ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats  (2,687)
  • Binding Sites  (1,445)
  • Phosphorylation  (1,100)
  • American Association for the Advancement of Science (AAAS)  (4,924)
  • MDPI AG  (1)
  • American Chemical Society (ACS)
  • PANGAEA
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in International Journal of Environmental Research and Public Health 15 (2018): 723, doi:10.3390/ijerph15040723.
    Description: There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208Pb/206Pb and 207Pb/206Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields
    Keywords: Lead isotopes ; ICP-MS ; TIMS ; MC-ICP-MS ; Environment ; Humans ; Rats ; Fractionation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Underwood, Emily -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1188-90. doi: 10.1126/science.350.6265.1188.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785475" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/blood/genetics/*physiology ; Animals ; Biological Clocks/genetics/*physiology ; Biomarkers/blood/metabolism ; DNA/genetics ; DNA Methylation ; Epigenesis, Genetic ; Humans ; Mice ; Rats ; Telomere Homeostasis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Servick, Kelly -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):15. doi: 10.1126/science.351.6268.15.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26721984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; California ; Cell Differentiation ; Clinical Trials as Topic ; Drug Industry ; Embryonic Stem Cells/cytology/*transplantation ; Financing, Organized ; Humans ; Photoreceptor Cells/physiology ; Rats ; Regenerative Medicine/*economics/*trends ; Retina/cytology/physiology ; Stem Cell Research/*economics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-26
    Description: Voltage-gated CaV1.2 channels (L-type calcium channel alpha1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VDeltaC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VDeltaC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VDeltaC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VDeltaC by 10 to 20 seconds. CaV1.2 VDeltaC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VDeltaC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VDeltaC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Boxing -- Tadross, Michael R -- Tsien, Richard W -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):863-7. doi: 10.1126/science.aad3647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. ; Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. tadrossm@janelia.hhmi.org. ; Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels, L-Type/chemistry/*metabolism ; *Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; *Gene Expression Regulation ; HEK293 Cells ; Hippocampus/cytology ; Humans ; Long QT Syndrome/genetics/metabolism ; Neuronal Plasticity/*genetics ; Neurons/drug effects/*metabolism ; Nimodipine/pharmacology ; Protein Conformation/drug effects ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/metabolism ; Syndactyly/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-09
    Description: Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaolei -- Ditlev, Jonathon A -- Hui, Enfu -- Xing, Wenmin -- Banjade, Sudeep -- Okrut, Julia -- King, David S -- Taunton, Jack -- Rosen, Michael K -- Vale, Ronald D -- 5-F32-DK101188/DK/NIDDK NIH HHS/ -- F32 DK101188/DK/NIDDK NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):595-9. doi: 10.1126/science.aad9964. Epub 2016 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; HHMI Mass Spectrometry Laboratory and Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27056844" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Adaptor Proteins, Signal Transducing/*metabolism ; Fluorescence Recovery After Photobleaching ; Humans ; Jurkat Cells ; Membrane Proteins/*metabolism ; Mitogen-Activated Protein Kinase Kinases ; Phosphorylation ; Polymerization ; Receptors, Antigen, T-Cell/*agonists ; Signal Transduction ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-02
    Description: Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772156/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772156/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferenczi, Emily A -- Zalocusky, Kelly A -- Liston, Conor -- Grosenick, Logan -- Warden, Melissa R -- Amatya, Debha -- Katovich, Kiefer -- Mehta, Hershel -- Patenaude, Brian -- Ramakrishnan, Charu -- Kalanithi, Paul -- Etkin, Amit -- Knutson, Brian -- Glover, Gary H -- Deisseroth, Karl -- 1F31MH105151_01/MH/NIMH NIH HHS/ -- P41 EB015891/EB/NIBIB NIH HHS/ -- R00 MH097822/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):aac9698. doi: 10.1126/science.aac9698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. ; Brain Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. ; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ; Department of Psychology, Stanford University, Stanford, CA 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA. ; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. ; Department of Radiology, Stanford University, Stanford, CA, 94305, USA. ; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA. deissero@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26722001" target="_blank"〉PubMed〈/a〉
    Keywords: Anhedonia/*physiology ; Animals ; Brain Mapping ; Corpus Striatum/cytology/drug effects/*physiology ; Depressive Disorder/physiopathology ; Dopamine/pharmacology ; Dopaminergic Neurons/drug effects/*physiology ; Female ; Magnetic Resonance Imaging ; Male ; Mesencephalon/cytology/drug effects/physiology ; *Motivation ; Nerve Net/physiology ; Oxygen/blood ; Prefrontal Cortex/cytology/drug effects/*physiology ; Rats ; Rats, Inbred LEC ; Rats, Sprague-Dawley ; *Reward ; Schizophrenia/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-19
    Description: Steroids regulate cell proliferation, tissue development, and cell signaling via two pathways: a nuclear receptor mechanism and genome-independent signaling. Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the latter pathway, the key components of which remain unknown. Here, we present characterization of the human sperm progesterone receptor that is conveyed by the orphan enzyme alpha/beta hydrolase domain-containing protein 2 (ABHD2). We show that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as a progesterone-dependent lipid hydrolase by depleting the endocannabinoid 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm calcium channel (CatSper), and its removal leads to calcium influx via CatSper and ensures sperm activation. This study reveals that progesterone-activated endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone exerts its genome-independent action and primes sperm for fertilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Melissa R -- Mannowetz, Nadja -- Iavarone, Anthony T -- Safavi, Rojin -- Gracheva, Elena O -- Smith, James F -- Hill, Rose Z -- Bautista, Diana M -- Kirichok, Yuriy -- Lishko, Polina V -- 1S10OD020062-01/OD/NIH HHS/ -- R01 AR059385/AR/NIAMS NIH HHS/ -- R01AR059385/AR/NIAMS NIH HHS/ -- R01GM111802/GM/NIGMS NIH HHS/ -- R01HD068914/HD/NICHD NIH HHS/ -- R21HD081403/HD/NICHD NIH HHS/ -- S10RR025622/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):555-9. doi: 10.1126/science.aad6887. Epub 2016 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. ; QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720, USA. ; Department of Cellular and Molecular Physiology; Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair (CNNR), Yale School of Medicine, Yale University, New Haven, CT 06536, USA. ; Department of Urology, University of California, San Francisco, CA 94143, USA. ; Department of Physiology, University of California, San Francisco, CA 94158, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. lishko@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989199" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Arachidonic Acids/*deficiency ; Calcium/metabolism ; Calcium Channels/metabolism ; Calcium Signaling ; Cell Membrane/metabolism ; Endocannabinoids/*deficiency ; Fertilization ; Glycerides/*deficiency ; Humans ; Hydrolases/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Progesterone/*metabolism/pharmacology ; Rats ; Rats, Wistar ; Receptors, Progesterone/genetics/*metabolism ; Sperm Motility/drug effects/*physiology ; Spermatozoa/drug effects/metabolism/*physiology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-26
    Description: Cell assembly sequences during learning are "replayed" during hippocampal ripples and contribute to the consolidation of episodic memories. However, neuronal sequences may also reflect preexisting dynamics. We report that sequences of place-cell firing in a novel environment are formed from a combination of the contributions of a rigid, predominantly fast-firing subset of pyramidal neurons with low spatial specificity and limited change across sleep-experience-sleep and a slow-firing plastic subset. Slow-firing cells, rather than fast-firing cells, gained high place specificity during exploration, elevated their association with ripples, and showed increased bursting and temporal coactivation during postexperience sleep. Thus, slow- and fast-firing neurons, although forming a continuous distribution, have different coding and plastic properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grosmark, Andres D -- Buzsaki, Gyorgy -- MH102840/MH/NIMH NIH HHS/ -- MH54671/MH/NIMH NIH HHS/ -- NS075015/NS/NINDS NIH HHS/ -- R01 MH107396/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1440-3. doi: 10.1126/science.aad1935.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Columbia University Medical Center, New York, NY 10019, USA. The Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA. ; The Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA. Center for Neural Science, New York University, New York, NY 10016, USA. gyorgy.buzsaki@nyumc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013730" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Hippocampus/cytology/*physiopathology ; Learning/*physiology ; Male ; Maze Learning ; Neuronal Plasticity ; Pyramidal Cells/*physiology ; Rats ; Rats, Inbred LEC ; Sleep/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-19
    Description: Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting that loss of function may play a role in disease. We found that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and the loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS human patient tissue. Thus, C9orf72 is required for the normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Rourke, J G -- Bogdanik, L -- Yanez, A -- Lall, D -- Wolf, A J -- Muhammad, A K M G -- Ho, R -- Carmona, S -- Vit, J P -- Zarrow, J -- Kim, K J -- Bell, S -- Harms, M B -- Miller, T M -- Dangler, C A -- Underhill, D M -- Goodridge, H S -- Lutz, C M -- Baloh, R H -- GM085796/GM/NIGMS NIH HHS/ -- NS069669/NS/NINDS NIH HHS/ -- NS078398/NS/NINDS NIH HHS/ -- NS087351/NS/NINDS NIH HHS/ -- UL1TR000124/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1324-9. doi: 10.1126/science.aaf1064.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. ; The Jackson Laboratory, Bar Harbor, ME, USA. ; Division of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. ; Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. ; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989253" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Amyotrophic Lateral Sclerosis/genetics/*immunology ; Animals ; Frontotemporal Dementia/genetics/*immunology ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/genetics/*physiology ; Heterozygote ; Humans ; Lymphatic Diseases/genetics/immunology ; Macrophages/*immunology ; Mice ; Mice, Knockout ; Microglia/*immunology ; Myeloid Cells/*immunology ; Proteins/genetics/*physiology ; Rats ; Splenomegaly/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-26
    Description: Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrera, Luis A -- Vedenko, Anastasia -- Kurland, Jesse V -- Rogers, Julia M -- Gisselbrecht, Stephen S -- Rossin, Elizabeth J -- Woodard, Jaie -- Mariani, Luca -- Kock, Kian Hong -- Inukai, Sachi -- Siggers, Trevor -- Shokri, Leila -- Gordan, Raluca -- Sahni, Nidhi -- Cotsapas, Chris -- Hao, Tong -- Yi, Song -- Kellis, Manolis -- Daly, Mark J -- Vidal, Marc -- Hill, David E -- Bulyk, Martha L -- P50 HG004233/HG/NHGRI NIH HHS/ -- R01 HG003985/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1450-4. doi: 10.1126/science.aad2257. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. ; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Center for Human Genetics Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013732" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Exome/genetics ; *Gene Expression Regulation ; Genetic Diseases, Inborn/*genetics ; Genetic Variation ; Genome, Human ; Humans ; Mutation ; Polymorphism, Single Nucleotide ; Protein Array Analysis ; Protein Binding ; Sequence Analysis, DNA ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-01-30
    Description: p97 is a hexameric AAA+ adenosine triphosphatase (ATPase) that is an attractive target for cancer drug development. We report cryo-electron microscopy (cryo-EM) structures for adenosine diphosphate (ADP)-bound, full-length, hexameric wild-type p97 in the presence and absence of an allosteric inhibitor at resolutions of 2.3 and 2.4 angstroms, respectively. We also report cryo-EM structures (at resolutions of ~3.3, 3.2, and 3.3 angstroms, respectively) for three distinct, coexisting functional states of p97 with occupancies of zero, one, or two molecules of adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) per protomer. A large corkscrew-like change in molecular architecture, coupled with upward displacement of the N-terminal domain, is observed only when ATPgammaS is bound to both the D1 and D2 domains of the protomer. These cryo-EM structures establish the sequence of nucleotide-driven structural changes in p97 at atomic resolution. They also enable elucidation of the binding mode of an allosteric small-molecule inhibitor to p97 and illustrate how inhibitor binding at the interface between the D1 and D2 domains prevents propagation of the conformational changes necessary for p97 function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Soojay -- Bartesaghi, Alberto -- Merk, Alan -- Rao, Prashant -- Bulfer, Stacie L -- Yan, Yongzhao -- Green, Neal -- Mroczkowski, Barbara -- Neitz, R Jeffrey -- Wipf, Peter -- Falconieri, Veronica -- Deshaies, Raymond J -- Milne, Jacqueline L S -- Huryn, Donna -- Arkin, Michelle -- Subramaniam, Sriram -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):871-5. doi: 10.1126/science.aad7974. Epub 2016 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ; Small Molecule Discovery Center, Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143, USA. ; University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA. ; Leidos Biomedical Research Inc., Frederick, MD 21702, USA. ; Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA. ; Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91107, USA. ; Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ss1@nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26822609" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Adenosine Triphosphatases/*antagonists & inhibitors/*chemistry ; Adenosine Triphosphate/analogs & derivatives/chemistry ; Allosteric Regulation ; Binding Sites ; Cryoelectron Microscopy ; Enzyme Inhibitors ; Humans ; Models, Molecular ; Nuclear Proteins/*antagonists & inhibitors/*chemistry ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-02-26
    Description: In response to growth signals, mechanistic target of rapamycin complex 1 (mTORC1) stimulates anabolic processes underlying cell growth. We found that mTORC1 increases metabolic flux through the de novo purine synthesis pathway in various mouse and human cells, thereby influencing the nucleotide pool available for nucleic acid synthesis. mTORC1 had transcriptional effects on multiple enzymes contributing to purine synthesis, with expression of the mitochondrial tetrahydrofolate (mTHF) cycle enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) being closely associated with mTORC1 signaling in both normal and cancer cells. MTHFD2 expression and purine synthesis were stimulated by activating transcription factor 4 (ATF4), which was activated by mTORC1 independent of its canonical induction downstream of eukaryotic initiation factor 2alpha eIF2alpha phosphorylation. Thus, mTORC1 stimulates the mTHF cycle, which contributes one-carbon units to enhance production of purine nucleotides in response to growth signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Sahra, Issam -- Hoxhaj, Gerta -- Ricoult, Stephane J H -- Asara, John M -- Manning, Brendan D -- K99-CA194192/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01-CA120964/CA/NCI NIH HHS/ -- P30-CA006516/CA/NCI NIH HHS/ -- R01 CA181390/CA/NCI NIH HHS/ -- R01-CA181390/CA/NCI NIH HHS/ -- R35 CA197459/CA/NCI NIH HHS/ -- R35-CA197459/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):728-33. doi: 10.1126/science.aad0489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. ; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. ; Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. bmanning@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912861" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 4/genetics/metabolism ; Animals ; Eukaryotic Initiation Factor-2/metabolism ; HEK293 Cells ; Humans ; Methenyltetrahydrofolate Cyclohydrolase/genetics ; Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics ; Mice ; Mitochondria/*metabolism ; Multiprotein Complexes/genetics/*metabolism ; Phosphorylation ; Protein Biosynthesis ; Purines/*biosynthesis ; TOR Serine-Threonine Kinases/genetics/*metabolism ; Tetrahydrofolates/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-02-06
    Description: SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56beta, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bidinosti, Michael -- Botta, Paolo -- Kruttner, Sebastian -- Proenca, Catia C -- Stoehr, Natacha -- Bernhard, Mario -- Fruh, Isabelle -- Mueller, Matthias -- Bonenfant, Debora -- Voshol, Hans -- Carbone, Walter -- Neal, Sarah J -- McTighe, Stephanie M -- Roma, Guglielmo -- Dolmetsch, Ricardo E -- Porter, Jeffrey A -- Caroni, Pico -- Bouwmeester, Tewis -- Luthi, Andreas -- Galimberti, Ivan -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1199-203. doi: 10.1126/science.aad5487. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Friedrich Miescher Institute, Basel, Switzerland. ; Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA. ; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ivan.galimberti@novartis.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autism Spectrum Disorder/*drug therapy/enzymology/genetics ; Chromosome Deletion ; Chromosome Disorders/genetics ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Down-Regulation ; Gene Knockdown Techniques ; Humans ; Insulin-Like Growth Factor I/metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nerve Tissue Proteins/*genetics ; Neurons/enzymology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt/genetics/metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-04-23
    Description: The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of alpha-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robison, Patrick -- Caporizzo, Matthew A -- Ahmadzadeh, Hossein -- Bogush, Alexey I -- Chen, Christina Yingxian -- Margulies, Kenneth B -- Shenoy, Vivek B -- Prosser, Benjamin L -- HL089847/HL/NHLBI NIH HHS/ -- HL105993/HL/NHLBI NIH HHS/ -- R00-HL114879/HL/NHLBI NIH HHS/ -- R01EB017753/EB/NIBIB NIH HHS/ -- T32AR053461-09/AR/NIAMS NIH HHS/ -- T32HL007954/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):aaf0659. doi: 10.1126/science.aaf0659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA. ; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. bpros@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Desmin/metabolism ; Elasticity ; Heart Failure/metabolism/physiopathology ; Humans ; Male ; Mice ; Microtubules/*metabolism ; Models, Biological ; *Myocardial Contraction ; Myocytes, Cardiac/metabolism/*physiology ; Peptide Synthases/genetics/metabolism ; *Protein Processing, Post-Translational ; RNA, Small Interfering/genetics ; Rats ; Rats, Sprague-Dawley ; Sarcomeres/metabolism ; Tubulin/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-03-07
    Description: Human higher cognition is attributed to the evolutionary expansion and elaboration of the human cerebral cortex. However, the genetic mechanisms contributing to these developmental changes are poorly understood. We used comparative epigenetic profiling of human, rhesus macaque, and mouse corticogenesis to identify promoters and enhancers that have gained activity in humans. These gains are significantly enriched in modules of coexpressed genes in the cortex that function in neuronal proliferation, migration, and cortical-map organization. Gain-enriched modules also showed correlated gene expression patterns and similar transcription factor binding site enrichments in promoters and enhancers, suggesting that they are connected by common regulatory mechanisms. Our results reveal coordinated patterns of potential regulatory changes associated with conserved developmental processes during corticogenesis, providing insight into human cortical evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426903/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426903/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reilly, Steven K -- Yin, Jun -- Ayoub, Albert E -- Emera, Deena -- Leng, Jing -- Cotney, Justin -- Sarro, Richard -- Rakic, Pasko -- Noonan, James P -- 099175/Z/12/Z/Wellcome Trust/United Kingdom -- DA023999/DA/NIDA NIH HHS/ -- F32 GM106628/GM/NIGMS NIH HHS/ -- GM094780/GM/NIGMS NIH HHS/ -- NS014841/NS/NINDS NIH HHS/ -- P30 CA016359/CA/NCI NIH HHS/ -- R01 DA023999/DA/NIDA NIH HHS/ -- R01 GM094780/GM/NIGMS NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1155-9. doi: 10.1126/science.1260943.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. ; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA. Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA. ; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA. ; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA. Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA. james.noonan@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745175" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/*growth & development ; Enhancer Elements, Genetic/*genetics ; *Epigenesis, Genetic ; *Evolution, Molecular ; *Gene Expression Regulation, Developmental ; Humans ; Macaca mulatta ; Mice ; Organogenesis/*genetics ; Promoter Regions, Genetic/*genetics ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-04-11
    Description: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Indrajit -- Krzyzosiak, Agnieszka -- Schneider, Kim -- Wrabetz, Lawrence -- D'Antonio, Maurizio -- Barry, Nicholas -- Sigurdardottir, Anna -- Bertolotti, Anne -- 309516/European Research Council/International -- MC_U105185860/Medical Research Council/United Kingdom -- R01-NS55256/NS/NINDS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):239-42. doi: 10.1126/science.aaa4484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. aberto@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859045" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/drug therapy/metabolism/pathology ; Animals ; Cells, Cultured ; Charcot-Marie-Tooth Disease/drug therapy/metabolism/pathology ; Disease Models, Animal ; Endoplasmic Reticulum Stress/drug effects ; Enzyme Inhibitors/metabolism/pharmacokinetics/*pharmacology/toxicity ; Guanabenz/*analogs & derivatives/chemical ; synthesis/metabolism/pharmacology/toxicity ; HeLa Cells ; Humans ; Mice ; Mice, Transgenic ; Molecular Targeted Therapy ; Phosphorylation ; Protein Folding ; Protein Phosphatase 1/*antagonists & inhibitors ; Proteostasis Deficiencies/*drug therapy/*prevention & control ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-01-03
    Description: Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders. We report the x-ray structure of mitochondrial complex I at a resolution of 3.6 to 3.9 angstroms, describing in detail the central subunits that execute the bioenergetic function. A continuous axis of basic and acidic residues running centrally through the membrane arm connects the ubiquinone reduction site in the hydrophilic arm to four putative proton-pumping units. The binding position for a substrate analogous inhibitor and blockage of the predicted ubiquinone binding site provide a model for the "deactive" form of the enzyme. The proposed transition into the active form is based on a concerted structural rearrangement at the ubiquinone reduction site, providing support for a two-state stabilization-change mechanism of proton pumping.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zickermann, Volker -- Wirth, Christophe -- Nasiri, Hamid -- Siegmund, Karin -- Schwalbe, Harald -- Hunte, Carola -- Brandt, Ulrich -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):44-9. doi: 10.1126/science.1259859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl. ; Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. ; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany. ; Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. ; Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany. ; Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl. ; Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554780" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/ultrastructure ; Mitochondria/*enzymology ; Mitochondrial Membranes/*enzymology ; Protein Structure, Secondary ; Protons ; Ubiquinone/chemistry ; Yarrowia/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krupic, Julija -- New York, N.Y. -- Science. 2015 Oct 2;350(6256):47. doi: 10.1126/science.aad3002.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK. j.krupic@ucl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26430112" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; Brain/*physiology/*ultrastructure ; *Distance Perception ; Fourier Analysis ; Humans ; Metric System ; Neurons/*physiology/*ultrastructure ; Rats ; Spatial Navigation/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-07-04
    Description: Lactic acid racemization is involved in lactate metabolism and cell wall assembly of many microorganisms. Lactate racemase (Lar) requires nickel, but the nickel-binding site and the role of three accessory proteins required for its activation remain enigmatic. We combined mass spectrometry and x-ray crystallography to show that Lar from Lactobacillus plantarum possesses an organometallic nickel-containing prosthetic group. A nicotinic acid mononucleotide derivative is tethered to Lys(184) and forms a tridentate pincer complex that coordinates nickel through one metal-carbon and two metal-sulfur bonds, with His(200) as another ligand. Although similar complexes have been previously synthesized, there was no prior evidence for the existence of pincer cofactors in enzymes. The wide distribution of the accessory proteins without Lar suggests that it may play a role in other enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desguin, Benoit -- Zhang, Tuo -- Soumillion, Patrice -- Hols, Pascal -- Hu, Jian -- Hausinger, Robert P -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):66-9. doi: 10.1126/science.aab2272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Institute of Life Sciences, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. hujian1@msu.edu hausinge@msu.edu. ; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. hujian1@msu.edu hausinge@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138974" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics ; Binding Sites ; Carbon/chemistry ; Catalysis ; Crystallography, X-Ray ; Histidine/chemistry ; Holoenzymes/chemistry ; Lactic Acid/*biosynthesis/chemistry ; Lactobacillus plantarum/*enzymology/genetics ; Ligands ; Lysine/chemistry ; Metalloproteins/*chemistry/genetics ; Niacin/*chemistry ; Nickel/*chemistry ; Nicotinamide Mononucleotide/analogs & derivatives/chemistry ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Racemases and Epimerases/*chemistry/genetics ; Spectrometry, Mass, Electrospray Ionization ; Sulfur
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kupferschmidt, Kai -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):263-4. doi: 10.1126/science.350.6258.263.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/*ultrastructure ; *Computer Simulation ; Investments ; *Models, Neurological ; Neurons/*ultrastructure ; Neurosciences/*economics ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-03-15
    Description: TREK-2 (KCNK10/K2P10), a two-pore domain potassium (K2P) channel, is gated by multiple stimuli such as stretch, fatty acids, and pH and by several drugs. However, the mechanisms that control channel gating are unclear. Here we present crystal structures of the human TREK-2 channel (up to 3.4 angstrom resolution) in two conformations and in complex with norfluoxetine, the active metabolite of fluoxetine (Prozac) and a state-dependent blocker of TREK channels. Norfluoxetine binds within intramembrane fenestrations found in only one of these two conformations. Channel activation by arachidonic acid and mechanical stretch involves conversion between these states through movement of the pore-lining helices. These results provide an explanation for TREK channel mechanosensitivity, regulation by diverse stimuli, and possible off-target effects of the serotonin reuptake inhibitor Prozac.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Yin Yao -- Pike, Ashley C W -- Mackenzie, Alexandra -- McClenaghan, Conor -- Aryal, Prafulla -- Dong, Liang -- Quigley, Andrew -- Grieben, Mariana -- Goubin, Solenne -- Mukhopadhyay, Shubhashish -- Ruda, Gian Filippo -- Clausen, Michael V -- Cao, Lishuang -- Brennan, Paul E -- Burgess-Brown, Nicola A -- Sansom, Mark S P -- Tucker, Stephen J -- Carpenter, Elisabeth P -- 084655/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1256-9. doi: 10.1126/science.1261512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK. ; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonic Acid/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Fluoxetine/analogs & derivatives/chemistry/metabolism/pharmacology ; Humans ; *Ion Channel Gating ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Tandem Pore Domain/antagonists & ; inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-03-15
    Description: After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier-permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445125/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445125/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruschel, Jorg -- Hellal, Farida -- Flynn, Kevin C -- Dupraz, Sebastian -- Elliott, David A -- Tedeschi, Andrea -- Bates, Margaret -- Sliwinski, Christopher -- Brook, Gary -- Dobrindt, Kristina -- Peitz, Michael -- Brustle, Oliver -- Norenberg, Michael D -- Blesch, Armin -- Weidner, Norbert -- Bunge, Mary Bartlett -- Bixby, John L -- Bradke, Frank -- R01 HD057632/HD/NICHD NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):347-52. doi: 10.1126/science.aaa2958. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany. ; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 Northwest 14th Terrace, Miami, FL33136, USA. ; Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany. ; Institute for Neuropathology, RWTH Aachen University, Steinbergweg 20, 52074, Aachen, Germany. Julich-Aachen Research Alliance-Translational Brain Medicine. ; Institute of Reconstructive Neurobiology, Life&Brain Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany. ; Departments of Pathology, Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101, USA. ; Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany. frank.bradke@dzne.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*drug effects/physiology ; Cell Movement/drug effects ; Cell Polarity/drug effects ; Cicatrix/pathology/*prevention & control ; Epothilones/*administration & dosage ; Fibroblasts/drug effects/pathology ; Humans ; Meninges/drug effects/pathology ; Motor Activity/drug effects ; Nerve Regeneration/*drug effects ; Neurons/drug effects/pathology ; Rats ; Spinal Cord Injuries/*drug therapy/pathology/physiopathology ; Tubulin Modulators/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-01-31
    Description: The mechanistic basis of eukaryotic circadian oscillators in model systems as diverse as Neurospora, Drosophila, and mammalian cells is thought to be a transcription-and-translation-based negative feedback loop, wherein progressive and controlled phosphorylation of one or more negative elements ultimately elicits their own proteasome-mediated degradation, thereby releasing negative feedback and determining circadian period length. The Neurospora crassa circadian negative element FREQUENCY (FRQ) exemplifies such proteins; it is progressively phosphorylated at more than 100 sites, and strains bearing alleles of frq with anomalous phosphorylation display abnormal stability of FRQ that is well correlated with altered periods or apparent arrhythmicity. Unexpectedly, we unveiled normal circadian oscillations that reflect the allelic state of frq but that persist in the absence of typical degradation of FRQ. This manifest uncoupling of negative element turnover from circadian period length determination is not consistent with the consensus eukaryotic circadian model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larrondo, Luis F -- Olivares-Yanez, Consuelo -- Baker, Christopher L -- Loros, Jennifer J -- Dunlap, Jay C -- P01 GM68087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R01 GM083336/GM/NIGMS NIH HHS/ -- R01 GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):1257277. doi: 10.1126/science.1257277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl. ; Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635104" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/pharmacology ; Alleles ; *Circadian Clocks ; *Circadian Rhythm ; Feedback, Physiological ; Fungal Proteins/biosynthesis/*genetics/*metabolism ; Half-Life ; Neurospora crassa/*physiology ; Phosphorylation ; Proteasome Endopeptidase Complex/metabolism ; Protein Kinase Inhibitors/pharmacology ; Protein Stability ; Proteolysis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-03-31
    Description: During intracellular membrane trafficking, N-ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment protein (alpha-SNAP) disassemble the soluble NSF attachment protein receptor (SNARE) complex for recycling of the SNARE proteins. The molecular mechanism by which NSF disassembles the SNARE complex is largely unknown. Using single-molecule fluorescence spectroscopy and magnetic tweezers, we found that NSF disassembled a single SNARE complex in only one round of adenosine triphosphate (ATP) turnover. Upon ATP cleavage, the NSF hexamer developed internal tension with dissociation of phosphate ions. After latent time measuring tens of seconds, NSF released the built-up tension in a burst within 20 milliseconds, resulting in disassembly followed by immediate release of the SNARE proteins. Thus, NSF appears to use a "spring-loaded" mechanism to couple ATP hydrolysis and unfolding of substrate proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441202/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441202/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryu, Je-Kyung -- Min, Duyoung -- Rah, Sang-Hyun -- Kim, Soo Jin -- Park, Yongsoo -- Kim, Haesoo -- Hyeon, Changbong -- Kim, Ho Min -- Jahn, Reinhard -- Yoon, Tae-Young -- 3P01GM072694-05S1/GM/NIGMS NIH HHS/ -- P01 GM072694/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1485-9. doi: 10.1126/science.aaa5267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea. ; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, South Korea. ; Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Korea Institute for Advanced Study, Seoul 130-722, South Korea. ; Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. rjahn@gwdg.de tyyoon@kaist.ac.kr. ; National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea. rjahn@gwdg.de tyyoon@kaist.ac.kr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814585" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Animals ; Cattle ; Cricetinae ; Fluorescence Resonance Energy Transfer ; Hydrolysis ; N-Ethylmaleimide-Sensitive Proteins/*metabolism ; Rats ; SNARE Proteins/*metabolism ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/*metabolism ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-01
    Description: The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heisler, David B -- Kudryashova, Elena -- Grinevich, Dmitry O -- Suarez, Cristian -- Winkelman, Jonathan D -- Birukov, Konstantin G -- Kotha, Sainath R -- Parinandi, Narasimham L -- Vavylonis, Dimitrios -- Kovar, David R -- Kudryashov, Dmitri S -- R01 GM079265/GM/NIGMS NIH HHS/ -- R01 GM098430/GM/NIGMS NIH HHS/ -- R01 GM114666/GM/NIGMS NIH HHS/ -- R01 HL076259/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):535-9. doi: 10.1126/science.aab4090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. ; Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. ; Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA. ; Department of Physics, Lehigh University, Bethlehem, PA 18015, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228148" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Antigens, Bacterial/*chemistry/genetics/*toxicity ; Bacterial Toxins/*chemistry/genetics/*toxicity ; Cell Line ; Fetal Proteins/*antagonists & inhibitors ; Intestinal Mucosa/drug effects/metabolism ; Microfilament Proteins/*antagonists & inhibitors ; Nuclear Proteins/*antagonists & inhibitors ; Polymerization/drug effects ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-07-04
    Description: Larger brains tend to have more folded cortices, but what makes the cortex fold has remained unknown. We show that the degree of cortical folding scales uniformly across lissencephalic and gyrencephalic species, across individuals, and within individual cortices as a function of the product of cortical surface area and the square root of cortical thickness. This relation is derived from the minimization of the effective free energy associated with cortical shape according to a simple physical model, based on known mechanisms of axonal elongation. This model also explains the scaling of the folding index of crumpled paper balls. We discuss the implications of this finding for the evolutionary and developmental origin of folding, including the newfound continuum between lissencephaly and gyrencephaly, and for pathologies such as human lissencephaly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mota, Bruno -- Herculano-Houzel, Suzana -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):74-7. doi: 10.1126/science.aaa9101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. ; Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Instituto Nacional de Neurociencia Translacional, INCT/MCT, Sao Paulo, Brazil. suzanahh@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; *Cerebral Cortex/cytology/embryology/pathology ; Humans ; Lissencephaly/*pathology ; Mice ; Models, Neurological ; Neurons/*cytology/pathology ; Rats ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-06-13
    Description: Cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction. In cells, MPS1 binding to kinetochores or to ectopic NDC80 complexes was prevented by end-on microtubule attachment, independent of known kinetochore protein-removal mechanisms. Competition for kinetochore binding between SAC proteins and microtubules provides a direct and perhaps evolutionarily conserved way to detect a properly organized spindle ready for cell division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiruma, Yoshitaka -- Sacristan, Carlos -- Pachis, Spyridon T -- Adamopoulos, Athanassios -- Kuijt, Timo -- Ubbink, Marcellus -- von Castelmur, Eleonore -- Perrakis, Anastassis -- Kops, Geert J P L -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1264-7. doi: 10.1126/science.aaa4055. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068855" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Binding, Competitive ; Calcium-Binding Proteins/genetics/metabolism ; *Cell Cycle Checkpoints ; Cell Cycle Proteins/*metabolism ; HeLa Cells ; Humans ; Kinetochores/*metabolism ; Microfilament Proteins/genetics/metabolism ; Microtubules/*metabolism ; Nuclear Proteins/chemistry/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Spindle Apparatus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buzsaki, Gyorgy -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):612-3. doi: 10.1126/science.aaa6505.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York University Neuroscience Institute, New York University Langone Center, New York, NY 10016, USA. gyorgy.buzsaki@nyumc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Hippocampus/*physiology ; Maze Learning ; Pyramidal Cells/*physiology ; Rats ; Sensation/*physiology ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-02-28
    Description: Polycomb and Trithorax group proteins encode the epigenetic memory of cellular positional identity by establishing inheritable domains of repressive and active chromatin within the Hox clusters. Here we demonstrate that the CCCTC-binding factor (CTCF) functions to insulate these adjacent yet antagonistic chromatin domains during embryonic stem cell differentiation into cervical motor neurons. Deletion of CTCF binding sites within the Hox clusters results in the expansion of active chromatin into the repressive domain. CTCF functions as an insulator by organizing Hox clusters into spatially disjoint domains. Ablation of CTCF binding disrupts topological boundaries such that caudal Hox genes leave the repressed domain and become subject to transcriptional activation. Hence, CTCF is required to insulate facultative heterochromatin from impinging euchromatin to produce discrete positional identities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428148/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428148/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narendra, Varun -- Rocha, Pedro P -- An, Disi -- Raviram, Ramya -- Skok, Jane A -- Mazzoni, Esteban O -- Reinberg, Danny -- GM-64844/GM/NIGMS NIH HHS/ -- GM086852/GM/NIGMS NIH HHS/ -- GM112192/GM/NIGMS NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 GM086852/GM/NIGMS NIH HHS/ -- R01 GM112192/GM/NIGMS NIH HHS/ -- R01 HD079682/HD/NICHD NIH HHS/ -- R01HD079682/HD/NICHD NIH HHS/ -- R37-37120/PHS HHS/ -- T32 GM007238/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1017-21. doi: 10.1126/science.1262088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. ; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA. ; Department of Biology, New York University, New York, NY 10003, USA. ; Department of Biology, New York University, New York, NY 10003, USA. danny.reinberg@nyumc.org eom204@nyu.edu. ; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. danny.reinberg@nyumc.org eom204@nyu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Chromatin/chemistry/genetics/*metabolism ; Dogs ; Embryonic Stem Cells/*cytology ; *Gene Expression Regulation ; *Genes, Homeobox ; Humans ; Mice ; Motor Neurons/*cytology ; Multigene Family ; Neck ; Protein Structure, Tertiary ; Rats ; Repressor Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-10-17
    Description: Transcriptional enhancers direct precise on-off patterns of gene expression during development. To explore the basis for this precision, we conducted a high-throughput analysis of the Otx-a enhancer, which mediates expression in the neural plate of Ciona embryos in response to fibroblast growth factor (FGF) signaling and a localized GATA determinant. We provide evidence that enhancer specificity depends on submaximal recognition motifs having reduced binding affinities ("suboptimization"). Native GATA and ETS (FGF) binding sites contain imperfect matches to consensus motifs. Perfect matches mediate robust but ectopic patterns of gene expression. The native sites are not arranged at optimal intervals, and subtle changes in their spacing alter enhancer activity. Multiple tiers of enhancer suboptimization produce specific, but weak, patterns of expression, and we suggest that clusters of weak enhancers, including certain "superenhancers," circumvent this trade-off in specificity and activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farley, Emma K -- Olson, Katrina M -- Zhang, Wei -- Brandt, Alexander J -- Rokhsar, Daniel S -- Levine, Michael S -- GM46638/GM/NIGMS NIH HHS/ -- NS076542/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):325-8. doi: 10.1126/science.aac6948.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. msl2@princeton.edu ekfarley@princeton.edu. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. ; Department of Medicine, University of California, San Diego, CA 92093-0688, USA. ; Department of Chemistry, University of California, Berkeley, CA 94720-3200, USA. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472909" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Ciona intestinalis/genetics/*growth & development ; Consensus Sequence ; Enhancer Elements, Genetic/genetics/*physiology ; Fas-Associated Death Domain Protein/metabolism ; Fibroblast Growth Factors/*metabolism ; GATA Transcription Factors/*metabolism ; *Gene Expression Regulation, Developmental ; Molecular Sequence Data ; Organ Specificity/genetics/physiology ; Otx Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-06-27
    Description: Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yong-Gang -- Cohen, Susan E -- Phong, Connie -- Myers, William K -- Kim, Yong-Ick -- Tseng, Roger -- Lin, Jenny -- Zhang, Li -- Boyd, Joseph S -- Lee, Yvonne -- Kang, Shannon -- Lee, David -- Li, Sheng -- Britt, R David -- Rust, Michael J -- Golden, Susan S -- LiWang, Andy -- AI081982/AI/NIAID NIH HHS/ -- AI101436/AI/NIAID NIH HHS/ -- GM062419/GM/NIGMS NIH HHS/ -- GM100116/GM/NIGMS NIH HHS/ -- GM107521/GM/NIGMS NIH HHS/ -- R01 GM062419/GM/NIGMS NIH HHS/ -- R01 GM100116/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):324-8. doi: 10.1126/science.1260031. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Natural Sciences, University of California, Merced, CA 95343, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry, University of California, Davis, CA 95616, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. ; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA. Health Sciences Research Institute, University of California, Merced, CA 95343, USA. aliwang@ucmerced.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113641" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Folding ; Protein Structure, Secondary ; Synechococcus/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):261-2. doi: 10.1126/science.350.6258.261.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; *Chimera ; *Embryonic Stem Cells ; *Financing, Organized ; Humans ; Mice ; National Institutes of Health (U.S.)/*economics ; Organ Transplantation ; Rats ; Stem Cell Research/*economics ; Swine ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-01-31
    Description: The 18-kilodalton translocator protein (TSPO), proposed to be a key player in cholesterol transport into mitochondria, is highly expressed in steroidogenic tissues, metastatic cancer, and inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO ligands, including benzodiazepine drugs, are implicated in regulating apoptosis and are extensively used in diagnostic imaging. We report crystal structures (at 1.8, 2.4, and 2.5 angstrom resolution) of TSPO from Rhodobacter sphaeroides and a mutant that mimics the human Ala(147)--〉Thr(147) polymorphism associated with psychiatric disorders and reduced pregnenolone production. Crystals obtained in the lipidic cubic phase reveal the binding site of an endogenous porphyrin ligand and conformational effects of the mutation. The three crystal structures show the same tightly interacting dimer and provide insights into the controversial physiological role of TSPO and how the mutation affects cholesterol binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fei -- Liu, Jian -- Zheng, Yi -- Garavito, R Michael -- Ferguson-Miller, Shelagh -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- GM094625/GM/NIGMS NIH HHS/ -- GM26916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):555-8. doi: 10.1126/science.1260590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. fergus20@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cholesterol/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Polymorphism, Single Nucleotide ; Porphyrins/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protoporphyrins/metabolism ; Receptors, GABA/chemistry/genetics ; Rhodobacter sphaeroides/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):677. doi: 10.1126/science.349.6249.677.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273032" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Opioid/*metabolism ; Animals ; Carbohydrates ; *Genetic Engineering ; Papaver/genetics/*metabolism ; Rats ; Saccharomyces cerevisiae/genetics/*metabolism ; Synthetic Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-03-15
    Description: Wireless deep brain stimulation of well-defined neuronal populations could facilitate the study of intact brain circuits and the treatment of neurological disorders. Here, we demonstrate minimally invasive and remote neural excitation through the activation of the heat-sensitive capsaicin receptor TRPV1 by magnetic nanoparticles. When exposed to alternating magnetic fields, the nanoparticles dissipate heat generated by hysteresis, triggering widespread and reversible firing of TRPV1(+) neurons. Wireless magnetothermal stimulation in the ventral tegmental area of mice evoked excitation in subpopulations of neurons in the targeted brain region and in structures receiving excitatory projections. The nanoparticles persisted in the brain for over a month, allowing for chronic stimulation without the need for implants and connectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Ritchie -- Romero, Gabriela -- Christiansen, Michael G -- Mohr, Alan -- Anikeeva, Polina -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1477-80. doi: 10.1126/science.1261821. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. anikeeva@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765068" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Deep Brain Stimulation/*methods ; Evoked Potentials ; HEK293 Cells ; Humans ; *Magnetite Nanoparticles ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/physiology ; Rats ; TRPV Cation Channels/agonists ; Ventral Tegmental Area/physiology ; *Wireless Technology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-01-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):114. doi: 10.1126/science.347.6218.114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25573999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bionics ; *Electrodes, Implanted ; Movement ; Paralysis/physiopathology/*therapy ; Rats ; Sensation ; Spinal Cord Injuries/physiopathology/*therapy ; *Walking
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-05-02
    Description: The hippocampus computes diverse information involving spatial memory, anxiety, or reward and directly projects to several brain areas. Are different computations transmitted to all downstream targets uniformly, or does the hippocampus selectively route information according to content and target region? By recording from ventral hippocampal CA1 neurons in rats during different behavioral tasks and determining axonal projections with optogenetics, we observed subsets of neurons changing firing at places of elevated anxiety or changing activity during goal approach. Anxiety-related firing was selectively increased in neurons projecting to the prefrontal cortex. Goal-directed firing was most prominent in neurons targeting the nucleus accumbens; and triple-projecting neurons, targeting the prefrontal cortex, amygdala, and nucleus accumbens, were most active during tasks and sharp wave/ripples. Thus, hippocampal neurons route distinct behavior-contingent information selectively to different target areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ciocchi, S -- Passecker, J -- Malagon-Vina, H -- Mikus, N -- Klausberger, T -- New York, N.Y. -- Science. 2015 May 1;348(6234):560-3. doi: 10.1126/science.aaa3245.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Brain Research, Department for Cognitive Neurobiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria. stephane.ciocchi@meduniwien.ac.at thomas.klausberger@meduniwien.ac.at. ; Center for Brain Research, Department for Cognitive Neurobiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria. ; Center for Brain Research, Department for Cognitive Neurobiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria. Medical Research Council, Anatomical Neuropharmacology Unit, Oxford University, Mansfield Road, Oxford OX1 3TH, UK. stephane.ciocchi@meduniwien.ac.at thomas.klausberger@meduniwien.ac.at.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25931556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/physiopathology ; CA1 Region, Hippocampal/*physiology ; Cell Communication ; Male ; Mental Processes/*physiology ; Neurons/physiology ; Nucleus Accumbens/physiology ; Optogenetics ; Prefrontal Cortex/physiology ; Rats ; Rats, Inbred LEC ; *Spatial Learning
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-10-31
    Description: Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigova, Alla A -- Abraham, Brian J -- Ji, Xiong -- Molinie, Benoit -- Hannett, Nancy M -- Guo, Yang Eric -- Jangi, Mohini -- Giallourakis, Cosmas C -- Sharp, Phillip A -- Young, Richard A -- HG002668/HG/NHGRI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):978-81. doi: 10.1126/science.aad3346. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02140, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Consensus Sequence ; DNA/metabolism ; Embryonic Stem Cells/metabolism ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; Mice ; *Promoter Regions, Genetic ; RNA, Messenger/*metabolism ; *Transcription, Genetic ; YY1 Transcription Factor/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-02-24
    Description: Notch receptors guide mammalian cell fate decisions by engaging the proteins Jagged and Delta-like (DLL). The 2.3 angstrom resolution crystal structure of the interacting regions of the Notch1-DLL4 complex reveals a two-site, antiparallel binding orientation assisted by Notch1 O-linked glycosylation. Notch1 epidermal growth factor-like repeats 11 and 12 interact with the DLL4 Delta/Serrate/Lag-2 (DSL) domain and module at the N-terminus of Notch ligands (MNNL) domains, respectively. Threonine and serine residues on Notch1 are functionalized with O-fucose and O-glucose, which act as surrogate amino acids by making specific, and essential, contacts to residues on DLL4. The elucidation of a direct chemical role for O-glycans in Notch1 ligand engagement demonstrates how, by relying on posttranslational modifications of their ligand binding sites, Notch proteins have linked their functional capacity to developmentally regulated biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luca, Vincent C -- Jude, Kevin M -- Pierce, Nathan W -- Nachury, Maxence V -- Fischer, Suzanne -- Garcia, K Christopher -- 1R01-GM097015/GM/NIGMS NIH HHS/ -- R01 GM097015/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):847-53. doi: 10.1126/science.1261093.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. kcgarcia@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700513" target="_blank"〉PubMed〈/a〉
    Keywords: Alagille Syndrome/genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Fucose/chemistry ; Glucose/chemistry ; Glycosylation ; Intracellular Signaling Peptides and Proteins/*chemistry/genetics ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Molecular Sequence Data ; Molecular Targeted Therapy ; Polysaccharides/chemistry ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/genetics ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptor, Notch1/*chemistry/genetics/ultrastructure ; Serine/chemistry/genetics ; Threonine/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-02-24
    Description: Navigation depends on multiple neural systems that encode the moment-to-moment changes in an animal's direction and location in space. These include head direction (HD) cells representing the orientation of the head and grid cells that fire at multiple locations, forming a repeating hexagonal grid pattern. Computational models hypothesize that generation of the grid cell signal relies upon HD information that ascends to the hippocampal network via the anterior thalamic nuclei (ATN). We inactivated or lesioned the ATN and subsequently recorded single units in the entorhinal cortex and parasubiculum. ATN manipulation significantly disrupted grid and HD cell characteristics while sparing theta rhythmicity in these regions. These results indicate that the HD signal via the ATN is necessary for the generation and function of grid cell activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476794/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476794/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Shawn S -- Clark, Benjamin J -- Taube, Jeffrey S -- NS053907/NS/NINDS NIH HHS/ -- R01 MH048924/MH/NIMH NIH HHS/ -- R01 NS053907/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):870-4. doi: 10.1126/science.1259591. Epub 2015 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA. ; Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA. jeffrey.taube@dartmouth.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Thalamic Nuclei/drug effects/*physiology ; Entorhinal Cortex/cytology/*physiology ; Female ; Head ; Hippocampus/cytology/physiology ; Lidocaine/pharmacology ; Nerve Net/cytology/drug effects/*physiology ; Neurons/*physiology ; Orientation/*physiology ; Rats ; Rats, Inbred LEC ; Signal Transduction ; Spatial Navigation/*physiology ; Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2015 May 22;348(6237):849. doi: 10.1126/science.348.6237.849.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999487" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/blood ; Animals ; Biological Assay ; *Blood ; Bone Morphogenetic Proteins/blood/pharmacology/*physiology ; Brain/drug effects/physiology ; Growth Differentiation Factors/blood/pharmacology/*physiology ; Heart/drug effects/physiology ; Mice ; Muscle, Skeletal/drug effects/physiology ; Myostatin/pharmacology/physiology ; Parabiosis ; Rats ; Regeneration/drug effects ; *Rejuvenation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-02-14
    Description: Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681433/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681433/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arner, Erik -- Daub, Carsten O -- Vitting-Seerup, Kristoffer -- Andersson, Robin -- Lilje, Berit -- Drablos, Finn -- Lennartsson, Andreas -- Ronnerblad, Michelle -- Hrydziuszko, Olga -- Vitezic, Morana -- Freeman, Tom C -- Alhendi, Ahmad M N -- Arner, Peter -- Axton, Richard -- Baillie, J Kenneth -- Beckhouse, Anthony -- Bodega, Beatrice -- Briggs, James -- Brombacher, Frank -- Davis, Margaret -- Detmar, Michael -- Ehrlund, Anna -- Endoh, Mitsuhiro -- Eslami, Afsaneh -- Fagiolini, Michela -- Fairbairn, Lynsey -- Faulkner, Geoffrey J -- Ferrai, Carmelo -- Fisher, Malcolm E -- Forrester, Lesley -- Goldowitz, Daniel -- Guler, Reto -- Ha, Thomas -- Hara, Mitsuko -- Herlyn, Meenhard -- Ikawa, Tomokatsu -- Kai, Chieko -- Kawamoto, Hiroshi -- Khachigian, Levon M -- Klinken, S Peter -- Kojima, Soichi -- Koseki, Haruhiko -- Klein, Sarah -- Mejhert, Niklas -- Miyaguchi, Ken -- Mizuno, Yosuke -- Morimoto, Mitsuru -- Morris, Kelly J -- Mummery, Christine -- Nakachi, Yutaka -- Ogishima, Soichi -- Okada-Hatakeyama, Mariko -- Okazaki, Yasushi -- Orlando, Valerio -- Ovchinnikov, Dmitry -- Passier, Robert -- Patrikakis, Margaret -- Pombo, Ana -- Qin, Xian-Yang -- Roy, Sugata -- Sato, Hiroki -- Savvi, Suzana -- Saxena, Alka -- Schwegmann, Anita -- Sugiyama, Daisuke -- Swoboda, Rolf -- Tanaka, Hiroshi -- Tomoiu, Andru -- Winteringham, Louise N -- Wolvetang, Ernst -- Yanagi-Mizuochi, Chiyo -- Yoneda, Misako -- Zabierowski, Susan -- Zhang, Peter -- Abugessaisa, Imad -- Bertin, Nicolas -- Diehl, Alexander D -- Fukuda, Shiro -- Furuno, Masaaki -- Harshbarger, Jayson -- Hasegawa, Akira -- Hori, Fumi -- Ishikawa-Kato, Sachi -- Ishizu, Yuri -- Itoh, Masayoshi -- Kawashima, Tsugumi -- Kojima, Miki -- Kondo, Naoto -- Lizio, Marina -- Meehan, Terrence F -- Mungall, Christopher J -- Murata, Mitsuyoshi -- Nishiyori-Sueki, Hiromi -- Sahin, Serkan -- Nagao-Sato, Sayaka -- Severin, Jessica -- de Hoon, Michiel J L -- Kawai, Jun -- Kasukawa, Takeya -- Lassmann, Timo -- Suzuki, Harukazu -- Kawaji, Hideya -- Summers, Kim M -- Wells, Christine -- FANTOM Consortium -- Hume, David A -- Forrest, Alistair R R -- Sandelin, Albin -- Carninci, Piero -- Hayashizaki, Yoshihide -- P30 CA010815/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1010-4. doi: 10.1126/science.1259418. Epub 2015 Feb 12.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Cell Differentiation/*genetics ; Dogs ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Developmental ; Mice ; RNA, Messenger/genetics/metabolism ; Rats ; Stem Cells/*cytology/metabolism ; Transcription Factors/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-05-16
    Description: The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodruff, Jeffrey B -- Wueseke, Oliver -- Viscardi, Valeria -- Mahamid, Julia -- Ochoa, Stacy D -- Bunkenborg, Jakob -- Widlund, Per O -- Pozniakovsky, Andrei -- Zanin, Esther -- Bahmanyar, Shirin -- Zinke, Andrea -- Hong, Sun Hae -- Decker, Marcus -- Baumeister, Wolfgang -- Andersen, Jens S -- Oegema, Karen -- Hyman, Anthony A -- R01-GM074207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 May 15;348(6236):808-12. doi: 10.1126/science.aaa3923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany. ; Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre 2650, Denmark. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. hyman@mpi-cbg.de koegema@ucsd.edu. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. hyman@mpi-cbg.de koegema@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Centrosome/*metabolism/ultrasonography ; Metabolic Networks and Pathways ; Phosphorylation ; Polymerization ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-01-24
    Description: The 26S proteasome is a key player in eukaryotic protein quality control and in the regulation of numerous cellular processes. Here, we describe quantitative in situ structural studies of this highly dynamic molecular machine in intact hippocampal neurons. We used electron cryotomography with the Volta phase plate, which allowed high fidelity and nanometer precision localization of 26S proteasomes. We undertook a molecular census of single- and double-capped proteasomes and assessed the conformational states of individual complexes. Under the conditions of the experiment-that is, in the absence of proteotoxic stress-only 20% of the 26S proteasomes were engaged in substrate processing. The remainder was in the substrate-accepting ground state. These findings suggest that in the absence of stress, the capacity of the proteasome system is not fully used.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asano, Shoh -- Fukuda, Yoshiyuki -- Beck, Florian -- Aufderheide, Antje -- Forster, Friedrich -- Danev, Radostin -- Baumeister, Wolfgang -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):439-42. doi: 10.1126/science.1261197.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. ; Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. baumeist@biochem.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Hippocampus/*cytology/enzymology ; Neurons/*enzymology/*ultrastructure ; Proteasome Endopeptidase Complex/*chemistry ; Protein Conformation ; Rats ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-02-28
    Description: Nonalcoholic fatty liver disease (NAFLD) is a major factor in the pathogenesis of type 2 diabetes (T2D) and nonalcoholic steatohepatitis (NASH). The mitochondrial protonophore 2,4 dinitrophenol (DNP) has beneficial effects on NAFLD, insulin resistance, and obesity in preclinical models but is too toxic for clinical use. We developed a controlled-release oral formulation of DNP, called CRMP (controlled-release mitochondrial protonophore), that produces mild hepatic mitochondrial uncoupling. In rat models, CRMP reduced hypertriglyceridemia, insulin resistance, hepatic steatosis, and diabetes. It also normalized plasma transaminase concentrations, ameliorated liver fibrosis, and improved hepatic protein synthetic function in a methionine/choline-deficient rat model of NASH. Chronic treatment with CRMP was not associated with any systemic toxicity. These data offer proof of concept that mild hepatic mitochondrial uncoupling may be a safe and effective therapy for the related epidemics of metabolic syndrome, T2D, and NASH.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495920/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495920/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perry, Rachel J -- Zhang, Dongyan -- Zhang, Xian-Man -- Boyer, James L -- Shulman, Gerald I -- P30 DK-34989/DK/NIDDK NIH HHS/ -- P30 DK-45735/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- R01 DK-40936/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R24 DK-085638/DK/NIDDK NIH HHS/ -- T32 DK-101019/DK/NIDDK NIH HHS/ -- U24 DK-059635/DK/NIDDK NIH HHS/ -- UL1 TR-000142/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1253-6. doi: 10.1126/science.aaa0672. Epub 2015 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA. Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA. ; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA. ; Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. ; Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA. ; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA. Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA. gerald.shulman@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25721504" target="_blank"〉PubMed〈/a〉
    Keywords: 2,4-Dinitrophenol/*administration & dosage/toxicity ; Animals ; Blood Glucose/metabolism ; Delayed-Action Preparations/*administration & dosage ; Diabetes Mellitus, Type 2/*drug therapy/metabolism ; Glucose Tolerance Test ; Insulin Resistance ; Lipid Metabolism ; Liver Cirrhosis/drug therapy ; Male ; Mice ; Mitochondria, Liver/drug effects/metabolism ; Muscle, Skeletal/metabolism ; Non-alcoholic Fatty Liver Disease/*drug therapy/metabolism ; Oxidation-Reduction ; Proton Ionophores/*administration & dosage/toxicity ; Random Allocation ; Rats ; Rats, Zucker
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-07-15
    Description: Neuronal circuits produce self-sustaining sequences of activity patterns, but the precise mechanisms remain unknown. Here we provide evidence for autoassociative dynamics in sequence generation. During sharp-wave ripple (SWR) events, hippocampal neurons express sequenced reactivations, which we show are composed of discrete attractors. Each attractor corresponds to a single location, the representation of which sharpens over the course of several milliseconds, as the reactivation focuses at that location. Subsequently, the reactivation transitions rapidly to a spatially discontiguous location. This alternation between sharpening and transition occurs repeatedly within individual SWRs and is locked to the slow-gamma (25 to 50 hertz) rhythm. These findings support theoretical notions of neural network function and reveal a fundamental discretization in the retrieval of memory in the hippocampus, together with a function for gamma oscillations in the control of attractor dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfeiffer, Brad E -- Foster, David J -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):180-3. doi: 10.1126/science.aaa9633.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. david.foster@jhu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gamma Rhythm ; Hippocampus/*cytology/*physiology ; Male ; Mental Recall/*physiology ; Neural Pathways ; Neurons/*physiology ; Rats ; Rats, Inbred LEC
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-04-04
    Description: Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greber, Basil J -- Bieri, Philipp -- Leibundgut, Marc -- Leitner, Alexander -- Aebersold, Ruedi -- Boehringer, Daniel -- Ban, Nenad -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):303-8. doi: 10.1126/science.aaa3872. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ban@mol.biol.ethz.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837512" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/chemistry ; Animals ; Anti-Bacterial Agents/chemistry ; Binding Sites ; GTP-Binding Proteins/chemistry ; Humans ; Mitochondria/*ultrastructure ; Mitochondrial Membranes/ultrastructure ; Mitochondrial Proteins/*biosynthesis/genetics ; Mutation ; Nucleic Acid Conformation ; Protein Structure, Secondary ; RNA, Messenger/chemistry ; RNA, Ribosomal, 16S/chemistry ; RNA, Transfer/chemistry ; Ribosomal Proteins/chemistry ; Ribosome Subunits, Large/chemistry/physiology/*ultrastructure ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-04-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pulla, Priyanka -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):15-6. doi: 10.1126/science.348.6230.15.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838358" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Blood Glucose ; *Cause of Death ; Child ; *Child Mortality ; Child, Preschool ; Coma/etiology/mortality ; Cyclopropanes/*toxicity ; Death, Sudden/etiology ; Eating ; Encephalitis/etiology/mortality ; Glucose/administration & dosage ; Glycine/*analogs & derivatives/toxicity ; Humans ; Hypoglycemia/drug therapy/*etiology/*mortality ; India/epidemiology ; Litchi/*toxicity ; Memory Disorders/etiology ; Mental Disorders/etiology ; Rats ; Seizures/etiology ; Toxins, Biological/*toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-12-15
    Description: Release of promoter-proximal paused RNA polymerase II (Pol II) during early elongation is a critical step in transcriptional regulation in metazoan cells. Paused Pol II release is thought to require the kinase activity of cyclin-dependent kinase 9 (CDK9) for the phosphorylation of DRB sensitivity-inducing factor, negative elongation factor, and C-terminal domain (CTD) serine-2 of Pol II. We found that Pol II-associated factor 1 (PAF1) is a critical regulator of paused Pol II release, that positive transcription elongation factor b (P-TEFb) directly regulates the initial recruitment of PAF1 complex (PAF1C) to genes, and that the subsequent recruitment of CDK12 is dependent on PAF1C. These findings reveal cooperativity among P-TEFb, PAF1C, and CDK12 in pausing release and Pol II CTD phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Ming -- Yang, Wenjing -- Ni, Ting -- Tang, Zhanyun -- Nakadai, Tomoyoshi -- Zhu, Jun -- Roeder, Robert G -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1383-6. doi: 10.1126/science.aad2338.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA. ; Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA. ; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China. ; Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA. roeder@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659056" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cyclin-Dependent Kinase 9/metabolism ; Cyclin-Dependent Kinases/metabolism ; *Gene Expression Regulation ; Humans ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Positive Transcriptional Elongation Factor B/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Polymerase II/chemistry/genetics/*metabolism ; *Transcription Elongation, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-01-31
    Description: Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 A resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Youzhong -- Kalathur, Ravi C -- Liu, Qun -- Kloss, Brian -- Bruni, Renato -- Ginter, Christopher -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):551-5. doi: 10.1126/science.aaa1534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universitat Munchen, Garching 85748, Germany. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. wayne@xtl.cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635100" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus cereus/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry ; Protoporphyrins/metabolism ; Reactive Oxygen Species/metabolism ; Tryptophan/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-11-21
    Description: Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saxton, Robert A -- Knockenhauer, Kevin E -- Wolfson, Rachel L -- Chantranupong, Lynne -- Pacold, Michael E -- Wang, Tim -- Schwartz, Thomas U -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA189333/CA/NCI NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- F31 CA189437/CA/NCI NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01CA103866/CA/NCI NIH HHS/ -- S10 RR029205/RR/NCRR NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):53-8. doi: 10.1126/science.aad2087. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Leucine/*chemistry/metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/genetics/*metabolism ; Mutation ; Nuclear Proteins/*chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; TOR Serine-Threonine Kinases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-05-31
    Description: Synaptic vesicle recycling has long served as a model for the general mechanisms of cellular trafficking. We used an integrative approach, combining quantitative immunoblotting and mass spectrometry to determine protein numbers; electron microscopy to measure organelle numbers, sizes, and positions; and super-resolution fluorescence microscopy to localize the proteins. Using these data, we generated a three-dimensional model of an "average" synapse, displaying 300,000 proteins in atomic detail. The copy numbers of proteins involved in the same step of synaptic vesicle recycling correlated closely. In contrast, copy numbers varied over more than three orders of magnitude between steps, from about 150 copies for the endosomal fusion proteins to more than 20,000 for the exocytotic ones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilhelm, Benjamin G -- Mandad, Sunit -- Truckenbrodt, Sven -- Krohnert, Katharina -- Schafer, Christina -- Rammner, Burkhard -- Koo, Seong Joo -- Classen, Gala A -- Krauss, Michael -- Haucke, Volker -- Urlaub, Henning -- Rizzoli, Silvio O -- New York, N.Y. -- Science. 2014 May 30;344(6187):1023-8. doi: 10.1126/science.1252884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. International Max Planck Research School Neurosciences, 37077 Gottingen, Germany. ; Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. International Max Planck Research School Molecular Biology, 37077 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. ; Leibniz Institut fur Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. Bioanalytics, Department of Clinical Chemistry, University Medical Center Gottingen, 37075 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. srizzol@gwdg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876496" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism/ultrastructure ; Exocytosis ; Imaging, Three-Dimensional ; Immunoblotting/methods ; Mass Spectrometry/methods ; Microscopy, Electron/methods ; Models, Neurological ; Presynaptic Terminals/chemistry/*metabolism/ultrastructure ; Protein Transport ; Rats ; Rats, Wistar ; Synaptic Vesicles/chemistry/*metabolism ; Synaptosomes/chemistry/*metabolism/ultrastructure ; Vesicular Transport Proteins/analysis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-01-05
    Description: Metaphase chromosomes are visible hallmarks of mitosis, yet our understanding of their structure and of the forces shaping them is rudimentary. Phosphorylation of histone H3 serine 10 (H3 S10) by Aurora B kinase is a signature event of mitosis, but its function in chromatin condensation is unclear. Using genetically encoded ultraviolet light-inducible cross-linkers, we monitored protein-protein interactions with spatiotemporal resolution in living yeast to identify the molecular details of the pathway downstream of H3 S10 phosphorylation. This modification leads to the recruitment of the histone deacetylase Hst2p that subsequently removes an acetyl group from histone H4 lysine 16, freeing the H4 tail to interact with the surface of neighboring nucleosomes and promoting fiber condensation. This cascade of events provides a condensin-independent driving force of chromatin hypercondensation during mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilkins, Bryan J -- Rall, Nils A -- Ostwal, Yogesh -- Kruitwagen, Tom -- Hiragami-Hamada, Kyoko -- Winkler, Marco -- Barral, Yves -- Fischle, Wolfgang -- Neumann, Heinz -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):77-80. doi: 10.1126/science.1244508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Free Floater (Junior) Research Group "Applied Synthetic Biology," Institute for Microbiology and Genetics, Georg-August University Gottingen, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385627" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Chromatin/*metabolism ; Chromosomes, Fungal/genetics/metabolism ; Cross-Linking Reagents/chemistry/radiation effects ; DNA-Binding Proteins/metabolism ; Histones/*metabolism ; Lysine/metabolism ; *Mitosis ; Multiprotein Complexes/metabolism ; Phosphorylation ; Protein Interaction Mapping ; *Protein Processing, Post-Translational ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Serine/*metabolism ; Sirtuin 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-09-23
    Description: Ribonucleotide reductase (RNR) supplies the balanced pools of deoxynucleotide triphosphates (dNTPs) necessary for DNA replication and maintenance of genomic integrity. RNR is subject to allosteric regulatory mechanisms in all eukaryotes, as well as to control by small protein inhibitors Sml1p and Spd1p in budding and fission yeast, respectively. Here, we show that the metazoan protein IRBIT forms a deoxyadenosine triphosphate (dATP)-dependent complex with RNR, which stabilizes dATP in the activity site of RNR and thus inhibits the enzyme. Formation of the RNR-IRBIT complex is regulated through phosphorylation of IRBIT, and ablation of IRBIT expression in HeLa cells causes imbalanced dNTP pools and altered cell cycle progression. We demonstrate a mechanism for RNR regulation in higher eukaryotes that acts by enhancing allosteric RNR inhibition by dATP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnaoutov, Alexei -- Dasso, Mary -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1512-5. doi: 10.1126/science.1251550.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. arnaouta@mail.nih.gov. ; Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237103" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Catalytic Domain ; Deoxyadenine Nucleotides/*metabolism ; HeLa Cells ; Humans ; Immunoprecipitation ; Lectins, C-Type/genetics/*metabolism ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Ribonucleotide Reductases/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-04-26
    Description: Using light to silence electrical activity in targeted cells is a major goal of optogenetics. Available optogenetic proteins that directly move ions to achieve silencing are inefficient, pumping only a single ion per photon across the cell membrane rather than allowing many ions per photon to flow through a channel pore. Building on high-resolution crystal-structure analysis, pore vestibule modeling, and structure-guided protein engineering, we designed and characterized a class of channelrhodopsins (originally cation-conducting) converted into chloride-conducting anion channels. These tools enable fast optical inhibition of action potentials and can be engineered to display step-function kinetics for stable inhibition, outlasting light pulses and for orders-of-magnitude-greater light sensitivity of inhibited cells. The resulting family of proteins defines an approach to more physiological, efficient, and sensitive optogenetic inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berndt, Andre -- Lee, Soo Yeun -- Ramakrishnan, Charu -- Deisseroth, Karl -- R01 DA020794/DA/NIDA NIH HHS/ -- R01 MH075957/MH/NIMH NIH HHS/ -- R01 MH086373/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763591" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; CA1 Region, Hippocampal/cytology ; CA3 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neurons/*physiology ; Optogenetics ; Patch-Clamp Techniques ; Protein Engineering ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):239. doi: 10.1126/science.343.6168.239.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436399" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*microbiology/physiology ; Brain/metabolism/microbiology ; Fat Body/virology ; Female ; Gryllidae/physiology/*virology ; Guanidines/analysis/metabolism ; *Host-Pathogen Interactions ; Hypocreales/*physiology ; Insect Viruses/*physiology ; Lizards/virology ; Male ; Rats ; Sexual Behavior, Animal/*physiology ; Sphingosine/analysis/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-05-24
    Description: Cushing's syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing's syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing's syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing's syndrome, providing insights into the diagnosis and therapeutics of this syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yusuke -- Maekawa, Shigekatsu -- Ishii, Ryohei -- Sanada, Masashi -- Morikawa, Teppei -- Shiraishi, Yuichi -- Yoshida, Kenichi -- Nagata, Yasunobu -- Sato-Otsubo, Aiko -- Yoshizato, Tetsuichi -- Suzuki, Hiromichi -- Shiozawa, Yusuke -- Kataoka, Keisuke -- Kon, Ayana -- Aoki, Kosuke -- Chiba, Kenichi -- Tanaka, Hiroko -- Kume, Haruki -- Miyano, Satoru -- Fukayama, Masashi -- Nureki, Osamu -- Homma, Yukio -- Ogawa, Seishi -- New York, N.Y. -- Science. 2014 May 23;344(6186):917-20. doi: 10.1126/science.1252328.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan. ; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. sogawa-tky@umin.ac.jp homma-uro@umin.ac.jp. ; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. sogawa-tky@umin.ac.jp homma-uro@umin.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855271" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Neoplasms/*genetics ; Adrenocortical Adenoma/*genetics ; Adrenocorticotropic Hormone/metabolism ; Animals ; Catalytic Domain/genetics ; Cushing Syndrome/*genetics/metabolism ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/*genetics/metabolism ; DNA Mutational Analysis ; GTP-Binding Protein alpha Subunits/genetics ; HEK293 Cells ; Humans ; Mice ; Mutation ; NIH 3T3 Cells ; PC12 Cells ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-02-08
    Description: We report that the oxytocin-mediated neuroprotective gamma-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery is abolished in the valproate and fragile X rodent models of autism. During delivery and subsequently, hippocampal neurons in these models have elevated intracellular chloride levels, increased excitatory GABA, enhanced glutamatergic activity, and elevated gamma oscillations. Maternal pretreatment with bumetanide restored in offspring control electrophysiological and behavioral phenotypes. Conversely, blocking oxytocin signaling in naive mothers produced offspring having electrophysiological and behavioral autistic-like features. Our results suggest a chronic deficient chloride regulation in these rodent models of autism and stress the importance of oxytocin-mediated GABAergic inhibition during the delivery process. Our data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tyzio, Roman -- Nardou, Romain -- Ferrari, Diana C -- Tsintsadze, Timur -- Shahrokhi, Amene -- Eftekhari, Sanaz -- Khalilov, Ilgam -- Tsintsadze, Vera -- Brouchoud, Corinne -- Chazal, Genevieve -- Lemonnier, Eric -- Lozovaya, Natalia -- Burnashev, Nail -- Ben-Ari, Yehezkel -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):675-9. doi: 10.1126/science.1247190.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mediterranean Institute of Neurobiology (INMED), U901, INSERM, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*chemically induced/*genetics/metabolism ; Behavior, Animal ; Bumetanide/administration & dosage ; Chlorides/metabolism ; *Cytoprotection ; Disease Models, Animal ; Female ; Fragile X Mental Retardation Protein/genetics ; Maternal-Fetal Exchange ; Mice ; Oxytocin/*metabolism ; Parturition ; Pregnancy ; Rats ; Valproic Acid/pharmacology ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-03-08
    Description: Although substantial progress has been achieved in the structural analysis of exporters from the superfamily of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, much less is known about how they selectively recognize substrates and how substrate binding is coupled to ATP hydrolysis. We have addressed these questions through crystallographic analysis of the Atm1/ABCB7/HMT1/ABCB6 ortholog from Novosphingobium aromaticivorans DSM 12444, NaAtm1, at 2.4 angstrom resolution. Consistent with a physiological role in cellular detoxification processes, functional studies showed that glutathione derivatives can serve as substrates for NaAtm1 and that its overexpression in Escherichia coli confers protection against silver and mercury toxicity. The glutathione binding site highlights the articulated design of ABC exporters, with ligands and nucleotides spanning structurally conserved elements to create adaptable interfaces accommodating conformational rearrangements during the transport cycle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jonas Y -- Yang, Janet G -- Zhitnitsky, Daniel -- Lewinson, Oded -- Rees, Douglas C -- GM45162/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 GM045162/GM/NIGMS NIH HHS/ -- R37 GM045162/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1133-6. doi: 10.1126/science.1246489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 114-96, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604198" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/genetics/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Binding Sites ; Crystallography, X-Ray ; Glutathione/chemistry ; Inactivation, Metabolic ; Metals, Heavy/*metabolism/*toxicity ; Protein Multimerization ; Protein Structure, Secondary ; Sphingomonadaceae/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-05-03
    Description: We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Taekwan -- Cai, Lili X -- Lelyveld, Victor S -- Hai, Aviad -- Jasanoff, Alan -- DP2-OD002114/OD/NIH HHS/ -- R01-DA02899/DA/NIDA NIH HHS/ -- R01-NS076462/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 2;344(6183):533-5. doi: 10.1126/science.1249380.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786083" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/*chemistry/genetics ; Brain Mapping/*methods ; Contrast Media/*chemistry ; Cytochrome P-450 Enzyme System/*chemistry/genetics ; Dopamine/*metabolism ; Dopaminergic Neurons ; Magnetic Resonance Imaging/*methods ; Male ; Molecular Imaging/*methods ; NADPH-Ferrihemoprotein Reductase/*chemistry/genetics ; Nucleus Accumbens/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-06-07
    Description: After light-induced nuclear translocation, phytochrome photoreceptors interact with and induce rapid phosphorylation and degradation of basic helix-loop-helix transcription factors, such as PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), to regulate gene expression. Concomitantly, this interaction triggers feedback reduction of phytochrome B (phyB) levels. Light-induced phosphorylation of PIF3 is necessary for the degradation of both proteins. We report that this PIF3 phosphorylation induces, and is necessary for, recruitment of LRB [Light-Response Bric-a-Brack/Tramtrack/Broad (BTB)] E3 ubiquitin ligases to the PIF3-phyB complex. The recruited LRBs promote concurrent polyubiqutination and degradation of both PIF3 and phyB in vivo. These data reveal a linked signal-transmission and attenuation mechanism involving mutually assured destruction of the receptor and its immediate signaling partner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, Weimin -- Xu, Shou-Ling -- Tepperman, James M -- Stanley, David J -- Maltby, Dave A -- Gross, John D -- Burlingame, Alma L -- Wang, Zhi-Yong -- Quail, Peter H -- 2R01 GM-047475/GM/NIGMS NIH HHS/ -- 5R01GM066258/GM/NIGMS NIH HHS/ -- 8P41GM103481/GM/NIGMS NIH HHS/ -- P41 GM103481/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- R01 GM047475/GM/NIGMS NIH HHS/ -- R01 GM066258/GM/NIGMS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1160-4. doi: 10.1126/science.1250778.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. ; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. quail@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904166" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Nucleus/metabolism ; Cullin Proteins/*metabolism ; Gene Expression Regulation, Plant ; HeLa Cells ; Humans ; *Light Signal Transduction ; Nuclear Proteins/genetics/metabolism ; Phosphorylation ; Phytochrome B/*metabolism ; Polyubiquitin/metabolism ; Proteolysis ; *Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-05-17
    Description: Neural circuits are shaped by elimination of early-formed redundant synapses during postnatal development. Retrograde signaling from postsynaptic cells regulates synapse elimination. In this work, we identified semaphorins, a family of versatile cell recognition molecules, as retrograde signals for elimination of redundant climbing fiber to Purkinje cell synapses in developing mouse cerebellum. Knockdown of Sema3A, a secreted semaphorin, in Purkinje cells or its receptor in climbing fibers accelerated synapse elimination during postnatal day 8 (P8) to P18. Conversely, knockdown of Sema7A, a membrane-anchored semaphorin, in Purkinje cells or either of its two receptors in climbing fibers impaired synapse elimination after P15. The effect of Sema7A involves signaling by metabotropic glutamate receptor 1, a canonical pathway for climbing fiber synapse elimination. These findings define how semaphorins retrogradely regulate multiple processes of synapse elimination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uesaka, Naofumi -- Uchigashima, Motokazu -- Mikuni, Takayasu -- Nakazawa, Takanobu -- Nakao, Harumi -- Hirai, Hirokazu -- Aiba, Atsu -- Watanabe, Masahiko -- Kano, Masanobu -- New York, N.Y. -- Science. 2014 May 30;344(6187):1020-3. doi: 10.1126/science.1252514. Epub 2014 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan. ; Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. mkano-tky@m.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24831527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/genetics/*metabolism ; Brain/*growth & development/metabolism ; Gene Knockdown Techniques ; Mice ; Mice, Inbred C57BL ; Purkinje Cells/metabolism/*physiology ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/genetics/metabolism ; Semaphorin-3A/genetics/*metabolism ; Semaphorins/genetics/*metabolism ; Signal Transduction ; Synapses/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Underwood, Emily -- New York, N.Y. -- Science. 2014 Oct 10;346(6206):149. doi: 10.1126/science.346.6206.149-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25301593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Geographic Information Systems ; Hippocampus/*cytology ; Humans ; Neurons/*physiology ; *Neurosciences ; *Nobel Prize ; Rats ; Spatial Behavior/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-10-04
    Description: Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial valine transfer RNA (tRNA(Val)) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Alan -- Amunts, Alexey -- Bai, Xiao-chen -- Sugimoto, Yoichiro -- Edwards, Patricia C -- Murshudov, Garib -- Scheres, Sjors H W -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A025_1012/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):718-22. doi: 10.1126/science.1258026. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ramak@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278503" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Humans ; Mitochondria/genetics/*metabolism ; Mitochondrial Proteins/chemistry/ultrastructure ; Mutation ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Transfer, Val/analysis/*chemistry ; Ribosome Subunits/*chemistry/genetics/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-03-22
    Description: Biological oscillations are observed at many levels of cellular organization. In the social amoeba Dictyostelium discoideum, starvation-triggered multicellular development is organized by periodic cyclic adenosine 3',5'-monophosphate (cAMP) waves, which provide both chemoattractant gradients and developmental signals. We report that GtaC, a GATA transcription factor, exhibits rapid nucleocytoplasmic shuttling in response to cAMP waves. This behavior requires coordinated action of a nuclear localization signal and reversible G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor-mediated phosphorylation. Although both are required for developmental gene expression, receptor occupancy promotes nuclear exit of GtaC, which leads to a transient burst of transcription at each cAMP cycle. We demonstrate that this biological circuit filters out high-frequency signals and counts those admitted, thereby enabling cells to modulate gene expression according to the dynamic pattern of the external stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061987/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061987/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, Huaqing -- Katoh-Kurasawa, Mariko -- Muramoto, Tetsuya -- Santhanam, Balaji -- Long, Yu -- Li, Lei -- Ueda, Masahiro -- Iglesias, Pablo A -- Shaulsky, Gad -- Devreotes, Peter N -- GM 28007/GM/NIGMS NIH HHS/ -- GM 34933/GM/NIGMS NIH HHS/ -- HD 039691/HD/NICHD NIH HHS/ -- P01 HD039691/HD/NICHD NIH HHS/ -- R01 GM028007/GM/NIGMS NIH HHS/ -- R01 GM034933/GM/NIGMS NIH HHS/ -- R37 GM028007/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1249531. doi: 10.1126/science.1249531.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653039" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Nucleus/*metabolism ; Cyclic AMP/metabolism/pharmacology ; Cytoplasm/*metabolism ; Dictyostelium/growth & development/*metabolism ; GATA Transcription Factors/chemistry/genetics/*metabolism ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/metabolism ; Nuclear Localization Signals ; Phosphorylation ; Protozoan Proteins/chemistry/genetics/*metabolism ; Receptors, G-Protein-Coupled/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-01-05
    Description: Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Delta(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057431/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057431/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vallee, Monique -- Vitiello, Sergio -- Bellocchio, Luigi -- Hebert-Chatelain, Etienne -- Monlezun, Stephanie -- Martin-Garcia, Elena -- Kasanetz, Fernando -- Baillie, Gemma L -- Panin, Francesca -- Cathala, Adeline -- Roullot-Lacarriere, Valerie -- Fabre, Sandy -- Hurst, Dow P -- Lynch, Diane L -- Shore, Derek M -- Deroche-Gamonet, Veronique -- Spampinato, Umberto -- Revest, Jean-Michel -- Maldonado, Rafael -- Reggio, Patricia H -- Ross, Ruth A -- Marsicano, Giovanni -- Piazza, Pier Vincenzo -- 260515/European Research Council/International -- DA-003934/DA/NIDA NIH HHS/ -- DA-03672/DA/NIDA NIH HHS/ -- DA-09789/DA/NIDA NIH HHS/ -- K05 DA021358/DA/NIDA NIH HHS/ -- R01 DA003934/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):94-8. doi: 10.1126/science.1243985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM, Neurocentre Magendie, Physiopathologie de la Plasticite Neuronale, U862, F-33000 Bordeaux, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*drug effects/metabolism ; Cannabinoid Receptor Antagonists/administration & dosage ; Cannabis/*toxicity ; Dronabinol/*toxicity ; Male ; Marijuana Abuse/drug therapy ; Mice ; Mice, Inbred C57BL ; Pregnenolone/*administration & dosage/*metabolism ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar ; Receptor, Cannabinoid, CB1/*agonists/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-05-09
    Description: Molecular chaperones prevent aggregation and misfolding of proteins, but scarcity of structural data has impeded an understanding of the recognition and antiaggregation mechanisms. We report the solution structure, dynamics, and energetics of three trigger factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. Nuclear magnetic resonance (NMR) relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion, but as the number and length of the PhoA regions engaged by TF increase, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and, by acting as unfoldases and holdases, prevent the aggregation and premature (mis)folding of unfolded proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saio, Tomohide -- Guan, Xiao -- Rossi, Paolo -- Economou, Anastassios -- Kalodimos, Charalampos G -- GM073854/GM/NIGMS NIH HHS/ -- R01 GM073854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):1250494. doi: 10.1126/science.1250494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812405" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/*chemistry ; Binding Sites ; Escherichia coli Proteins/*chemistry ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins/*chemistry ; Molecular Chaperones/*chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Peptides/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-02-08
    Description: Despite our understanding of actomyosin function in individual migrating cells, we know little about the mechanisms by which actomyosin drives collective cell movement in vertebrate embryos. The collective movements of convergent extension drive both global reorganization of the early embryo and local remodeling during organogenesis. We report here that planar cell polarity (PCP) proteins control convergent extension by exploiting an evolutionarily ancient function of the septin cytoskeleton. By directing septin-mediated compartmentalization of cortical actomyosin, PCP proteins coordinate the specific shortening of mesenchymal cell-cell contacts, which in turn powers cell interdigitation. These data illuminate the interface between developmental signaling systems and the fundamental machinery of cell behavior and should provide insights into the etiology of human birth defects, such as spina bifida and congenital kidney cysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167615/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167615/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shindo, Asako -- Wallingford, John B -- R01 GM074104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):649-52. doi: 10.1126/science.1243126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503851" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/*metabolism ; Animals ; *Cell Movement ; *Cell Polarity ; Embryo, Nonmammalian/cytology/metabolism ; Female ; Gastrula/cytology/metabolism ; Gene Knockdown Techniques ; Humans ; Mesoderm/cytology/metabolism ; Organogenesis ; Phosphorylation ; Septins/genetics/*metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grimm, David -- New York, N.Y. -- Science. 2014 May 2;344(6183):461. doi: 10.1126/science.344.6183.461.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786056" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesia ; Animals ; Anti-Inflammatory Agents/administration & dosage ; Biomedical Research/*standards ; Female ; Humans ; Male ; Mice ; *Odors ; Pain/*physiopathology/prevention & control ; Pain Measurement ; Pain Threshold ; Rats ; Sex Factors ; *Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):361-3. doi: 10.1126/science.343.6169.361.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemically-Induced Disorders/*genetics ; DNA Methylation/drug effects ; *Epigenesis, Genetic ; Epigenomics/economics/trends ; Evolution, Molecular ; Female ; Humans ; Male ; Rats ; Reproduction/drug effects/genetics ; Sexual Behavior, Animal/drug effects ; Spermatozoa/*abnormalities/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-11-15
    Description: In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mansour, Marc R -- Abraham, Brian J -- Anders, Lars -- Berezovskaya, Alla -- Gutierrez, Alejandro -- Durbin, Adam D -- Etchin, Julia -- Lawton, Lee -- Sallan, Stephen E -- Silverman, Lewis B -- Loh, Mignon L -- Hunger, Stephen P -- Sanda, Takaomi -- Young, Richard A -- Look, A Thomas -- 1R01CA176746-01/CA/NCI NIH HHS/ -- 5P01CA109901-08/CA/NCI NIH HHS/ -- 5P01CA68484/CA/NCI NIH HHS/ -- CA114766/CA/NCI NIH HHS/ -- CA120215/CA/NCI NIH HHS/ -- CA167124/CA/NCI NIH HHS/ -- CA29139/CA/NCI NIH HHS/ -- CA30969/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1373-7. doi: 10.1126/science.1259037. Epub 2014 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. ; Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, CA 94143, USA. ; Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA. ; Cancer Science Institute of Singapore, National University of Singapore, and Department of Medicine, Yong Loo Lin School of Medicine, 117599, Singapore. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25394790" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors/*genetics ; Binding Sites ; Cell Line, Tumor ; *DNA, Intergenic ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Neoplastic ; Histones/metabolism ; Humans ; *INDEL Mutation ; Molecular Sequence Data ; *Mutation ; Oncogenes ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-myb/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karakas, Erkan -- Furukawa, Hiro -- MH085926/MH/NIMH NIH HHS/ -- R01 GM105730/GM/NIGMS NIH HHS/ -- R01 MH085926/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. ; Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. furukawa@cshl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876489" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/chemistry/metabolism ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-10-18
    Description: Potassium channels selectively conduct K(+) ions across cellular membranes with extraordinary efficiency. Their selectivity filter exhibits four binding sites with approximately equal electron density in crystal structures with high K(+) concentrations, previously thought to reflect a superposition of alternating ion- and water-occupied states. Consequently, cotranslocation of ions with water has become a widely accepted ion conduction mechanism for potassium channels. By analyzing more than 1300 permeation events from molecular dynamics simulations at physiological voltages, we observed instead that permeation occurs via ion-ion contacts between neighboring K(+) ions. Coulomb repulsion between adjacent ions is found to be the key to high-efficiency K(+) conduction. Crystallographic data are consistent with directly neighboring K(+) ions in the selectivity filter, and our model offers an intuitive explanation for the high throughput rates of K(+) channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kopfer, David A -- Song, Chen -- Gruene, Tim -- Sheldrick, George M -- Zachariae, Ulrich -- de Groot, Bert L -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):352-5. doi: 10.1126/science.1254840.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Department of Structural Chemistry, University of Gottingen, 37077 Gottingen, Germany. ; School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK. College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324389" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Molecular Dynamics Simulation ; Potassium/*metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; *Static Electricity ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1194-7. doi: 10.1126/science.343.6176.1194.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626911" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria ; Beetles ; Cough/microbiology ; Humans ; Plant Leaves ; Rats ; Skin ; Sneezing ; Surface Tension ; Viruses ; Water/*chemistry ; *Wettability
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-09-06
    Description: Coupled translocation of messenger RNA and transfer RNA (tRNA) through the ribosome, a process catalyzed by elongation factor EF-G, is a crucial step in protein synthesis. The crystal structure of a bacterial translocation complex describes the binding states of two tRNAs trapped in mid-translocation. The deacylated P-site tRNA has moved into a partly translocated pe/E chimeric hybrid state. The anticodon stem-loop of the A-site tRNA is captured in transition toward the 30S P site, while its 3' acceptor end contacts both the A and P loops of the 50S subunit, forming an ap/ap chimeric hybrid state. The structure shows how features of ribosomal RNA rearrange to hand off the A-site tRNA to the P site, revealing an active role for ribosomal RNA in the translocation process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242719/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242719/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jie -- Lancaster, Laura -- Donohue, John Paul -- Noller, Harry F -- GM-17129/GM/NIGMS NIH HHS/ -- GM59140/GM/NIGMS NIH HHS/ -- R01 GM017129/GM/NIGMS NIH HHS/ -- R01 GM059140/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1188-91. doi: 10.1126/science.1255030.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA. ; Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA. harry@nuvolari.ucsc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190797" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Nucleic Acid Conformation ; Peptide Elongation Factor G/*chemistry/metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Messenger/*chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; Ribosome Subunits, Large, Bacterial/*chemistry/metabolism ; Thermus thermophilus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-01-18
    Description: Btk29A is the Drosophila ortholog of the mammalian Bruton's tyrosine kinase (Btk), mutations of which in humans cause a heritable immunodeficiency disease. Btk29A mutations stabilized the proliferating cystoblast fate, leading to an ovarian tumor. This phenotype was rescued by overexpression of wild-type Btk29A and phenocopied by the interference of Wnt4-beta-catenin signaling or its putative downstream nuclear protein Piwi in somatic escort cells. Btk29A and mammalian Btk directly phosphorylated tyrosine residues of beta-catenin, leading to the up-regulation of its transcriptional activity. Thus, we identify a transcriptional switch involving the kinase Btk29A/Btk and its phosphorylation target, beta-catenin, which functions downstream of Wnt4 in escort cells to terminate Drosophila germ cell proliferation through up-regulation of piwi expression. This signaling mechanism likely represents a versatile developmental switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamada-Kawaguchi, Noriko -- Nore, Beston F -- Kuwada, Yusuke -- Smith, C I Edvard -- Yamamoto, Daisuke -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):294-7. doi: 10.1126/science.1244512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/*biosynthesis ; *Cell Proliferation ; DNA Breaks, Double-Stranded ; Drosophila Proteins/*biosynthesis/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; Genomic Instability ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Signal Transduction ; Transcription, Genetic ; Tyrosine/genetics/metabolism ; Up-Regulation ; Wnt Proteins/genetics/*metabolism ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-07-19
    Description: Cytoplasmic dynein is a molecular motor that transports a large variety of cargoes (e.g., organelles, messenger RNAs, and viruses) along microtubules over long intracellular distances. The dynactin protein complex is important for dynein activity in vivo, but its precise role has been unclear. Here, we found that purified mammalian dynein did not move processively on microtubules in vitro. However, when dynein formed a complex with dynactin and one of four different cargo-specific adapter proteins, the motor became ultraprocessive, moving for distances similar to those of native cargoes in living cells. Thus, we propose that dynein is largely inactive in the cytoplasm and that a variety of adapter proteins activate processive motility by linking dynactin to dynein only when the motor is bound to its proper cargo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224444/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224444/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKenney, Richard J -- Huynh, Walter -- Tanenbaum, Marvin E -- Bhabha, Gira -- Vale, Ronald D -- F32GM096484/GM/NIGMS NIH HHS/ -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01GM097312/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):337-41. doi: 10.1126/science.1254198. Epub 2014 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ; Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. vale@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035494" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cytoplasmic Dyneins/chemistry/*metabolism ; Humans ; Mice ; Microtubule-Associated Proteins/*metabolism ; Microtubules/chemistry/*metabolism ; Motion ; Protein Transport ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-03-08
    Description: The yeast mitochondrial ABC transporter Atm1, in concert with glutathione, functions in the export of a substrate required for cytosolic-nuclear iron-sulfur protein biogenesis and cellular iron regulation. Defects in the human ortholog ABCB7 cause the sideroblastic anemia XLSA/A. Here, we report the crystal structures of free and glutathione-bound Atm1 in inward-facing, open conformations at 3.06- and 3.38-angstrom resolution, respectively. The glutathione binding site includes a residue mutated in XLSA/A and is located close to the inner membrane surface in a large cavity. The two nucleotide-free adenosine 5'-triphosphate binding domains do not interact yet are kept in close vicinity through tight interaction of the two C-terminal alpha-helices of the Atm1 dimer. The resulting protein stabilization may be a common structural feature of all ABC exporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Srinivasan, Vasundara -- Pierik, Antonio J -- Lill, Roland -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1137-40. doi: 10.1126/science.1246729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Zytobiologie, Philipps-Universitat Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604199" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry ; Adenosine Triphosphate/chemistry ; Binding Sites ; Crystallography, X-Ray ; Glutathione/*chemistry ; Mitochondria/*metabolism ; Protein Multimerization ; Protein Stability ; Protein Structure, Secondary ; Saccharomyces cerevisiae Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-08-12
    Description: Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yelshanskaya, Maria V -- Li, Minfen -- Sobolevsky, Alexander I -- NS083660/NS/NINDS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- R01 NS083660/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1070-4. doi: 10.1126/science.1256508. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. as4005@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; Cysteine/chemistry ; Glutamic Acid/pharmacology ; HEK293 Cells ; Humans ; *Ion Channel Gating ; Models, Chemical ; Organophosphonates/chemistry/pharmacology ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrimidinones/*pharmacology ; Quinoxalines/chemistry/pharmacology ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-11-08
    Description: Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbauer, Angelika B -- Opalinska, Magdalena -- Gerbeth, Carolin -- Herman, Josip S -- Rao, Sanjana -- Schonfisch, Birgit -- Guiard, Bernard -- Schmidt, Oliver -- Pfanner, Nikolaus -- Meisinger, Chris -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1109-13. doi: 10.1126/science.1261253. Epub 2014 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. Spemann Graduate School of Biology and Medicine, Universitat Freiburg, 79104 Freiburg, Germany. ; Centre de Genetique Moleculaire, CNRS, 91190 Gif-sur-Yvette, France. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. nikolaus.pfanner@biochemie.uni-freiburg.de chris.meisinger@biochemie.uni-freiburg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378463" target="_blank"〉PubMed〈/a〉
    Keywords: CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Cyclin B/metabolism ; Cytosol/metabolism ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/*metabolism ; Phosphorylation ; Protein Precursors/*metabolism ; Protein Transport ; Saccharomyces cerevisiae/*cytology/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-08-02
    Description: Many RNA regulatory proteins controlling pre-messenger RNA splicing contain serine:arginine (SR) repeats. Here, we found that these SR domains bound hydrogel droplets composed of fibrous polymers of the low-complexity domain of heterogeneous ribonucleoprotein A2 (hnRNPA2). Hydrogel binding was reversed upon phosphorylation of the SR domain by CDC2-like kinases 1 and 2 (CLK1/2). Mutated variants of the SR domains changing serine to glycine (SR-to-GR variants) also bound to hnRNPA2 hydrogels but were not affected by CLK1/2. When expressed in mammalian cells, these variants bound nucleoli. The translation products of the sense and antisense transcripts of the expansion repeats associated with the C9orf72 gene altered in neurodegenerative disease encode GRn and PRn repeat polypeptides. Both peptides bound to hnRNPA2 hydrogels independent of CLK1/2 activity. When applied to cultured cells, both peptides entered cells, migrated to the nucleus, bound nucleoli, and poisoned RNA biogenesis, which caused cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Ilmin -- Xiang, Siheng -- Kato, Masato -- Wu, Leeju -- Theodoropoulos, Pano -- Wang, Tao -- Kim, Jiwoong -- Yun, Jonghyun -- Xie, Yang -- McKnight, Steven L -- U01 GM107623/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1139-45. doi: 10.1126/science.1254917. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Quantitative Biomedical Research Center, Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. steven.mcknight@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25081482" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amyotrophic Lateral Sclerosis/genetics/*metabolism/pathology ; Astrocytes/*metabolism/pathology ; Cell Death ; Cell Nucleolus/*metabolism ; Cells, Cultured ; Dipeptides/genetics/*metabolism/pharmacology ; Frontotemporal Dementia/genetics/*metabolism/pathology ; Glutamate Plasma Membrane Transport Proteins/genetics ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/*metabolism ; Humans ; Hydrogel ; Phosphorylation ; Protein Biosynthesis ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/*genetics ; RNA, Antisense/antagonists & inhibitors/biosynthesis ; RNA, Messenger/antagonists & inhibitors/biosynthesis ; RNA, Ribosomal/antagonists & inhibitors/biosynthesis ; Repetitive Sequences, Amino Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-01-25
    Description: Little is known about how microcircuits are organized in layer 2 of the medial entorhinal cortex. We visualized principal cell microcircuits and determined cellular theta-rhythmicity in freely moving rats. Non-dentate-projecting, calbindin-positive pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 1 axons, parasubiculum, and cholinergic inputs. Calbindin-negative, dentate-gyrus-projecting stellate cells were distributed across layer 2 but avoided centers of calbindin-positive patches. Cholinergic drive sustained theta-rhythmicity, which was twofold stronger in pyramidal than in stellate neurons. Theta-rhythmicity was cell-type-specific but not distributed as expected from cell-intrinsic properties. Layer 2 divides into a weakly theta-locked stellate cell lattice and spatiotemporally highly organized pyramidal grid. It needs to be assessed how these two distinct principal cell networks contribute to grid cell activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ray, Saikat -- Naumann, Robert -- Burgalossi, Andrea -- Tang, Qiusong -- Schmidt, Helene -- Brecht, Michael -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):891-6. doi: 10.1126/science.1243028. Epub 2014 Jan 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Philippstrasse 13 Haus 6, 10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24457213" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Animals ; Calbindins/analysis/metabolism ; Dendrites/physiology ; Dentate Gyrus/physiology ; Entorhinal Cortex/*cytology/metabolism/physiology ; Female ; Male ; *Nerve Net ; Pyramidal Cells/metabolism/*physiology/*ultrastructure ; Rats ; Rats, Wistar ; Staining and Labeling ; *Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-01-25
    Description: Plant cells are immobile; thus, plant growth and development depend on cell expansion rather than cell migration. The molecular mechanism by which the plasma membrane initiates changes in the cell expansion rate remains elusive. We found that a secreted peptide, RALF (rapid alkalinization factor), suppresses cell elongation of the primary root by activating the cell surface receptor FERONIA in Arabidopsis thaliana. A direct peptide-receptor interaction is supported by specific binding of RALF to FERONIA and reduced binding and insensitivity to RALF-induced growth inhibition in feronia mutants. Phosphoproteome measurements demonstrate that the RALF-FERONIA interaction causes phosphorylation of plasma membrane H(+)-adenosine triphosphatase 2 at Ser(899), mediating the inhibition of proton transport. The results reveal a molecular mechanism for RALF-induced extracellular alkalinization and a signaling pathway that regulates cell expansion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672726/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672726/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruta, Miyoshi -- Sabat, Grzegorz -- Stecker, Kelly -- Minkoff, Benjamin B -- Sussman, Michael R -- 5T32HG002760/HG/NHGRI NIH HHS/ -- U54 GM074901/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):408-11. doi: 10.1126/science.1244454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458638" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/metabolism ; Arabidopsis Proteins/*agonists/genetics/*metabolism ; *Cell Enlargement ; Cell Membrane/*enzymology ; Molecular Sequence Data ; Peptide Hormones/genetics/*metabolism ; Phosphorylation ; Phosphotransferases/genetics/metabolism ; Plant Cells/metabolism/physiology ; Plant Roots/cytology/metabolism ; Protein Binding ; Proteome/metabolism ; Proton-Translocating ATPases/*metabolism ; Serine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-08-16
    Description: The rules governing the formation of spatial maps in the hippocampus have not been determined. We investigated the large-scale structure of place field activity by recording hippocampal neurons in rats exploring a previously unencountered 48-meter-long track. Single-cell and population activities were well described by a two-parameter stochastic model. Individual neurons had their own characteristic propensity for forming fields randomly along the track, with some cells expressing many fields and many exhibiting few or none. Because of the particular distribution of propensities across cells, the number of neurons with fields scaled logarithmically with track length over a wide, ethological range. These features constrain hippocampal memory mechanisms, may allow efficient encoding of environments and experiences of vastly different extents and durations, and could reflect general principles of population coding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rich, P Dylan -- Liaw, Hua-Peng -- Lee, Albert K -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):814-7. doi: 10.1126/science.1255635. Epub 2014 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK. richp@janelia.hhmi.org leea@janelia.hhmi.org. ; Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. ; Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. richp@janelia.hhmi.org leea@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124440" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; CA1 Region, Hippocampal/cytology/*physiology ; Electrodes, Implanted ; Exploratory Behavior ; Male ; Maze Learning ; Memory/physiology ; Orientation ; Poisson Distribution ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-09-06
    Description: Lineage-specific stem cells are critical for the production and maintenance of specific cell types and tissues in multicellular organisms. In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). SPCH-driven asymmetric and self-renewing divisions allow flexibility in stomatal production and overall organ growth. How SPCH directs stomatal lineage cell behaviors, however, is unclear. Here, we improved the chromatin immunoprecipitation (ChIP) assay and profiled the genome-wide targets of Arabidopsis SPCH in vivo. We found that SPCH controls key regulators of cell fate and asymmetric cell divisions and modulates responsiveness to peptide and phytohormone-mediated intercellular communication. Our results delineate the molecular pathways that regulate an essential adult stem cell lineage in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lau, On Sun -- Davies, Kelli A -- Chang, Jessica -- Adrian, Jessika -- Rowe, Matthew H -- Ballenger, Catherine E -- Bergmann, Dominique C -- 1R01GM086632/GM/NIGMS NIH HHS/ -- 5T32GM007276/GM/NIGMS NIH HHS/ -- R01 GM086632/GM/NIGMS NIH HHS/ -- T32 GM007276/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1605-9. doi: 10.1126/science.1256888. Epub 2014 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. ; Department of Biology, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Carnegie Institution for Science, Stanford, CA 94305, USA. dbergmann@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190717" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology ; Arabidopsis/*cytology/genetics/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Binding Sites ; Cell Communication/drug effects/genetics ; Cell Differentiation/drug effects/*genetics ; Cell Division/drug effects/genetics ; Cell Lineage/drug effects/genetics ; Chromatin Immunoprecipitation ; *Gene Expression Regulation, Plant ; Genome, Plant/genetics ; Plant Growth Regulators/pharmacology/physiology ; Plant Stomata/*cytology/genetics/metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-02-08
    Description: The distance between Ca(2+) channels and release sensors determines the speed and efficacy of synaptic transmission. Tight "nanodomain" channel-sensor coupling initiates transmitter release at synapses in the mature brain, whereas loose "microdomain" coupling appears restricted to early developmental stages. To probe the coupling configuration at a plastic synapse in the mature central nervous system, we performed paired recordings between mossy fiber terminals and CA3 pyramidal neurons in rat hippocampus. Millimolar concentrations of both the fast Ca(2+) chelator BAPTA [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] and the slow chelator EGTA efficiently suppressed transmitter release, indicating loose coupling between Ca(2+) channels and release sensors. Loose coupling enabled the control of initial release probability by fast endogenous Ca(2+) buffers and the generation of facilitation by buffer saturation. Thus, loose coupling provides the molecular framework for presynaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyleta, Nicholas P -- Jonas, Peter -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):665-70. doi: 10.1126/science.1244811.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA3 Region, Hippocampal/metabolism/physiology ; Calcium Channels/*metabolism ; Chelating Agents/pharmacology ; Egtazic Acid/analogs & derivatives/pharmacology ; Hippocampus/drug effects/metabolism/*physiology ; Mossy Fibers, Hippocampal/drug effects/metabolism/physiology ; Neuronal Plasticity/drug effects/*physiology ; Rats ; Synapses/drug effects/metabolism/*physiology ; Synaptic Transmission/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-03-22
    Description: The 18-kilodalton translocator protein TSPO is found in mitochondrial membranes and mediates the import of cholesterol and porphyrins into mitochondria. In line with the role of TSPO in mitochondrial function, TSPO ligands are used for a variety of diagnostic and therapeutic applications in animals and humans. We present the three-dimensional high-resolution structure of mammalian TSPO reconstituted in detergent micelles in complex with its high-affinity ligand PK11195. The TSPO-PK11195 structure is described by a tight bundle of five transmembrane alpha helices that form a hydrophobic pocket accepting PK11195. Ligand-induced stabilization of the structure of TSPO suggests a molecular mechanism for the stimulation of cholesterol transport into mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaremko, Lukasz -- Jaremko, Mariusz -- Giller, Karin -- Becker, Stefan -- Zweckstetter, Markus -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysikalische Chemie, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653034" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Biological Transport ; Cholesterol/metabolism ; Hydrophobic and Hydrophilic Interactions ; Isoquinolines/*chemistry/metabolism ; Ligands ; Mice ; Micelles ; Mitochondria/metabolism ; Mitochondrial Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, GABA/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-06-14
    Description: The brain exhibits limited capacity for spontaneous restoration of lost motor functions after stroke. Rehabilitation is the prevailing clinical approach to augment functional recovery, but the scientific basis is poorly understood. Here, we show nearly full recovery of skilled forelimb functions in rats with large strokes when a growth-promoting immunotherapy against a neurite growth-inhibitory protein was applied to boost the sprouting of new fibers, before stabilizing the newly formed circuits by intensive training. In contrast, early high-intensity training during the growth phase destroyed the effect and led to aberrant fiber patterns. Pharmacogenetic experiments identified a subset of corticospinal fibers originating in the intact half of the forebrain, side-switching in the spinal cord to newly innervate the impaired limb and restore skilled motor function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wahl, A S -- Omlor, W -- Rubio, J C -- Chen, J L -- Zheng, H -- Schroter, A -- Gullo, M -- Weinmann, O -- Kobayashi, K -- Helmchen, F -- Ommer, B -- Schwab, M E -- New York, N.Y. -- Science. 2014 Jun 13;344(6189):1250-5. doi: 10.1126/science.1253050.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. Brain Research Institute, University of Zurich, Zurich, Switzerland. schwab@hifo.uzh.ch wahl@hifo.uzh.ch. ; Brain Research Institute, University of Zurich, Zurich, Switzerland. ; Computer Vision Group, Heidelberg Collaboratory for Image Processing and Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany. ; Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland. ; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. Brain Research Institute, University of Zurich, Zurich, Switzerland. ; National Institute for Physiological Sciences, National Institute of Natural Sciences Myodaiji, Okazaki, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24926013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Immunotherapy/methods ; Motor Cortex/*physiopathology ; Myelin Proteins/*antagonists & inhibitors ; Physical Conditioning, Animal ; Prosencephalon/physiopathology ; Pyramidal Tracts/*injuries/*physiology ; Rats ; Rats, Long-Evans ; *Recovery of Function ; Stroke/*rehabilitation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-08-12
    Description: AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Durr, Katharina L -- Gouaux, Eric -- F32 MH100331/MH/NIMH NIH HHS/ -- F32MH100331/MH/NIMH NIH HHS/ -- R01 NS038631/NS/NINDS NIH HHS/ -- R37 NS038631/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1021-6. doi: 10.1126/science.1258409. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. ; Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. gouauxe@ohsu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103405" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conotoxins/*chemistry ; Conus Snail ; Crystallography, X-Ray ; *Ion Channel Gating ; Ligands ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-05-09
    Description: Although neuronal spikes can be readily detected from extracellular recordings, synaptic and subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus, neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP recordings. Using high-density sampling of LFP and computational methods, we show that the spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking populations. Because our approach exploits the rhythmicity and sparse structure of neural activity, features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agarwal, Gautam -- Stevenson, Ian H -- Berenyi, Antal -- Mizuseki, Kenji -- Buzsaki, Gyorgy -- Sommer, Friedrich T -- 1F32MH093048/MH/NIMH NIH HHS/ -- 337075/European Research Council/International -- MH-54671/MH/NIMH NIH HHS/ -- NS-034994/NS/NINDS NIH HHS/ -- NS074015/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):626-30. doi: 10.1126/science.1250444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812401" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hippocampus/cytology/*physiology ; Maze Learning ; Neurons/physiology ; Periodicity ; Rats ; Running ; Spatio-Temporal Analysis ; Synaptic Potentials/*physiology ; Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Servick, Kelly -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1161-2. doi: 10.1126/science.346.6214.1161.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477435" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Non-Narcotic/adverse effects ; Anesthesia/*adverse effects ; Anesthetics, Dissociative/adverse effects ; Animals ; Apoptosis/drug effects ; Brain/*drug effects/*growth & development ; Caenorhabditis elegans ; Child ; Child, Preschool ; Dexmedetomidine/adverse effects ; Humans ; Infant ; Ketamine/adverse effects ; Models, Animal ; Neurons/*drug effects ; Rats ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors ; United States ; United States Food and Drug Administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-04-20
    Description: Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes; however, few have been identified that regulate immune cell differentiation and function. Here, we identified lnc-DC, which was exclusively expressed in human conventional dendritic cells (DCs). Knockdown of lnc-DC impaired DC differentiation from human monocytes in vitro and from mouse bone marrow cells in vivo and reduced capacity of DCs to stimulate T cell activation. lnc-DC mediated these effects by activating the transcription factor STAT3 (signal transducer and activator of transcription 3). lnc-DC bound directly to STAT3 in the cytoplasm, which promoted STAT3 phosphorylation on tyrosine-705 by preventing STAT3 binding to and dephosphorylation by SHP1. Our work identifies a lncRNA that regulates DC differentiation and also broadens the known mechanisms of lncRNA action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Pin -- Xue, Yiquan -- Han, Yanmei -- Lin, Li -- Wu, Cong -- Xu, Sheng -- Jiang, Zhengping -- Xu, Junfang -- Liu, Qiuyan -- Cao, Xuetao -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):310-3. doi: 10.1126/science.1251456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/cytology ; Cell Differentiation ; Chromatin/metabolism ; Cytoplasm/metabolism ; Dendritic Cells/*cytology/*immunology/physiology ; Epigenesis, Genetic ; Gene Expression Regulation ; Histones/metabolism ; Humans ; Lymphocyte Activation ; Mice ; Monocytes/cytology ; Nucleic Acid Conformation ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism ; RNA, Long Noncoding/*metabolism ; STAT3 Transcription Factor/*metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-03-15
    Description: Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macho, Alberto P -- Schwessinger, Benjamin -- Ntoukakis, Vardis -- Brutus, Alexandre -- Segonzac, Cecile -- Roy, Sonali -- Kadota, Yasuhiro -- Oh, Man-Ho -- Sklenar, Jan -- Derbyshire, Paul -- Lozano-Duran, Rosa -- Malinovsky, Frederikke Gro -- Monaghan, Jacqueline -- Menke, Frank L -- Huber, Steven C -- He, Sheng Yang -- Zipfel, Cyril -- BB/G024944/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01AI060761/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1509-12. doi: 10.1126/science.1248849. Epub 2014 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24625928" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/*microbiology ; Arabidopsis Proteins/agonists/*metabolism ; Bacterial Proteins/*metabolism ; Peptide Elongation Factor Tu/*metabolism ; Peptides/metabolism/pharmacology ; Phosphorylation ; Protein Tyrosine Phosphatases/*metabolism ; Pseudomonas syringae/enzymology/*pathogenicity ; Receptors, Pattern Recognition/agonists/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-09-23
    Description: The lateral habenula (LHb), a key regulator of monoaminergic brain regions, is activated by negatively valenced events. Its hyperactivity is associated with depression. Although enhanced excitatory input to the LHb has been linked to depression, little is known about inhibitory transmission. We discovered that gamma-aminobutyric acid (GABA) is co-released with its functional opponent, glutamate, from long-range basal ganglia inputs (which signal negative events) to limit LHb activity in rodents. At this synapse, the balance of GABA/glutamate signaling is shifted toward reduced GABA in a model of depression and increased GABA by antidepressant treatment. GABA and glutamate co-release therefore controls LHb activity, and regulation of this form of transmission may be important for determining the effect of negative life events on mood and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305433/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305433/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shabel, Steven J -- Proulx, Christophe D -- Piriz, Joaquin -- Malinow, Roberto -- NS047101/NS/NINDS NIH HHS/ -- R01 MH091119/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1494-8. doi: 10.1126/science.1250469. Epub 2014 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Circuits and Behavior, Department of Neuroscience and Section of Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA, USA. sshabel@gmail.com. ; Center for Neural Circuits and Behavior, Department of Neuroscience and Section of Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA, USA. ; Grupo de Neurociencia de Sistemas, Instituto de Fisiologia y Biofisica Houssay (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/*pharmacology ; Depression/*metabolism ; Entopeduncular Nucleus/drug effects/metabolism ; Glutamate Decarboxylase/metabolism ; Glutamic Acid/*metabolism ; Habenula/*drug effects/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/metabolism ; Rats ; Rats, Sprague-Dawley ; Rhodopsin/genetics ; Synaptic Transmission/drug effects/*physiology ; Vesicular Glutamate Transport Protein 2/metabolism ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1440-1. doi: 10.1126/science.342.6165.1440-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/administration & dosage ; Fusobacterium/physiology ; Gastrointestinal Tract/*microbiology ; *Health ; Humans ; Infant ; Infant Formula/chemistry ; Kidney/metabolism ; Kidney Calculi/chemically induced/etiology ; Klebsiella/drug effects/metabolism ; Malnutrition/microbiology ; Neoplasms/microbiology ; Rats ; Triazines/metabolism/toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...