interleukin-1 Receptor-Associated Kinases/chemistry/metabolism ; *Models, Molecular ; *Myeloid Differentiation Factor 88/chemistry/metabolism ; Protein Structure, Tertiary ; Receptors, Interleukin-1/metabolism/*physiology ; *Signal Transduction ; Toll-Like Receptors/metabolism/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-21
    Description: Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Bryan H -- Burgin, Alex B -- Deweese, Joseph E -- Osheroff, Neil -- Berger, James M -- CA077373/CA/NCI NIH HHS/ -- GM033944/GM/NIGMS NIH HHS/ -- GM053960/GM/NIGMS NIH HHS/ -- GM08295/GM/NIGMS NIH HHS/ -- R01 CA077373/CA/NCI NIH HHS/ -- R01 CA077373-11S1/CA/NCI NIH HHS/ -- R01 CA077373-12/CA/NCI NIH HHS/ -- R01 GM033944/GM/NIGMS NIH HHS/ -- T32 CA009592/CA/NCI NIH HHS/ -- T32CA09592/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jun 3;465(7298):641-4. doi: 10.1038/nature08974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485342" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; DNA Topoisomerases, Type II/*chemistry/*metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Saccharomyces cerevisiae/*enzymology ; Tyrosine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-16
    Description: Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Cuimin -- Young, Anna L -- Starling-Windhof, Amanda -- Bracher, Andreas -- Saschenbrecker, Sandra -- Rao, Bharathi Vasudeva -- Rao, Karnam Vasudeva -- Berninghausen, Otto -- Mielke, Thorsten -- Hartl, F Ulrich -- Beckmann, Roland -- Hayer-Hartl, Manajit -- England -- Nature. 2010 Jan 14;463(7278):197-202. doi: 10.1038/nature08651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075914" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Chaperonin 10/metabolism ; Chaperonin 60/metabolism ; Cryoelectron Microscopy ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Protein Binding ; *Protein Folding ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Ribulose-Bisphosphate Carboxylase/*chemistry/*metabolism/ultrastructure ; Synechococcus/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-02-26
    Description: The Red Queen hypothesis proposes that coevolution of interacting species (such as hosts and parasites) should drive molecular evolution through continual natural selection for adaptation and counter-adaptation. Although the divergence observed at some host-resistance and parasite-infectivity genes is consistent with this, the long time periods typically required to study coevolution have so far prevented any direct empirical test. Here we show, using experimental populations of the bacterium Pseudomonas fluorescens SBW25 and its viral parasite, phage Phi2 (refs 10, 11), that the rate of molecular evolution in the phage was far higher when both bacterium and phage coevolved with each other than when phage evolved against a constant host genotype. Coevolution also resulted in far greater genetic divergence between replicate populations, which was correlated with the range of hosts that coevolved phage were able to infect. Consistent with this, the most rapidly evolving phage genes under coevolution were those involved in host infection. These results demonstrate, at both the genomic and phenotypic level, that antagonistic coevolution is a cause of rapid and divergent evolution, and is likely to be a major driver of evolutionary change within species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717453/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717453/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paterson, Steve -- Vogwill, Tom -- Buckling, Angus -- Benmayor, Rebecca -- Spiers, Andrew J -- Thomson, Nicholas R -- Quail, Mike -- Smith, Frances -- Walker, Danielle -- Libberton, Ben -- Fenton, Andrew -- Hall, Neil -- Brockhurst, Michael A -- 079643/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Mar 11;464(7286):275-8. doi: 10.1038/nature08798. Epub 2010 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20182425" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/genetics/*physiology ; *Biological Evolution ; *Evolution, Molecular ; Genetic Variation ; Molecular Sequence Data ; Phenotype ; Pseudomonas fluorescens/*genetics/*virology ; Selection, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-05-25
    Description: The three-dimensional structures of proteins often show a modular architecture comprised of discrete structural regions or domains. Cooperative communication between these regions is important for catalysis, regulation and efficient folding; lack of coupling has been implicated in the formation of fibrils and other misfolding pathologies. How different structural regions of a protein communicate and contribute to a protein's overall energetics and folding, however, is still poorly understood. Here we use a single-molecule optical tweezers approach to induce the selective unfolding of particular regions of T4 lysozyme and monitor the effect on other regions not directly acted on by force. We investigate how the topological organization of a protein (the order of structural elements along the sequence) affects the coupling and folding cooperativity between its domains. To probe the status of the regions not directly subjected to force, we determine the free energy changes during mechanical unfolding using Crooks' fluctuation theorem. We pull on topological variants (circular permutants) and find that the topological organization of the polypeptide chain critically determines the folding cooperativity between domains and thus what parts of the folding/unfolding landscape are explored. We speculate that proteins may have evolved to select certain topologies that increase coupling between regions to avoid areas of the landscape that lead to kinetic trapping and misfolding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911970/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911970/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shank, Elizabeth A -- Cecconi, Ciro -- Dill, Jesse W -- Marqusee, Susan -- Bustamante, Carlos -- GM 32543/GM/NIGMS NIH HHS/ -- GM 50945/GM/NIGMS NIH HHS/ -- R01 GM050945/GM/NIGMS NIH HHS/ -- R01 GM050945-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 3;465(7298):637-40. doi: 10.1038/nature09021. Epub 2010 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20495548" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacteriophage T4/*enzymology ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism ; Optical Tweezers ; Probability ; Protein Denaturation ; *Protein Folding ; Protein Structure, Tertiary ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-09-25
    Description: Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997044/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997044/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Weimin -- Li, Yingying -- Learn, Gerald H -- Rudicell, Rebecca S -- Robertson, Joel D -- Keele, Brandon F -- Ndjango, Jean-Bosco N -- Sanz, Crickette M -- Morgan, David B -- Locatelli, Sabrina -- Gonder, Mary K -- Kranzusch, Philip J -- Walsh, Peter D -- Delaporte, Eric -- Mpoudi-Ngole, Eitel -- Georgiev, Alexander V -- Muller, Martin N -- Shaw, George M -- Peeters, Martine -- Sharp, Paul M -- Rayner, Julian C -- Hahn, Beatrice H -- P30 AI 7767/AI/NIAID NIH HHS/ -- P30 AI027767/AI/NIAID NIH HHS/ -- P30 AI027767-21A1/AI/NIAID NIH HHS/ -- R01 AI058715/AI/NIAID NIH HHS/ -- R01 AI058715-06A1/AI/NIAID NIH HHS/ -- R01 AI058715-07/AI/NIAID NIH HHS/ -- R01 AI50529/AI/NIAID NIH HHS/ -- R01 I58715/PHS HHS/ -- R03 AI074778/AI/NIAID NIH HHS/ -- R03 AI074778-02/AI/NIAID NIH HHS/ -- R37 AI050529/AI/NIAID NIH HHS/ -- R37 AI050529-07/AI/NIAID NIH HHS/ -- R37 AI050529-08/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- T32 AI007245-26/AI/NIAID NIH HHS/ -- T32 GM008111/GM/NIGMS NIH HHS/ -- T32 GM008111-13/GM/NIGMS NIH HHS/ -- U19 AI 067854/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- U19 AI067854-06/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Sep 23;467(7314):420-5. doi: 10.1038/nature09442.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20864995" target="_blank"〉PubMed〈/a〉
    Keywords: Africa/epidemiology ; Animals ; Animals, Wild/classification/parasitology ; Ape Diseases/epidemiology/*parasitology/transmission ; DNA, Mitochondrial/analysis/genetics ; Evolution, Molecular ; Feces/parasitology ; Genes, Mitochondrial/genetics ; Genetic Variation/genetics ; Genome, Protozoan/genetics ; Gorilla gorilla/classification/*parasitology ; Humans ; Malaria, Falciparum/epidemiology/*parasitology/transmission/*veterinary ; Molecular Sequence Data ; Pan paniscus/parasitology ; Pan troglodytes/parasitology ; Phylogeny ; Plasmodium/classification/genetics/isolation & purification ; Plasmodium falciparum/genetics/*isolation & purification ; Prevalence ; Zoonoses/parasitology/transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-01-16
    Description: Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmutz, Jeremy -- Cannon, Steven B -- Schlueter, Jessica -- Ma, Jianxin -- Mitros, Therese -- Nelson, William -- Hyten, David L -- Song, Qijian -- Thelen, Jay J -- Cheng, Jianlin -- Xu, Dong -- Hellsten, Uffe -- May, Gregory D -- Yu, Yeisoo -- Sakurai, Tetsuya -- Umezawa, Taishi -- Bhattacharyya, Madan K -- Sandhu, Devinder -- Valliyodan, Babu -- Lindquist, Erika -- Peto, Myron -- Grant, David -- Shu, Shengqiang -- Goodstein, David -- Barry, Kerrie -- Futrell-Griggs, Montona -- Abernathy, Brian -- Du, Jianchang -- Tian, Zhixi -- Zhu, Liucun -- Gill, Navdeep -- Joshi, Trupti -- Libault, Marc -- Sethuraman, Anand -- Zhang, Xue-Cheng -- Shinozaki, Kazuo -- Nguyen, Henry T -- Wing, Rod A -- Cregan, Perry -- Specht, James -- Grimwood, Jane -- Rokhsar, Dan -- Stacey, Gary -- Shoemaker, Randy C -- Jackson, Scott A -- England -- Nature. 2010 Jan 14;463(7278):178-83. doi: 10.1038/nature08670.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HudsonAlpha Genome Sequencing Center, 601 Genome Way, Huntsville, Alabama 35806, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075913" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Breeding ; Chromosomes, Plant/genetics ; Evolution, Molecular ; Gene Duplication ; Genes, Duplicate/genetics ; Genes, Plant/genetics ; Genome, Plant/*genetics ; *Genomics ; Molecular Sequence Data ; Multigene Family/genetics ; Phylogeny ; Plant Root Nodulation/genetics ; *Polyploidy ; Quantitative Trait Loci/genetics ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid/genetics ; Soybean Oil/biosynthesis ; Soybeans/*genetics ; Synteny/genetics ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-02-09
    Description: Ca(2+) channels and calmodulin (CaM) are two prominent signalling hubs that synergistically affect functions as diverse as cardiac excitability, synaptic plasticity and gene transcription. It is therefore fitting that these hubs are in some sense coordinated, as the opening of Ca(V)1-2 Ca(2+) channels are regulated by a single CaM constitutively complexed with channels. The Ca(2+)-free form of CaM (apoCaM) is already pre-associated with the isoleucine-glutamine (IQ) domain on the channel carboxy terminus, and subsequent Ca(2+) binding to this 'resident' CaM drives conformational changes that then trigger regulation of channel opening. Another potential avenue for channel-CaM coordination could arise from the absence of Ca(2+) regulation in channels lacking a pre-associated CaM. Natural fluctuations in CaM concentrations might then influence the fraction of regulable channels and, thereby, the overall strength of Ca(2+) feedback. However, the prevailing view has been that the ultrastrong affinity of channels for apoCaM ensures their saturation with CaM, yielding a significant form of concentration independence between Ca(2+) channels and CaM. Here we show that significant exceptions to this autonomy exist, by combining electrophysiology (to characterize channel regulation) with optical fluorescence resonance energy transfer (FRET) sensor determination of free-apoCaM concentration in live cells. This approach translates quantitative CaM biochemistry from the traditional test-tube context into the realm of functioning holochannels within intact cells. From this perspective, we find that long splice forms of Ca(V)1.3 and Ca(V)1.4 channels include a distal carboxy tail that resembles an enzyme competitive inhibitor that retunes channel affinity for apoCaM such that natural CaM variations affect the strength of Ca(2+) feedback modulation. Given the ubiquity of these channels, the connection between ambient CaM levels and Ca(2+) entry through channels is broadly significant for Ca(2+) homeostasis. Strategies such as ours promise key advances for the in situ analysis of signalling molecules resistant to in vitro reconstitution, such as Ca(2+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xiaodong -- Yang, Philemon S -- Yang, Wanjun -- Yue, David T -- P30 DC005211/DC/NIDCD NIH HHS/ -- R01 DC000276/DC/NIDCD NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):968-72. doi: 10.1038/nature08766. Epub 2010 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20139964" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Apoproteins/analysis/metabolism ; Binding, Competitive/drug effects ; Calcium/analysis/metabolism/pharmacology ; Calcium Channel Blockers/*chemistry/*metabolism ; Calcium Channels/*chemistry/genetics/*metabolism ; Calmodulin/analysis/*metabolism ; Cell Line ; Cell Survival ; Electrophysiology ; *Feedback, Physiological ; Fluorescence Resonance Energy Transfer ; Humans ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-12-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernado, Pau -- Blackledge, Martin -- England -- Nature. 2010 Dec 23;468(7327):1046-8. doi: 10.1038/4681046a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179158" target="_blank"〉PubMed〈/a〉
    Keywords: *Biochemistry/methods ; Models, Chemical ; Protein Structure, Tertiary ; Proteins/*chemistry ; Proto-Oncogene Proteins c-hck/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-01-08
    Description: The ability to silence the activity of genetically specified neurons in a temporally precise fashion would provide the opportunity to investigate the causal role of specific cell classes in neural computations, behaviours and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate powerful, safe, multiple-colour silencing of neural activity. The gene archaerhodopsin-3 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in the mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. Furthermore, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue versus red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of 'optogenetic' voltage and ion modulator, which will broadly enable new neuroscientific, biological, neurological and psychiatric investigations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939492/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939492/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow, Brian Y -- Han, Xue -- Dobry, Allison S -- Qian, Xiaofeng -- Chuong, Amy S -- Li, Mingjie -- Henninger, Michael A -- Belfort, Gabriel M -- Lin, Yingxi -- Monahan, Patrick E -- Boyden, Edward S -- 1K99MH085944/MH/NIMH NIH HHS/ -- DP2 OD002002/OD/NIH HHS/ -- DP2 OD002002-01/OD/NIH HHS/ -- K99 MH085944/MH/NIMH NIH HHS/ -- K99 MH085944-01/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):98-102. doi: 10.1038/nature08652.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054397" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/radiation effects ; Animals ; Ascomycota/metabolism/radiation effects ; Color ; Electric Conductivity ; Euryarchaeota/metabolism/radiation effects ; Genetic Engineering/*methods ; Hydrogen-Ion Concentration ; Mice ; Molecular Sequence Data ; Neocortex/cytology/physiology/radiation effects ; Neurons/*metabolism/*radiation effects ; Proton Pumps/classification/genetics/*metabolism/*radiation effects ; Rhodopsins, Microbial/antagonists & inhibitors/genetics/metabolism/radiation ; effects ; Wakefulness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-06-26
    Description: DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silverstein, Timothy D -- Johnson, Robert E -- Jain, Rinku -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA107650/CA/NCI NIH HHS/ -- R01 CA107650-39/CA/NCI NIH HHS/ -- R01 ES017767/ES/NIEHS NIH HHS/ -- R01 ES017767-01/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1039-43. doi: 10.1038/nature09104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577207" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Pyrimidine Dimers/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Skin Neoplasms/*enzymology/genetics ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-08-10
    Description: Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perocchi, Fabiana -- Gohil, Vishal M -- Girgis, Hany S -- Bao, X Robert -- McCombs, Janet E -- Palmer, Amy E -- Mootha, Vamsi K -- DK080261/DK/NIDDK NIH HHS/ -- GM0077465/GM/NIGMS NIH HHS/ -- GM084027/GM/NIGMS NIH HHS/ -- R01 GM077465/GM/NIGMS NIH HHS/ -- R01 GM077465-01A1/GM/NIGMS NIH HHS/ -- R01 GM077465-02/GM/NIGMS NIH HHS/ -- R01 GM077465-03/GM/NIGMS NIH HHS/ -- R01 GM077465-04/GM/NIGMS NIH HHS/ -- R01 GM077465-05/GM/NIGMS NIH HHS/ -- R01 GM077465-06/GM/NIGMS NIH HHS/ -- R01 GM084027/GM/NIGMS NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- R24 DK080261-04/DK/NIDDK NIH HHS/ -- TR2 GM08759/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 16;467(7313):291-6. doi: 10.1038/nature09358. Epub 2010 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20693986" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Antigens, Plant ; Calcium/*metabolism ; *Calcium Signaling ; Calcium-Binding Proteins/*chemistry/deficiency/genetics/*metabolism ; Cation Transport Proteins ; Cell Respiration ; Cytoplasm/metabolism ; DNA, Mitochondrial/analysis ; *EF Hand Motifs ; Endoplasmic Reticulum/metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Homeostasis ; Humans ; Membrane Potentials ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins ; Mitochondrial Proteins/*chemistry/deficiency/genetics/*metabolism ; NAD/metabolism ; NADP/metabolism ; Oxidative Phosphorylation ; Protein Structure, Tertiary ; Protein Transport ; RNA Interference
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-01-08
    Description: Archaea, one of three major evolutionary lineages of life, encode proteasomes highly related to those of eukaryotes. In contrast, archaeal ubiquitin-like proteins are less conserved and not known to function in protein conjugation. This has complicated our understanding of the origins of ubiquitination and its connection to proteasomes. Here we report two small archaeal modifier proteins, SAMP1 and SAMP2, with a beta-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, that form protein conjugates in the archaeon Haloferax volcanii. The levels of SAMP-conjugates were altered by nitrogen-limitation and proteasomal gene knockout and spanned various functions including components of the Urm1 pathway. LC-MS/MS-based collision-induced dissociation demonstrated isopeptide bonds between the C-terminal glycine of SAMP2 and the epsilon-amino group of lysines from a number of protein targets and Lys 58 of SAMP2 itself, revealing poly-SAMP chains. The widespread distribution and diversity of pathways modified by SAMPylation suggest that this type of protein conjugation is central to the archaeal lineage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humbard, Matthew A -- Miranda, Hugo V -- Lim, Jae-Min -- Krause, David J -- Pritz, Jonathan R -- Zhou, Guangyin -- Chen, Sixue -- Wells, Lance -- Maupin-Furlow, Julie A -- 1S10 RR025418-01/RR/NCRR NIH HHS/ -- P41 RR018502/RR/NCRR NIH HHS/ -- P41 RR018502-07/RR/NCRR NIH HHS/ -- R01 GM057498/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):54-60. doi: 10.1038/nature08659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/chemistry/*metabolism ; Gene Deletion ; Glycylglycine/metabolism ; Haloferax volcanii/genetics/metabolism ; Immunoprecipitation ; Mass Spectrometry ; Molecular Sequence Data ; Nitrogen/metabolism ; Proteasome Endopeptidase Complex/genetics/metabolism ; Sequence Alignment ; Sulfur/metabolism ; Ubiquitination ; Ubiquitins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-01-30
    Description: Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain gamma-carboxylation of many blood coagulation factors. Here, we report the 3.6 A crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Weikai -- Schulman, Sol -- Dutton, Rachel J -- Boyd, Dana -- Beckwith, Jon -- Rapoport, Tom A -- GMO41883/PHS HHS/ -- K99 HL097083/HL/NHLBI NIH HHS/ -- K99 HL097083-01/HL/NHLBI NIH HHS/ -- K991K99HL097083/HL/NHLBI NIH HHS/ -- R00 HL097083/HL/NHLBI NIH HHS/ -- R01 GM041883/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):507-12. doi: 10.1038/nature08720.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. weikai@crystal.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticoagulants ; Bacterial Proteins/chemistry ; Catalytic Domain ; Disulfides/chemistry ; Drug Resistance/genetics ; Electron Transport ; Humans ; Membrane Proteins/chemistry ; Mixed Function Oxygenases/*chemistry/genetics ; *Models, Molecular ; Protein Structure, Tertiary ; Synechococcus/*enzymology ; Vitamin K Epoxide Reductases ; Warfarin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-10-12
    Description: Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 A resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 A structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024006/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Aiwu -- Carrell, Robin W -- Murphy, Michael P -- Wei, Zhenquan -- Yan, Yahui -- Stanley, Peter L D -- Stein, Penelope E -- Broughton Pipkin, Fiona -- Read, Randy J -- 082961/Wellcome Trust/United Kingdom -- BS/05/002/18361/British Heart Foundation/United Kingdom -- MC_U105663142/Medical Research Council/United Kingdom -- PG/08/041/24818/British Heart Foundation/United Kingdom -- PG/09/072/27945/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 4;468(7320):108-11. doi: 10.1038/nature09505. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. awz20@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927107" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiotensinogen/blood/*chemistry/*metabolism ; Angiotensins/chemistry/*metabolism/secretion ; Blood Pressure ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Female ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidative Stress ; Pre-Eclampsia/blood/metabolism ; Pregnancy ; Protein Conformation ; *Protein Processing, Post-Translational ; Renin/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-04-29
    Description: The nucleolytic activity of animal Argonaute proteins is deeply conserved, despite its having no obvious role in microRNA-directed gene regulation. In mice, Ago2 (also known as Eif2c2) is uniquely required for viability, and only this family member retains catalytic competence. To investigate the evolutionary pressure to conserve Argonaute enzymatic activity, we engineered a mouse with catalytically inactive Ago2 alleles. Homozygous mutants died shortly after birth with an obvious anaemia. Examination of microRNAs and their potential targets revealed a loss of miR-451, a small RNA important for erythropoiesis. Though this microRNA is processed by Drosha (also known as Rnasen), its maturation does not require Dicer. Instead, the pre-miRNA becomes loaded into Ago and is cleaved by the Ago catalytic centre to generate an intermediate 3' end, which is then further trimmed. Our findings link the conservation of Argonaute catalysis to a conserved mechanism of microRNA biogenesis that is important for vertebrate development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995450/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995450/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheloufi, Sihem -- Dos Santos, Camila O -- Chong, Mark M W -- Hannon, Gregory J -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):584-9. doi: 10.1038/nature09092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20424607" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Anemia/genetics/metabolism ; Animals ; Argonaute Proteins ; Base Sequence ; *Biocatalysis ; Embryo, Mammalian/embryology/metabolism ; Eukaryotic Initiation Factor-2/genetics/*metabolism ; Homozygote ; MicroRNAs/*biosynthesis ; Molecular Sequence Data ; Ribonuclease III/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-04-20
    Description: Ever since Darwin's pioneering research, the evolution of self-fertilisation (selfing) has been regarded as one of the most prevalent evolutionary transitions in flowering plants. A major mechanism to prevent selfing is the self-incompatibility (SI) recognition system, which consists of male and female specificity genes at the S-locus and SI modifier genes. Under conditions that favour selfing, mutations disabling the male recognition component are predicted to enjoy a relative advantage over those disabling the female component, because male mutations would increase through both pollen and seeds whereas female mutations would increase only through seeds. Despite many studies on the genetic basis of loss of SI in the predominantly selfing plant Arabidopsis thaliana, it remains unknown whether selfing arose through mutations in the female specificity gene (S-receptor kinase, SRK), male specificity gene (S-locus cysteine-rich protein, SCR; also known as S-locus protein 11, SP11) or modifier genes, and whether any of them rose to high frequency across large geographic regions. Here we report that a disruptive 213-base-pair (bp) inversion in the SCR gene (or its derivative haplotypes with deletions encompassing the entire SCR-A and a large portion of SRK-A) is found in 95% of European accessions, which contrasts with the genome-wide pattern of polymorphism in European A. thaliana. Importantly, interspecific crossings using Arabidopsis halleri as a pollen donor reveal that some A. thaliana accessions, including Wei-1, retain the female SI reaction, suggesting that all female components including SRK are still functional. Moreover, when the 213-bp inversion in SCR was inverted and expressed in transgenic Wei-1 plants, the functional SCR restored the SI reaction. The inversion within SCR is the first mutation disrupting SI shown to be nearly fixed in geographically wide samples, and its prevalence is consistent with theoretical predictions regarding the evolutionary advantage of mutations in male components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsuchimatsu, Takashi -- Suwabe, Keita -- Shimizu-Inatsugi, Rie -- Isokawa, Sachiyo -- Pavlidis, Pavlos -- Stadler, Thomas -- Suzuki, Go -- Takayama, Seiji -- Watanabe, Masao -- Shimizu, Kentaro K -- England -- Nature. 2010 Apr 29;464(7293):1342-6. doi: 10.1038/nature08927. Epub 2010 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology, University Research Priority Program in Systems Biology/Functional Genomics & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20400945" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/chemistry/classification/*genetics/*physiology ; *Biological Evolution ; Crosses, Genetic ; Genes, Plant/*genetics ; Haplotypes/genetics ; Hybridization, Genetic/genetics ; Molecular Sequence Data ; Mutation/*genetics ; Pollen/physiology ; Pollination ; Reproduction/genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-11-05
    Description: Many physiological events require transient increases in cytosolic Ca(2+) concentrations. Ryanodine receptors (RyRs) are ion channels that govern the release of Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Mutations in RyRs can lead to severe genetic conditions that affect both cardiac and skeletal muscle, but locating the mutated residues in the full-length channel structure has been difficult. Here we show the 2.5 A resolution crystal structure of a region spanning three domains of RyR type 1 (RyR1), encompassing amino acid residues 1-559. The domains interact with each other through a predominantly hydrophilic interface. Docking in RyR1 electron microscopy maps unambiguously places the domains in the cytoplasmic portion of the channel, forming a 240-kDa cytoplasmic vestibule around the four-fold symmetry axis. We pinpoint the exact locations of more than 50 disease-associated mutations in full-length RyR1 and RyR2. The mutations can be classified into three groups: those that destabilize the interfaces between the three amino-terminal domains, disturb the folding of individual domains or affect one of six interfaces with other parts of the receptor. We propose a model whereby the opening of a RyR coincides with allosterically coupled motions within the N-terminal domains. This process can be affected by mutations that target various interfaces within and across subunits. The crystal structure provides a framework to understand the many disease-associated mutations in RyRs that have been studied using functional methods, and will be useful for developing new strategies to modulate RyR function in disease states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tung, Ching-Chieh -- Lobo, Paolo A -- Kimlicka, Lynn -- Van Petegem, Filip -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Nov 25;468(7323):585-8. doi: 10.1038/nature09471. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Models, Molecular ; Mutation/genetics ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-06-04
    Description: Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cock, J Mark -- Sterck, Lieven -- Rouze, Pierre -- Scornet, Delphine -- Allen, Andrew E -- Amoutzias, Grigoris -- Anthouard, Veronique -- Artiguenave, Francois -- Aury, Jean-Marc -- Badger, Jonathan H -- Beszteri, Bank -- Billiau, Kenny -- Bonnet, Eric -- Bothwell, John H -- Bowler, Chris -- Boyen, Catherine -- Brownlee, Colin -- Carrano, Carl J -- Charrier, Benedicte -- Cho, Ga Youn -- Coelho, Susana M -- Collen, Jonas -- Corre, Erwan -- Da Silva, Corinne -- Delage, Ludovic -- Delaroque, Nicolas -- Dittami, Simon M -- Doulbeau, Sylvie -- Elias, Marek -- Farnham, Garry -- Gachon, Claire M M -- Gschloessl, Bernhard -- Heesch, Svenja -- Jabbari, Kamel -- Jubin, Claire -- Kawai, Hiroshi -- Kimura, Kei -- Kloareg, Bernard -- Kupper, Frithjof C -- Lang, Daniel -- Le Bail, Aude -- Leblanc, Catherine -- Lerouge, Patrice -- Lohr, Martin -- Lopez, Pascal J -- Martens, Cindy -- Maumus, Florian -- Michel, Gurvan -- Miranda-Saavedra, Diego -- Morales, Julia -- Moreau, Herve -- Motomura, Taizo -- Nagasato, Chikako -- Napoli, Carolyn A -- Nelson, David R -- Nyvall-Collen, Pi -- Peters, Akira F -- Pommier, Cyril -- Potin, Philippe -- Poulain, Julie -- Quesneville, Hadi -- Read, Betsy -- Rensing, Stefan A -- Ritter, Andres -- Rousvoal, Sylvie -- Samanta, Manoj -- Samson, Gaelle -- Schroeder, Declan C -- Segurens, Beatrice -- Strittmatter, Martina -- Tonon, Thierry -- Tregear, James W -- Valentin, Klaus -- von Dassow, Peter -- Yamagishi, Takahiro -- Van de Peer, Yves -- Wincker, Patrick -- England -- Nature. 2010 Jun 3;465(7298):617-21. doi: 10.1038/nature09016.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPMC Universite Paris 6, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, 29682 Roscoff Cedex, France. cock@sb-roscoff.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520714" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics ; Animals ; *Biological Evolution ; Eukaryota ; Evolution, Molecular ; Genome/*genetics ; Molecular Sequence Data ; Phaeophyta/*cytology/*genetics/metabolism ; Phylogeny ; Pigments, Biological/biosynthesis ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-07-14
    Description: While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wen -- Tanasa, Bogdan -- Tyurina, Oksana V -- Zhou, Tian Yuan -- Gassmann, Reto -- Liu, Wei Ting -- Ohgi, Kenneth A -- Benner, Chris -- Garcia-Bassets, Ivan -- Aggarwal, Aneel K -- Desai, Arshad -- Dorrestein, Pieter C -- Glass, Christopher K -- Rosenfeld, Michael G -- R01 CA097134/CA/NCI NIH HHS/ -- R01 CA097134-09/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 DK018477-35/DK/NIDDK NIH HHS/ -- R01 DK039949/DK/NIDDK NIH HHS/ -- R01 DK039949-18/DK/NIDDK NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS034934-21/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 22;466(7305):508-12. doi: 10.1038/nature09272. Epub 2010 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20622854" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Cell Cycle/*physiology ; Cell Line ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; HeLa Cells ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/*metabolism ; Host Cell Factor C1/genetics/metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Multiprotein Complexes/chemistry/metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Transcription Factors/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-07-30
    Description: The post-translational methylation of alpha-amino groups was first discovered over 30 years ago on the bacterial ribosomal proteins L16 and L33 (refs 1, 2), but almost nothing is known about the function or enzymology of this modification. Several other bacterial and eukaryotic proteins have since been shown to be alpha-N-methylated. However, the Ran guanine nucleotide-exchange factor, RCC1, is the only protein for which any biological function of alpha-N-methylation has been identified. Methylation-defective mutants of RCC1 have reduced affinity for DNA and cause mitotic defects, but further characterization of this modification has been hindered by ignorance of the responsible methyltransferase. All fungal and animal N-terminally methylated proteins contain a unique N-terminal motif, Met-(Ala/Pro/Ser)-Pro-Lys, indicating that they may be targets of the same, unknown enzyme. The initiating Met is cleaved, and the exposed alpha-amino group is mono-, di- or trimethylated. Here we report the discovery of the first alpha-N-methyltransferase, which we named N-terminal RCC1 methyltransferase (NRMT). Substrate docking and mutational analysis of RCC1 defined the NRMT recognition sequence and enabled the identification of numerous new methylation targets, including SET (also known as TAF-I or PHAPII) and the retinoblastoma protein, RB. Knockdown of NRMT recapitulates the multi-spindle phenotype seen with methylation-defective RCC1 mutants, demonstrating the importance of alpha-N-methylation for normal bipolar spindle formation and chromosome segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tooley, Christine E Schaner -- Petkowski, Janusz J -- Muratore-Schroeder, Tara L -- Balsbaugh, Jeremy L -- Shabanowitz, Jeffrey -- Sabat, Michal -- Minor, Wladek -- Hunt, Donald F -- Macara, Ian G -- R01 GM050526/GM/NIGMS NIH HHS/ -- R01 GM050526-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1125-8. doi: 10.1038/nature09343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. ces5g@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20668449" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; Cell Line ; Chromosome Segregation ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/*metabolism ; HeLa Cells ; Histone Chaperones/metabolism ; Humans ; Methyltransferases/chemistry/genetics/*metabolism ; Models, Molecular ; Mutation/genetics ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Retinoblastoma Protein/*metabolism ; Spindle Apparatus/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-05-21
    Description: The need to maintain the structural and functional integrity of an evolving protein severely restricts the repertoire of acceptable amino-acid substitutions. However, it is not known whether these restrictions impose a global limit on how far homologous protein sequences can diverge from each other. Here we explore the limits of protein evolution using sequence divergence data. We formulate a computational approach to study the rate of divergence of distant protein sequences and measure this rate for ancient proteins, those that were present in the last universal common ancestor. We show that ancient proteins are still diverging from each other, indicating an ongoing expansion of the protein sequence universe. The slow rate of this divergence is imposed by the sparseness of functional protein sequences in sequence space and the ruggedness of the protein fitness landscape: approximately 98 per cent of sites cannot accept an amino-acid substitution at any given moment but a vast majority of all sites may eventually be permitted to evolve when other, compensatory, changes occur. Thus, approximately 3.5 x 10(9) yr has not been enough to reach the limit of divergent evolution of proteins, and for most proteins the limit of sequence similarity imposed by common function may not exceed that of random sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Povolotskaya, Inna S -- Kondrashov, Fyodor A -- England -- Nature. 2010 Jun 17;465(7300):922-6. doi: 10.1038/nature09105. Epub 2010 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Calle Dr Aiguader 88, Barcelona Biomedical Research Park Building, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Amino Acids/chemistry ; *Evolution, Molecular ; *Genetic Variation ; Molecular Sequence Data ; Mutation ; Prokaryotic Cells ; Protein Structure, Secondary ; Proteins/*chemistry ; Selection, Genetic/genetics ; Sequence Analysis, Protein ; Sequence Homology, Amino Acid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-01-15
    Description: All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway. CRISPR loci are present in approximately 40% and approximately 90% of sequenced bacterial and archaeal genomes, respectively, and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes that collectively encode 〉40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences. CrRNA spacers are thought to identify targets by direct Watson-Crick pairing with invasive 'protospacer' DNA, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target, but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, indicating that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marraffini, Luciano A -- Sontheimer, Erik J -- R03 AI079722/AI/NIAID NIH HHS/ -- R03 AI079722-01A1/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):568-71. doi: 10.1038/nature08703. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, USA. marraffini@northwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072129" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics ; Base Pairing/genetics ; Base Sequence ; Conserved Sequence ; DNA, Intergenic/genetics ; Molecular Sequence Data ; Mutation/genetics ; RNA, Bacterial/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid/*genetics/*immunology ; Staphylococcus epidermidis/*genetics/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-11-05
    Description: Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garneau, Josiane E -- Dupuis, Marie-Eve -- Villion, Manuela -- Romero, Dennis A -- Barrangou, Rodolphe -- Boyaval, Patrick -- Fremaux, Christophe -- Horvath, Philippe -- Magadan, Alfonso H -- Moineau, Sylvain -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Nov 4;468(7320):67-71. doi: 10.1038/nature09523.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de biochimie, de microbiologie et de bio-informatique, Faculte des sciences et de genie, Groupe de recherche en ecologie buccale, Faculte de medecine dentaire, Felix d'Herelle Reference Center for Bacterial Viruses, Universite Laval, Quebec City, Quebec G1V 0A6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048762" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/*genetics/metabolism ; Base Sequence ; DNA, Intergenic/genetics/metabolism ; DNA, Viral/genetics/*metabolism ; Drug Resistance, Bacterial/genetics ; Genetic Loci/*genetics/*immunology ; Interspersed Repetitive Sequences/genetics ; Molecular Sequence Data ; Mutation ; Plasmids/genetics/*metabolism ; RNA, Bacterial/genetics/immunology ; Streptococcus thermophilus/genetics/*immunology/*virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-02-26
    Description: Despite the essential roles of sphingolipids both as structural components of membranes and critical signalling molecules, we have a limited understanding of how cells sense and regulate their levels. Here we reveal the function in sphingolipid metabolism of the ORM genes (known as ORMDL genes in humans)-a conserved gene family that includes ORMDL3, which has recently been identified as a potential risk factor for childhood asthma. Starting from an unbiased functional genomic approach in Saccharomyces cerevisiae, we identify Orm proteins as negative regulators of sphingolipid synthesis that form a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877384/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877384/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breslow, David K -- Collins, Sean R -- Bodenmiller, Bernd -- Aebersold, Ruedi -- Simons, Kai -- Shevchenko, Andrej -- Ejsing, Christer S -- Weissman, Jonathan S -- N01-HV-28179/HV/NHLBI NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- P50 GM073210-06/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 25;463(7284):1048-53. doi: 10.1038/nature08787.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20182505" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Asthma/metabolism ; Cell Line ; Conserved Sequence ; Fatty Acids, Monounsaturated/pharmacology ; HeLa Cells ; *Homeostasis ; Humans ; Molecular Sequence Data ; *Multigene Family ; Multiprotein Complexes/chemistry/metabolism ; Phosphoric Monoester Hydrolases/genetics/metabolism ; Phosphorylation ; Protein Binding ; Saccharomyces cerevisiae/drug effects/enzymology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/classification/genetics/*metabolism ; Serine C-Palmitoyltransferase/genetics/metabolism ; Sphingolipids/biosynthesis/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-05-14
    Description: A huge variety of proteins are able to form fibrillar structures, especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand. Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal and carboxy-terminal domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation initiated by changes in ionic composition and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation. However, despite recent structural data, little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagn, Franz -- Eisoldt, Lukas -- Hardy, John G -- Vendrely, Charlotte -- Coles, Murray -- Scheibel, Thomas -- Kessler, Horst -- England -- Nature. 2010 May 13;465(7295):239-42. doi: 10.1038/nature08936.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrated Protein Science (CIPSM), Technische Universitat Munchen, 85747 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463741" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calorimetry, Differential Scanning ; Circular Dichroism ; *Conserved Sequence ; Hydrophobic and Hydrophilic Interactions ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Protein Structure, Tertiary ; Silk/*chemistry/*metabolism ; Spectrometry, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; Spiders/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-03-09
    Description: The tumour suppressor ARF is specifically required for p53 activation under oncogenic stress. Recent studies showed that p53 activation mediated by ARF, but not that induced by DNA damage, acts as a major protection against tumorigenesis in vivo under certain biological settings, suggesting that the ARF-p53 axis has more fundamental functions in tumour suppression than originally thought. Because ARF is a very stable protein in most human cell lines, it has been widely assumed that ARF induction is mediated mainly at the transcriptional level and that activation of the ARF-p53 pathway by oncogenes is a much slower and largely irreversible process by comparison with p53 activation after DNA damage. Here we report that ARF is very unstable in normal human cells but that its degradation is inhibited in cancerous cells. Through biochemical purification, we identified a specific ubiquitin ligase for ARF and named it ULF. ULF interacts with ARF both in vitro and in vivo and promotes the lysine-independent ubiquitylation and degradation of ARF. ULF knockdown stabilizes ARF in normal human cells, triggering ARF-dependent, p53-mediated growth arrest. Moreover, nucleophosmin (NPM) and c-Myc, both of which are commonly overexpressed in cancer cells, are capable of abrogating ULF-mediated ARF ubiquitylation through distinct mechanisms, and thereby promote ARF stabilization in cancer cells. These findings reveal the dynamic feature of the ARF-p53 pathway and suggest that transcription-independent mechanisms are critically involved in ARF regulation during responses to oncogenic stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737736/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737736/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Delin -- Shan, Jing -- Zhu, Wei-Guo -- Qin, Jun -- Gu, Wei -- P01 CA080058/CA/NCI NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- R01 CA085533/CA/NCI NIH HHS/ -- R01 CA118561/CA/NCI NIH HHS/ -- R01 CA129627/CA/NCI NIH HHS/ -- R01 CA131439/CA/NCI NIH HHS/ -- England -- Nature. 2010 Mar 25;464(7288):624-7. doi: 10.1038/nature08820. Epub 2010 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, and Department of Pathology and Cell Biology College of Physicians & Surgeons, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20208519" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Cell Line ; Fibroblasts/metabolism ; *Gene Expression Regulation ; Humans ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Proto-Oncogene Proteins c-myc/metabolism ; Stress, Physiological/*physiology ; Tumor Suppressor Protein p53/*metabolism ; U937 Cells ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-02-02
    Description: The spectacular escalation in complexity in early bilaterian evolution correlates with a strong increase in the number of microRNAs. To explore the link between the birth of ancient microRNAs and body plan evolution, we set out to determine the ancient sites of activity of conserved bilaterian microRNA families in a comparative approach. We reason that any specific localization shared between protostomes and deuterostomes (the two major superphyla of bilaterian animals) should probably reflect an ancient specificity of that microRNA in their last common ancestor. Here, we investigate the expression of conserved bilaterian microRNAs in Platynereis dumerilii, a protostome retaining ancestral bilaterian features, in Capitella, another marine annelid, in the sea urchin Strongylocentrotus, a deuterostome, and in sea anemone Nematostella, representing an outgroup to the bilaterians. Our comparative data indicate that the oldest known animal microRNA, miR-100, and the related miR-125 and let-7 were initially active in neurosecretory cells located around the mouth. Other sets of ancient microRNAs were first present in locomotor ciliated cells, specific brain centres, or, more broadly, one of four major organ systems: central nervous system, sensory tissue, musculature and gut. These findings reveal that microRNA evolution and the establishment of tissue identities were closely coupled in bilaterian evolution. Also, they outline a minimum set of cell types and tissues that existed in the protostome-deuterostome ancestor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981144/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981144/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christodoulou, Foteini -- Raible, Florian -- Tomer, Raju -- Simakov, Oleg -- Trachana, Kalliopi -- Klaus, Sebastian -- Snyman, Heidi -- Hannon, Gregory J -- Bork, Peer -- Arendt, Detlev -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- P01 CA013106-39/CA/NCI NIH HHS/ -- England -- Nature. 2010 Feb 25;463(7284):1084-8. doi: 10.1038/nature08744. Epub 2010 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20118916" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Annelida/anatomy & histology/cytology/genetics ; *Biological Evolution ; Brain/metabolism ; Cilia/physiology ; Conserved Sequence/genetics ; Digestive System/cytology/metabolism ; In Situ Hybridization ; MicroRNAs/*analysis/*genetics ; Molecular Sequence Data ; *Organ Specificity ; Phylogeny ; Polychaeta/*anatomy & histology/cytology/*genetics ; Sea Anemones/anatomy & histology/cytology/genetics ; Sea Urchins/anatomy & histology/cytology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-09-28
    Description: Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Filippakopoulos, Panagis -- Qi, Jun -- Picaud, Sarah -- Shen, Yao -- Smith, William B -- Fedorov, Oleg -- Morse, Elizabeth M -- Keates, Tracey -- Hickman, Tyler T -- Felletar, Ildiko -- Philpott, Martin -- Munro, Shonagh -- McKeown, Michael R -- Wang, Yuchuan -- Christie, Amanda L -- West, Nathan -- Cameron, Michael J -- Schwartz, Brian -- Heightman, Tom D -- La Thangue, Nicholas -- French, Christopher A -- Wiest, Olaf -- Kung, Andrew L -- Knapp, Stefan -- Bradner, James E -- 13058/Cancer Research UK/United Kingdom -- G0500905/Medical Research Council/United Kingdom -- G1000807/Medical Research Council/United Kingdom -- G9400953/Medical Research Council/United Kingdom -- K08 CA128972/CA/NCI NIH HHS/ -- K08 CA128972-03/CA/NCI NIH HHS/ -- T32-075762/PHS HHS/ -- Canadian Institutes of Health Research/Canada -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Dec 23;468(7327):1067-73. doi: 10.1038/nature09504. Epub 2010 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20871596" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Azirines/chemical synthesis/chemistry/*pharmacology ; Binding Sites ; Carcinoma, Squamous Cell/physiopathology ; Cell Differentiation/drug effects ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chromatin/metabolism ; Dihydropyridines/chemical synthesis/chemistry/*pharmacology ; Female ; Humans ; Mice ; Mice, Nude ; *Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*antagonists & inhibitors/*metabolism ; Protein Binding/drug effects ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Sequence Alignment ; Skin Neoplasms/physiopathology ; Stereoisomerism ; Transcription Factors/*antagonists & inhibitors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-06-19
    Description: Transcription of eukaryotic messenger RNA (mRNA) encoding genes by RNA polymerase II (Pol II) is triggered by the binding of transactivating proteins to enhancer DNA, which stimulates the recruitment of general transcription factors (TFIIA, B, D, E, F, H) and Pol II on the cis-linked promoter, leading to pre-initiation complex formation and transcription. In TFIID-dependent activation pathways, this general transcription factor containing TATA-box-binding protein is first recruited on the promoter through interaction with activators and cooperates with TFIIA to form a committed pre-initiation complex. However, neither the mechanisms by which activation signals are communicated between these factors nor the structural organization of the activated pre-initiation complex are known. Here we used cryo-electron microscopy to determine the architecture of nucleoprotein complexes composed of TFIID, TFIIA, the transcriptional activator Rap1 and yeast enhancer-promoter DNA. These structures revealed the mode of binding of Rap1 and TFIIA to TFIID, as well as a reorganization of TFIIA induced by its interaction with Rap1. We propose that this change in position increases the exposure of TATA-box-binding protein within TFIID, consequently enhancing its ability to interact with the promoter. A large Rap1-dependent DNA loop forms between the activator-binding site and the proximal promoter region. This loop is topologically locked by a TFIIA-Rap1 protein bridge that folds over the DNA. These results highlight the role of TFIIA in transcriptional activation, define a molecular mechanism for enhancer-promoter communication and provide structural insights into the pathways of intramolecular communication that convey transcription activation signals through the TFIID complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900199/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900199/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papai, Gabor -- Tripathi, Manish K -- Ruhlmann, Christine -- Layer, Justin H -- Weil, P Anthony -- Schultz, Patrick -- GM52461/GM/NIGMS NIH HHS/ -- R01 GM052461/GM/NIGMS NIH HHS/ -- R01 GM052461-14/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):956-60. doi: 10.1038/nature09080.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology and Genomics, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, 67404 Illkirch, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559389" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; *Models, Molecular ; Nucleoproteins/chemistry/ultrastructure ; Protein Structure, Tertiary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism/ultrastructure ; Telomere-Binding Proteins/chemistry/*metabolism/ultrastructure ; Transcription Factor TFIIA/chemistry/*metabolism ; Transcription Factor TFIID/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism/ultrastructure ; *Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-12-18
    Description: Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Wen-Wei -- Wang, Zhanxin -- Yiu, Teresa T -- Akdemir, Kadir C -- Xia, Weiya -- Winter, Stefan -- Tsai, Cheng-Yu -- Shi, Xiaobing -- Schwarzer, Dirk -- Plunkett, William -- Aronow, Bruce -- Gozani, Or -- Fischle, Wolfgang -- Hung, Mien-Chie -- Patel, Dinshaw J -- Barton, Michelle Craig -- GM079641/GM/NIGMS NIH HHS/ -- GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627-010003/GM/NIGMS NIH HHS/ -- P01 GM081627-020003/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30DK078392-01/DK/NIDDK NIH HHS/ -- T32 HD07325/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):927-32. doi: 10.1038/nature09542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164480" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Breast Neoplasms/*genetics/*metabolism/pathology ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Crystallography, X-Ray ; Estrogen Receptor alpha/metabolism ; Estrogens/metabolism ; *Gene Expression Regulation, Neoplastic/genetics ; HEK293 Cells ; Histones/chemistry/*metabolism ; Humans ; Methylation ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Substrate Specificity ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-08-13
    Description: The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models. Application of this technology to engineer genes in rats has not previously been possible because of the absence of germline-competent ES cells in this species. We have recently established authentic rat ES cells. Here we report the generation of gene knockout rats using the ES-cell-based gene targeting technology. We designed a targeting vector to disrupt the tumour suppressor gene p53 (also known as Tp53) in rat ES cells by means of homologous recombination. p53 gene-targeted rat ES cells can be routinely generated. Furthermore, the p53 gene-targeted mutation in the rat ES-cell genome can transmit through the germ line via ES-cell rat chimaeras to create p53 gene knockout rats. The rat is the most widely used animal model in biological research. The establishment of gene targeting technology in rat ES cells, in combination with advances in genomics and the vast amount of research data on physiology and pharmacology in this species, now provide a powerful new platform for the study of human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Chang -- Li, Ping -- Wu, Nancy L -- Yan, Youzhen -- Ying, Qi-Long -- 1R01 RR025881/RR/NCRR NIH HHS/ -- R01 OD010926/OD/NIH HHS/ -- R01 RR025881/RR/NCRR NIH HHS/ -- R01 RR025881-01A2/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 9;467(7312):211-3. doi: 10.1038/nature09368. Epub 2010 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Culture Techniques ; Embryo, Mammalian/cytology ; Embryonic Stem Cells/*cytology ; Female ; Gene Knockout Techniques/*methods ; *Genes, p53 ; Germ-Line Mutation ; Male ; Mice ; Molecular Sequence Data ; Rats/*genetics ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Recombination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-01-08
    Description: Eukaryotic DNA replication uses kinase regulatory pathways to facilitate coordination with other processes during cell division cycles and response to environmental cues. At least two cell cycle-regulated protein kinase systems, the S-phase-specific cyclin-dependent protein kinases (S-CDKs) and the Dbf4-Cdc7 kinase (DDK, Dbf4-dependent protein kinase) are essential activators for initiation of DNA replication. Although the essential mechanism of CDK activation of DNA replication in Saccharomyces cerevisiae has been established, exactly how DDK acts has been unclear. Here we show that the amino terminal serine/threonine-rich domain (NSD) of Mcm4 has both inhibitory and facilitating roles in DNA replication control and that the sole essential function of DDK is to relieve an inhibitory activity residing within the NSD. By combining an mcm4 mutant lacking the inhibitory activity with mutations that bypass the requirement for CDKs for initiation of DNA replication, we show that DNA synthesis can occur in G1 phase when CDKs and DDK are limited. However, DDK is still required for efficient S phase progression. In the absence of DDK, CDK phosphorylation at the distal part of the Mcm4 NSD becomes crucial. Moreover, DDK-null cells fail to activate the intra-S-phase checkpoint in the presence of hydroxyurea-induced DNA damage and are unable to survive this challenge. Our studies establish that the eukaryote-specific NSD of Mcm4 has evolved to integrate several protein kinase regulatory signals for progression through S phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheu, Yi-Jun -- Stillman, Bruce -- R01 GM045436/GM/NIGMS NIH HHS/ -- R01 GM045436-18/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):113-7. doi: 10.1038/nature08647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054399" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/antagonists & inhibitors/chemistry/genetics/*metabolism ; Cell Proliferation/drug effects ; DNA Damage ; DNA-Binding Proteins/antagonists & inhibitors/chemistry/genetics/*metabolism ; G1 Phase/drug effects ; Genes, Essential ; Hydroxyurea/pharmacology ; Microbial Viability/drug effects ; Minichromosome Maintenance Complex Component 4 ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; S Phase/drug effects/*physiology ; Saccharomyces cerevisiae/*cytology/enzymology/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Sequence Deletion ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-09-03
    Description: The structures of RNA molecules are often important for their function and regulation, yet there are no experimental techniques for genome-scale measurement of RNA structure. Here we describe a novel strategy termed parallel analysis of RNA structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, thus providing simultaneous in vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution. We apply PARS to profile the secondary structure of the messenger RNAs (mRNAs) of the budding yeast Saccharomyces cerevisiae and obtain structural profiles for over 3,000 distinct transcripts. Analysis of these profiles reveals several RNA structural properties of yeast transcripts, including the existence of more secondary structure over coding regions compared with untranslated regions, a three-nucleotide periodicity of secondary structure across coding regions and an anti-correlation between the efficiency with which an mRNA is translated and the structure over its translation start site. PARS is readily applicable to other organisms and to profiling RNA structure in diverse conditions, thus enabling studies of the dynamics of secondary structure at a genomic scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kertesz, Michael -- Wan, Yue -- Mazor, Elad -- Rinn, John L -- Nutter, Robert C -- Chang, Howard Y -- Segal, Eran -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01HG004361/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 2;467(7311):103-7. doi: 10.1038/nature09322.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20811459" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Genetic Techniques ; Genome-Wide Association Study ; Molecular Sequence Data ; *Nucleic Acid Conformation ; RNA, Fungal/*chemistry ; RNA, Messenger/*chemistry ; Saccharomyces cerevisiae/*chemistry/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-07-02
    Description: Pheromone-based behaviours are crucial in animals from insects to mammals, and reproductive isolation is often based on pheromone differences. However, the genetic mechanisms by which pheromone signals change during the evolution of new species are largely unknown. In the sexual communication system of moths (Insecta: Lepidoptera), females emit a species-specific pheromone blend that attracts males over long distances. The European corn borer, Ostrinia nubilalis, consists of two sex pheromone races, Z and E, that use different ratios of the cis and trans isomers of acetate pheromone components. This subtle difference leads to strong reproductive isolation in the field between the two races, which could represent a first step in speciation. Female sex pheromone production and male behavioural response are under the control of different major genes, but the identity of these genes is unknown. Here we show that allelic variation in a fatty-acyl reductase gene essential for pheromone biosynthesis accounts for the phenotypic variation in female pheromone production, leading to race-specific signals. Both the cis and trans isomers of the pheromone precursors are produced by both races, but the precursors are differentially reduced to yield opposite ratios in the final pheromone blend as a result of the substrate specificity of the enzymes encoded by the Z and E alleles. This is the first functional characterization of a gene contributing to intraspecific behavioural reproductive isolation in moths, highlighting the importance of evolutionary diversification in a lepidopteran-specific family of reductases. Accumulation of substitutions in the coding region of a single biosynthetic enzyme can produce pheromone differences resulting in reproductive isolation, with speciation as a potential end result.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lassance, Jean-Marc -- Groot, Astrid T -- Lienard, Marjorie A -- Antony, Binu -- Borgwardt, Christin -- Andersson, Fredrik -- Hedenstrom, Erik -- Heckel, David G -- Lofstedt, Christer -- England -- Nature. 2010 Jul 22;466(7305):486-9. doi: 10.1038/nature09058. Epub 2010 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Lund University, 22362 Lund, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20592730" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; Female ; Isomerism ; Male ; Molecular Sequence Data ; Moths/classification/enzymology/genetics/*physiology ; Oxidoreductases/*genetics/*metabolism ; Phylogeny ; RNA/analysis/genetics/metabolism ; Sex Attractants/biosynthesis/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-04-20
    Description: Photosynthetic organisms adopt two different strategies for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide) to form chlorophyllide a, the direct precursor of chlorophyll a (refs 1-4). The first involves the activity of the light-dependent Pchlide oxidoreductase, and the second involves the light-independent (dark-operative) Pchlide oxidoreductase (DPOR). DPOR is a nitrogenase-like enzyme consisting of two components, L-protein (a BchL dimer) and NB-protein (a BchN-BchB heterotetramer), which are structurally related to nitrogenase Fe protein and MoFe protein, respectively. Here we report the crystal structure of the NB-protein of DPOR from Rhodobacter capsulatus at a resolution of 2.3A. As expected, the overall structure is similar to that of nitrogenase MoFe protein: each catalytic BchN-BchB unit contains one Pchlide and one iron-sulphur cluster (NB-cluster) coordinated uniquely by one aspartate and three cysteines. Unique aspartate ligation is not necessarily needed for the cluster assembly but is essential for the catalytic activity. Specific Pchlide-binding accompanies the partial unwinding of an alpha-helix that belongs to the next catalytic BchN-BchB unit. We propose a unique trans-specific reduction mechanism in which the distorted C17-propionate of Pchlide and an aspartate from BchB serve as proton donors for C18 and C17 of Pchlide, respectively. Intriguingly, the spatial arrangement of the NB-cluster and Pchlide is almost identical to that of the P-cluster and FeMo-cofactor in nitrogenase MoFe-protein, illustrating that a common architecture exists to reduce chemically stable multibonds of porphyrin and dinitrogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muraki, Norifumi -- Nomata, Jiro -- Ebata, Kozue -- Mizoguchi, Tadashi -- Shiba, Tomoo -- Tamiaki, Hitoshi -- Kurisu, Genji -- Fujita, Yuichi -- England -- Nature. 2010 May 6;465(7294):110-4. doi: 10.1038/nature08950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20400946" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; *Models, Molecular ; Oxidoreductases Acting on CH-CH Group Donors/*chemistry/metabolism ; Protein Structure, Tertiary ; Rhodobacter capsulatus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-09-24
    Description: Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 A resolution of the amino-terminal domain (residues 30-340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser 5 phosphatase Ssu72 (refs 7, 10-17) and a CTD Ser 5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel alpha-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer 5-Pro 6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations. Although the active site of Ssu72 is about 25 A from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3'-end processing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiang, Kehui -- Nagaike, Takashi -- Xiang, Song -- Kilic, Turgay -- Beh, Maia M -- Manley, James L -- Tong, Liang -- GM028983/GM/NIGMS NIH HHS/ -- GM077175/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM028983/GM/NIGMS NIH HHS/ -- R01 GM028983-31/GM/NIGMS NIH HHS/ -- R01 GM077175/GM/NIGMS NIH HHS/ -- R01 GM077175-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 7;467(7316):729-33. doi: 10.1038/nature09391. Epub 2010 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20861839" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carrier Proteins/*chemistry/genetics/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/chemistry ; Humans ; Models, Molecular ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Phosphopeptides/chemistry/*metabolism ; Phosphoprotein Phosphatases/chemistry/genetics/metabolism ; Polyadenylation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry ; Substrate Specificity ; mRNA Cleavage and Polyadenylation Factors/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-11-03
    Description: Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin 'key-shaped' molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca(2+)-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Ruby H P -- Lukoyanova, Natalya -- Voskoboinik, Ilia -- Caradoc-Davies, Tom T -- Baran, Katherine -- Dunstone, Michelle A -- D'Angelo, Michael E -- Orlova, Elena V -- Coulibaly, Fasseli -- Verschoor, Sandra -- Browne, Kylie A -- Ciccone, Annette -- Kuiper, Michael J -- Bird, Phillip I -- Trapani, Joseph A -- Saibil, Helen R -- Whisstock, James C -- 079605/Wellcome Trust/United Kingdom -- BB/D008573/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 18;468(7322):447-51. doi: 10.1038/nature09518. Epub 2010 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21037563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism ; Cholesterol/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Epidermal Growth Factor/chemistry ; Granzymes/metabolism ; Humans ; Lymphocytes/*metabolism ; Mice ; Models, Molecular ; Pore Forming Cytotoxic Proteins/*chemistry/genetics/*metabolism/ultrastructure ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-03-12
    Description: Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity. Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens. We have generated 44.5-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor. We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps. One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates. Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation. We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important. This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, Carl-Johan -- Zody, Michael C -- Eriksson, Jonas -- Meadows, Jennifer R S -- Sherwood, Ellen -- Webster, Matthew T -- Jiang, Lin -- Ingman, Max -- Sharpe, Ted -- Ka, Sojeong -- Hallbook, Finn -- Besnier, Francois -- Carlborg, Orjan -- Bed'hom, Bertrand -- Tixier-Boichard, Michele -- Jensen, Per -- Siegel, Paul -- Lindblad-Toh, Kerstin -- Andersson, Leif -- England -- Nature. 2010 Mar 25;464(7288):587-91. doi: 10.1038/nature08832. Epub 2010 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-75123 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220755" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Evolution ; Chickens/*genetics ; Female ; Genetic Loci/*genetics ; Genome/*genetics ; Male ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Selection, Genetic/*genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Deletion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-02-05
    Description: The M2 protein of influenza A virus is a membrane-spanning tetrameric proton channel targeted by the antiviral drugs amantadine and rimantadine. Resistance to these drugs has compromised their effectiveness against many influenza strains, including pandemic H1N1. A recent crystal structure of M2(22-46) showed electron densities attributed to a single amantadine in the amino-terminal half of the pore, indicating a physical occlusion mechanism for inhibition. However, a solution NMR structure of M2(18-60) showed four rimantadines bound to the carboxy-terminal lipid-facing surface of the helices, suggesting an allosteric mechanism. Here we show by solid-state NMR spectroscopy that two amantadine-binding sites exist in M2 in phospholipid bilayers. The high-affinity site, occupied by a single amantadine, is located in the N-terminal channel lumen, surrounded by residues mutated in amantadine-resistant viruses. Quantification of the protein-amantadine distances resulted in a 0.3 A-resolution structure of the high-affinity binding site. The second, low-affinity, site was observed on the C-terminal protein surface, but only when the drug reaches high concentrations in the bilayer. The orientation and dynamics of the drug are distinct in the two sites, as shown by (2)H NMR. These results indicate that amantadine physically occludes the M2 channel, thus paving the way for developing new antiviral drugs against influenza viruses. The study demonstrates the ability of solid-state NMR to elucidate small-molecule interactions with membrane proteins and determine high-resolution structures of their complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cady, Sarah D -- Schmidt-Rohr, Klaus -- Wang, Jun -- Soto, Cinque S -- Degrado, William F -- Hong, Mei -- AI74571/AI/NIAID NIH HHS/ -- GM088204/GM/NIGMS NIH HHS/ -- GM56423/GM/NIGMS NIH HHS/ -- R01 GM056423/GM/NIGMS NIH HHS/ -- R01 GM056423-12/GM/NIGMS NIH HHS/ -- R01 GM088204/GM/NIGMS NIH HHS/ -- R01 GM088204-01/GM/NIGMS NIH HHS/ -- U01 AI074571/AI/NIAID NIH HHS/ -- U01 AI074571-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Feb 4;463(7281):689-92. doi: 10.1038/nature08722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Iowa State University, Ames, Iowa 50011 2, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130653" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/*metabolism/pharmacology ; Amino Acid Sequence ; Antiviral Agents/chemistry/*metabolism/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Dimyristoylphosphatidylcholine/chemistry/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/drug effects ; Lipid Bilayers/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Structure-Activity Relationship ; Temperature ; Viral Matrix Proteins/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-07-09
    Description: Large-conductance, voltage- and calcium-activated potassium (BK, or K(Ca)1.1) channels are ubiquitously expressed in electrically excitable and non-excitable cells, either as alpha-subunit (BKalpha) tetramers or together with tissue specific auxiliary beta-subunits (beta1-beta4). Activation of BK channels typically requires coincident membrane depolarization and elevation in free cytosolic Ca(2+) concentration ([Ca(2+)](i)), which are not physiological conditions for most non-excitable cells. Here we present evidence that in non-excitable LNCaP prostate cancer cells, BK channels can be activated at negative voltages without rises in [Ca(2+)](i) through their complex with an auxiliary protein, leucine-rich repeat (LRR)-containing protein 26 (LRRC26). LRRC26 modulates the gating of a BK channel by enhancing the allosteric coupling between voltage-sensor activation and the channel's closed-open transition. This finding reveals a novel auxiliary protein of a voltage-gated ion channel that gives an unprecedentedly large negative shift ( approximately -140 mV) in voltage dependence and provides a molecular basis for activation of BK channels at physiological voltages and calcium levels in non-excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Jiusheng -- Aldrich, Richard W -- England -- Nature. 2010 Jul 22;466(7305):513-6. doi: 10.1038/nature09162. Epub 2010 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, Center for Learning and Memory, University of Texas, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613726" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Animals ; *Calcium/analysis ; Cell Line, Tumor ; Humans ; Ion Channel Gating/*physiology ; Large-Conductance Calcium-Activated Potassium Channels/genetics/*metabolism ; Male ; Membrane Potentials ; Mice ; Molecular Sequence Data ; Neoplasm Proteins/chemistry/genetics/*metabolism ; Prostatic Neoplasms/metabolism ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-05-28
    Description: Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. We have determined the structure of its hydrophilic domain previously. Here, we report the alpha-helical structure of the membrane domain of complex I from Escherichia coli at 3.9 A resolution. The antiporter-like subunits NuoL/M/N each contain 14 conserved transmembrane (TM) helices. Two of them are discontinuous, as in some transporters. Unexpectedly, subunit NuoL also contains a 110-A long amphipathic alpha-helix, spanning almost the entire length of the domain. Furthermore, we have determined the structure of the entire complex I from Thermus thermophilus at 4.5 A resolution. The L-shaped assembly consists of the alpha-helical model for the membrane domain, with 63 TM helices, and the known structure of the hydrophilic domain. The architecture of the complex provides strong clues about the coupling mechanism: the conformational changes at the interface of the two main domains may drive the long amphipathic alpha-helix of NuoL in a piston-like motion, tilting nearby discontinuous TM helices, resulting in proton translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Efremov, Rouslan G -- Baradaran, Rozbeh -- Sazanov, Leonid A -- MC_U105674180/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):441-5. doi: 10.1038/nature09066.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505720" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoquinones/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Escherichia coli/*enzymology ; Models, Molecular ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/*metabolism ; Structure-Activity Relationship ; Thermus thermophilus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-10-15
    Description: Eukaryotes and archaea use a protease called the proteasome that has an integral role in maintaining cellular function through the selective degradation of proteins. Proteolysis occurs in a barrel-shaped 20S core particle, which in Thermoplasma acidophilum is built from four stacked homoheptameric rings of subunits, alpha and beta, arranged alpha(7)beta(7)beta(7)alpha(7) (ref. 5). These rings form three interconnected cavities, including a pair of antechambers (formed by alpha(7)beta(7)) through which substrates are passed before degradation and a catalytic chamber (beta(7)beta(7)) where the peptide-bond hydrolysis reaction occurs. Although it is clear that substrates must be unfolded to enter through narrow, gated passageways (13 A in diameter) located on the alpha-rings, the structural and dynamical properties of substrates inside the proteasome antechamber remain unclear. Confinement in the antechamber might be expected to promote folding and thus impede proteolysis. Here we investigate the folding, stability and dynamics of three small protein substrates in the antechamber by methyl transverse-relaxation-optimized NMR spectroscopy. We show that these substrates interact actively with the antechamber walls and have drastically altered kinetic and equilibrium properties that maintain them in unstructured states so as to be accessible for hydrolysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruschak, Amy M -- Religa, Tomasz L -- Breuer, Sarah -- Witt, Susanne -- Kay, Lewis E -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Oct 14;467(7317):868-71. doi: 10.1038/nature09444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944750" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Hydrolysis ; Kinetics ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Proteasome Endopeptidase Complex/*chemistry/*metabolism ; Protein Folding ; *Protein Processing, Post-Translational ; Protein Stability ; Protein Subunits/chemistry/metabolism ; *Protein Unfolding ; Thermodynamics ; Thermoplasma/enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-06-01
    Description: In termination of protein synthesis, the bacterial release factors RF1 and RF2 bind to the ribosome through specific recognition of messenger RNA stop codons and trigger hydrolysis of the bond between the nascent polypeptide and the transfer RNA at the peptidyl-tRNA site, thereby releasing the newly synthesized protein. The release factors are highly specific for a U in the first stop-codon position and recognize different combinations of purines in the second and third positions, with RF1 reading UAA and UAG and RF2 reading UAA and UGA. With recently determined crystal structures of termination complexes, it has become possible to decipher the energetics of stop-codon reading by computational analysis and to clarify the origin of the high release-factor binding accuracy. Here we report molecular dynamics free-energy calculations on different cognate and non-cognate termination complexes. The simulations quantitatively explain the basic principles of decoding in all three codon positions and reveal the key elements responsible for specificity of the release factors. The overall reading mechanism involves hitherto unidentified interactions and recognition switches that cannot be described in terms of a tripeptide anticodon model. Further simulations of complexes with tRNA(Trp), the tRNA recognizing the triplet codon for Trp, explain the observation of a 'leaky' stop codon and highlight the fundamentally different third position reading by RF2, which leads to a high stop-codon specificity with strong discrimination against the Trp codon. The simulations clearly illustrate the versatility of codon reading by protein, which goes far beyond tRNA mimicry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sund, Johan -- Ander, Martin -- Aqvist, Johan -- England -- Nature. 2010 Jun 17;465(7300):947-50. doi: 10.1038/nature09082. Epub 2010 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20512119" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/chemistry/genetics/*metabolism ; Codon, Terminator/*chemistry/genetics/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Peptide Termination Factors/chemistry/genetics/*metabolism ; Protein Binding/genetics ; Protein Structure, Tertiary ; RNA, Transfer/metabolism ; Ribosomes/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-02-05
    Description: During their intraerythrocytic development, malaria parasites export hundreds of proteins to remodel their host cell. Nutrient acquisition, cytoadherence and antigenic variation are among the key virulence functions effected by this erythrocyte takeover. Proteins destined for export are synthesized in the endoplasmic reticulum (ER) and cleaved at a conserved (PEXEL) motif, which allows translocation into the host cell via an ATP-driven translocon called the PTEX complex. We report that plasmepsin V, an ER aspartic protease with distant homology to the mammalian processing enzyme BACE, recognizes the PEXEL motif and cleaves it at the correct site. This enzyme is essential for parasite viability and ER residence is essential for its function. We propose that plasmepsin V is the PEXEL protease and is an attractive enzyme for antimalarial drug development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russo, Ilaria -- Babbitt, Shalon -- Muralidharan, Vasant -- Butler, Tamira -- Oksman, Anna -- Goldberg, Daniel E -- AI-047798/AI/NIAID NIH HHS/ -- R01 AI047798/AI/NIAID NIH HHS/ -- R01 AI047798-10/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 4;463(7281):632-6. doi: 10.1038/nature08726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Washington University School of Medicine, Department of Molecular Microbiology, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130644" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antimalarials/pharmacology ; Aspartic Acid Endopeptidases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Biocatalysis/drug effects ; Endoplasmic Reticulum/enzymology/metabolism ; Erythrocytes/cytology/*metabolism/parasitology ; Genes, Dominant ; Genes, Essential ; HIV Protease Inhibitors/pharmacology ; Humans ; Malaria, Falciparum/*blood/metabolism/*parasitology/pathology ; Multiprotein Complexes/metabolism ; Pepstatins/pharmacology ; Phenotype ; Plasmids/genetics ; Plasmodium falciparum/enzymology/genetics/*metabolism/pathogenicity ; Protein Binding ; Protein Sorting Signals ; Protein Structure, Tertiary ; Protein Transport ; Proteomics ; Protozoan Proteins/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-06-26
    Description: Tumour-necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a key component in NF-kappaB signalling triggered by TNF-alpha. Genetic evidence indicates that TRAF2 is necessary for the polyubiquitination of receptor interacting protein 1 (RIP1) that then serves as a platform for recruitment and stimulation of IkappaB kinase, leading to activation of the transcription factor NF-kappaB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyses the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1), one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and the production of S1P is necessary for lysine-63-linked polyubiquitination of RIP1, phosphorylation of IkappaB kinase and IkappaBalpha, and IkappaBalpha degradation, leading to NF-kappaB activation. These responses were mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. S1P specifically binds to TRAF2 at the amino-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, markedly increased recombinant TRAF2-catalysed lysine-63-linked, but not lysine-48-linked, polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data show that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing cofactor for TRAF2 E3 ubiquitin ligase activity, indicating a new paradigm for the regulation of lysine-63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-alpha signalling and the canonical NF-kappaB activation pathway important in inflammatory, antiapoptotic and immune processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarez, Sergio E -- Harikumar, Kuzhuvelil B -- Hait, Nitai C -- Allegood, Jeremy -- Strub, Graham M -- Kim, Eugene Y -- Maceyka, Michael -- Jiang, Hualiang -- Luo, Cheng -- Kordula, Tomasz -- Milstien, Sheldon -- Spiegel, Sarah -- R01 AI050094/AI/NIAID NIH HHS/ -- R01 AI050094-09/AI/NIAID NIH HHS/ -- R01 CA061774/CA/NCI NIH HHS/ -- R01 CA061774-15/CA/NCI NIH HHS/ -- R01 CA061774-16/CA/NCI NIH HHS/ -- R01AI50094/AI/NIAID NIH HHS/ -- R01CA61774/CA/NCI NIH HHS/ -- R37 GM043880/GM/NIGMS NIH HHS/ -- R37 GM043880-18/GM/NIGMS NIH HHS/ -- R37 GM043880-19/GM/NIGMS NIH HHS/ -- R37 GM043880-20/GM/NIGMS NIH HHS/ -- R37 GM043880-21/GM/NIGMS NIH HHS/ -- R37GM043880/GM/NIGMS NIH HHS/ -- U19 AI077435/AI/NIAID NIH HHS/ -- U19 AI077435-020004/AI/NIAID NIH HHS/ -- U19 AI077435-02S10004/AI/NIAID NIH HHS/ -- U19 AI077435-030004/AI/NIAID NIH HHS/ -- U19AI077435/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1084-8. doi: 10.1038/nature09128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, Virginia 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577214" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Cell Line ; Enzyme Activation ; Humans ; I-kappa B Kinase/metabolism ; I-kappa B Proteins/metabolism ; Lysine/metabolism ; Lysophospholipids/biosynthesis/chemistry/*metabolism ; Mice ; Models, Molecular ; NF-kappa B/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Sphingosine/*analogs & derivatives/biosynthesis/chemistry/metabolism ; Substrate Specificity ; TNF Receptor-Associated Factor 2/chemistry/*metabolism ; Tumor Necrosis Factor-alpha/pharmacology ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-03-20
    Description: Cobalamin (Cbl, vitamin B(12)) is a bacterial organic compound and an essential coenzyme in mammals, which take it up from the diet. This occurs by the combined action of the gastric intrinsic factor (IF) and the ileal endocytic cubam receptor formed by the 460-kilodalton (kDa) protein cubilin and the 45-kDa transmembrane protein amnionless. Loss of function of any of these proteins ultimately leads to Cbl deficiency in man. Here we present the crystal structure of the complex between IF-Cbl and the cubilin IF-Cbl-binding-region (CUB(5-8)) determined at 3.3 A resolution. The structure provides insight into how several CUB (for 'complement C1r/C1s, Uegf, Bmp1') domains collectively function as modular ligand-binding regions, and how two distant CUB domains embrace the Cbl molecule by binding the two IF domains in a Ca(2+)-dependent manner. This dual-point model provides a probable explanation of how Cbl indirectly induces ligand-receptor coupling. Finally, the comparison of Ca(2+)-binding CUB domains and the low-density lipoprotein (LDL) receptor-type A modules suggests that the electrostatic pairing of a basic ligand arginine/lysine residue with Ca(2+)-coordinating acidic aspartates/glutamates is a common theme of Ca(2+)-dependent ligand-receptor interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersen, Christian Brix Folsted -- Madsen, Mette -- Storm, Tina -- Moestrup, Soren K -- Andersen, Gregers R -- England -- Nature. 2010 Mar 18;464(7287):445-8. doi: 10.1038/nature08874.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry, Aarhus University, 8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237569" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/metabolism ; Binding Sites ; Calcium/metabolism ; Crystallography, X-Ray ; Glutamic Acid/metabolism ; Humans ; Intrinsic Factor/*chemistry/*metabolism ; Ligands ; Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/*metabolism ; Static Electricity ; Vitamin B 12/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-06-11
    Description: Regulation of the expression of the human immunodeficiency virus (HIV) genome is accomplished in large part by controlling transcription elongation. The viral protein Tat hijacks the host cell's RNA polymerase II elongation control machinery through interaction with the positive transcription elongation factor, P-TEFb, and directs the factor to promote productive elongation of HIV mRNA. Here we describe the crystal structure of the Tat.P-TEFb complex containing HIV-1 Tat, human Cdk9 (also known as CDK9), and human cyclin T1 (also known as CCNT1). Tat adopts a structure complementary to the surface of P-TEFb and makes extensive contacts, mainly with the cyclin T1 subunit of P-TEFb, but also with the T-loop of the Cdk9 subunit. The structure provides a plausible explanation for the tolerance of Tat to sequence variations at certain sites. Importantly, Tat induces significant conformational changes in P-TEFb. This finding lays a foundation for the design of compounds that would specifically inhibit the Tat.P-TEFb complex and block HIV replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tahirov, Tahir H -- Babayeva, Nigar D -- Varzavand, Katayoun -- Cooper, Jeffrey J -- Sedore, Stanley C -- Price, David H -- AI074392/AI/NIAID NIH HHS/ -- GM082923/GM/NIGMS NIH HHS/ -- GM35500/GM/NIGMS NIH HHS/ -- P30CA036727/CA/NCI NIH HHS/ -- P41 RR015301/RR/NCRR NIH HHS/ -- P41 RR015301-075443/RR/NCRR NIH HHS/ -- R01 GM035500/GM/NIGMS NIH HHS/ -- R01 GM035500-20/GM/NIGMS NIH HHS/ -- R01 GM035500-21/GM/NIGMS NIH HHS/ -- R01 GM035500-22/GM/NIGMS NIH HHS/ -- R01 GM035500-23/GM/NIGMS NIH HHS/ -- R01 GM035500-24/GM/NIGMS NIH HHS/ -- R01 GM082923/GM/NIGMS NIH HHS/ -- R01 GM082923-01A2/GM/NIGMS NIH HHS/ -- R01 GM082923-02/GM/NIGMS NIH HHS/ -- R01 GM082923-02S1/GM/NIGMS NIH HHS/ -- R21 AI074392/AI/NIAID NIH HHS/ -- R21 AI074392-01A1/AI/NIAID NIH HHS/ -- R21 AI074392-02/AI/NIAID NIH HHS/ -- R33 AI074392/AI/NIAID NIH HHS/ -- R33 AI074392-03/AI/NIAID NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):747-51. doi: 10.1038/nature09131.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA. ttahirov@unmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535204" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cyclin T/chemistry/metabolism ; Cyclin-Dependent Kinase 9/chemistry/metabolism ; Enzyme Activation ; HIV-1/*chemistry ; Humans ; Models, Molecular ; Molecular Sequence Data ; Positive Transcriptional Elongation Factor B/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; tat Gene Products, Human Immunodeficiency Virus/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-02-19
    Description: Local adaptations within species are often governed by several interacting genes scattered throughout the genome. Single-locus models of selection cannot explain the maintenance of such complex variation because recombination separates co-adapted alleles. Here we report a previously unrecognized type of intraspecific multi-locus genetic variation that has been maintained over a vast period. The galactose (GAL) utilization gene network of Saccharomyces kudriavzevii, a relative of brewer's yeast, exists in two distinct states: a functional gene network in Portuguese strains and, in Japanese strains, a non-functional gene network of allelic pseudogenes. Genome sequencing of all available S. kudriavzevii strains revealed that none of the functional GAL genes were acquired from other species. Rather, these polymorphisms have been maintained for nearly the entire history of the species, despite more recent gene flow genome-wide. Experimental evidence suggests that inactivation of the GAL3 and GAL80 regulatory genes facilitated the origin and long-term maintenance of the two gene network states. This striking example of a balanced unlinked gene network polymorphism introduces a remarkable type of intraspecific variation that may be widespread.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hittinger, Chris Todd -- Goncalves, Paula -- Sampaio, Jose Paulo -- Dover, Jim -- Johnston, Mark -- Rokas, Antonis -- 2T32HG00045/HG/NHGRI NIH HHS/ -- 5R01GM032540/GM/NIGMS NIH HHS/ -- R01 GM032540/GM/NIGMS NIH HHS/ -- R01 GM032540-27/GM/NIGMS NIH HHS/ -- T32 HG000045/HG/NHGRI NIH HHS/ -- T32 HG000045-10/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 4;464(7285):54-8. doi: 10.1038/nature08791. Epub 2010 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164837" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; *Evolution, Molecular ; Galactose/metabolism ; Gene Regulatory Networks/*genetics ; Genes, Fungal/*genetics ; Genome, Fungal ; Japan ; Molecular Sequence Data ; Phylogeny ; Polymorphism, Genetic/*genetics ; Portugal ; Pseudogenes/genetics ; Repressor Proteins/genetics/metabolism ; Saccharomyces/classification/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-08-21
    Description: A diploid organism has two copies of each gene, one inherited from each parent. The expression of two inherited alleles is sometimes biased by the effects known as dominant/recessive relationships, which determine the final phenotype of the organism. To explore the mechanisms underlying these relationships, we have examined the monoallelic expression of S-locus protein 11 genes (SP11), which encode the male determinants of self-incompatibility in Brassica. We previously reported that SP11 expression was monoallelic in some S heterozygotes, and that the promoter regions of recessive SP11 alleles were specifically methylated in the anther tapetum. Here we show that this methylation is controlled by trans-acting small non-coding RNA (sRNA). We identified inverted genomic sequences that were similar to the recessive SP11 promoters in the flanking regions of dominant SP11 alleles. These sequences were specifically expressed in the anther tapetum and processed into 24-nucleotide sRNA, named SP11 methylation inducer (Smi). Introduction of the Smi genomic region into the recessive S homozygotes triggered the methylation of the promoter of recessive SP11 alleles and repressed their transcription. This is an example showing sRNA encoded in the flanking region of a dominant allele acts in trans to induce transcriptional silencing of the recessive allele. Our finding may provide new insights into the widespread monoallelic gene expression systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tarutani, Yoshiaki -- Shiba, Hiroshi -- Iwano, Megumi -- Kakizaki, Tomohiro -- Suzuki, Go -- Watanabe, Masao -- Isogai, Akira -- Takayama, Seiji -- England -- Nature. 2010 Aug 19;466(7309):983-6. doi: 10.1038/nature09308.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725042" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Base Sequence ; Brassica/*genetics/physiology ; DNA Methylation ; Diploidy ; Flowers/genetics ; Gene Expression Regulation, Plant/genetics ; *Gene Silencing ; Genes, Dominant/*genetics ; Genes, Plant/*genetics ; Genes, Recessive/genetics ; Haplotypes/genetics ; Heterozygote ; Homozygote ; Molecular Sequence Data ; Phenotype ; Plant Infertility/*genetics/physiology ; Plant Proteins/genetics ; Plants, Genetically Modified ; Pollen/genetics/metabolism ; Pollination/genetics ; Promoter Regions, Genetic/genetics ; RNA, Plant/*genetics ; RNA, Untranslated/*genetics ; Reproduction/genetics/physiology ; Transcription, Genetic/genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-11-19
    Description: Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system. CdiB facilitates secretion of the CdiA 'exoprotein' onto the cell surface. An additional small immunity protein (CdiI) protects CDI(+) cells from autoinhibition. The mechanisms by which CDI blocks cell growth and by which CdiI counteracts this growth arrest are unknown. Moreover, the existence of CDI activity in other bacteria has not been explored. Here we show that the CDI growth inhibitory activity resides within the carboxy-terminal region of CdiA (CdiA-CT), and that CdiI binds and inactivates cognate CdiA-CT, but not heterologous CdiA-CT. Bioinformatic and experimental analyses show that multiple bacterial species encode functional CDI systems with high sequence variability in the CdiA-CT and CdiI coding regions. CdiA-CT heterogeneity implies that a range of toxic activities are used during CDI. Indeed, CdiA-CTs from uropathogenic E. coli and the plant pathogen Dickeya dadantii have different nuclease activities, each providing a distinct mechanism of growth inhibition. Finally, we show that bacteria lacking the CdiA-CT and CdiI coding regions are unable to compete with isogenic wild-type CDI(+) cells both in laboratory media and on a eukaryotic host. Taken together, these results suggest that CDI systems constitute an intricate immunity network with an important function in bacterial competition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058911/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058911/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoki, Stephanie K -- Diner, Elie J -- de Roodenbeke, Claire T'kint -- Burgess, Brandt R -- Poole, Stephen J -- Braaten, Bruce A -- Jones, Allison M -- Webb, Julia S -- Hayes, Christopher S -- Cotter, Peggy A -- Low, David A -- AI043986/AI/NIAID NIH HHS/ -- GM078634/GM/NIGMS NIH HHS/ -- R01 GM078634/GM/NIGMS NIH HHS/ -- U54 AI065359/AI/NIAID NIH HHS/ -- U54 AI065359-056074/AI/NIAID NIH HHS/ -- U54 AI065359-066074/AI/NIAID NIH HHS/ -- U54 AI065359-07/AI/NIAID NIH HHS/ -- U54AI065359/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):439-42. doi: 10.1038/nature09490.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara (UCSB), Santa Barbara, California 93106-9625, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085179" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Toxins/chemistry/genetics/immunology/*metabolism ; Contact Inhibition/immunology/physiology ; Enterobacteriaceae/enzymology/genetics/metabolism ; Escherichia coli Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Membrane Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Molecular Sequence Data ; Uropathogenic Escherichia coli/enzymology/genetics/growth & ; development/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-05-14
    Description: Nature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider's spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 A resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider's silk extrusion duct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Askarieh, Glareh -- Hedhammar, My -- Nordling, Kerstin -- Saenz, Alejandra -- Casals, Cristina -- Rising, Anna -- Johansson, Jan -- Knight, Stefan D -- England -- Nature. 2010 May 13;465(7295):236-8. doi: 10.1038/nature08962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Oslo University, 1033 Blindern, 0315 Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463740" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Circular Dichroism ; Conserved Sequence ; Crystallography, X-Ray ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Sequence Alignment ; Silk/*chemistry/*metabolism/ultrastructure ; Spiders/*chemistry ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-11-12
    Description: Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by 'mimicking' acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicodeme, Edwige -- Jeffrey, Kate L -- Schaefer, Uwe -- Beinke, Soren -- Dewell, Scott -- Chung, Chun-Wa -- Chandwani, Rohit -- Marazzi, Ivan -- Wilson, Paul -- Coste, Herve -- White, Julia -- Kirilovsky, Jorge -- Rice, Charles M -- Lora, Jose M -- Prinjha, Rab K -- Lee, Kevin -- Tarakhovsky, Alexander -- England -- Nature. 2010 Dec 23;468(7327):1119-23. doi: 10.1038/nature09589. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche GSK, 27 Avenue du Quebec, 91140 Villebon Sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Animals ; Anti-Inflammatory Agents/chemistry/*pharmacology/therapeutic use ; Benzodiazepines ; Cells, Cultured ; Epigenomics ; Gene Expression Regulation/*drug effects ; Genome-Wide Association Study ; Heterocyclic Compounds with 4 or More Rings/chemistry/*pharmacology/therapeutic ; use ; Histone Deacetylase Inhibitors/pharmacology ; Hydroxamic Acids/pharmacology ; *Inflammation/drug therapy/prevention & control ; Kaplan-Meier Estimate ; Lipopolysaccharides/pharmacology ; Macrophages/*drug effects ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Salmonella Infections/drug therapy/immunology/physiopathology/prevention & ; control ; Salmonella typhimurium ; Sepsis/drug therapy/prevention & control ; Shock, Septic/drug therapy/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2010-01-08
    Description: Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818285/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818285/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horie, Masayuki -- Honda, Tomoyuki -- Suzuki, Yoshiyuki -- Kobayashi, Yuki -- Daito, Takuji -- Oshida, Tatsuo -- Ikuta, Kazuyoshi -- Jern, Patric -- Gojobori, Takashi -- Coffin, John M -- Tomonaga, Keizo -- R37 CA 089441/CA/NCI NIH HHS/ -- R37 CA089441/CA/NCI NIH HHS/ -- R37 CA089441-09/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):84-7. doi: 10.1038/nature08695.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Borna disease virus/genetics/physiology ; Bornaviridae/*genetics/physiology ; Cell Line ; Conserved Sequence/genetics ; Evolution, Molecular ; Genes, Viral/*genetics ; Genome/*genetics ; Host-Pathogen Interactions/genetics ; Humans ; Mammals/*genetics/*virology ; Models, Genetic ; Molecular Sequence Data ; Open Reading Frames/genetics ; Phylogeny ; Reverse Transcription ; Time Factors ; Virus Integration/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2010-03-26
    Description: Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ettwig, Katharina F -- Butler, Margaret K -- Le Paslier, Denis -- Pelletier, Eric -- Mangenot, Sophie -- Kuypers, Marcel M M -- Schreiber, Frank -- Dutilh, Bas E -- Zedelius, Johannes -- de Beer, Dirk -- Gloerich, Jolein -- Wessels, Hans J C T -- van Alen, Theo -- Luesken, Francisca -- Wu, Ming L -- van de Pas-Schoonen, Katinka T -- Op den Camp, Huub J M -- Janssen-Megens, Eva M -- Francoijs, Kees-Jan -- Stunnenberg, Henk -- Weissenbach, Jean -- Jetten, Mike S M -- Strous, Marc -- England -- Nature. 2010 Mar 25;464(7288):543-8. doi: 10.1038/nature08883.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Radboud University Nijmegen, IWWR, Department of Microbiology, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands. k.ettwig@science.ru.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20336137" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaerobiosis ; Bacteria/classification/enzymology/genetics/*metabolism ; Genome, Bacterial/genetics ; Methane/*metabolism ; Molecular Sequence Data ; Nitrites/*metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Oxygenases/genetics ; Phylogeny ; Soil Microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2010-08-13
    Description: The eubacterial SOS system is a paradigm of cellular DNA damage and repair, and its activation can contribute to antibiotic resistance. Under normal conditions, LexA represses the transcription of many DNA repair proteins by binding to SOS 'boxes' in their operators. Under genotoxic stress, accumulating complexes of RecA, ATP and single-stranded DNA (ssDNA) activate LexA for autocleavage. To address how LexA recognizes its binding sites, we determined three crystal structures of Escherichia coli LexA in complex with SOS boxes. Here we report the structure of these LexA-DNA complexes. The DNA-binding domains of the LexA dimer interact with the DNA in the classical fashion of a winged helix-turn-helix motif. However, the wings of these two DNA-binding domains bind to the same minor groove of the DNA. These wing-wing contacts may explain why the spacing between the two half-sites of E. coli SOS boxes is invariant.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921665/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921665/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Adrianna P P -- Pigli, Ying Z -- Rice, Phoebe A -- GM058827/GM/NIGMS NIH HHS/ -- R01 GM058827/GM/NIGMS NIH HHS/ -- R01 GM058827-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 12;466(7308):883-6. doi: 10.1038/nature09200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/*metabolism ; Base Sequence ; Crystallography, X-Ray ; DNA Damage ; DNA Repair/genetics ; DNA, Bacterial/chemistry/*genetics/*metabolism ; Electrophoretic Mobility Shift Assay ; *Escherichia coli/chemistry/genetics ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Models, Molecular ; Protein Binding ; *Protein Multimerization ; Protein Structure, Tertiary ; Rec A Recombinases/metabolism ; Repressor Proteins/chemistry/metabolism ; SOS Response (Genetics)/*genetics ; Serine Endopeptidases/*chemistry/*metabolism ; Winged-Helix Transcription Factors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2010-01-15
    Description: In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model. These results show that therapeutically relevant inhibition of Bcr-Abl activity can be achieved with inhibitors that bind to the myristate-binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jianming -- Adrian, Francisco J -- Jahnke, Wolfgang -- Cowan-Jacob, Sandra W -- Li, Allen G -- Iacob, Roxana E -- Sim, Taebo -- Powers, John -- Dierks, Christine -- Sun, Fangxian -- Guo, Gui-Rong -- Ding, Qiang -- Okram, Barun -- Choi, Yongmun -- Wojciechowski, Amy -- Deng, Xianming -- Liu, Guoxun -- Fendrich, Gabriele -- Strauss, Andre -- Vajpai, Navratna -- Grzesiek, Stephan -- Tuntland, Tove -- Liu, Yi -- Bursulaya, Badry -- Azam, Mohammad -- Manley, Paul W -- Engen, John R -- Daley, George Q -- Warmuth, Markus -- Gray, Nathanael S -- R01 CA130876/CA/NCI NIH HHS/ -- R01 CA130876-03/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):501-6. doi: 10.1038/nature08675. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology, Seeley G. Mudd Building 628, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072125" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*chemistry/metabolism/*pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; Benzamides ; Binding Sites ; Bone Marrow Transplantation ; Cell Line, Tumor ; Crystallization ; Disease Models, Animal ; Drug Resistance, Neoplasm/*drug effects ; Female ; Fusion Proteins, bcr-abl/*chemistry/genetics/metabolism ; Humans ; Imatinib Mesylate ; Inhibitory Concentration 50 ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug ; therapy/enzymology/*metabolism ; Male ; Mass Spectrometry ; Mice ; Models, Molecular ; Mutation/genetics ; Piperazines/chemistry/pharmacology ; Protein Structure, Tertiary ; Pyrimidines/chemistry/metabolism/pharmacology ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2010-08-03
    Description: The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Lawrence K -- Ginsburg, Michael A -- Crovace, Claudia -- Donohoe, Mhairi -- Stock, Daniela -- MC_U105170645/Medical Research Council/United Kingdom -- P41 RR007707/RR/NCRR NIH HHS/ -- P41 RR007707-17/RR/NCRR NIH HHS/ -- RR007707/RR/NCRR NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2010 Aug 19;466(7309):996-1000. doi: 10.1038/nature09300. Epub 2010 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20676082" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Flagella/*chemistry/genetics/*physiology ; Models, Molecular ; Molecular Motor Proteins/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; *Rotation ; Static Electricity ; Structure-Activity Relationship ; Thermotoga maritima/chemistry ; *Torque
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2010-10-26
    Description: The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-A resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Peng -- Wang, Jiawei -- Shi, Yigong -- R01 GM084964/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):717-20. doi: 10.1038/nature09488. Epub 2010 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20972419" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; Ligands ; Membrane Transport Proteins/*chemistry/classification/*metabolism ; Models, Molecular ; Movement ; Periplasm/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Riboflavin/chemistry/*metabolism ; Sequence Alignment ; Staphylococcus aureus/*chemistry ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2010-10-01
    Description: Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nogi, Terukazu -- Yasui, Norihisa -- Mihara, Emiko -- Matsunaga, Yukiko -- Noda, Masanori -- Yamashita, Naoya -- Toyofuku, Toshihiko -- Uchiyama, Susumu -- Goshima, Yoshio -- Kumanogoh, Atsushi -- Takagi, Junichi -- England -- Nature. 2010 Oct 28;467(7319):1123-7. doi: 10.1038/nature09473. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2010-08-21
    Description: Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Christine S -- Sadre-Bazzaz, Kianoush -- Shen, Yang -- Deng, Binbin -- Zhou, Z Hong -- Tong, Liang -- AI069015/AI/NIAID NIH HHS/ -- DK067238/DK/NIDDK NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- GM08281/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 AI069015-04/AI/NIAID NIH HHS/ -- R01 DK067238/DK/NIDDK NIH HHS/ -- R01 DK067238-07/DK/NIDDK NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- R01 GM071940-05/GM/NIGMS NIH HHS/ -- T32 GM008281/GM/NIGMS NIH HHS/ -- T32 GM008281-23/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):1001-5. doi: 10.1038/nature09302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725044" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/chemistry/metabolism/ultrastructure ; Biocatalysis ; Biotin/metabolism ; Carbon-Nitrogen Ligases/chemistry/metabolism/ultrastructure ; Carrier Proteins/chemistry/metabolism/ultrastructure ; Catalytic Domain ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Fatty Acid Synthase, Type II ; Holoenzymes/*chemistry/genetics/metabolism/*ultrastructure ; Humans ; Methylmalonyl-CoA Decarboxylase/*chemistry/genetics/metabolism/*ultrastructure ; Models, Molecular ; Mutation/genetics ; Propionic Acidemia/enzymology/genetics ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rhodobacteraceae/enzymology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-06-04
    Description: Plants can defend themselves against a wide array of enemies, from microbes to large animals, yet there is great variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack. A second explanation comes from an evolutionary 'tug of war', in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best explained by costs incurred from constitutive defences in a pest-free environment. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6), underpins marked pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its marked impact on growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todesco, Marco -- Balasubramanian, Sureshkumar -- Hu, Tina T -- Traw, M Brian -- Horton, Matthew -- Epple, Petra -- Kuhns, Christine -- Sureshkumar, Sridevi -- Schwartz, Christopher -- Lanz, Christa -- Laitinen, Roosa A E -- Huang, Yu -- Chory, Joanne -- Lipka, Volker -- Borevitz, Justin O -- Dangl, Jeffery L -- Bergelson, Joy -- Nordborg, Magnus -- Weigel, Detlef -- F23-GM65032-1/GM/NIGMS NIH HHS/ -- GM057171/GM/NIGMS NIH HHS/ -- GM057994/GM/NIGMS NIH HHS/ -- GM073822/GM/NIGMS NIH HHS/ -- GM62932/GM/NIGMS NIH HHS/ -- R01 GM062932/GM/NIGMS NIH HHS/ -- R01 GM062932-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):632-6. doi: 10.1038/nature09083.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520716" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Ankyrins/genetics/metabolism ; Arabidopsis/*genetics/growth & development/metabolism/microbiology ; Arabidopsis Proteins/genetics/metabolism ; Biomass ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Fitness/*genetics ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Molecular Sequence Data ; Phenotype ; Plant Diseases/genetics/microbiology ; Plant Leaves/anatomy & histology/genetics/growth & development/parasitology ; Quantitative Trait Loci
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2010-03-17
    Description: The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479502/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479502/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Jarrod A -- Kirkness, Ewen F -- Simakov, Oleg -- Hampson, Steven E -- Mitros, Therese -- Weinmaier, Thomas -- Rattei, Thomas -- Balasubramanian, Prakash G -- Borman, Jon -- Busam, Dana -- Disbennett, Kathryn -- Pfannkoch, Cynthia -- Sumin, Nadezhda -- Sutton, Granger G -- Viswanathan, Lakshmi Devi -- Walenz, Brian -- Goodstein, David M -- Hellsten, Uffe -- Kawashima, Takeshi -- Prochnik, Simon E -- Putnam, Nicholas H -- Shu, Shengquiang -- Blumberg, Bruce -- Dana, Catherine E -- Gee, Lydia -- Kibler, Dennis F -- Law, Lee -- Lindgens, Dirk -- Martinez, Daniel E -- Peng, Jisong -- Wigge, Philip A -- Bertulat, Bianca -- Guder, Corina -- Nakamura, Yukio -- Ozbek, Suat -- Watanabe, Hiroshi -- Khalturin, Konstantin -- Hemmrich, Georg -- Franke, Andre -- Augustin, Rene -- Fraune, Sebastian -- Hayakawa, Eisuke -- Hayakawa, Shiho -- Hirose, Mamiko -- Hwang, Jung Shan -- Ikeo, Kazuho -- Nishimiya-Fujisawa, Chiemi -- Ogura, Atshushi -- Takahashi, Toshio -- Steinmetz, Patrick R H -- Zhang, Xiaoming -- Aufschnaiter, Roland -- Eder, Marie-Kristin -- Gorny, Anne-Kathrin -- Salvenmoser, Willi -- Heimberg, Alysha M -- Wheeler, Benjamin M -- Peterson, Kevin J -- Bottger, Angelika -- Tischler, Patrick -- Wolf, Alexander -- Gojobori, Takashi -- Remington, Karin A -- Strausberg, Robert L -- Venter, J Craig -- Technau, Ulrich -- Hobmayer, Bert -- Bosch, Thomas C G -- Holstein, Thomas W -- Fujisawa, Toshitaka -- Bode, Hans R -- David, Charles N -- Rokhsar, Daniel S -- Steele, Robert E -- P 21108/Austrian Science Fund FWF/Austria -- R24 RR015088/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Mar 25;464(7288):592-6. doi: 10.1038/nature08830. Epub 2010 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20228792" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/genetics ; Comamonadaceae/genetics ; DNA Transposable Elements/genetics ; Gene Transfer, Horizontal/genetics ; Genome/*genetics ; Genome, Bacterial/genetics ; Hydra/*genetics/microbiology/ultrastructure ; Molecular Sequence Data ; Neuromuscular Junction/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2010-04-30
    Description: Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 A resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF(4)(-).The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chappie, Joshua S -- Acharya, Sharmistha -- Leonard, Marilyn -- Schmid, Sandra L -- Dyda, Fred -- F31 MH081419/MH/NIMH NIH HHS/ -- F31 MH081419-02/MH/NIMH NIH HHS/ -- GM42455/GM/NIGMS NIH HHS/ -- MH081419/MH/NIMH NIH HHS/ -- MH61345/MH/NIMH NIH HHS/ -- R01 GM042455/GM/NIGMS NIH HHS/ -- R01 GM042455-20/GM/NIGMS NIH HHS/ -- R37 MH061345/MH/NIMH NIH HHS/ -- R37 MH061345-10/MH/NIMH NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 May 27;465(7297):435-40. doi: 10.1038/nature09032. Epub 2010 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428113" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Compounds/metabolism ; Amino Acid Sequence ; Biocatalysis ; Catalytic Domain/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Dynamin I/*chemistry/genetics/*metabolism ; Enzyme Activation ; Fluorides/metabolism ; GTP Phosphohydrolases/*chemistry/genetics/*metabolism ; Guanosine Diphosphate/analogs & derivatives/metabolism ; Humans ; Hydrolysis ; Models, Molecular ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2010-05-28
    Description: The Escherichia coli isocitrate dehydrogenase kinase/phosphatase (AceK) is a unique bifunctional enzyme that phosphorylates or dephosphorylates isocitrate dehydrogenase (ICDH) in response to environmental changes, resulting in the inactivation or, respectively, activation of ICDH. ICDH inactivation short-circuits the Krebs cycle by enabling the glyoxlate bypass. It was the discovery of AceK and ICDH that established the existence of protein phosphorylation regulation in prokaryotes. As a 65-kDa protein, AceK is significantly larger than typical eukaryotic protein kinases. Apart from the ATP-binding motif, AceK does not share sequence homology with any eukaryotic protein kinase or phosphatase. Most intriguingly, AceK possesses the two opposing activities of protein kinase and phosphatase within one protein, and specifically recognizes only intact ICDH. Additionally, AceK has strong ATPase activity. It has been shown that AceK kinase, phosphatase and ATPase activities reside at the same site, although the molecular basis of such multifunctionality and its regulation remains completely unknown. Here we report the structures of AceK and its complex with ICDH. The AceK structure reveals a eukaryotic protein-kinase-like domain containing ATP and a regulatory domain with a novel fold. As an AceK phosphatase activator and kinase inhibitor, AMP is found to bind in an allosteric site between the two AceK domains. An AMP-mediated conformational change exposes and shields ATP, acting as a switch between AceK kinase and phosphatase activities, and ICDH-binding induces further conformational change for AceK activation. The substrate recognition loop of AceK binds to the ICDH dimer, allowing higher-order substrate recognition and interaction, and inducing critical conformational change at the phosphorylation site of ICDH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Jimin -- Jia, Zongchao -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jun 17;465(7300):961-5. doi: 10.1038/nature09088. Epub 2010 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505668" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Escherichia coli/*enzymology/genetics ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Isocitrate Dehydrogenase ; *Models, Molecular ; Multienzyme Complexes/*chemistry/genetics/metabolism ; Mutation/genetics ; Protein Binding ; Protein Structure, Tertiary ; Sequence Homology, Amino Acid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2010-04-23
    Description: Vast world reserves of methane gas are underutilized as a feedstock for the production of liquid fuels and chemicals owing to the lack of economical and sustainable strategies for the selective oxidation of methane to methanol. Current processes to activate the strong C-H bond (104 kcal mol(-1)) in methane require high temperatures, are costly and inefficient, and produce waste. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane monooxygenases (MMOs). MMOs thus provide the optimal model for an efficient, environmentally sound catalyst. There are two types of MMO. Soluble MMO (sMMO) is expressed by several strains of methanotroph under copper-limited conditions and oxidizes methane with a well-characterized catalytic di-iron centre. Particulate MMO (pMMO) is an integral membrane metalloenzyme produced by all methanotrophs and is composed of three subunits, pmoA, pmoB and pmoC, arranged in a trimeric alpha(3)beta(3)gamma(3) complex. Despite 20 years of research and the availability of two crystal structures, the metal composition and location of the pMMO metal active site are not known. Here we show that pMMO activity is dependent on copper, not iron, and that the copper active site is located in the soluble domains of the pmoB subunit rather than within the membrane. Recombinant soluble fragments of pmoB (spmoB) bind copper and have propylene and methane oxidation activities. Disruption of each copper centre in spmoB by mutagenesis indicates that the active site is a dicopper centre. These findings help resolve the pMMO controversy and provide a promising new approach to developing environmentally friendly C-H oxidation catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999467/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999467/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balasubramanian, Ramakrishnan -- Smith, Stephen M -- Rawat, Swati -- Yatsunyk, Liliya A -- Stemmler, Timothy L -- Rosenzweig, Amy C -- DK068139/DK/NIDDK NIH HHS/ -- GM070473/GM/NIGMS NIH HHS/ -- R01 DK068139/DK/NIDDK NIH HHS/ -- R01 DK068139-05/DK/NIDDK NIH HHS/ -- R01 GM070473/GM/NIGMS NIH HHS/ -- R01 GM070473-07/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 May 6;465(7294):115-9. doi: 10.1038/nature08992. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410881" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Copper/*chemistry ; Methane/*metabolism ; Methanol/chemistry ; Methylococcus capsulatus/*enzymology ; Methylosinus trichosporium/enzymology ; *Models, Molecular ; Mutation ; Oxidation-Reduction ; Oxygenases/*chemistry/genetics/metabolism ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2010-12-03
    Description: Alphaviruses are enveloped RNA viruses that have a diameter of about 700 A and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Jose, Joyce -- Xiang, Ye -- Kuhn, Richard J -- Rossmann, Michael G -- P01 AI055672/AI/NIAID NIH HHS/ -- P01 AI055672-07/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):705-8. doi: 10.1038/nature09546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124457" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drosophila melanogaster ; Endosomes/metabolism ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Membrane Fusion ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*metabolism ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2010-01-15
    Description: The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653425/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653425/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Pyntikova, Tatyana -- Graves, Tina A -- van Daalen, Saskia K M -- Minx, Patrick J -- Fulton, Robert S -- McGrath, Sean D -- Locke, Devin P -- Friedman, Cynthia -- Trask, Barbara J -- Mardis, Elaine R -- Warren, Wesley C -- Repping, Sjoerd -- Rozen, Steve -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):536-9. doi: 10.1038/nature08700. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072128" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Pair 21/genetics ; Chromosomes, Human, Y/*genetics ; DNA/chemistry/genetics ; Genes/*genetics ; Humans ; Male ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Pan troglodytes/*genetics ; Sequence Homology, Nucleic Acid ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2010-04-07
    Description: Targeting of proteins to appropriate subcellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an amino-terminal signal peptide, which is recognized by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP (refs 1, 2), SRP54 or its bacterial homologue, fifty-four homologue (Ffh), binds the signal peptides, which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region. No structure has been reported that exemplifies SRP54 binding of any signal sequence. Here we have produced a fusion protein between Sulfolobus solfataricus SRP54 (Ffh) and a signal peptide connected via a flexible linker. This fusion protein oligomerizes in solution through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, as demonstrated by its ability to bind SRP RNA and SRP receptor FtsY. We present the crystal structure at 3.5 A resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognized by SRP54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Li, Jade -- Oubridge, Chris -- Hernandez, Helena -- Robinson, Carol V -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- U.1051.04.016(78933)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):507-10. doi: 10.1038/nature08870. Epub 2010 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20364120" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/metabolism ; Crystallography, X-Ray ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Multimerization ; Protein Sorting Signals/*physiology ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Virus/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Recognition Particle/*chemistry/*metabolism ; Structure-Activity Relationship ; Sulfolobus solfataricus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2010-02-23
    Description: Nitrogen (N(2))-fixing marine cyanobacteria are an important source of fixed inorganic nitrogen that supports oceanic primary productivity and carbon dioxide removal from the atmosphere. A globally distributed, periodically abundant N(2)-fixing marine cyanobacterium, UCYN-A, was recently found to lack the oxygen-producing photosystem II complex of the photosynthetic apparatus, indicating a novel metabolism, but remains uncultivated. Here we show, from metabolic reconstructions inferred from the assembly of the complete UCYN-A genome using massively parallel pyrosequencing of paired-end reads, that UCYN-A has a photofermentative metabolism and is dependent on other organisms for essential compounds. We found that UCYN-A lacks a number of major metabolic pathways including the tricarboxylic acid cycle, but retains sufficient electron transport capacity to generate energy and reducing power from light. Unexpectedly, UCYN-A has a reduced genome (1.44 megabases) that is structurally similar to many chloroplasts and some bacteria, in that it contains inverted repeats of ribosomal RNA operons. The lack of biosynthetic pathways for several amino acids and purines suggests that this organism depends on other organisms, either in close association or in symbiosis, for critical nutrients. However, size fractionation experiments using natural populations have so far not provided evidence of a symbiotic association with another microorganism. The UCYN-A cyanobacterium is a paradox in evolution and adaptation to the marine environment, and is an example of the tight metabolic coupling between microorganisms in oligotrophic oceanic microbial communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tripp, H James -- Bench, Shellie R -- Turk, Kendra A -- Foster, Rachel A -- Desany, Brian A -- Niazi, Faheem -- Affourtit, Jason P -- Zehr, Jonathan P -- England -- Nature. 2010 Mar 4;464(7285):90-4. doi: 10.1038/nature08786. Epub 2010 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20173737" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/metabolism ; Chromosomes, Bacterial/genetics ; Cyanobacteria/classification/cytology/*genetics/*metabolism ; Electron Transport ; Genome, Bacterial/*genetics ; Genomics ; Marine Biology ; Molecular Sequence Data ; Nitrogen/*metabolism ; Nitrogen Fixation/genetics/*physiology ; Oceans and Seas ; Oxidoreductases/genetics ; Seawater/*microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2010-05-21
    Description: Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge. This process regulates various cellular functions such as plasma membrane repair in plants and animals, the discharge of defensive spikes in Paramecium, and the secretion of insulin from pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons. In animal cells, serine/threonine kinases including cAMP-dependent protein kinase, protein kinase C and calmodulin kinases have been implicated in calcium-signal transduction leading to regulated secretion. Although plants and protozoa also regulate secretion by means of intracellular calcium, the method by which these signals are relayed has not been explained. Here we show that the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a block of essential phenotypes including parasite motility, host-cell invasion, and egress. These phenotypes were recapitulated by using a chemical biology approach in which pyrazolopyrimidine-derived compounds specifically inhibited TgCDPK1 and disrupted the parasite's life cycle at stages dependent on microneme secretion. Inhibition was specific to TgCDPK1, because expression of a resistant mutant kinase reversed sensitivity to the inhibitor. TgCDPK1 is conserved among apicomplexans and belongs to a family of kinases shared with plants and ciliates, suggesting that related CDPKs may have a function in calcium-regulated secretion in other organisms. Because this kinase family is absent from mammalian hosts, it represents a validated target that may be exploitable for chemotherapy against T. gondii and related apicomplexans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lourido, Sebastian -- Shuman, Joel -- Zhang, Chao -- Shokat, Kevan M -- Hui, Raymond -- Sibley, L David -- R01 AI034036/AI/NIAID NIH HHS/ -- R01 AI034036-17/AI/NIAID NIH HHS/ -- England -- Nature. 2010 May 20;465(7296):359-62. doi: 10.1038/nature09022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485436" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cells, Cultured ; *Exocytosis ; Fibroblasts/parasitology ; Foreskin ; Gene Knockout Techniques ; Host-Pathogen Interactions/physiology ; Humans ; Male ; Molecular Sequence Data ; Organelles/metabolism ; Phenotype ; Protein Kinases/deficiency/genetics/*metabolism ; Protein Phosphatase 1/chemistry/metabolism ; Toxoplasma/*cytology/*enzymology/pathogenicity/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2010-10-29
    Description: The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 A resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yu-Hang -- Hu, Lei -- Punta, Marco -- Bruni, Renato -- Hillerich, Brandan -- Kloss, Brian -- Rost, Burkhard -- Love, James -- Siegelbaum, Steven A -- Hendrickson, Wayne A -- R01 GM034102/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 28;467(7319):1074-80. doi: 10.1038/nature09487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981093" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/genetics/metabolism ; Arabidopsis Proteins/*chemistry ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Electric Conductivity ; Haemophilus influenzae/*chemistry/genetics ; Ion Channel Gating ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Oocytes/metabolism ; Phenylalanine/chemistry/metabolism ; Plant Stomata/*metabolism ; Static Electricity ; *Structural Homology, Protein ; Substrate Specificity ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2010-08-27
    Description: Successful partition of replicated genomes at cell division requires chromosome attachment to opposite poles of mitotic spindle (bi-orientation). Any defects in this regulation bring about chromosomal instability, which may accelerate tumour progression in humans. To achieve chromosome bi-orientation at prometaphase, the chromosomal passenger complex (CPC), composed of catalytic kinase Aurora B and regulatory components (INCENP, Survivin and Borealin), must be localized to centromeres to phosphorylate kinetochore substrates. Although the CPC dynamically changes the subcellular localization, the regulation of centromere targeting is largely unknown. Here we isolated a fission yeast cyclin B mutant defective specifically in chromosome bi-orientation. Accordingly, we identified Cdk1 (also known as Cdc2)-cyclin-B-dependent phosphorylation of Survivin. Preventing Survivin phosphorylation impairs centromere CPC targeting as well as chromosome bi-orientation, whereas phosphomimetic Survivin suppresses the bi-orientation defect in the cyclin B mutant. Survivin phosphorylation promotes direct binding with shugoshin, which we now define as a conserved centromeric adaptor of the CPC. In human cells, the phosphorylation of Borealin has a comparable role. Thus, our study resolves the conserved mechanisms of CPC targeting to centromeres, highlighting a key role of Cdk1-cyclin B in chromosome bi-orientation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukahara, Tatsuya -- Tanno, Yuji -- Watanabe, Yoshinori -- England -- Nature. 2010 Oct 7;467(7316):719-23. doi: 10.1038/nature09390. Epub 2010 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739936" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aurora Kinase B ; Aurora Kinases ; CDC2 Protein Kinase/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Cycle Proteins/genetics/metabolism ; Cell Line ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes, Fungal/*metabolism ; Chromosomes, Human/*metabolism ; Cyclin B/genetics/metabolism ; Humans ; Inhibitor of Apoptosis Proteins ; Microtubule-Associated Proteins/metabolism ; Molecular Sequence Data ; Multiprotein Complexes/*chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Schizosaccharomyces/cytology/genetics/metabolism ; Schizosaccharomyces pombe Proteins/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2010-02-19
    Description: Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Cynthia M -- Hoffmann, Steve -- Darfeuille, Fabien -- Reignier, Jeremy -- Findeiss, Sven -- Sittka, Alexandra -- Chabas, Sandrine -- Reiche, Kristin -- Hackermuller, Jorg -- Reinhardt, Richard -- Stadler, Peter F -- Vogel, Jorg -- England -- Nature. 2010 Mar 11;464(7286):250-5. doi: 10.1038/nature08756. Epub 2010 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Infection Biology, RNA Biology Group, D-10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164839" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Amino Acid Sequence ; Base Sequence ; Cells, Cultured ; *Gene Expression Profiling ; Genome, Bacterial/*genetics ; Helicobacter Infections/*microbiology ; Helicobacter pylori/*genetics ; Humans ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operon/genetics ; RNA, Bacterial/chemistry/*genetics/metabolism ; RNA, Messenger/genetics ; RNA, Untranslated ; Sequence Alignment ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2010-05-28
    Description: MicroRNAs (miRNAs) mediate post-transcriptional gene regulation through association with Argonaute proteins (AGOs). Crystal structures of archaeal and bacterial homologues of AGOs have shown that the MID (middle) domain mediates the interaction with the phosphorylated 5' end of the miRNA guide strand and this interaction is thought to be independent of the identity of the 5' nucleotide in these systems. However, analysis of the known sequences of eukaryotic miRNAs and co-immunoprecipitation experiments indicate that there is a clear bias for U or A at the 5' position. Here we report the crystal structure of a MID domain from a eukaryotic AGO protein, human AGO2. The structure, in complex with nucleoside monophosphates (AMP, CMP, GMP, and UMP) mimicking the 5' end of miRNAs, shows that there are specific contacts made between the base of UMP or AMP and a rigid loop in the MID domain. Notably, the structure of the loop discriminates against CMP and GMP and dissociation constants calculated from NMR titration experiments confirm these results, showing that AMP (0.26 mM) and UMP (0.12 mM) bind with up to 30-fold higher affinity than either CMP (3.6 mM) or GMP (3.3 mM). This study provides structural evidence for nucleotide-specific interactions in the MID domain of eukaryotic AGO proteins and explains the observed preference for U or A at the 5' end of miRNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, Filipp -- Sonenberg, Nahum -- Nagar, Bhushan -- MOP-82929/Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jun 10;465(7299):818-22. doi: 10.1038/nature09039. Epub 2010 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505670" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Argonaute Proteins ; Base Sequence ; Crystallography, X-Ray ; Cytidine Monophosphate/metabolism ; Eukaryotic Initiation Factor-2/*chemistry/*metabolism ; Guanosine Monophosphate/metabolism ; Humans ; Kinetics ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Protein Structure, Tertiary ; RNA, Guide/chemistry/*genetics/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thermodynamics ; Uridine Monophosphate/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2010-05-18
    Description: Staphylococcal superantigen-carrying pathogenicity islands (SaPIs) are discrete, chromosomally integrated units of approximately 15 kilobases that are induced by helper phages to excise and replicate. SaPI DNA is then efficiently encapsidated in phage-like infectious particles, leading to extremely high frequencies of intra- as well as intergeneric transfer. In the absence of helper phage lytic growth, the island is maintained in a quiescent prophage-like state by a global repressor, Stl, which controls expression of most of the SaPI genes. Here we show that SaPI derepression is effected by a specific, non-essential phage protein that binds to Stl, disrupting the Stl-DNA complex and thereby initiating the excision-replication-packaging cycle of the island. Because SaPIs require phage proteins to be packaged, this strategy assures that SaPIs will be transferred once induced. Several different SaPIs are induced by helper phage 80alpha and, in each case, the SaPI commandeers a different non-essential phage protein for its derepression. The highly specific interactions between different SaPI repressors and helper-phage-encoded antirepressors represent a remarkable evolutionary adaptation involved in pathogenicity island mobilization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518041/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518041/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tormo-Mas, Maria Angeles -- Mir, Ignacio -- Shrestha, Archana -- Tallent, Sandra M -- Campoy, Susana -- Lasa, Inigo -- Barbe, Jordi -- Novick, Richard P -- Christie, Gail E -- Penades, Jose R -- R01AI022159-23A2/AI/NIAID NIH HHS/ -- R21 AI067654/AI/NIAID NIH HHS/ -- R21 AI067654-01A1/AI/NIAID NIH HHS/ -- R21AI067654/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):779-82. doi: 10.1038/nature09065. Epub 2010 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Investigacion y Tecnologia Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo. 187, Segorbe, Castellon 12400, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20473284" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; DNA/biosynthesis/genetics ; DNA Replication ; Genomic Islands/*genetics ; Helper Viruses/*enzymology/genetics/metabolism/physiology ; Lysogeny/physiology ; Molecular Sequence Data ; Prophages/metabolism/physiology ; Pyrophosphatases/chemistry/genetics/metabolism ; Recombination, Genetic/genetics ; Repressor Proteins/*antagonists & inhibitors/genetics/metabolism ; Shock, Septic ; Staphylococcus Phages/*enzymology/genetics/metabolism/physiology ; Staphylococcus aureus/*genetics/pathogenicity/virology ; Superantigens/genetics ; Up-Regulation/*genetics ; Viral Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonetta, Laura -- England -- Nature. 2010 Dec 9;468(7325):852. doi: 10.1038/468852a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150999" target="_blank"〉PubMed〈/a〉
    Keywords: High-Throughput Screening Assays ; Humans ; Immunoprecipitation ; Mass Spectrometry ; Protein Array Analysis ; Protein Interaction Mapping/*methods ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2010-04-09
    Description: The complex, geometric colour patterns of many animal bodies have important roles in behaviour and ecology. The generation of certain patterns has been the subject of considerable theoretical exploration, however, very little is known about the actual mechanisms underlying colour pattern formation or evolution. Here we have investigated the generation and evolution of the complex, spotted wing pattern of Drosophila guttifera. We show that wing spots are induced by the Wingless morphogen, which is expressed at many discrete sites that are specified by pre-existing positional information that governs the development of wing structures. Furthermore, we demonstrate that the elaborate spot pattern evolved from simpler schemes by co-option of Wingless expression at new sites. This example of a complex design developing and evolving by the layering of new patterns on pre-patterns is likely to be a general theme in other animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werner, Thomas -- Koshikawa, Shigeyuki -- Williams, Thomas M -- Carroll, Sean B -- GM076935/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Apr 22;464(7292):1143-8. doi: 10.1038/nature08896. Epub 2010 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, Wisconsin 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376004" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Color ; Drosophila/genetics/*physiology ; Drosophila Proteins/genetics/*metabolism ; Enhancer Elements, Genetic/genetics ; Gene Expression Regulation, Developmental/genetics ; Molecular Sequence Data ; Morphogenesis/genetics/physiology ; Pigmentation/genetics/*physiology ; Wings, Animal/anatomy & histology/*physiology ; Wnt1 Protein/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2010-08-21
    Description: Haemostasis in the arteriolar circulation mediated by von Willebrand factor (VWF) binding to platelets is an example of an adhesive interaction that must withstand strong hydrodynamic forces acting on cells. VWF is a concatenated, multifunctional protein that has binding sites for platelets as well as subendothelial collagen. Binding of the A1 domain in VWF to the glycoprotein Ib alpha subunit (GPIbalpha) on the surface of platelets mediates crosslinking of platelets to one another and the formation of a platelet plug for arterioles. The importance of VWF is illustrated by its mutation in von Willebrand disease, a bleeding diathesis. Here, we describe a novel mechanochemical specialization of the A1-GPIbalpha bond for force-resistance. We have developed a method that enables, for the first time, repeated measurements of the binding and unbinding of a receptor and ligand in a single molecule (ReaLiSM). We demonstrate two states of the receptor-ligand bond, that is, a flex-bond. One state is seen at low force; a second state begins to engage at 10 pN with a approximately 20-fold longer lifetime and greater force resistance. The lifetimes of the two states, how force exponentiates lifetime, and the kinetics of switching between the two states are all measured. For the first time, single-molecule measurements on this system are in agreement with bulk phase measurements. The results have important implications not only for how platelets bound to VWF are able to resist force to plug arterioles, but also how increased flow activates platelet plug formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongseong -- Zhang, Cheng-Zhong -- Zhang, Xiaohui -- Springer, Timothy A -- HL-48675/HL/NHLBI NIH HHS/ -- P01 HL048675/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):992-5. doi: 10.1038/nature09295.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/cytology/*physiology ; Blood Coagulation/*physiology ; Blood Platelets/chemistry/cytology/*metabolism ; Cell Line ; Hemorheology ; Humans ; Kinetics ; Ligands ; Membrane Glycoproteins/chemistry/*metabolism ; Mice ; Models, Chemical ; Models, Molecular ; Platelet Glycoprotein GPIb-IX Complex ; Protein Binding ; Protein Structure, Tertiary ; Tensile Strength ; von Willebrand Factor/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2010-02-12
    Description: Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉International Brachypodium Initiative -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2010 Feb 11;463(7282):763-8. doi: 10.1038/nature08747.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉USDA-ARS Western Regional Research Center, Albany, California 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20148030" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Transposable Elements/genetics ; Evolution, Molecular ; Gene Fusion/genetics ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Molecular Sequence Data ; Oryza/genetics ; Poaceae/classification/*genetics ; RNA, Plant/analysis/genetics ; Sequence Analysis, DNA ; Sorghum/genetics ; Synteny/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2010-07-03
    Description: Various social behaviours in mice are regulated by chemical signals called pheromones that act through the vomeronasal system. Exocrine gland-secreting peptide 1 (ESP1) is a 7-kDa peptide that is released into male tear fluids and stimulates vomeronasal sensory neurons in female mice. Here, we describe the molecular and neural mechanisms that are involved in the decoding of ESP1 signals in the vomeronasal system, which leads to behavioural output in female mice. ESP1 is recognized by a specific vomeronasal receptor, V2Rp5, and the ligand-receptor interaction results in sex-specific signal transmission to the amygdaloid and hypothalamic nuclei via the accessory olfactory bulb. Consequently, ESP1 enhances female sexual receptive behaviour upon male mounting (lordosis), allowing successful copulation. In V2Rp5-deficient mice, ESP1 induces neither neural activation nor sexual behaviour. These findings show that ESP1 is a crucial male pheromone that regulates female reproductive behaviour through a specific receptor in the mouse vomeronasal system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haga, Sachiko -- Hattori, Tatsuya -- Sato, Toru -- Sato, Koji -- Matsuda, Soichiro -- Kobayakawa, Reiko -- Sakano, Hitoshi -- Yoshihara, Yoshihiro -- Kikusui, Takefumi -- Touhara, Kazushige -- England -- Nature. 2010 Jul 1;466(7302):118-22. doi: 10.1038/nature09142.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596023" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/metabolism ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Neurons/metabolism ; Pheromones/*metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins c-fos/metabolism ; Receptors, Odorant/deficiency/genetics/*metabolism ; Receptors, Pheromone/deficiency/genetics/*metabolism ; Sexual Behavior, Animal/*physiology ; TRPC Cation Channels/deficiency ; Vomeronasal Organ/cytology/innervation/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2010-01-02
    Description: Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baudat, F -- Buard, J -- Grey, C -- Fledel-Alon, A -- Ober, C -- Przeworski, M -- Coop, G -- de Massy, B -- 03S1/PHS HHS/ -- GM83098/GM/NIGMS NIH HHS/ -- HD21244/HD/NICHD NIH HHS/ -- HL085197/HL/NHLBI NIH HHS/ -- R01 GM083098/GM/NIGMS NIH HHS/ -- R01 HD021244/HD/NICHD NIH HHS/ -- R01 HL085197/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):836-40. doi: 10.1126/science.1183439. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique Humaine, UPR1142, CNRS, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044539" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/metabolism ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Genome ; Genome, Human ; Genotype ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/*metabolism ; Humans ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Phenotype ; *Recombination, Genetic ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2010-08-07
    Description: For RNA viruses, rapid viral evolution and the biological similarity of closely related host species have been proposed as key determinants of the occurrence and long-term outcome of cross-species transmission. Using a data set of hundreds of rabies viruses sampled from 23 North American bat species, we present a general framework to quantify per capita rates of cross-species transmission and reconstruct historical patterns of viral establishment in new host species using molecular sequence data. These estimates demonstrate diminishing frequencies of both cross-species transmission and host shifts with increasing phylogenetic distance between bat species. Evolutionary constraints on viral host range indicate that host species barriers may trump the intrinsic mutability of RNA viruses in determining the fate of emerging host-virus interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Streicker, Daniel G -- Turmelle, Amy S -- Vonhof, Maarten J -- Kuzmin, Ivan V -- McCracken, Gary F -- Rupprecht, Charles E -- 0430418/PHS HHS/ -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):676-9. doi: 10.1126/science.1188836.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rabies Team, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA. dstrike@uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20689015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; Chiroptera/*classification/genetics/*virology ; Communicable Diseases, Emerging/transmission/*veterinary/virology ; Evolution, Molecular ; Genes, Viral ; Host-Pathogen Interactions ; Likelihood Functions ; Molecular Sequence Data ; Monte Carlo Method ; Nucleocapsid Proteins/genetics ; *Phylogeny ; Rabies/transmission/*veterinary/virology ; Rabies virus/classification/genetics/*pathogenicity/physiology ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2010-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stroud, David A -- Meisinger, Chris -- Pfanner, Nikolaus -- Wiedemann, Nils -- New York, N.Y. -- Science. 2010 May 14;328(5980):831-2. doi: 10.1126/science.1190507.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biochemie und Molekularbiologie, ZBMZ, Trinationales Graduiertenkolleg 1478, Fakultat fur Biologie, and Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466908" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/chemistry/*metabolism ; Carrier Proteins/metabolism ; Cell Membrane/*metabolism ; Chloroplasts/metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Intracellular Membranes/metabolism ; Liposomes ; Mitochondria/metabolism ; Molecular Chaperones/chemistry/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Peptidylprolyl Isomerase/metabolism ; Protein Folding ; Protein Precursors/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tate, Christopher G -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1644-5. doi: 10.1126/science.1193065.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. cgt@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576878" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Cell Membrane/*chemistry/metabolism ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers ; Membrane Transport Proteins/chemistry/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2010-12-15
    Description: Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, Laura -- Tripathy, Sucheta -- Ishaque, Naveed -- Boot, Nico -- Cabral, Adriana -- Kemen, Eric -- Thines, Marco -- Ah-Fong, Audrey -- Anderson, Ryan -- Badejoko, Wole -- Bittner-Eddy, Peter -- Boore, Jeffrey L -- Chibucos, Marcus C -- Coates, Mary -- Dehal, Paramvir -- Delehaunty, Kim -- Dong, Suomeng -- Downton, Polly -- Dumas, Bernard -- Fabro, Georgina -- Fronick, Catrina -- Fuerstenberg, Susan I -- Fulton, Lucinda -- Gaulin, Elodie -- Govers, Francine -- Hughes, Linda -- Humphray, Sean -- Jiang, Rays H Y -- Judelson, Howard -- Kamoun, Sophien -- Kyung, Kim -- Meijer, Harold -- Minx, Patrick -- Morris, Paul -- Nelson, Joanne -- Phuntumart, Vipa -- Qutob, Dinah -- Rehmany, Anne -- Rougon-Cardoso, Alejandra -- Ryden, Peter -- Torto-Alalibo, Trudy -- Studholme, David -- Wang, Yuanchao -- Win, Joe -- Wood, Jo -- Clifton, Sandra W -- Rogers, Jane -- Van den Ackerveken, Guido -- Jones, Jonathan D G -- McDowell, John M -- Beynon, Jim -- Tyler, Brett M -- 079643/Wellcome Trust/United Kingdom -- BB/C509123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E007120/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024815/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024882/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F0161901/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G015244/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- EP/F500025/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- T12144/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1549-51. doi: 10.1126/science.1195203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148394" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Arabidopsis/*parasitology ; Enzymes/genetics ; *Evolution, Molecular ; Gene Dosage ; Genes ; *Genome ; Host-Pathogen Interactions ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Oomycetes/*genetics/*growth & development/pathogenicity/physiology ; Phytophthora/genetics ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Spores/physiology ; Synteny ; Virulence Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2010-07-31
    Description: Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ting -- Ghosal, Gargi -- Yuan, Jingsong -- Chen, Junjie -- Huang, Jun -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):693-6. doi: 10.1126/science.1192656. Epub 2010 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; Exodeoxyribonucleases/chemistry/genetics/*metabolism ; Fanconi Anemia Complementation Group D2 Protein/*metabolism ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Mitomycin/pharmacology ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Protein Binding ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Sebyung -- Douglas, Trevor -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):42-3. doi: 10.1126/science.1184318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry and Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044564" target="_blank"〉PubMed〈/a〉
    Keywords: Acetaldehyde/metabolism ; *Cell Compartmentation ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry/enzymology/*ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism ; Ethanolamine/*metabolism ; Polyproteins/chemistry/metabolism ; Protein Folding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2010-12-15
    Description: The genetics of sex determination remain mysterious in many organisms, including some that are otherwise well studied. Here we report the discovery and analysis of the mating-type locus of the model organism Dictyostelium discoideum. Three forms of a single genetic locus specify this species' three mating types: two versions of the locus are entirely different in sequence, and the third resembles a composite of the other two. Single, unrelated genes are sufficient to determine two of the mating types, whereas homologs of both these genes are required in the composite type. The key genes encode polypeptides that possess no recognizable similarity to established protein families. Sex determination in the social amoebae thus appears to use regulators that are unrelated to any others currently known.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloomfield, Gareth -- Skelton, Jason -- Ivens, Alasdair -- Tanaka, Yoshimasa -- Kay, Robert R -- 06724/Wellcome Trust/United Kingdom -- 076964/Wellcome Trust/United Kingdom -- MC_U105115237/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1533-6. doi: 10.1126/science.1197423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. garethb@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Dictyostelium/*genetics/growth & development/*physiology ; Gene Deletion ; *Genes, Protozoan ; Genetic Loci ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Peptides/chemistry/genetics/physiology ; Protozoan Proteins/chemistry/*genetics/*physiology ; Reproduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2010-02-06
    Description: Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Peng -- Tsao, Jun -- Schein, Stan -- Green, Todd J -- Luo, Ming -- Zhou, Z Hong -- AI050066/AI/NIAID NIH HHS/ -- AI069015/AI/NIAID NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- R01 AI050066/AI/NIAID NIH HHS/ -- R01 AI050066-08/AI/NIAID NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):689-93. doi: 10.1126/science.1181766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133572" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Lipid Bilayers ; Models, Molecular ; Mutagenesis ; Nucleocapsid Proteins/*chemistry/genetics/ultrastructure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry/ultrastructure ; Vesiculovirus/*chemistry/physiology/*ultrastructure ; Viral Matrix Proteins/*chemistry/ultrastructure ; Virion/chemistry/ultrastructure ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2010-01-16
    Description: Integrins mediate cell adhesion to the extracellular matrix and transmit signals within the cell that stimulate cell spreading, retraction, migration, and proliferation. The mechanism of integrin outside-in signaling has been unclear. We found that the heterotrimeric guanine nucleotide-binding protein (G protein) Galpha13 directly bound to the integrin beta3 cytoplasmic domain and that Galpha13-integrin interaction was promoted by ligand binding to the integrin alphaIIbbeta3 and by guanosine triphosphate (GTP) loading of Galpha13. Interference of Galpha13 expression or a myristoylated fragment of Galpha13 that inhibited interaction of alphaIIbbeta3 with Galpha13 diminished activation of protein kinase c-Src and stimulated the small guanosine triphosphatase RhoA, consequently inhibiting cell spreading and accelerating cell retraction. We conclude that integrins are noncanonical Galpha13-coupled receptors that provide a mechanism for dynamic regulation of RhoA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Haixia -- Shen, Bo -- Flevaris, Panagiotis -- Chow, Christina -- Lam, Stephen C-T -- Voyno-Yasenetskaya, Tatyana A -- Kozasa, Tohru -- Du, Xiaoping -- GM061454/GM/NIGMS NIH HHS/ -- GM074001/GM/NIGMS NIH HHS/ -- HL062350/HL/NHLBI NIH HHS/ -- HL068819/HL/NHLBI NIH HHS/ -- HL080264/HL/NHLBI NIH HHS/ -- R01 GM061454/GM/NIGMS NIH HHS/ -- R01 GM061454-09/GM/NIGMS NIH HHS/ -- R01 GM074001/GM/NIGMS NIH HHS/ -- R01 GM074001-02/GM/NIGMS NIH HHS/ -- R01 HL062350/HL/NHLBI NIH HHS/ -- R01 HL062350-09/HL/NHLBI NIH HHS/ -- R01 HL068819/HL/NHLBI NIH HHS/ -- R01 HL068819-08/HL/NHLBI NIH HHS/ -- R01 HL080264/HL/NHLBI NIH HHS/ -- R01 HL080264-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):340-3. doi: 10.1126/science.1174779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Room E403, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Blood Platelets/*physiology ; Clot Retraction ; Fibrinogen/metabolism ; GTP-Binding Protein alpha Subunits, G12-G13/genetics/*metabolism ; Humans ; Integrin beta3/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Platelet Adhesiveness ; Platelet Glycoprotein GPIIb-IIIa Complex/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins pp60(c-src)/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; rhoA GTP-Binding Protein/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2010-05-29
    Description: The mechanism by which multispanning helix-bundle membrane proteins are inserted into their target membrane remains unclear. In both prokaryotic and eukaryotic cells, membrane proteins are inserted cotranslationally into the lipid bilayer. Positively charged residues flanking the transmembrane helices are important topological determinants, but it is not known whether they act strictly locally, affecting only the nearest transmembrane helices, or can act globally, affecting the topology of the entire protein. Here we found that the topology of an Escherichia coli inner membrane protein with four or five transmembrane helices could be controlled by a single positively charged residue placed in different locations throughout the protein, including the very C terminus. This observation points to an unanticipated plasticity in membrane protein insertion mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seppala, Susanna -- Slusky, Joanna S -- Lloris-Garcera, Pilar -- Rapp, Mikaela -- von Heijne, Gunnar -- 232648/European Research Council/International -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1698-700. doi: 10.1126/science.1188950. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508091" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Cell Membrane/*chemistry ; Drug Resistance, Bacterial ; Escherichia coli/*chemistry/drug effects/growth & development/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Ethidium/pharmacology ; Lipid Bilayers ; Membrane Transport Proteins/chemistry/metabolism ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2010-11-13
    Description: CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the alpha phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Baocheng -- Xiong, Yong -- Steitz, Thomas A -- GM57510/GM/NIGMS NIH HHS/ -- R01 GM057510/GM/NIGMS NIH HHS/ -- R01 GM057510-13/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):937-40. doi: 10.1126/science.1194985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071662" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/*metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Archaeoglobus fulgidus/*enzymology ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Cytidine Triphosphate/metabolism ; Cytosine/chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; RNA Nucleotidyltransferases/*chemistry/*metabolism ; RNA, Transfer/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...