ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (178)
  • Models, Biological  (178)
  • 2020-2024
  • 2010-2014  (178)
  • 1985-1989
  • 1950-1954
  • 1945-1949
  • 2013  (61)
  • 2010  (117)
  • Chemistry and Pharmacology  (178)
Collection
  • Articles  (178)
Years
  • 2020-2024
  • 2010-2014  (178)
  • 1985-1989
  • 1950-1954
  • 1945-1949
Year
Topic
  • 1
    Publication Date: 2013-11-23
    Description: Cancer is a disease in which cells accumulate genetic aberrations that are believed to confer a clonal advantage over cells in the surrounding tissue. However, the quantitative benefit of frequently occurring mutations during tumor development remains unknown. We quantified the competitive advantage of Apc loss, Kras activation, and P53 mutations in the mouse intestine. Our findings indicate that the fate conferred by these mutations is not deterministic, and many mutated stem cells are replaced by wild-type stem cells after biased, but still stochastic events. Furthermore, P53 mutations display a condition-dependent advantage, and especially in colitis-affected intestines, clones harboring mutations in this gene are favored. Our work confirms the previously theoretical notion that the tissue architecture of the intestine suppresses the accumulation of mutated lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vermeulen, Louis -- Morrissey, Edward -- van der Heijden, Maartje -- Nicholson, Anna M -- Sottoriva, Andrea -- Buczacki, Simon -- Kemp, Richard -- Tavare, Simon -- Winton, Douglas J -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):995-8. doi: 10.1126/science.1243148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264992" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/genetics ; Animals ; Cell Transformation, Neoplastic/*genetics/*pathology ; *Gene Expression Regulation, Neoplastic ; Intestinal Neoplasms/*genetics/*pathology ; Mice ; Mice, Mutant Strains ; Models, Biological ; Mutation ; Neoplastic Stem Cells/metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/genetics ; Transcriptional Activation ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-27
    Description: Color patterns of bird plumage affect animal behavior and speciation. Diverse patterns are present in different species and within the individual. Here, we study the cellular and molecular basis of feather pigment pattern formation. Melanocyte progenitors are distributed as a horizontal ring in the proximal follicle, sending melanocytes vertically up into the epithelial cylinder, which gradually emerges as feathers grow. Different pigment patterns form by modulating the presence, arrangement, or differentiation of melanocytes. A layer of peripheral pulp further regulates pigmentation via patterned agouti expression. Lifetime feather cyclic regeneration resets pigment patterns for physiological needs. Thus, the evolution of stem cell niche topology allows complex pigment patterning through combinatorial co-option of simple regulatory mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, S J -- Foley, J -- Jiang, T X -- Yeh, C Y -- Wu, P -- Foley, A -- Yen, C M -- Huang, Y C -- Cheng, H C -- Chen, C F -- Reeder, B -- Jee, S H -- Widelitz, R B -- Chuong, C M -- AR060306/AR/NIAMS NIH HHS/ -- AR42177/AR/NIAMS NIH HHS/ -- AR47364/AR/NIAMS NIH HHS/ -- R01 AR042177/AR/NIAMS NIH HHS/ -- R01 AR047364/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1442-5. doi: 10.1126/science.1230374. Epub 2013 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23618762" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti Signaling Protein/metabolism ; Animals ; Birds/*anatomy & histology/physiology ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Chickens/anatomy & histology/physiology ; Columbidae/anatomy & histology/physiology ; Feathers/*cytology/growth & development ; Female ; Galliformes/anatomy & histology/physiology ; Male ; Melanocytes/*cytology/physiology ; Models, Biological ; *Pigmentation ; Regeneration ; *Stem Cell Niche ; Stem Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-03
    Description: Insects often undergo regular outbreaks in population density but identifying the causal mechanism for such outbreaks in any particular species has proven difficult. Here, we show that outbreak cycles in the tea tortrix Adoxophyes honmai can be explained by temperature-driven changes in system stability. Wavelet analysis of a 51-year time series spanning more than 200 outbreaks reveals a threshold in outbreak amplitude each spring when temperature exceeds 15 degrees C and a secession of outbreaks each fall as temperature decreases. This is in close agreement with our independently parameterized mathematical model that predicts the system crosses a Hopf bifurcation from stability to sustained cycles as temperature increases. These results suggest that temperature can alter system stability and provide an explanation for generation cycles in multivoltine insects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, William A -- Bjornstad, Ottar N -- Yamanaka, Takehiko -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):796-9. doi: 10.1126/science.1238477. Epub 2013 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Queen's University, Kingston, Ontario, Canada. nelsonw@queensu.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23907532" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Life Cycle Stages ; Models, Biological ; Moths/growth & development/*physiology ; Population Density ; Population Dynamics ; *Seasons ; *Temperature ; Wavelet Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-08
    Description: Genome-scale network reconstruction has enabled predictive modeling of metabolism for many systems. Traditionally, protein structural information has not been represented in such reconstructions. Expansion of a genome-scale model of Escherichia coli metabolism by including experimental and predicted protein structures enabled the analysis of protein thermostability in a network context. This analysis allowed the prediction of protein activities that limit network function at superoptimal temperatures and mechanistic interpretations of mutations found in strains adapted to heat. Predicted growth-limiting factors for thermotolerance were validated through nutrient supplementation experiments and defined metabolic sensitivities to heat stress, providing evidence that metabolic enzyme thermostability is rate-limiting at superoptimal temperatures. Inclusion of structural information expanded the content and predictive capability of genome-scale metabolic networks that enable structural systems biology of metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Roger L -- Andrews, Kathleen -- Kim, Donghyuk -- Li, Zhanwen -- Godzik, Adam -- Palsson, Bernhard O -- R01 GM057089/GM/NIGMS NIH HHS/ -- R01 GM101457/GM/NIGMS NIH HHS/ -- R01GM101457/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54GM094586/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1220-3. doi: 10.1126/science.1234012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093-0412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744946" target="_blank"〉PubMed〈/a〉
    Keywords: Escherichia coli/*genetics/growth & development/*metabolism ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; *Hot Temperature ; *Metabolic Networks and Pathways ; Models, Biological ; Protein Conformation ; Systems Biology ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-09
    Description: Mutations in IDH1 and IDH2, the genes coding for isocitrate dehydrogenases 1 and 2, are common in several human cancers, including leukemias, and result in overproduction of the (R)-enantiomer of 2-hydroxyglutarate [(R)-2HG]. Elucidation of the role of IDH mutations and (R)-2HG in leukemogenesis has been hampered by a lack of appropriate cell-based models. Here, we show that a canonical IDH1 mutant, IDH1 R132H, promotes cytokine independence and blocks differentiation in hematopoietic cells. These effects can be recapitulated by (R)-2HG, but not (S)-2HG, despite the fact that (S)-2HG more potently inhibits enzymes, such as the 5'-methylcytosine hydroxylase TET2, that have previously been linked to the pathogenesis of IDH mutant tumors. We provide evidence that this paradox relates to the ability of (S)-2HG, but not (R)-2HG, to inhibit the EglN prolyl hydroxylases. Additionally, we show that transformation by (R)-2HG is reversible.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836459/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836459/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Losman, Julie-Aurore -- Looper, Ryan E -- Koivunen, Peppi -- Lee, Sungwoo -- Schneider, Rebekka K -- McMahon, Christine -- Cowley, Glenn S -- Root, David E -- Ebert, Benjamin L -- Kaelin, William G Jr -- P30 DK049216/DK/NIDDK NIH HHS/ -- R01 CA068490/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1621-5. doi: 10.1126/science.1231677. Epub 2013 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393090" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/*metabolism ; Glutarates/*metabolism ; *Hematopoiesis ; Humans ; Isocitrate Dehydrogenase/genetics/*metabolism ; Leukemia/*enzymology/genetics ; Models, Biological ; Procollagen-Proline Dioxygenase/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-23
    Description: Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shnyrova, Anna V -- Bashkirov, Pavel V -- Akimov, Sergey A -- Pucadyil, Thomas J -- Zimmerberg, Joshua -- Schmid, Sandra L -- Frolov, Vadim A -- GM42455/GM/NIGMS NIH HHS/ -- R01 GM042455/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1433-6. doi: 10.1126/science.1233920.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520112" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Dynamin I/*chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Lipid Bilayers/chemistry/*metabolism ; Models, Biological ; Nanotubes ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-06-08
    Description: Colonial breeding is widespread among animals. Some, such as eusocial insects, may use agonistic behavior to partition available foraging habitat into mutually exclusive territories; others, such as breeding seabirds, do not. We found that northern gannets, satellite-tracked from 12 neighboring colonies, nonetheless forage in largely mutually exclusive areas and that these colony-specific home ranges are determined by density-dependent competition. This segregation may be enhanced by individual-level public information transfer, leading to cultural evolution and divergence among colonies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wakefield, Ewan D -- Bodey, Thomas W -- Bearhop, Stuart -- Blackburn, Jez -- Colhoun, Kendrew -- Davies, Rachel -- Dwyer, Ross G -- Green, Jonathan A -- Gremillet, David -- Jackson, Andrew L -- Jessopp, Mark J -- Kane, Adam -- Langston, Rowena H W -- Lescroel, Amelie -- Murray, Stuart -- Le Nuz, Melanie -- Patrick, Samantha C -- Peron, Clara -- Soanes, Louise M -- Wanless, Sarah -- Votier, Stephen C -- Hamer, Keith C -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):68-70. doi: 10.1126/science.1236077. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biology, University of Leeds, Leeds, UK. e.d.wakefield@leeds.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*physiology ; Breeding ; *Feeding Behavior ; *Homing Behavior ; Models, Biological ; *Territoriality
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-01-12
    Description: The relationship between phenotype and fitness can be visualized as a rugged landscape. Multiple fitness peaks on this landscape are predicted to drive early bursts of niche diversification during adaptive radiation. We measured the adaptive landscape in a nascent adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas, and found multiple coexisting high-fitness regions driven by increased competition at high densities, supporting the early burst model. Hybrids resembling the generalist phenotype were isolated on a local fitness peak separated by a valley from a higher-fitness region corresponding to trophic specialization. This complex landscape could explain both the rarity of specialists across many similar environments due to stabilizing selection on generalists and the rapid morphological diversification rate of specialists due to their higher fitness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, Christopher H -- Wainwright, Peter C -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):208-11. doi: 10.1126/science.1227710.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolution and Ecology and Center for Population Biology, University of California, One Shields Avenue, Davis, CA, USA. chmartin@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307743" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animals ; Bahamas ; *Biological Evolution ; Crosses, Genetic ; Ecosystem ; Environment ; Female ; *Genetic Fitness ; Genetic Speciation ; Hybridization, Genetic ; Killifishes/*genetics/*physiology ; Lakes ; Male ; Models, Biological ; Phenotype ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-16
    Description: Experimental studies of evolution have increased greatly in number in recent years, stimulated by the growing power of genomic tools. However, organismal fitness remains the ultimate metric for interpreting these experiments, and the dynamics of fitness remain poorly understood over long time scales. Here, we examine fitness trajectories for 12 Escherichia coli populations during 50,000 generations. Mean fitness appears to increase without bound, consistent with a power law. We also derive this power-law relation theoretically by incorporating clonal interference and diminishing-returns epistasis into a dynamical model of changes in mean fitness over time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wiser, Michael J -- Ribeck, Noah -- Lenski, Richard E -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1364-7. doi: 10.1126/science.1243357. Epub 2013 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24231808" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Escherichia coli/*genetics/*physiology ; *Genetic Fitness ; Models, Biological ; *Reproduction, Asexual
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-26
    Description: Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746486/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746486/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hao, Nan -- Budnik, Bogdan A -- Gunawardena, Jeremy -- O'Shea, Erin K -- R01 GM081578/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):460-4. doi: 10.1126/science.1227299.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349292" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Nucleus/*metabolism ; Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/genetics/metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/*metabolism ; Models, Biological ; Nuclear Export Signals ; Nuclear Localization Signals ; Osmotic Pressure ; Oxidative Stress ; Phosphorylation ; Proteins/pharmacology ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Signal Transduction ; Stress, Physiological ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, Richard -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):230-3. doi: 10.1126/science.341.6143.230.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Armadillos ; *Extinction, Biological ; Marine Biology ; Marsupialia ; Models, Biological ; Panama ; *Phylogeography ; Porcupines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-19
    Description: The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species--less diverse than the North American tree flora--accounts for half of the world's most diverse tree community.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉ter Steege, Hans -- Pitman, Nigel C A -- Sabatier, Daniel -- Baraloto, Christopher -- Salomao, Rafael P -- Guevara, Juan Ernesto -- Phillips, Oliver L -- Castilho, Carolina V -- Magnusson, William E -- Molino, Jean-Francois -- Monteagudo, Abel -- Nunez Vargas, Percy -- Montero, Juan Carlos -- Feldpausch, Ted R -- Coronado, Euridice N Honorio -- Killeen, Tim J -- Mostacedo, Bonifacio -- Vasquez, Rodolfo -- Assis, Rafael L -- Terborgh, John -- Wittmann, Florian -- Andrade, Ana -- Laurance, William F -- Laurance, Susan G W -- Marimon, Beatriz S -- Marimon, Ben-Hur Jr -- Guimaraes Vieira, Ima Celia -- Amaral, Ieda Leao -- Brienen, Roel -- Castellanos, Hernan -- Cardenas Lopez, Dairon -- Duivenvoorden, Joost F -- Mogollon, Hugo F -- Matos, Francisca Dionizia de Almeida -- Davila, Nallarett -- Garcia-Villacorta, Roosevelt -- Stevenson Diaz, Pablo Roberto -- Costa, Flavia -- Emilio, Thaise -- Levis, Carolina -- Schietti, Juliana -- Souza, Priscila -- Alonso, Alfonso -- Dallmeier, Francisco -- Montoya, Alvaro Javier Duque -- Fernandez Piedade, Maria Teresa -- Araujo-Murakami, Alejandro -- Arroyo, Luzmila -- Gribel, Rogerio -- Fine, Paul V A -- Peres, Carlos A -- Toledo, Marisol -- Aymard C, Gerardo A -- Baker, Tim R -- Ceron, Carlos -- Engel, Julien -- Henkel, Terry W -- Maas, Paul -- Petronelli, Pascal -- Stropp, Juliana -- Zartman, Charles Eugene -- Daly, Doug -- Neill, David -- Silveira, Marcos -- Paredes, Marcos Rios -- Chave, Jerome -- Lima Filho, Diogenes de Andrade -- Jorgensen, Peter Moller -- Fuentes, Alfredo -- Schongart, Jochen -- Cornejo Valverde, Fernando -- Di Fiore, Anthony -- Jimenez, Eliana M -- Penuela Mora, Maria Cristina -- Phillips, Juan Fernando -- Rivas, Gonzalo -- van Andel, Tinde R -- von Hildebrand, Patricio -- Hoffman, Bruce -- Zent, Eglee L -- Malhi, Yadvinder -- Prieto, Adriana -- Rudas, Agustin -- Ruschell, Ademir R -- Silva, Natalino -- Vos, Vincent -- Zent, Stanford -- Oliveira, Alexandre A -- Schutz, Angela Cano -- Gonzales, Therany -- Trindade Nascimento, Marcelo -- Ramirez-Angulo, Hirma -- Sierra, Rodrigo -- Tirado, Milton -- Umana Medina, Maria Natalia -- van der Heijden, Geertje -- Vela, Cesar I A -- Vilanova Torre, Emilio -- Vriesendorp, Corine -- Wang, Ophelia -- Young, Kenneth R -- Baider, Claudia -- Balslev, Henrik -- Ferreira, Cid -- Mesones, Italo -- Torres-Lezama, Armando -- Urrego Giraldo, Ligia Estela -- Zagt, Roderick -- Alexiades, Miguel N -- Hernandez, Lionel -- Huamantupa-Chuquimaco, Isau -- Milliken, William -- Palacios Cuenca, Walter -- Pauletto, Daniela -- Valderrama Sandoval, Elvis -- Valenzuela Gamarra, Luis -- Dexter, Kyle G -- Feeley, Ken -- Lopez-Gonzalez, Gabriela -- Silman, Miles R -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):1243092. doi: 10.1126/science.1243092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Naturalis Biodiversity Center, Leiden, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136971" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Models, Biological ; Population ; *Rivers ; South America ; Trees/*classification/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Min -- Schekman, Randy -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):559-61. doi: 10.1126/science.1234740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641104" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; Carrier Proteins/metabolism ; Cell Membrane/metabolism/*secretion ; Exosomes/metabolism ; Lysosomes/metabolism ; Membrane Fusion ; Membrane Proteins/metabolism ; Membrane Transport Proteins/metabolism ; Models, Biological ; Phagosomes/metabolism ; Proteins/*metabolism/*secretion ; *Secretory Pathway ; Secretory Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-06-07
    Description: G-protein-gated inward rectifier K(+) (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5 A resolution crystal structure of the mammalian GIRK2 channel in complex with betagamma G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K(+) channel activity. Short-range atomic and long-range electrostatic interactions stabilize four betagamma G-protein subunits at the interfaces between four K(+) channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation that is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with 'membrane delimited' activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) and intracellular Na(+) ions participate in multi-ligand regulation of GIRK channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whorton, Matthew R -- MacKinnon, Roderick -- 1S10RR022321-01/RR/NCRR NIH HHS/ -- 1S10RR027037-01/RR/NCRR NIH HHS/ -- S10 RR027037/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 13;498(7453):190-7. doi: 10.1038/nature12241. Epub 2013 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739333" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; G Protein-Coupled Inwardly-Rectifying Potassium ; Channels/*chemistry/genetics/metabolism ; Heterotrimeric GTP-Binding Proteins/*chemistry/genetics/metabolism ; Humans ; Ion Channel Gating ; Models, Biological ; Models, Molecular ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Subunits/chemistry/metabolism ; Sodium/metabolism ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-10-15
    Description: The mechanisms by which genetic variation affects transcription regulation and phenotypes at the nucleotide level are incompletely understood. Here we use natural genetic variation as an in vivo mutagenesis screen to assess the genome-wide effects of sequence variation on lineage-determining and signal-specific transcription factor binding, epigenomics and transcriptional outcomes in primary macrophages from different mouse strains. We find substantial genetic evidence to support the concept that lineage-determining transcription factors define epigenetic and transcriptomic states by selecting enhancer-like regions in the genome in a collaborative fashion and facilitating binding of signal-dependent factors. This hierarchical model of transcription factor function suggests that limited sets of genomic data for lineage-determining transcription factors and informative histone modifications can be used for the prioritization of disease-associated regulatory variants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heinz, S -- Romanoski, C E -- Benner, C -- Allison, K A -- Kaikkonen, M U -- Orozco, L D -- Glass, C K -- 5T32DK007494/DK/NIDDK NIH HHS/ -- CA17390/CA/NCI NIH HHS/ -- DK063491/DK/NIDDK NIH HHS/ -- DK091183/DK/NIDDK NIH HHS/ -- P01 DK074868/DK/NIDDK NIH HHS/ -- P30 CA023100/CA/NCI NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- R01 CA173903/CA/NCI NIH HHS/ -- R01 DK091183/DK/NIDDK NIH HHS/ -- T32 AR059033/AR/NIAMS NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):487-92. doi: 10.1038/nature12615. Epub 2013 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, Mail Code 0651, La Jolla, California 92093, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24121437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs/genetics ; Animals ; Base Sequence ; Cell Lineage/genetics ; DNA-Binding Proteins/metabolism ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation/*genetics ; Genetic Variation/*genetics ; Histones/chemistry/metabolism ; Macrophages/metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Models, Biological ; Mutation/genetics ; NF-kappa B/metabolism ; Protein Binding ; Reproducibility of Results ; Selection, Genetic/*genetics ; Transcription Factor RelA/metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-07-23
    Description: Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flot, Jean-Francois -- Hespeels, Boris -- Li, Xiang -- Noel, Benjamin -- Arkhipova, Irina -- Danchin, Etienne G J -- Hejnol, Andreas -- Henrissat, Bernard -- Koszul, Romain -- Aury, Jean-Marc -- Barbe, Valerie -- Barthelemy, Roxane-Marie -- Bast, Jens -- Bazykin, Georgii A -- Chabrol, Olivier -- Couloux, Arnaud -- Da Rocha, Martine -- Da Silva, Corinne -- Gladyshev, Eugene -- Gouret, Philippe -- Hallatschek, Oskar -- Hecox-Lea, Bette -- Labadie, Karine -- Lejeune, Benjamin -- Piskurek, Oliver -- Poulain, Julie -- Rodriguez, Fernando -- Ryan, Joseph F -- Vakhrusheva, Olga A -- Wajnberg, Eric -- Wirth, Benedicte -- Yushenova, Irina -- Kellis, Manolis -- Kondrashov, Alexey S -- Mark Welch, David B -- Pontarotti, Pierre -- Weissenbach, Jean -- Wincker, Patrick -- Jaillon, Olivier -- Van Doninck, Karine -- England -- Nature. 2013 Aug 22;500(7463):453-7. doi: 10.1038/nature12326. Epub 2013 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Namur, Department of Biology, URBE, Laboratory of Evolutionary Genetics and Ecology, 5000 Namur, Belgium. jean-francois.flot@ds.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23873043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Gene Conversion/*genetics ; Gene Transfer, Horizontal/genetics ; Genome/*genetics ; Genomics ; Meiosis/genetics ; Models, Biological ; Reproduction, Asexual/*genetics ; Rotifera/*genetics ; Tetraploidy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-11-08
    Description: In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a dynamic machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, after the discovery of self-splicing group II intron RNAs, the snRNAs were proposed to catalyse splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported so far. By using metal rescue strategies in spliceosomes from budding yeast, here we show that the U6 snRNA catalyses both of the two splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Notably, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms and probably common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fica, Sebastian M -- Tuttle, Nicole -- Novak, Thaddeus -- Li, Nan-Sheng -- Lu, Jun -- Koodathingal, Prakash -- Dai, Qing -- Staley, Jonathan P -- Piccirilli, Joseph A -- 5T32GM008720/GM/NIGMS NIH HHS/ -- R01 GM088656/GM/NIGMS NIH HHS/ -- R01GM088656/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):229-34. doi: 10.1038/nature12734. Epub 2013 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Graduate Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [2] Department of Molecular Genetics and Cell Biology, Cummings Life Sciences Center, 920 East 58th Street, The University of Chicago, Chicago, Illinois 60637, USA [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24196718" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Cell Nucleus/metabolism ; Introns/genetics ; Metals/metabolism ; Models, Biological ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Fungal/metabolism ; RNA, Small Nuclear/*metabolism ; Saccharomyces cerevisiae/*genetics/*metabolism ; Spliceosomes/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-04-26
    Description: Cell-surface-receptor binding by influenza viruses is a key determinant of their transmissibility, both from avian and animal species to humans as well as from human to human. Highly pathogenic avian H5N1 viruses that are a threat to public health have been observed to acquire affinity for human receptors, and transmissible-mutant-selection experiments have identified a virus that is transmissible in ferrets, the generally accepted experimental model for influenza in humans. Here, our quantitative biophysical measurements of the receptor-binding properties of haemagglutinin (HA) from the transmissible mutant indicate a small increase in affinity for human receptor and a marked decrease in affinity for avian receptor. From analysis of virus and HA binding data we have derived an algorithm that predicts virus avidity from the affinity of individual HA-receptor interactions. It reveals that the transmissible-mutant virus has a 200-fold preference for binding human over avian receptors. The crystal structure of the transmissible-mutant HA in complex with receptor analogues shows that it has acquired the ability to bind human receptor in the same folded-back conformation as seen for HA from the 1918, 1957 (ref. 4), 1968 (ref. 5) and 2009 (ref. 6) pandemic viruses. This binding mode is substantially different from that by which non-transmissible wild-type H5 virus HA binds human receptor. The structure of the complex also explains how the change in preference from avian to human receptors arises from the Gln226Leu substitution, which facilitates binding to human receptor but restricts binding to avian receptor. Both features probably contribute to the acquisition of transmissibility by this mutant virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiong, Xiaoli -- Coombs, Peter J -- Martin, Stephen R -- Liu, Junfeng -- Xiao, Haixia -- McCauley, John W -- Locher, Kathrin -- Walker, Philip A -- Collins, Patrick J -- Kawaoka, Yoshihiro -- Skehel, John J -- Gamblin, Steven J -- BB/E010806/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_U117512723/Medical Research Council/United Kingdom -- MC_U117584222/Medical Research Council/United Kingdom -- U117512723/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117584222/Medical Research Council/United Kingdom -- England -- Nature. 2013 May 16;497(7449):392-6. doi: 10.1038/nature12144. Epub 2013 Apr 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23615615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/metabolism/virology ; Chick Embryo ; Crystallography, X-Ray ; Ferrets/*virology ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/genetics/*metabolism ; *Host Specificity ; Humans ; Influenza A Virus, H5N1 Subtype/chemistry/*genetics/*metabolism/pathogenicity ; Models, Biological ; Models, Molecular ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Protein Conformation ; Receptors, Virus/*metabolism ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-06-01
    Description: Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory cytokines. Recognition of cytosolic DNA by the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of cGAMP to activate the stimulator of interferon genes (STING). Here we report the crystal structure of cGAS alone and in complex with DNA, ATP and GTP along with functional studies. Our results explain the broad DNA sensing specificity of cGAS, show how cGAS catalyses dinucleotide formation and indicate activation by a DNA-induced structural switch. cGAS possesses a remarkable structural similarity to the antiviral cytosolic double-stranded RNA sensor 2'-5'oligoadenylate synthase (OAS1), but contains a unique zinc thumb that recognizes B-form double-stranded DNA. Our results mechanistically unify dsRNA and dsDNA innate immune sensing by OAS1 and cGAS nucleotidyl transferases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Civril, Filiz -- Deimling, Tobias -- de Oliveira Mann, Carina C -- Ablasser, Andrea -- Moldt, Manuela -- Witte, Gregor -- Hornung, Veit -- Hopfner, Karl-Peter -- 243046/European Research Council/International -- U19 AI083025/AI/NIAID NIH HHS/ -- U19AI083025/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):332-7. doi: 10.1038/nature12305. Epub 2013 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23722159" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/chemistry/metabolism ; Animals ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; *Cytosol ; DNA/chemistry/*metabolism/pharmacology ; Guanosine Triphosphate/chemistry/metabolism ; HEK293 Cells ; Humans ; Membrane Proteins/genetics/metabolism ; Mice ; Models, Biological ; Models, Molecular ; Mutation ; Nucleotidyltransferases/*chemistry/genetics/metabolism ; Protein Conformation/drug effects ; Structure-Activity Relationship ; Substrate Specificity ; Swine ; Uridine Triphosphate/chemistry/metabolism ; Zinc/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-05-31
    Description: Human language, as well as birdsong, relies on the ability to arrange vocal elements in new sequences. However, little is known about the ontogenetic origin of this capacity. Here we track the development of vocal combinatorial capacity in three species of vocal learners, combining an experimental approach in zebra finches (Taeniopygia guttata) with an analysis of natural development of vocal transitions in Bengalese finches (Lonchura striata domestica) and pre-lingual human infants. We find a common, stepwise pattern of acquiring vocal transitions across species. In our first study, juvenile zebra finches were trained to perform one song and then the training target was altered, prompting the birds to swap syllable order, or insert a new syllable into a string. All birds solved these permutation tasks in a series of steps, gradually approximating the target sequence by acquiring new pairwise syllable transitions, sometimes too slowly to accomplish the task fully. Similarly, in the more complex songs of Bengalese finches, branching points and bidirectional transitions in song syntax were acquired in a stepwise fashion, starting from a more restrictive set of vocal transitions. The babbling of pre-lingual human infants showed a similar pattern: instead of a single developmental shift from reduplicated to variegated babbling (that is, from repetitive to diverse sequences), we observed multiple shifts, where each new syllable type slowly acquired a diversity of pairwise transitions, asynchronously over development. Collectively, these results point to a common generative process that is conserved across species, suggesting that the long-noted gap between perceptual versus motor combinatorial capabilities in human infants may arise partly from the challenges in constructing new pairwise vocal transitions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lipkind, Dina -- Marcus, Gary F -- Bemis, Douglas K -- Sasahara, Kazutoshi -- Jacoby, Nori -- Takahasi, Miki -- Suzuki, Kenta -- Feher, Olga -- Ravbar, Primoz -- Okanoya, Kazuo -- Tchernichovski, Ofer -- R01 DC004722/DC/NIDCD NIH HHS/ -- England -- Nature. 2013 Jun 6;498(7452):104-8. doi: 10.1038/nature12173. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA. dina.lipkind@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Child Language ; Finches/*physiology ; Humans ; Infant ; Male ; Models, Biological ; Phonetics ; Speech/physiology ; Time Factors ; Vocalization, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2013 Nov 7;503(7474):6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24218658" target="_blank"〉PubMed〈/a〉
    Keywords: Electric Stimulation ; Humans ; Hydrodynamics ; *Mass Behavior ; *Microspheres ; Models, Biological ; Plastics ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-07-05
    Description: We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galagan, James E -- Minch, Kyle -- Peterson, Matthew -- Lyubetskaya, Anna -- Azizi, Elham -- Sweet, Linsday -- Gomes, Antonio -- Rustad, Tige -- Dolganov, Gregory -- Glotova, Irina -- Abeel, Thomas -- Mahwinney, Chris -- Kennedy, Adam D -- Allard, Rene -- Brabant, William -- Krueger, Andrew -- Jaini, Suma -- Honda, Brent -- Yu, Wen-Han -- Hickey, Mark J -- Zucker, Jeremy -- Garay, Christopher -- Weiner, Brian -- Sisk, Peter -- Stolte, Christian -- Winkler, Jessica K -- Van de Peer, Yves -- Iazzetti, Paul -- Camacho, Diogo -- Dreyfuss, Jonathan -- Liu, Yang -- Dorhoi, Anca -- Mollenkopf, Hans-Joachim -- Drogaris, Paul -- Lamontagne, Julie -- Zhou, Yiyong -- Piquenot, Julie -- Park, Sang Tae -- Raman, Sahadevan -- Kaufmann, Stefan H E -- Mohney, Robert P -- Chelsky, Daniel -- Moody, D Branch -- Sherman, David R -- Schoolnik, Gary K -- HHSN272200800059C/AI/NIAID NIH HHS/ -- HHSN272200800059C/PHS HHS/ -- R01 AI 071155/AI/NIAID NIH HHS/ -- R01 AI071155/AI/NIAID NIH HHS/ -- U19 AI 076217/AI/NIAID NIH HHS/ -- U19 AI076217/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jul 11;499(7457):178-83. doi: 10.1038/nature12337. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA. jgalag@bu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823726" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Anoxia/*genetics/metabolism ; Bacterial Proteins/genetics/metabolism ; Binding Sites ; Chromatin Immunoprecipitation ; Gene Expression Profiling ; *Gene Regulatory Networks/genetics ; Genomics ; Lipid Metabolism/genetics ; Metabolic Networks and Pathways/*genetics ; Models, Biological ; Mycobacterium tuberculosis/drug effects/*genetics/*metabolism/physiology ; Oxygen/pharmacology ; Proteolysis ; RNA, Messenger/genetics/metabolism ; Reproducibility of Results ; Sequence Analysis, DNA ; Transcription Factors/genetics/metabolism ; Tuberculosis/metabolism/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-12-18
    Description: Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCF(D3) ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCF(D3) ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Liang -- Liu, Xue -- Xiong, Guosheng -- Liu, Huihui -- Chen, Fulu -- Wang, Lei -- Meng, Xiangbing -- Liu, Guifu -- Yu, Hong -- Yuan, Yundong -- Yi, Wei -- Zhao, Lihua -- Ma, Honglei -- He, Yuanzheng -- Wu, Zhongshan -- Melcher, Karsten -- Qian, Qian -- Xu, H Eric -- Wang, Yonghong -- Li, Jiayang -- England -- Nature. 2013 Dec 19;504(7480):401-5. doi: 10.1038/nature12870. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2]. ; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, Michigan 49503, USA. ; State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China. ; 1] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China [2] Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, Michigan 49503, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336200" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Gene Expression Regulation, Plant ; Lactones/*antagonists & inhibitors/*metabolism ; Models, Biological ; Multiprotein Complexes/chemistry/metabolism ; Mutation/genetics ; Oryza/genetics/*metabolism ; Plant Growth Regulators/antagonists & inhibitors/*metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Proteolysis ; *Signal Transduction ; Ubiquitin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-04-09
    Description: In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimozono, Satoshi -- Iimura, Tadahiro -- Kitaguchi, Tetsuya -- Higashijima, Shin-Ichi -- Miyawaki, Atsushi -- England -- Nature. 2013 Apr 18;496(7445):363-6. doi: 10.1038/nature12037. Epub 2013 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23563268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Body Patterning/physiology ; Embryo, Nonmammalian/embryology/metabolism ; Embryonic Development/*physiology ; Fibroblast Growth Factors/genetics/metabolism ; Fluorescence Resonance Energy Transfer ; Gastrula/embryology/metabolism ; HeLa Cells ; Humans ; Models, Biological ; Molecular Probes/analysis/genetics/metabolism ; Molecular Sequence Data ; Rhombencephalon/embryology/metabolism ; Somites/embryology/metabolism ; Substrate Specificity ; Tretinoin/analysis/*metabolism ; Zebrafish/*embryology/*metabolism ; Zebrafish Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-04-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boehm, Thomas -- England -- Nature. 2013 Apr 18;496(7445):304-5. doi: 10.1038/496304a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23598335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Genetic Variation ; Genome/*genetics ; *Heredity ; Ligands ; Major Histocompatibility Complex/genetics/immunology ; Mice ; Models, Biological ; Peptides/chemistry/genetics/urine ; Proteins/analysis/chemistry/genetics ; Proteolysis ; Sensory Receptor Cells/metabolism ; Smell/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-10-11
    Description: Cyanobacteria are photosynthetic organisms responsible for approximately 25% of organic carbon fixation on the Earth. These bacteria began to convert solar energy and carbon dioxide into bioenergy and oxygen more than two billion years ago. Cyanophages, which infect these bacteria, have an important role in regulating the marine ecosystem by controlling cyanobacteria community organization and mediating lateral gene transfer. Here we visualize the maturation process of cyanophage Syn5 inside its host cell, Synechococcus, using Zernike phase contrast electron cryo-tomography (cryoET). This imaging modality yields dramatic enhancement of image contrast over conventional cryoET and thus facilitates the direct identification of subcellular components, including thylakoid membranes, carboxysomes and polyribosomes, as well as phages, inside the congested cytosol of the infected cell. By correlating the structural features and relative abundance of viral progeny within cells at different stages of infection, we identify distinct Syn5 assembly intermediates. Our results indicate that the procapsid releases scaffolding proteins and expands its volume at an early stage of genome packaging. Later in the assembly process, we detected full particles with a tail either with or without an additional horn. The morphogenetic pathway we describe here is highly conserved and was probably established long before that of double-stranded DNA viruses infecting more complex organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dai, Wei -- Fu, Caroline -- Raytcheva, Desislava -- Flanagan, John -- Khant, Htet A -- Liu, Xiangan -- Rochat, Ryan H -- Haase-Pettingell, Cameron -- Piret, Jacqueline -- Ludtke, Steve J -- Nagayama, Kuniaki -- Schmid, Michael F -- King, Jonathan A -- Chiu, Wah -- AI0175208/AI/NIAID NIH HHS/ -- GM080139/GM/NIGMS NIH HHS/ -- P41 GM103832/GM/NIGMS NIH HHS/ -- P41GM123832/GM/NIGMS NIH HHS/ -- PN2 EY016525/EY/NEI NIH HHS/ -- PN2EY016525/EY/NEI NIH HHS/ -- R01 GM080139/GM/NIGMS NIH HHS/ -- R56 AI075208/AI/NIAID NIH HHS/ -- T15 LM007093/LM/NLM NIH HHS/ -- T15LM007093/LM/NLM NIH HHS/ -- T32GM007330/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Oct 31;502(7473):707-10. doi: 10.1038/nature12604. Epub 2013 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Macromolecular Imaging, Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24107993" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms/cytology/ultrastructure/virology ; Bacteriophages/*growth & development/*ultrastructure ; Cryoelectron Microscopy/*methods ; Electron Microscope Tomography/*methods ; Models, Biological ; Synechococcus/cytology/*ultrastructure/*virology ; *Virus Assembly
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-06-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pongratz, Julia -- England -- Nature. 2013 Jun 6;498(7452):47-8. doi: 10.1038/498047a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739422" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Carbon Dioxide/metabolism ; *Carbon Sequestration ; Climate Change/statistics & numerical data ; Ecology/*methods ; *Forestry/methods ; Human Activities ; Models, Biological ; Nitrogen/analysis/*metabolism ; Nitrogen Fixation ; Soil Microbiology ; Trees/growth & development/*metabolism ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-05-28
    Description: Fusing left and right eye images into a single view is dependent on precise ocular alignment, which relies on coordinated eye movements. During movements of the head this alignment is maintained by numerous reflexes. Although rodents share with other mammals the key components of eye movement control, the coordination of eye movements in freely moving rodents is unknown. Here we show that movements of the two eyes in freely moving rats differ fundamentally from the precisely controlled eye movements used by other mammals to maintain continuous binocular fusion. The observed eye movements serve to keep the visual fields of the two eyes continuously overlapping above the animal during free movement, but not continuously aligned. Overhead visual stimuli presented to rats freely exploring an open arena evoke an immediate shelter-seeking behaviour, but are ineffective when presented beside the arena. We suggest that continuously overlapping visual fields overhead would be of evolutionary benefit for predator detection by minimizing blind spots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, Damian J -- Greenberg, David S -- Sawinski, Juergen -- Rulla, Stefanie -- Notaro, Giuseppe -- Kerr, Jason N D -- England -- Nature. 2013 Jun 6;498(7452):65-9. doi: 10.1038/nature12153. Epub 2013 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Network Imaging Group, Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Escape Reaction/physiology ; Exploratory Behavior/physiology ; Eye Movements/physiology ; Head/physiology ; Models, Biological ; Movement/physiology ; Optic Disk/physiology ; Predatory Behavior ; Rats ; Retina/physiology ; Vision, Binocular/*physiology ; Visual Fields/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-11-29
    Description: Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNamara, Case W -- Lee, Marcus C S -- Lim, Chek Shik -- Lim, Siau Hoi -- Roland, Jason -- Nagle, Advait -- Simon, Oliver -- Yeung, Bryan K S -- Chatterjee, Arnab K -- McCormack, Susan L -- Manary, Micah J -- Zeeman, Anne-Marie -- Dechering, Koen J -- Kumar, T R Santha -- Henrich, Philipp P -- Gagaring, Kerstin -- Ibanez, Maureen -- Kato, Nobutaka -- Kuhen, Kelli L -- Fischli, Christoph -- Rottmann, Matthias -- Plouffe, David M -- Bursulaya, Badry -- Meister, Stephan -- Rameh, Lucia -- Trappe, Joerg -- Haasen, Dorothea -- Timmerman, Martijn -- Sauerwein, Robert W -- Suwanarusk, Rossarin -- Russell, Bruce -- Renia, Laurent -- Nosten, Francois -- Tully, David C -- Kocken, Clemens H M -- Glynne, Richard J -- Bodenreider, Christophe -- Fidock, David A -- Diagana, Thierry T -- Winzeler, Elizabeth A -- 078285/Wellcome Trust/United Kingdom -- 089275/Wellcome Trust/United Kingdom -- 090534/Wellcome Trust/United Kingdom -- 096157/Wellcome Trust/United Kingdom -- R01 AI079709/AI/NIAID NIH HHS/ -- R01 AI085584/AI/NIAID NIH HHS/ -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI103058/AI/NIAID NIH HHS/ -- R01079709/PHS HHS/ -- R01085584/PHS HHS/ -- R01AI090141/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- WT096157/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):248-53. doi: 10.1038/nature12782. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2]. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2]. ; Novartis Institutes for Tropical Disease, 138670 Singapore. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; Department of Parasitology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands. ; TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands. ; Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA. ; Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland. ; 1] Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland [2] University of Basel, CH-4003 Basel, Switzerland. ; Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA. ; Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland. ; 1] TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands [2] Department of Medical Microbiology, Radboud University, Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands. ; Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore. ; 1] Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore [2] Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 117545 Singapore. ; 1] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK [2] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2] Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284631" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Phosphatidylinositol 4-Kinase/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytokinesis/drug effects ; Drug Resistance/drug effects/genetics ; Fatty Acids/metabolism ; Female ; Hepatocytes/parasitology ; Humans ; Imidazoles/metabolism/pharmacology ; Life Cycle Stages/drug effects ; Macaca mulatta ; Malaria/*drug therapy/*parasitology ; Male ; Models, Biological ; Models, Molecular ; Phosphatidylinositol Phosphates/metabolism ; Plasmodium/classification/*drug effects/*enzymology/growth & development ; Pyrazoles/metabolism/pharmacology ; Quinoxalines/metabolism/pharmacology ; Reproducibility of Results ; Schizonts/cytology/drug effects ; rab GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-12-10
    Description: Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001806/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001806/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Michelle G -- Livraghi-Butrico, Alessandra -- Fletcher, Ashley A -- McElwee, Melissa M -- Evans, Scott E -- Boerner, Ryan M -- Alexander, Samantha N -- Bellinghausen, Lindsey K -- Song, Alfred S -- Petrova, Youlia M -- Tuvim, Michael J -- Adachi, Roberto -- Romo, Irlanda -- Bordt, Andrea S -- Bowden, M Gabriela -- Sisson, Joseph H -- Woodruff, Prescott G -- Thornton, David J -- Rousseau, Karine -- De la Garza, Maria M -- Moghaddam, Seyed J -- Karmouty-Quintana, Harry -- Blackburn, Michael R -- Drouin, Scott M -- Davis, C William -- Terrell, Kristy A -- Grubb, Barbara R -- O'Neal, Wanda K -- Flores, Sonia C -- Cota-Gomez, Adela -- Lozupone, Catherine A -- Donnelly, Jody M -- Watson, Alan M -- Hennessy, Corinne E -- Keith, Rebecca C -- Yang, Ivana V -- Barthel, Lea -- Henson, Peter M -- Janssen, William J -- Schwartz, David A -- Boucher, Richard C -- Dickey, Burton F -- Evans, Christopher M -- CA016086/CA/NCI NIH HHS/ -- CA016672/CA/NCI NIH HHS/ -- CA046934/CA/NCI NIH HHS/ -- G1000450/Medical Research Council/United Kingdom -- K01 DK090285/DK/NIDDK NIH HHS/ -- P01 HL108808/HL/NHLBI NIH HHS/ -- P01 HL110873/HL/NHLBI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P30 DK065988/DK/NIDDK NIH HHS/ -- P30DK065988/DK/NIDDK NIH HHS/ -- P50 HL107168/HL/NHLBI NIH HHS/ -- R01 AA008769/AA/NIAAA NIH HHS/ -- R01 HL080396/HL/NHLBI NIH HHS/ -- R01 HL097000/HL/NHLBI NIH HHS/ -- R01 HL109517/HL/NHLBI NIH HHS/ -- R01 HL114381/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Jan 16;505(7483):412-6. doi: 10.1038/nature12807. Epub 2013 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2]. ; 1] University of North Carolina-Chapel Hill, 7011 Thurston-Bowles Building, Chapel Hill, North Carolina 27599, USA [2]. ; 1] University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA [2]. ; University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; University of Texas Health Science Center-Houston Medical School, 6431 Fannin Street, Houston, Texas 77030, USA. ; 1] University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Instituto Tecnologico y de Estudios Superiores de Monterrey, Avenida Eugenio Garza Sada 2501 Sur Colonia Tecnologico, Monterrey, Nuevo Leon 64849, Mexico. ; Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, Texas 77030, USA [2] University of Houston-Downtown, 1 Main Street, Houston, Texas 77002, USA. ; University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, Nebraska 68198, USA. ; University of California San Francisco, 505 Parnassus Avenue, San Francisco, California 27599, USA. ; University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK. ; University of North Carolina-Chapel Hill, 7011 Thurston-Bowles Building, Chapel Hill, North Carolina 27599, USA. ; University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA. ; 1] University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA [2] National Jewish Health, Denver, Colorado 80206, USA. ; 1] University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24317696" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology/metabolism ; Bacterial Infections/immunology/microbiology ; Cilia/physiology ; Ear, Middle/immunology/microbiology ; Female ; Inflammation/pathology ; Lung/*immunology/metabolism/microbiology ; Macrophages/immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Biological ; Mucin 5AC/deficiency/metabolism ; Mucin-5B/deficiency/genetics/*metabolism/secretion ; Phagocytosis ; Pulmonary Disease, Chronic Obstructive/immunology/microbiology ; Respiratory Mucosa/*immunology/*metabolism ; Staphylococcus aureus/immunology ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-01-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vance, Erik -- England -- Nature. 2012 Nov 22;491(7425):S52-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23320285" target="_blank"〉PubMed〈/a〉
    Keywords: Biomarkers, Tumor/analysis ; Biomedical Research/*methods ; Computer Simulation ; *Data Mining ; Humans ; *Interdisciplinary Studies ; Models, Biological ; Neoplasm Proteins/genetics/metabolism ; *Neoplasms/diagnosis/drug therapy/mortality/pathology ; Precision Medicine ; Proteome/genetics/metabolism ; *Proteomics/methods ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-04-23
    Description: Accurate segregation of the replicated genome requires chromosome biorientation on the spindle. Biorientation is ensured by Aurora B kinase (Ipl1), a member of the four-subunit chromosomal passenger complex (CPC). Localization of the CPC to the inner centromere is central to the current model for how tension ensures chromosome biorientation: kinetochore-spindle attachments that are not under tension remain close to the inner centromere and are destabilized by Aurora B phosphorylation, whereas kinetochores under tension are pulled away from the influence of Aurora B, stabilizing their microtubule attachments. Here we show that an engineered truncation of the Sli15 (known as INCENP in humans) subunit of budding yeast CPC that eliminates association with the inner centromere nevertheless supports proper chromosome segregation during both mitosis and meiosis. Truncated Sli15 suppresses the deletion phenotypes of the inner-centromere-targeting proteins survivin (Bir1), borealin (Nbl1), Bub1 and Sgo1 (ref. 6). Unlike wild-type Sli15, truncated Sli15 localizes to pre-anaphase spindle microtubules. Premature targeting of full-length Sli15 to microtubules by preventing Cdk1 (also known as Cdc28) phosphorylation also suppresses the inviability of Bir1 deletion. These results suggest that activation of Aurora B kinase by clustering either on chromatin or on microtubules is sufficient for chromosome biorientation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Campbell, Christopher S -- Desai, Arshad -- GM074215/GM/NIGMS NIH HHS/ -- R01 GM074215/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 2;497(7447):118-21. doi: 10.1038/nature12057. Epub 2013 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23604256" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinase B ; Aurora Kinases ; CDC2 Protein Kinase/antagonists & inhibitors/metabolism ; Carrier Proteins/genetics/metabolism ; Centromere/*metabolism ; Chromatin/metabolism ; Chromosome Segregation ; Intracellular Signaling Peptides and Proteins/*metabolism ; Kinetochores/metabolism ; Meiosis ; Microbial Viability ; Microtubule-Associated Proteins/deficiency/genetics/*metabolism ; Microtubules/metabolism ; Mitosis ; Models, Biological ; Movement ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/*cytology/enzymology/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-11-22
    Description: Genetically identical cells sharing an environment can display markedly different phenotypes. It is often unclear how much of this variation derives from chance, external signals, or attempts by individual cells to exert autonomous phenotypic programs. By observing thousands of cells for hundreds of consecutive generations under constant conditions, we dissect the stochastic decision between a solitary, motile state and a chained, sessile state in Bacillus subtilis. We show that the motile state is 'memoryless', exhibiting no autonomous control over the time spent in the state. In contrast, the time spent as connected chains of cells is tightly controlled, enforcing coordination among related cells in the multicellular state. We show that the three-protein regulatory circuit governing the decision is modular, as initiation and maintenance of chaining are genetically separable functions. As stimulation of the same initiating pathway triggers biofilm formation, we argue that autonomous timing allows a trial commitment to multicellularity that external signals could extend.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norman, Thomas M -- Lord, Nathan D -- Paulsson, Johan -- Losick, Richard -- GM081563/GM/NIGMS NIH HHS/ -- GM18568/GM/NIGMS NIH HHS/ -- R01 GM018568/GM/NIGMS NIH HHS/ -- R01 GM081563/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):481-6. doi: 10.1038/nature12804. Epub 2013 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24256735" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*cytology/genetics/*physiology ; Models, Biological ; Movement ; Phenotype ; Stochastic Processes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-06-07
    Description: The hepatitis C virus (HCV) has developed a small membrane protein, p7, which remarkably can self-assemble into a large channel complex that selectively conducts cations. We wanted to examine the structural solution that the viroporin adopts in order to achieve selective cation conduction, because p7 has no homology with any of the known prokaryotic or eukaryotic channel proteins. The activity of p7 can be inhibited by amantadine and rimantadine, which are potent blockers of the influenza M2 channel and licensed drugs against influenza infections. The adamantane derivatives have been used in HCV clinical trials, but large variation in drug efficacy among the various HCV genotypes has been difficult to explain without detailed molecular structures. Here we determine the structures of this HCV viroporin as well as its drug-binding site using the latest nuclear magnetic resonance (NMR) technologies. The structure exhibits an unusual mode of hexameric assembly, where the individual p7 monomers, i, not only interact with their immediate neighbours, but also reach farther to associate with the i+2 and i+3 monomers, forming a sophisticated, funnel-like architecture. The structure also points to a mechanism of cation selection: an asparagine/histidine ring that constricts the narrow end of the funnel serves as a broad cation selectivity filter, whereas an arginine/lysine ring that defines the wide end of the funnel may selectively allow cation diffusion into the channel. Our functional investigation using whole-cell channel recording shows that these residues are critical for channel activity. NMR measurements of the channel-drug complex revealed six equivalent hydrophobic pockets between the peripheral and pore-forming helices to which amantadine or rimantadine binds, and compound binding specifically to this position may allosterically inhibit cation conduction by preventing the channel from opening. Our data provide a molecular explanation for p7-mediated cation conductance and its inhibition by adamantane derivatives.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉OuYang, Bo -- Xie, Shiqi -- Berardi, Marcelo J -- Zhao, Xinhao -- Dev, Jyoti -- Yu, Wenjing -- Sun, Bing -- Chou, James J -- GM094608/GM/NIGMS NIH HHS/ -- U54 GM094608/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Jun 27;498(7455):521-5. doi: 10.1038/nature12283. Epub 2013 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739335" target="_blank"〉PubMed〈/a〉
    Keywords: Adamantane/analogs & derivatives/chemistry/metabolism/pharmacology ; Binding Sites ; Diffusion ; Hepacivirus/*chemistry ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Porosity ; Rimantadine/chemistry/metabolism/pharmacology ; Structure-Activity Relationship ; Viral Proteins/antagonists & inhibitors/*chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-07-12
    Description: The epiblast is the mammalian embryonic tissue that contains the pluripotent stem cells that generate the whole embryo. We have established a method for inducing functional genetic mosaics in the mouse. Using this system, here we show that induction of a mosaic imbalance of Myc expression in the epiblast provokes the expansion of cells with higher Myc levels through the apoptotic elimination of cells with lower levels, without disrupting development. In contrast, homogeneous shifts in Myc levels did not affect epiblast cell viability, indicating that the observed competition results from comparison of relative Myc levels between epiblast cells. During normal development we found that Myc levels are intrinsically heterogeneous among epiblast cells, and that endogenous cell competition refines the epiblast cell population through the elimination of cells with low relative Myc levels. These results show that natural cell competition in the early mammalian embryo contributes to the selection of the epiblast cell pool.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Claveria, Cristina -- Giovinazzo, Giovanna -- Sierra, Rocio -- Torres, Miguel -- England -- Nature. 2013 Aug 1;500(7460):39-44. doi: 10.1038/nature12389. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Desarrollo y Reparacion Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, Madrid E-28029, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Proliferation ; Embryo, Mammalian/*cytology/*metabolism ; Embryonic Stem Cells/cytology/metabolism ; Female ; Gene Expression ; Genes, myc ; Germ Layers/*cytology/metabolism ; Male ; Mice ; Models, Biological ; Mosaicism/embryology ; Proto-Oncogene Proteins c-myc/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-04-02
    Description: Phosphate is crucial for structural and metabolic needs, including nucleotide and lipid synthesis, signalling and chemical energy storage. Proton-coupled transporters of the major facilitator superfamily (MFS) are essential for phosphate uptake in plants and fungi, and also have a function in sensing external phosphate levels as transceptors. Here we report the 2.9 A structure of a fungal (Piriformospora indica) high-affinity phosphate transporter, PiPT, in an inward-facing occluded state, with bound phosphate visible in the membrane-buried binding site. The structure indicates both proton and phosphate exit pathways and suggests a modified asymmetrical 'rocker-switch' mechanism of phosphate transport. PiPT is related to several human transporter families, most notably the organic cation and anion transporters of the solute carrier family (SLC22), which are implicated in cancer-drug resistance. We modelled representative cation and anion SLC22 transporters based on the PiPT structure to surmise the structural basis for substrate binding and charge selectivity in this important family. The PiPT structure demonstrates and expands on principles of substrate transport by the MFS transporters and illuminates principles of phosphate uptake in particular.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678552/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678552/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pedersen, Bjorn P -- Kumar, Hemant -- Waight, Andrew B -- Risenmay, Aaron J -- Roe-Zurz, Zygy -- Chau, Bryant H -- Schlessinger, Avner -- Bonomi, Massimiliano -- Harries, William -- Sali, Andrej -- Johri, Atul K -- Stroud, Robert M -- F32 GM088991/GM/NIGMS NIH HHS/ -- GM073210/GM/NIGMS NIH HHS/ -- GM24485/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 GM024485/GM/NIGMS NIH HHS/ -- R37 GM024485/GM/NIGMS NIH HHS/ -- U01 GM061390/GM/NIGMS NIH HHS/ -- U01 GM61390/GM/NIGMS NIH HHS/ -- U19 GM061390/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):533-6. doi: 10.1038/nature12042. Epub 2013 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23542591" target="_blank"〉PubMed〈/a〉
    Keywords: Basidiomycota/*chemistry ; Binding Sites ; Crystallography, X-Ray ; Eukaryotic Cells/*chemistry ; Humans ; Models, Biological ; Models, Molecular ; Phosphate Transport Proteins/*chemistry/metabolism ; Phosphates/metabolism ; Protein Conformation ; Protons ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-03-22
    Description: Photorhabdus luminescens is an insect pathogenic bacterium that is symbiotic with entomopathogenic nematodes. On invasion of insect larvae, P. luminescens is released from the nematodes and kills the insect through the action of a variety of virulence factors including large tripartite ABC-type toxin complexes (Tcs). Tcs are typically composed of TcA, TcB and TcC proteins and are biologically active only when complete. Functioning as ADP-ribosyltransferases, TcC proteins were identified as the actual functional components that induce actin-clustering, defects in phagocytosis and cell death. However, little is known about the translocation of TcC into the cell by the TcA and TcB components. Here we show that TcA in P. luminescens (TcdA1) forms a transmembrane pore and report its structure in the prepore and pore state determined by cryoelectron microscopy. We find that the TcdA1 prepore assembles as a pentamer forming an alpha-helical, vuvuzela-shaped channel less than 1.5 nanometres in diameter surrounded by a large outer shell. Membrane insertion is triggered not only at low pH as expected, but also at high pH, explaining Tc action directly through the midgut of insects. Comparisons with structures of the TcdA1 pore inserted into a membrane and in complex with TcdB2 and TccC3 reveal large conformational changes during membrane insertion, suggesting a novel syringe-like mechanism of protein translocation. Our results demonstrate how ABC-type toxin complexes bridge a membrane to insert their lethal components into the cytoplasm of the host cell. We believe that the proposed mechanism is characteristic of the whole ABC-type toxin family. This explanation of toxin translocation is a step towards understanding the host-pathogen interaction and the complex life cycle of P. luminescens and other pathogens, including human pathogenic bacteria, and serves as a strong foundation for the development of biopesticides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatsogiannis, Christos -- Lang, Alexander E -- Meusch, Dominic -- Pfaumann, Vanda -- Hofnagel, Oliver -- Benz, Roland -- Aktories, Klaus -- Raunser, Stefan -- England -- Nature. 2013 Mar 28;495(7442):520-3. doi: 10.1038/nature11987. Epub 2013 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23515159" target="_blank"〉PubMed〈/a〉
    Keywords: ADP Ribose Transferases/chemistry/metabolism/ultrastructure ; Animals ; Bacterial Proteins/chemistry/*metabolism/ultrastructure ; Bacterial Toxins/chemistry/*metabolism ; Cell Membrane/metabolism ; Cryoelectron Microscopy ; Cytoplasm/metabolism ; Host-Pathogen Interactions ; Insects/cytology/metabolism/microbiology ; Models, Biological ; Models, Molecular ; Photorhabdus/*metabolism/pathogenicity/ultrastructure ; Pore Forming Cytotoxic Proteins/chemistry/*metabolism/ultrastructure ; Protein Conformation ; Protein Transport
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-04-16
    Description: The energy-coupling factor (ECF) transporters constitute a novel family of conserved membrane transporters in prokaryotes that have a similar domain organization to the ATP-binding cassette transporters. Each ECF transporter comprises a pair of cytosolic ATPases (the A and A' components, or EcfA and EcfA'), a membrane-embedded substrate-binding protein (the S component, or EcfS) and a transmembrane energy-coupling component (the T component, or EcfT) that links the EcfA-EcfA' subcomplex to EcfS. The structure and transport mechanism of the quaternary ECF transporter remain largely unknown. Here we report the crystal structure of a nucleotide-free ECF transporter from Lactobacillus brevis at a resolution of 3.5 A. The T component has a horseshoe-shaped open architecture, with five alpha-helices as transmembrane segments and two cytoplasmic alpha-helices as coupling modules connecting to the A and A' components. Strikingly, the S component, thought to be specific for hydroxymethyl pyrimidine, lies horizontally along the lipid membrane and is bound exclusively by the five transmembrane segments and the two cytoplasmic helices of the T component. These structural features suggest a plausible working model for the transport cycle of the ECF transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tingliang -- Fu, Guobin -- Pan, Xiaojing -- Wu, Jianping -- Gong, Xinqi -- Wang, Jiawei -- Shi, Yigong -- England -- Nature. 2013 May 9;497(7448):272-6. doi: 10.1038/nature12045. Epub 2013 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23584587" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/chemistry ; Anti-Bacterial Agents ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Cytoplasm/chemistry/metabolism ; Lactobacillus brevis/*chemistry ; Models, Biological ; Models, Molecular ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Pyrimidines/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-04-20
    Description: In bacteria, archaea, fungi and plants the Trk, Ktr and HKT ion transporters are key components of osmotic regulation, pH homeostasis and resistance to drought and high salinity. These ion transporters are functionally diverse: they can function as Na(+) or K(+) channels and possibly as cation/K(+) symporters. They are closely related to potassium channels both at the level of the membrane protein and at the level of the cytosolic regulatory domains. Here we describe the crystal structure of a Ktr K(+) transporter, the KtrAB complex from Bacillus subtilis. The structure shows the dimeric membrane protein KtrB assembled with a cytosolic octameric KtrA ring bound to ATP, an activating ligand. A comparison between the structure of KtrAB-ATP and the structures of the isolated full-length KtrA protein with ATP or ADP reveals a ligand-dependent conformational change in the octameric ring, raising new ideas about the mechanism of activation in these transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vieira-Pires, Ricardo S -- Szollosi, Andras -- Morais-Cabral, Joao H -- England -- Nature. 2013 Apr 18;496(7445):323-8. doi: 10.1038/nature12055.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, Porto 4150-180, Portugal.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23598340" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Bacillus subtilis/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Cation Transport Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Ion Transport ; Models, Biological ; Models, Molecular ; Potassium/*metabolism ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-10-18
    Description: The US National Cancer Institute (NCI), in collaboration with scientists representing multiple areas of expertise relevant to 'omics'-based test development, has developed a checklist of criteria that can be used to determine the readiness of omics-based tests for guiding patient care in clinical trials. The checklist criteria cover issues relating to specimens, assays, mathematical modelling, clinical trial design, and ethical, legal and regulatory aspects. Funding bodies and journals are encouraged to consider the checklist, which they may find useful for assessing study quality and evidence strength. The checklist will be used to evaluate proposals for NCI-sponsored clinical trials in which omics tests will be used to guide therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McShane, Lisa M -- Cavenagh, Margaret M -- Lively, Tracy G -- Eberhard, David A -- Bigbee, William L -- Williams, P Mickey -- Mesirov, Jill P -- Polley, Mei-Yin C -- Kim, Kelly Y -- Tricoli, James V -- Taylor, Jeremy M G -- Shuman, Deborah J -- Simon, Richard M -- Doroshow, James H -- Conley, Barbara A -- P30 CA046592/CA/NCI NIH HHS/ -- R01 CA129102/CA/NCI NIH HHS/ -- Z99 CA999999/Intramural NIH HHS/ -- England -- Nature. 2013 Oct 17;502(7471):317-20. doi: 10.1038/nature12564.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. mcshanel@ctep.nci.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132288" target="_blank"〉PubMed〈/a〉
    Keywords: Checklist ; Clinical Trials as Topic/economics/ethics/*methods/standards ; Evaluation Studies as Topic ; *Genomics/ethics ; Humans ; Models, Biological ; National Cancer Institute (U.S.)/economics ; Precision Medicine/ethics/methods/standards ; *Research Design/standards ; Specimen Handling ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-11-26
    Description: Voltage-gated calcium (CaV) channels catalyse rapid, highly selective influx of Ca(2+) into cells despite a 70-fold higher extracellular concentration of Na(+). How CaV channels solve this fundamental biophysical problem remains unclear. Here we report physiological and crystallographic analyses of a calcium selectivity filter constructed in the homotetrameric bacterial NaV channel NaVAb. Our results reveal interactions of hydrated Ca(2+) with two high-affinity Ca(2+)-binding sites followed by a third lower-affinity site that would coordinate Ca(2+) as it moves inward. At the selectivity filter entry, Site 1 is formed by four carboxyl side chains, which have a critical role in determining Ca(2+) selectivity. Four carboxyls plus four backbone carbonyls form Site 2, which is targeted by the blocking cations Cd(2+) and Mn(2+), with single occupancy. The lower-affinity Site 3 is formed by four backbone carbonyls alone, which mediate exit into the central cavity. This pore architecture suggests a conduction pathway involving transitions between two main states with one or two hydrated Ca(2+) ions bound in the selectivity filter and supports a 'knock-off' mechanism of ion permeation through a stepwise-binding process. The multi-ion selectivity filter of our CaVAb model establishes a structural framework for understanding the mechanisms of ion selectivity and conductance by vertebrate CaV channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Lin -- Gamal El-Din, Tamer M -- Payandeh, Jian -- Martinez, Gilbert Q -- Heard, Teresa M -- Scheuer, Todd -- Zheng, Ning -- Catterall, William A -- R01 HL112808/HL/NHLBI NIH HHS/ -- R01 HL117896/HL/NHLBI NIH HHS/ -- R01 NS015751/NS/NINDS NIH HHS/ -- R01HL112808/HL/NHLBI NIH HHS/ -- R01NS015751/NS/NINDS NIH HHS/ -- T32 GM008268/GM/NIGMS NIH HHS/ -- T32GM008268/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 2;505(7481):56-61. doi: 10.1038/nature12775. Epub 2013 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2]. ; 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24270805" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Biocatalysis ; Calcium/metabolism ; Calcium Channels/*chemistry/genetics/*metabolism ; Cations, Divalent/metabolism ; Crystallography, X-Ray ; Electric Conductivity ; *Ion Channel Gating ; Models, Biological ; Models, Molecular ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-02-12
    Description: Ribosomes, the protein factories of living cells, translate genetic information carried by messenger RNAs into proteins, and are thus involved in virtually all aspects of cellular development and maintenance. The few available structures of the eukaryotic ribosome reveal that it is more complex than its prokaryotic counterpart, owing mainly to the presence of eukaryote-specific ribosomal proteins and additional ribosomal RNA insertions, called expansion segments. The structures also differ among species, partly in the size and arrangement of these expansion segments. Such differences are extreme in kinetoplastids, unicellular eukaryotic parasites often infectious to humans. Here we present a high-resolution cryo-electron microscopy structure of the ribosome of Trypanosoma brucei, the parasite that is transmitted by the tsetse fly and that causes African sleeping sickness. The atomic model reveals the unique features of this ribosome, characterized mainly by the presence of unusually large expansion segments and ribosomal-protein extensions leading to the formation of four additional inter-subunit bridges. We also find additional rRNA insertions, including one large rRNA domain that is not found in other eukaryotes. Furthermore, the structure reveals the five cleavage sites of the kinetoplastid large ribosomal subunit (LSU) rRNA chain, which is known to be cleaved uniquely into six pieces, and suggests that the cleavage is important for the maintenance of the T. brucei ribosome in the observed structure. We discuss several possible implications of the large rRNA expansion segments for the translation-regulation process. The structure could serve as a basis for future experiments aimed at understanding the functional importance of these kinetoplastid-specific ribosomal features in protein-translation regulation, an essential step towards finding effective and safe kinetoplastid-specific drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659406/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659406/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashem, Yaser -- des Georges, Amedee -- Fu, Jie -- Buss, Sarah N -- Jossinet, Fabrice -- Jobe, Amy -- Zhang, Qin -- Liao, Hstau Y -- Grassucci, Robert A -- Bajaj, Chandrajit -- Westhof, Eric -- Madison-Antenucci, Susan -- Frank, Joachim -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 GM29169/GM/NIGMS NIH HHS/ -- R01-EB004873/EB/NIBIB NIH HHS/ -- R01-GM074258/GM/NIGMS NIH HHS/ -- T32 GM008798/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Feb 21;494(7437):385-9. doi: 10.1038/nature11872. Epub 2013 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23395961" target="_blank"〉PubMed〈/a〉
    Keywords: *Cryoelectron Microscopy ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Protein Biosynthesis ; RNA, Protozoan/genetics/metabolism ; RNA, Ribosomal/genetics/metabolism ; Ribosomes/chemistry/genetics/*ultrastructure ; Trypanosoma brucei brucei/chemistry/*cytology/genetics/*ultrastructure ; Yeasts/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willyard, Cassandra -- England -- Nature. 2013 Jun 27;498(7455):S12-3. doi: 10.1038/498S12a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers, Tumor/metabolism ; Cell Division/drug effects ; Chemokine CXCL12/biosynthesis/metabolism ; Granulocyte Colony-Stimulating Factor/pharmacology/therapeutic use ; Heterocyclic Compounds/therapeutic use ; Humans ; Leukemia/*drug therapy/genetics/metabolism/*pathology ; Leukemia, Myeloid, Acute/drug therapy/genetics/metabolism/pathology ; Mice ; Models, Biological ; Neoplastic Stem Cells/*drug effects/metabolism/*pathology ; Proto-Oncogene Proteins c-hck/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-04-26
    Description: Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during terrestrial locomotion, we suggest that the evolution of avian flight is linked to anatomical novelties in the pelvic limb as well as the pectoral.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, Vivian -- Bates, Karl T -- Li, Zhiheng -- Hutchinson, John R -- England -- Nature. 2013 May 2;497(7447):104-7. doi: 10.1038/nature12059. Epub 2013 Apr 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-University Jena, 07743 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23615616" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Biomechanical Phenomena ; Birds/*anatomy & histology/*physiology ; Dinosaurs/*anatomy & histology/*physiology ; Feathers ; Flight, Animal ; Hindlimb/anatomy & histology/physiology ; Locomotion/*physiology ; Models, Anatomic ; Models, Biological ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Fusuo -- Chen, Xinping -- Vitousek, Peter -- England -- Nature. 2013 May 2;497(7447):33-5. doi: 10.1038/497033a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China. zhangfs@cau.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636381" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/economics/methods/*statistics & numerical data/*trends ; Biomass ; China ; Crops, Agricultural/metabolism/radiation effects ; Ecosystem ; Fertilizers/adverse effects/utilization ; Food Supply/economics/*methods/*statistics & numerical data ; Food, Genetically Modified ; Models, Biological ; Plants, Genetically Modified ; Research/economics ; Soil/analysis/chemistry ; Sunlight ; Water Supply/statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-03-22
    Description: A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the beta2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835555/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835555/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irannejad, Roshanak -- Tomshine, Jin C -- Tomshine, Jon R -- Chevalier, Michael -- Mahoney, Jacob P -- Steyaert, Jan -- Rasmussen, Soren G F -- Sunahara, Roger K -- El-Samad, Hana -- Huang, Bo -- von Zastrow, Mark -- DA010711/DA/NIDA NIH HHS/ -- DA012864/DA/NIDA NIH HHS/ -- F32 DA029993/DA/NIDA NIH HHS/ -- GM083118/GM/NIGMS NIH HHS/ -- P01 DA010154/DA/NIDA NIH HHS/ -- P01 NS053709/NS/NINDS NIH HHS/ -- R01 DA012864/DA/NIDA NIH HHS/ -- R01 GM068603/GM/NIGMS NIH HHS/ -- R01 GM083118/GM/NIGMS NIH HHS/ -- R29 DA010711/DA/NIDA NIH HHS/ -- R37 DA010711/DA/NIDA NIH HHS/ -- T32 GM007767/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Mar 28;495(7442):534-8. doi: 10.1038/nature12000. Epub 2013 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23515162" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists/pharmacology ; Biosensing Techniques/*methods ; Cell Membrane/chemistry/metabolism ; Clathrin-Coated Vesicles ; Cyclic AMP/metabolism ; Endocytosis ; Endosomes/chemistry/*metabolism ; GTP-Binding Protein alpha Subunits, Gs/metabolism ; Green Fluorescent Proteins/analysis/genetics/metabolism ; HEK293 Cells ; Humans ; Isoproterenol/pharmacology ; Models, Biological ; Protein Conformation ; Receptors, Adrenergic, beta-2/*chemistry/immunology/*metabolism ; *Signal Transduction ; Single-Domain Antibodies/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-02-15
    Description: Accelerating rates of species extinctions and disease emergence underscore the importance of understanding how changes in biodiversity affect disease outcomes. Over the past decade, a growing number of studies have reported negative correlations between host biodiversity and disease risk, prompting suggestions that biodiversity conservation could promote human and wildlife health. Yet the generality of the diversity-disease linkage remains conjectural, in part because empirical evidence of a relationship between host competence (the ability to maintain and transmit infections) and the order in which communities assemble has proven elusive. Here we integrate high-resolution field data with multi-scale experiments to show that host diversity inhibits transmission of the virulent pathogen Ribeiroia ondatrae and reduces amphibian disease as a result of consistent linkages among species richness, host composition and community competence. Surveys of 345 wetlands indicated that community composition changed nonrandomly with species richness, such that highly competent hosts dominated in species-poor assemblages whereas more resistant species became progressively more common in diverse assemblages. As a result, amphibian species richness strongly moderated pathogen transmission and disease pathology among 24,215 examined hosts, with a 78.4% decline in realized transmission in richer assemblages. Laboratory and mesocosm manipulations revealed an approximately 50% decrease in pathogen transmission and host pathology across a realistic diversity gradient while controlling for host density, helping to establish mechanisms underlying the diversity-disease relationship and their consequences for host fitness. By revealing a consistent link between species richness and community competence, these findings highlight the influence of biodiversity on infection risk and emphasize the benefit of a community-based approach to understanding infectious diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Pieter T J -- Preston, Daniel L -- Hoverman, Jason T -- Richgels, Katherine L D -- England -- Nature. 2013 Feb 14;494(7436):230-3. doi: 10.1038/nature11883.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. pieter.johnson@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23407539" target="_blank"〉PubMed〈/a〉
    Keywords: Amphibians/*parasitology ; Animals ; *Biodiversity ; California ; *Host-Parasite Interactions ; Models, Biological ; Trematoda/*pathogenicity ; Trematode Infections/prevention & control/transmission/veterinary ; *Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-02-15
    Description: Several reports proposed that the extraordinary dominance of the SAR11 bacterial clade in ocean ecosystems could be a consequence of unusual mechanisms of resistance to bacteriophage infection, including 'cryptic escape' through reduced cell size and/or K-strategist defence specialism. Alternatively, the evolution of high surface-to-volume ratios coupled with minimal genomes containing high-affinity transporters enables unusually efficient metabolism for oxidizing dissolved organic matter in the world's oceans that could support vast population sizes despite phage susceptibility. These ideas are important for understanding plankton ecology because they emphasize the potentially important role of top-down mechanisms in predation, thus determining the size of SAR11 populations and their concomitant role in biogeochemical cycling. Here we report the isolation of diverse SAR11 viruses belonging to two virus families in culture, for which we propose the name 'pelagiphage', after their host. Notably, the pelagiphage genomes were highly represented in marine viral metagenomes, demonstrating their importance in nature. One of the new phages, HTVC010P, represents a new podovirus subfamily more abundant than any seen previously, in all data sets tested, and may represent one of the most abundant virus subfamilies in the biosphere. This discovery disproves the theory that SAR11 cells are immune to viral predation and is consistent with the interpretation that the success of this highly abundant microbial clade is the result of successfully evolved adaptation to resource competition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yanlin -- Temperton, Ben -- Thrash, J Cameron -- Schwalbach, Michael S -- Vergin, Kevin L -- Landry, Zachary C -- Ellisman, Mark -- Deerinck, Tom -- Sullivan, Matthew B -- Giovannoni, Stephen J -- P41 RR004050/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Feb 21;494(7437):357-60. doi: 10.1038/nature11921. Epub 2013 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23407494" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms/genetics/*isolation & purification ; Bacteria/classification/isolation & purification/virology ; Bacteriophages/*classification/genetics/*isolation & purification/physiology ; Bermuda ; Biota ; Competitive Behavior ; Food Chain ; Genome, Viral/genetics ; Metagenome/genetics ; Models, Biological ; Molecular Sequence Data ; Oregon ; Pacific Ocean ; Plankton/physiology ; Seawater/microbiology/*virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-09
    Description: The cyclic AMP (cAMP)-dependent catabolite repression effect in Escherichia coli is among the most intensely studied regulatory processes in biology. However, the physiological function(s) of cAMP signalling and its molecular triggers remain elusive. Here we use a quantitative physiological approach to show that cAMP signalling tightly coordinates the expression of catabolic proteins with biosynthetic and ribosomal proteins, in accordance with the cellular metabolic needs during exponential growth. The expression of carbon catabolic genes increased linearly with decreasing growth rates upon limitation of carbon influx, but decreased linearly with decreasing growth rate upon limitation of nitrogen or sulphur influx. In contrast, the expression of biosynthetic genes showed the opposite linear growth-rate dependence as the catabolic genes. A coarse-grained mathematical model provides a quantitative framework for understanding and predicting gene expression responses to catabolic and anabolic limitations. A scheme of integral feedback control featuring the inhibition of cAMP signalling by metabolic precursors is proposed and validated. These results reveal a key physiological role of cAMP-dependent catabolite repression: to ensure that proteomic resources are spent on distinct metabolic sectors as needed in different nutrient environments. Our findings underscore the power of quantitative physiology in unravelling the underlying functions of complex molecular signalling networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038431/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038431/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉You, Conghui -- Okano, Hiroyuki -- Hui, Sheng -- Zhang, Zhongge -- Kim, Minsu -- Gunderson, Carl W -- Wang, Yi-Ping -- Lenz, Peter -- Yan, Dalai -- Hwa, Terence -- R01 GM095903/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Aug 15;500(7462):301-6. doi: 10.1038/nature12446. Epub 2013 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California at San Diego, La Jolla, California 92093-0374, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925119" target="_blank"〉PubMed〈/a〉
    Keywords: Cyclic AMP/*metabolism ; Escherichia coli/*genetics/*metabolism ; Escherichia coli Proteins/*genetics/*metabolism ; *Gene Expression Regulation, Bacterial ; Models, Biological ; *Proteome ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-11-10
    Description: From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic 'flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bricard, Antoine -- Caussin, Jean-Baptiste -- Desreumaux, Nicolas -- Dauchot, Olivier -- Bartolo, Denis -- England -- Nature. 2013 Nov 7;503(7474):95-8. doi: 10.1038/nature12673.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] PMMH, CNRS UMR7636, ESPCI-ParisTech, Universite Paris Diderot and Universite Pierre et Marie Curie, 10 rue Vauquelin, 75005 Paris, France [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24201282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Colloids ; Hydrodynamics ; Mass Behavior ; Microspheres ; Models, Biological ; *Models, Theoretical ; *Motion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-05-31
    Description: Type 2 diabetes (T2D) is a result of complex gene-environment interactions, and several risk factors have been identified, including age, family history, diet, sedentary lifestyle and obesity. Statistical models that combine known risk factors for T2D can partly identify individuals at high risk of developing the disease. However, these studies have so far indicated that human genetics contributes little to the models, whereas socio-demographic and environmental factors have greater influence. Recent evidence suggests the importance of the gut microbiota as an environmental factor, and an altered gut microbiota has been linked to metabolic diseases including obesity, diabetes and cardiovascular disease. Here we use shotgun sequencing to characterize the faecal metagenome of 145 European women with normal, impaired or diabetic glucose control. We observe compositional and functional alterations in the metagenomes of women with T2D, and develop a mathematical model based on metagenomic profiles that identified T2D with high accuracy. We applied this model to women with impaired glucose tolerance, and show that it can identify women who have a diabetes-like metabolism. Furthermore, glucose control and medication were unlikely to have major confounding effects. We also applied our model to a recently described Chinese cohort and show that the discriminant metagenomic markers for T2D differ between the European and Chinese cohorts. Therefore, metagenomic predictive tools for T2D should be specific for the age and geographical location of the populations studied.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlsson, Fredrik H -- Tremaroli, Valentina -- Nookaew, Intawat -- Bergstrom, Goran -- Behre, Carl Johan -- Fagerberg, Bjorn -- Nielsen, Jens -- Backhed, Fredrik -- England -- Nature. 2013 Jun 6;498(7452):99-103. doi: 10.1038/nature12198. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719380" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Aged ; Asian Continental Ancestry Group ; Bacteria/genetics/isolation & purification ; Biomarkers ; Blood Glucose/*metabolism ; Cluster Analysis ; Cohort Studies ; Confounding Factors (Epidemiology) ; Demography ; Diabetes Mellitus, Type 2/blood/drug therapy/genetics/*microbiology ; Environment ; European Continental Ancestry Group ; Feces/microbiology ; Female ; Gastrointestinal Tract/*microbiology ; Glucose Intolerance/blood/metabolism/*microbiology ; *Health ; Humans ; *Metagenome/genetics ; Middle Aged ; Models, Biological ; Prognosis ; Species Specificity ; Sweden
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenwald, Noah -- Ando, Amy W -- Butchart, Stuart H M -- Tschirhart, John -- England -- Nature. 2013 Dec 19;504(7480):369-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24358508" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/economics/*legislation & ; jurisprudence/*statistics & numerical data/trends ; Ecosystem ; Endangered Species/economics/legislation & jurisprudence/*statistics & numerical ; data ; Extinction, Biological ; Models, Biological ; Models, Economic ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-31
    Description: The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We find that these steps of villification depend on the sequential differentiation of the distinct smooth muscle layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. A quantitative computational model, incorporating measured properties of the developing gut, recapitulates the morphological patterns seen during villification in a variety of species. These results provide a mechanistic understanding of the formation of these elaborations of the lining of the gut, essential for providing sufficient surface area for nutrient absorption.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045245/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045245/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shyer, Amy E -- Tallinen, Tuomas -- Nerurkar, Nandan L -- Wei, Zhiyan -- Gil, Eun Seok -- Kaplan, David L -- Tabin, Clifford J -- Mahadevan, L -- R01 HD047360/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):212-8. doi: 10.1126/science.1238842. Epub 2013 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23989955" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chick Embryo ; Endoderm/growth & development ; Gastrointestinal Tract/*embryology/*ultrastructure ; Humans ; Mesoderm/growth & development ; Mice ; Models, Biological ; *Morphogenesis ; Muscle, Smooth/*embryology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-08
    Description: Epithelia are robust tissues that support the structure of embryos and organs and serve as effective barriers against pathogens. Epithelia also chemically separate different physiological environments. These vital functions require tight association between cells through the assembly of junctions that mechanically stabilize the tissue. Remarkably, epithelia are also dynamic and can display a fluid behavior. Cells continuously die or divide, thereby allowing functional tissue homeostasis. Epithelial cells can change shape or intercalate as tissues deform during morphogenesis. We review the mechanical basis of tissue robustness and fluidity, with an emphasis on the pivotal role of junction dynamics. Tissue fluidity emerges from local active stresses acting at cell interfaces and allows the maintenance of epithelial organization during morphogenesis and tissue renewal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guillot, Charlene -- Lecuit, Thomas -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1185-9. doi: 10.1126/science.1235249.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aix-Marseille Universite, CNRS UMR 7288, IBDM, Campus de Luminy, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744939" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cadherins/chemistry/ultrastructure ; Cell Division ; Chick Embryo ; Drosophila/cytology/embryology ; Epithelial Cells/cytology ; Epithelium/*growth & development ; *Homeostasis ; Intercellular Junctions ; Models, Biological ; *Morphogenesis ; Neural Tube/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-08
    Description: Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keller, Philipp J -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1234168. doi: 10.1126/science.1234168.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. kellerp@janelia.hhmi.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744952" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila/embryology ; Image Processing, Computer-Assisted/*methods ; Mice/embryology ; Microscopy/*methods ; Models, Biological ; *Morphogenesis ; Zebrafish/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-11-30
    Description: To predict the emergence of antibiotic resistance, quantitative relations must be established between the fitness of drug-resistant organisms and the molecular mechanisms conferring resistance. These relations are often unknown and may depend on the state of bacterial growth. To bridge this gap, we have investigated Escherichia coli strains expressing resistance to translation-inhibiting antibiotics. We show that resistance expression and drug inhibition are linked in a positive feedback loop arising from an innate, global effect of drug-inhibited growth on gene expression. A quantitative model of bacterial growth based on this innate feedback accurately predicts the rich phenomena observed: a plateau-shaped fitness landscape, with an abrupt drop in the growth rates of cultures at a threshold drug concentration, and the coexistence of growing and nongrowing populations, that is, growth bistability, below the threshold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059556/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059556/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deris, J Barrett -- Kim, Minsu -- Zhang, Zhongge -- Okano, Hiroyuki -- Hermsen, Rutger -- Groisman, Alexander -- Hwa, Terence -- 1 U54 CA143803/CA/NCI NIH HHS/ -- R01 GM095903/GM/NIGMS NIH HHS/ -- R01-GM095903/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1237435. doi: 10.1126/science.1237435.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California at San Diego, La Jolla, CA 92093-0374, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288338" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Chloramphenicol/metabolism/pharmacology ; Chloramphenicol O-Acetyltransferase/biosynthesis ; *Drug Resistance, Bacterial ; Escherichia coli/*drug effects/genetics/*growth & development ; Gene Expression Regulation, Bacterial/drug effects ; *Genetic Fitness ; Models, Biological ; Protein Biosynthesis/drug effects ; Protein Synthesis Inhibitors/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-04-27
    Description: Broad-scale environmental changes are altering patterns of natural selection in the wild, but few empirical studies have quantified the demographic cost of sustained directional selection in response to these changes. We tested whether population growth in a wild bird is negatively affected by climate change-induced phenological mismatch, using almost four decades of individual-level life-history data from a great tit population. In this population, warmer springs have generated a mismatch between the annual breeding time and the seasonal food peak, intensifying directional selection for earlier laying dates. Interannual variation in population mismatch has not, however, affected population growth. We demonstrated a mechanism contributing to this uncoupling, whereby fitness losses associated with mismatch are counteracted by fitness gains due to relaxed competition. These findings imply that natural populations may be able to tolerate considerable maladaptation driven by shifting climatic conditions without undergoing immediate declines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reed, Thomas E -- Grotan, Vidar -- Jenouvrier, Stephanie -- Saether, Bernt-Erik -- Visser, Marcel E -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):488-91. doi: 10.1126/science.1232870.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands. t.reed@nioo.knaw.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Breeding ; *Climate Change ; Computer Simulation ; Female ; *Genetic Fitness ; Models, Biological ; Passeriformes/genetics/*physiology ; Population Growth ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5'-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pulk, Arto -- Cate, Jamie H D -- R01 GM065050/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- R01-GM65050/GM/NIGMS NIH HHS/ -- R01GM105404/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1235970. doi: 10.1126/science.1235970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812721" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*enzymology ; Guanosine Triphosphate/*chemistry ; Hydrolysis ; Models, Biological ; Peptide Elongation Factor G/*chemistry ; *Protein Biosynthesis ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry ; RNA, Transfer/chemistry ; Ribosome Subunits, Large, Bacterial/*chemistry ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-06-15
    Description: Extended breath-hold endurance enables the exploitation of the aquatic niche by numerous mammalian lineages and is accomplished by elevated body oxygen stores and adaptations that promote their economical use. However, little is known regarding the molecular and evolutionary underpinnings of the high muscle myoglobin concentration phenotype of divers. We used ancestral sequence reconstruction to trace the evolution of this oxygen-storing protein across a 130-species mammalian phylogeny and reveal an adaptive molecular signature of elevated myoglobin net surface charge in diving species that is mechanistically linked with maximal myoglobin concentration. This observation provides insights into the tempo and routes to enhanced dive capacity evolution within the ancestors of each major mammalian aquatic lineage and infers amphibious ancestries of echidnas, moles, hyraxes, and elephants, offering a fresh perspective on the evolution of this iconic respiratory pigment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mirceta, Scott -- Signore, Anthony V -- Burns, Jennifer M -- Cossins, Andrew R -- Campbell, Kevin L -- Berenbrink, Michael -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 14;340(6138):1234192. doi: 10.1126/science.1234192.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23766330" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; *Diving ; Evolution, Molecular ; Mammals/*genetics/*physiology ; Models, Biological ; Molecular Sequence Data ; Muscle, Skeletal/chemistry ; Myoglobin/analysis/*chemistry/*classification ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swift, Joe -- Ivanovska, Irena L -- Buxboim, Amnon -- Harada, Takamasa -- Dingal, P C Dave P -- Pinter, Joel -- Pajerowski, J David -- Spinler, Kyle R -- Shin, Jae-Won -- Tewari, Manorama -- Rehfeldt, Florian -- Speicher, David W -- Discher, Dennis E -- 8UL1TR000003/TR/NCATS NIH HHS/ -- CA010815/CA/NCI NIH HHS/ -- HL038794/HL/NHLBI NIH HHS/ -- P01DK032094/DK/NIDDK NIH HHS/ -- P30-DK090969/DK/NIDDK NIH HHS/ -- R01 EB007049/EB/NIBIB NIH HHS/ -- R01 HL062352/HL/NHLBI NIH HHS/ -- R01EB007049/EB/NIBIB NIH HHS/ -- R01HL062352/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1240104. doi: 10.1126/science.1240104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990565" target="_blank"〉PubMed〈/a〉
    Keywords: Adipogenesis ; Animals ; *Cell Differentiation ; Collagen/analysis/chemistry/metabolism ; *Elasticity ; Extracellular Matrix/chemistry/metabolism ; Gene Expression Regulation, Developmental ; Humans ; Lamin Type A/chemistry/genetics/*metabolism ; Mesenchymal Stromal Cells/*cytology ; Mice ; Models, Biological ; Nuclear Lamina/metabolism ; *Osteogenesis/genetics ; Protein Conformation ; Proteome ; *Stress, Mechanical ; Transcription, Genetic ; Tretinoin/metabolism ; Vitamin A/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-07-06
    Description: A low-error 16S ribosomal RNA amplicon sequencing method, in combination with whole-genome sequencing of 〉500 cultured isolates, was used to characterize bacterial strain composition in the fecal microbiota of 37 U.S. adults sampled for up to 5 years. Microbiota stability followed a power-law function, which when extrapolated suggests that most strains in an individual are residents for decades. Shared strains were recovered from family members but not from unrelated individuals. Sampling of individuals who consumed a monotonous liquid diet for up to 32 weeks indicated that changes in strain composition were better predicted by changes in weight than by differences in sampling interval. This combination of stability and responsiveness to physiologic change confirms the potential of the gut microbiota as a diagnostic tool and therapeutic target.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791589/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791589/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faith, Jeremiah J -- Guruge, Janaki L -- Charbonneau, Mark -- Subramanian, Sathish -- Seedorf, Henning -- Goodman, Andrew L -- Clemente, Jose C -- Knight, Rob -- Heath, Andrew C -- Leibel, Rudolph L -- Rosenbaum, Michael -- Gordon, Jeffrey I -- DK078669/DK/NIDDK NIH HHS/ -- DK30292/DK/NIDDK NIH HHS/ -- DK64774/DK/NIDDK NIH HHS/ -- DK70977/DK/NIDDK NIH HHS/ -- K05 AA017688/AA/NIAAA NIH HHS/ -- P01 DK078669/DK/NIDDK NIH HHS/ -- P30 DK026687/DK/NIDDK NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R01 DK064773/DK/NIDDK NIH HHS/ -- R01 DK070977/DK/NIDDK NIH HHS/ -- R37 DK030292/DK/NIDDK NIH HHS/ -- UL1TR000040/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):1237439. doi: 10.1126/science.1237439.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828941" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bacteria/classification/genetics/isolation & purification ; Body Composition ; Caloric Restriction ; Family ; Feces/microbiology ; Female ; Gastrointestinal Tract/*microbiology ; Genome, Bacterial/genetics ; Genomic Instability ; Humans ; Male ; *Metagenome ; Models, Biological ; RNA, Ribosomal, 16S/genetics ; Sequence Analysis, DNA ; Time Factors ; Weight Loss ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2010-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janvier, Philippe -- Clement, Gael -- England -- Nature. 2010 Jan 7;463(7277):40-1. doi: 10.1038/463040a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054387" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Chordata/anatomy & histology/classification/*physiology ; Extremities/anatomy & histology/physiology ; Fishes/anatomy & histology/physiology ; *Fossils ; Gait/physiology ; History, Ancient ; Models, Biological ; Phylogeny ; Poland
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2010-06-04
    Description: Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheller, Silvan -- Goenrich, Meike -- Boecher, Reinhard -- Thauer, Rudolf K -- Jaun, Bernhard -- England -- Nature. 2010 Jun 3;465(7298):606-8. doi: 10.1038/nature09015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520712" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; *Biocatalysis ; Gases/metabolism ; Kinetics ; Mesna/analogs & derivatives/metabolism ; Methane/*biosynthesis/*metabolism ; Methanobacteriaceae/*enzymology ; Methylation ; Models, Biological ; Nickel/*metabolism ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-05-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, Kelly Rae -- England -- Nature. 2010 Apr 15;464(7291):1090-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20503480" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/genetics/metabolism/pathology/therapy ; Computational Biology/education/manpower/trends ; Female ; Genetic Heterogeneity ; Humans ; Models, Biological ; Neoplasms/genetics/*metabolism/*pathology/therapy ; Research Personnel/education ; Systems Biology/education/manpower/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2010-05-21
    Description: Malaria is a devastating infection caused by protozoa of the genus Plasmodium. Drug resistance is widespread, no new chemical class of antimalarials has been introduced into clinical practice since 1996 and there is a recent rise of parasite strains with reduced sensitivity to the newest drugs. We screened nearly 2 million compounds in GlaxoSmithKline's chemical library for inhibitors of P. falciparum, of which 13,533 were confirmed to inhibit parasite growth by at least 80% at 2 microM concentration. More than 8,000 also showed potent activity against the multidrug resistant strain Dd2. Most (82%) compounds originate from internal company projects and are new to the malaria community. Analyses using historic assay data suggest several novel mechanisms of antimalarial action, such as inhibition of protein kinases and host-pathogen interaction related targets. Chemical structures and associated data are hereby made public to encourage additional drug lead identification efforts and further research into this disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gamo, Francisco-Javier -- Sanz, Laura M -- Vidal, Jaume -- de Cozar, Cristina -- Alvarez, Emilio -- Lavandera, Jose-Luis -- Vanderwall, Dana E -- Green, Darren V S -- Kumar, Vinod -- Hasan, Samiul -- Brown, James R -- Peishoff, Catherine E -- Cardon, Lon R -- Garcia-Bustos, Jose F -- England -- Nature. 2010 May 20;465(7296):305-10. doi: 10.1038/nature09107.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485427" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/*analysis/chemistry/*pharmacology/toxicity ; Cell Line, Tumor ; *Drug Discovery ; Drug Resistance, Multiple/drug effects ; Humans ; Malaria, Falciparum/*drug therapy/parasitology ; Models, Biological ; Phylogeny ; Plasmodium falciparum/*drug effects/enzymology/genetics/growth & development ; Small Molecule Libraries/*analysis/chemistry/*pharmacology/toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luebeck, E Georg -- England -- Nature. 2010 Oct 28;467(7319):1053-5. doi: 10.1038/4671053a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981088" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Lineage/genetics ; Clone Cells/metabolism/pathology ; DNA Mutational Analysis ; Disease Progression ; Early Detection of Cancer ; *Evolution, Molecular ; Genomic Instability/*genetics ; Humans ; Models, Biological ; Mutagenesis/*genetics ; Neoplasm Metastasis/*genetics/pathology ; Pancreatic Neoplasms/classification/*genetics/*pathology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2010-04-03
    Description: Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the Arabidopsis JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel Interactor of JAZ (NINJA). NINJA acts as a transcriptional repressor whose activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress-related and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauwels, Laurens -- Barbero, Gemma Fernandez -- Geerinck, Jan -- Tilleman, Sofie -- Grunewald, Wim -- Perez, Amparo Cuellar -- Chico, Jose Manuel -- Bossche, Robin Vanden -- Sewell, Jared -- Gil, Eduardo -- Garcia-Casado, Gloria -- Witters, Erwin -- Inze, Dirk -- Long, Jeff A -- De Jaeger, Geert -- Solano, Roberto -- Goossens, Alain -- R01 GM072764/GM/NIGMS NIH HHS/ -- R01 GM072764-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 1;464(7289):788-91. doi: 10.1038/nature08854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360743" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/*drug effects/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cyclopentanes/antagonists & inhibitors/*pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Models, Biological ; Oxylipins/antagonists & inhibitors/*pharmacology ; Plants, Genetically Modified ; Protein Binding ; Repressor Proteins/genetics/*metabolism ; Signal Transduction/*drug effects ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cockburn, Andrew -- England -- Nature. 2010 Aug 19;466(7309):930-1. doi: 10.1038/466930a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/classification/genetics/*physiology ; *Cooperative Behavior ; Fathers ; Female ; Male ; Models, Biological ; Mothers ; Phylogeny ; Reproduction/genetics/physiology ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2010-02-25
    Description: Tumours with mutant BRAF are dependent on the RAF-MEK-ERK signalling pathway for their growth. We found that ATP-competitive RAF inhibitors inhibit ERK signalling in cells with mutant BRAF, but unexpectedly enhance signalling in cells with wild-type BRAF. Here we demonstrate the mechanistic basis for these findings. We used chemical genetic methods to show that drug-mediated transactivation of RAF dimers is responsible for paradoxical activation of the enzyme by inhibitors. Induction of ERK signalling requires direct binding of the drug to the ATP-binding site of one kinase of the dimer and is dependent on RAS activity. Drug binding to one member of RAF homodimers (CRAF-CRAF) or heterodimers (CRAF-BRAF) inhibits one protomer, but results in transactivation of the drug-free protomer. In BRAF(V600E) tumours, RAS is not activated, thus transactivation is minimal and ERK signalling is inhibited in cells exposed to RAF inhibitors. These results indicate that RAF inhibitors will be effective in tumours in which BRAF is mutated. Furthermore, because RAF inhibitors do not inhibit ERK signalling in other cells, the model predicts that they would have a higher therapeutic index and greater antitumour activity than mitogen-activated protein kinase (MEK) inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have been borne out in a recent clinical trial of the RAF inhibitor PLX4032 (refs 4, 5). The model indicates that promotion of RAF dimerization by elevation of wild-type RAF expression or RAS activity could lead to drug resistance in mutant BRAF tumours. In agreement with this prediction, RAF inhibitors do not inhibit ERK signalling in cells that coexpress BRAF(V600E) and mutant RAS.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178447/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178447/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulikakos, Poulikos I -- Zhang, Chao -- Bollag, Gideon -- Shokat, Kevan M -- Rosen, Neal -- 1P01CA129243-02/CA/NCI NIH HHS/ -- 2R01EB001987/EB/NIBIB NIH HHS/ -- P01 CA129243-010002/CA/NCI NIH HHS/ -- R01 EB001987/EB/NIBIB NIH HHS/ -- U01 CA091178/CA/NCI NIH HHS/ -- U01 CA091178-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Mar 18;464(7287):427-30. doi: 10.1038/nature08902.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20179705" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Catalytic Domain ; Cell Line ; Cell Line, Tumor ; Enzyme Activation/drug effects ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; Indoles/pharmacology ; MAP Kinase Signaling System/*drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Models, Biological ; Neoplasms/drug therapy/enzymology/genetics/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinase Inhibitors/metabolism/*pharmacology/therapeutic use ; Protein Multimerization ; Proto-Oncogene Proteins B-raf/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Sulfonamides/pharmacology ; Transcriptional Activation/*drug effects ; raf Kinases/*antagonists & inhibitors/chemistry/genetics/*metabolism ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2010-10-15
    Description: The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becks, Lutz -- Agrawal, Aneil F -- England -- Nature. 2010 Nov 4;468(7320):89-92. doi: 10.1038/nature09449. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada. lutz.becks@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944628" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration/physiology ; Animals ; *Biological Evolution ; Diet/veterinary ; *Ecosystem ; Female ; *Food ; Genetic Drift ; Male ; Meiosis/genetics ; Models, Biological ; Ovum/physiology ; Population Density ; Reproduction/physiology ; Reproduction, Asexual/physiology ; Rotifera/cytology/genetics/*physiology ; Selection, Genetic ; *Sex
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2010-11-19
    Description: Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branch, Trevor A -- Watson, Reg -- Fulton, Elizabeth A -- Jennings, Simon -- McGilliard, Carey R -- Pablico, Grace T -- Ricard, Daniel -- Tracey, Sean R -- England -- Nature. 2010 Nov 18;468(7322):431-5. doi: 10.1038/nature09528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, Washington 98195-5020, USA. tbranch@uw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification/*metabolism ; Biodiversity ; Biomass ; Databases, Factual ; *Ecosystem ; Environmental Policy ; *Fisheries ; *Fishes/metabolism ; Food Chain ; Human Activities ; Invertebrates/metabolism ; Models, Biological ; Plankton/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2010-08-27
    Description: Eusociality, in which some individuals reduce their own lifetime reproductive potential to raise the offspring of others, underlies the most advanced forms of social organization and the ecologically dominant role of social insects and humans. For the past four decades kin selection theory, based on the concept of inclusive fitness, has been the major theoretical attempt to explain the evolution of eusociality. Here we show the limitations of this approach. We argue that standard natural selection theory in the context of precise models of population structure represents a simpler and superior approach, allows the evaluation of multiple competing hypotheses, and provides an exact framework for interpreting empirical observations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279739/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279739/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nowak, Martin A -- Tarnita, Corina E -- Wilson, Edward O -- R01 GM078986/GM/NIGMS NIH HHS/ -- R01 GM078986-04/GM/NIGMS NIH HHS/ -- R01GM078986/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1057-62. doi: 10.1038/nature09205.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program for Evolutionary Dynamics, Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA. martin_nowak@harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20740005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; *Biological Evolution ; Female ; Humans ; Insects/physiology ; Male ; Models, Biological ; Selection, Genetic ; *Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2010-11-26
    Description: Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Li-Qing -- Hou, Bi-Huei -- Lalonde, Sylvie -- Takanaga, Hitomi -- Hartung, Mara L -- Qu, Xiao-Qing -- Guo, Woei-Jiun -- Kim, Jung-Gun -- Underwood, William -- Chaudhuri, Bhavna -- Chermak, Diane -- Antony, Ginny -- White, Frank F -- Somerville, Shauna C -- Mudgett, Mary Beth -- Frommer, Wolf B -- 1R01DK079109/DK/NIDDK NIH HHS/ -- F32GM083439-02/GM/NIGMS NIH HHS/ -- R01 DK079109/DK/NIDDK NIH HHS/ -- R01 DK079109-01/DK/NIDDK NIH HHS/ -- R01 DK079109-02/DK/NIDDK NIH HHS/ -- R01 DK079109-03/DK/NIDDK NIH HHS/ -- R01 DK079109-03S1/DK/NIDDK NIH HHS/ -- R01 DK079109-04/DK/NIDDK NIH HHS/ -- R01 GM068886/GM/NIGMS NIH HHS/ -- ZR01GM06886-06A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Nov 25;468(7323):527-32. doi: 10.1038/nature09606.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport/genetics ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Glucose/*metabolism ; HEK293 Cells ; Host-Pathogen Interactions/*physiology ; Humans ; Membrane Transport Proteins/*metabolism ; Models, Biological ; Oryza/genetics/metabolism/microbiology ; RNA, Messenger/metabolism ; Saccharomyces cerevisiae/genetics ; Xenopus/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okasha, Samir -- England -- Nature. 2010 Oct 7;467(7316):653-5. doi: 10.1038/467653a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Philosophy, University of Bristol, Bristol BS8 1TB, UK. Samir.Okasha@bristol.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20930821" target="_blank"〉PubMed〈/a〉
    Keywords: *Altruism ; Animals ; Biological Evolution ; *Cooperative Behavior ; Female ; Group Processes ; Male ; Models, Biological ; *Research Personnel ; Selection, Genetic ; Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vedral, Vlatko -- England -- Nature. 2010 Dec 9;468(7325):769-70. doi: 10.1038/468769a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150986" target="_blank"〉PubMed〈/a〉
    Keywords: Hot Temperature ; Models, Biological ; Photosynthesis ; *Quantum Theory ; *Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2010-09-14
    Description: Messenger RNA lacking stop codons ('non-stop mRNA') can arise from errors in gene expression, and encode aberrant proteins whose accumulation could be deleterious to cellular function. In bacteria, these 'non-stop proteins' become co-translationally tagged with a peptide encoded by ssrA/tmRNA (transfer-messenger RNA), which signals their degradation by energy-dependent proteases. How eukaryotic cells eliminate non-stop proteins has remained unknown. Here we show that the Saccharomyces cerevisiae Ltn1 RING-domain-type E3 ubiquitin ligase acts in the quality control of non-stop proteins, in a process that is mechanistically distinct but conceptually analogous to that performed by ssrA: Ltn1 is predominantly associated with ribosomes, and it marks nascent non-stop proteins with ubiquitin to signal their proteasomal degradation. Ltn1-mediated ubiquitylation of non-stop proteins seems to be triggered by their stalling in ribosomes on translation through the poly(A) tail. The biological relevance of this process is underscored by the finding that loss of Ltn1 function confers sensitivity to stress caused by increased non-stop protein production. We speculate that defective protein quality control may underlie the neurodegenerative phenotype that results from mutation of the mouse Ltn1 homologue Listerin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988496/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988496/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bengtson, Mario H -- Joazeiro, Claudio A P -- R01 GM083060/GM/NIGMS NIH HHS/ -- R01 GM083060-03/GM/NIGMS NIH HHS/ -- R01GM083060/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):470-3. doi: 10.1038/nature09371. Epub 2010 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, CB168, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20835226" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Codon, Terminator/genetics ; Mice ; Models, Biological ; Peptide Chain Termination, Translational ; Polylysine/biosynthesis/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Protein Biosynthesis/*physiology ; Ribosomes/*enzymology/*metabolism ; Saccharomyces cerevisiae/cytology/enzymology/genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Stress, Physiological ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2010-07-09
    Description: Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuello, Luis G -- Jogini, Vishwanath -- Cortes, D Marien -- Perozo, Eduardo -- R01 GM057846/GM/NIGMS NIH HHS/ -- R01 GM057846-15/GM/NIGMS NIH HHS/ -- R01-GM57846/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 8;466(7303):203-8. doi: 10.1038/nature09153.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613835" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Electrons ; *Ion Channel Gating ; Kinetics ; Models, Biological ; Models, Molecular ; Potassium/metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; Streptomyces lividans/*chemistry ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2010-10-29
    Description: Sex determination is a fundamental biological process, yet its mechanisms are remarkably diverse. In vertebrates, sex can be determined by inherited genetic factors or by the temperature experienced during embryonic development. However, the evolutionary causes of this diversity remain unknown. Here we show that live-bearing lizards at different climatic extremes of the species' distribution differ in their sex-determining mechanisms, with temperature-dependent sex determination in lowlands and genotypic sex determination in highlands. A theoretical model parameterized with field data accurately predicts this divergence in sex-determining systems and the consequence thereof for variation in cohort sex ratios among years. Furthermore, we show that divergent natural selection on sex determination across altitudes is caused by climatic effects on lizard life history and variation in the magnitude of between-year temperature fluctuations. Our results establish an adaptive explanation for intra-specific divergence in sex-determining systems driven by phenotypic plasticity and ecological selection, thereby providing a unifying framework for integrating the developmental, ecological and evolutionary basis for variation in vertebrate sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pen, Ido -- Uller, Tobias -- Feldmeyer, Barbara -- Harts, Anna -- While, Geoffrey M -- Wapstra, Erik -- England -- Nature. 2010 Nov 18;468(7322):436-8. doi: 10.1038/nature09512. Epub 2010 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology Group, University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands. i.r.pen@rug.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981009" target="_blank"〉PubMed〈/a〉
    Keywords: Altitude ; Animals ; Biological Evolution ; *Climate ; Female ; Genotype ; Lizards/*genetics/*physiology ; Male ; Models, Biological ; Phenotype ; Selection, Genetic ; Sex Chromosomes ; *Sex Determination Processes/genetics/physiology ; *Sex Differentiation/genetics/physiology ; Sex Ratio ; *Temperature ; Time Factors ; Viviparity, Nonmammalian/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbott, Alison -- England -- Nature. 2010 Dec 16;468(7326):879. doi: 10.1038/468879a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164453" target="_blank"〉PubMed〈/a〉
    Keywords: Cooperative Behavior ; Drug-Related Side Effects and Adverse Reactions ; Germany ; Hepatocytes/metabolism ; Humans ; Interdisciplinary Communication ; Liver/*physiology ; Models, Biological ; Pharmaceutical Preparations/metabolism ; Physics ; Research Personnel ; Systems Biology/economics/manpower/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2010-06-29
    Description: The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mangan, Scott A -- Schnitzer, Stefan A -- Herre, Edward A -- Mack, Keenan M L -- Valencia, Mariana C -- Sanchez, Evelyn I -- Bever, James D -- R01 GM092660/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):752-5. doi: 10.1038/nature09273.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Wisconsin-Milwaukee, Wisconsin 53201, USA. smangan37@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20581819" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Biomass ; Computer Simulation ; Feedback, Physiological ; Food Chain ; Insects/physiology ; Models, Biological ; Panama ; Population Density ; Seedlings/growth & development ; Soil/*analysis ; *Soil Microbiology ; Species Specificity ; Trees/*classification/*growth & development/microbiology/parasitology ; *Tropical Climate ; Vertebrates/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2010-12-18
    Description: Changes in gene regulatory networks are a major source of evolutionary novelty. Here we describe a specific type of network rewiring event, one that intercalates a new level of transcriptional control into an ancient circuit. We deduce that, over evolutionary time, the direct ancestral connections between a regulator and its target genes were broken and replaced by indirect connections, preserving the overall logic of the ancestral circuit but producing a new behaviour. The example was uncovered through a series of experiments in three ascomycete yeasts: the bakers' yeast Saccharomyces cerevisiae, the dairy yeast Kluyveromyces lactis and the human pathogen Candida albicans. All three species have three cell types: two mating-competent cell forms (a and alpha) and the product of their mating (a/alpha), which is mating-incompetent. In the ancestral mating circuit, two homeodomain proteins, Mata1 and Matalpha2, form a heterodimer that directly represses four genes that are expressed only in a and alpha cells and are required for mating. In a relatively recent ancestor of K. lactis, a reorganization occurred. The Mata1-Matalpha2 heterodimer represses the same four genes (known as the core haploid-specific genes) but now does so indirectly through an intermediate regulatory protein, Rme1. The overall logic of the ancestral circuit is preserved (haploid-specific genes ON in a and alpha cells and OFF in a/alpha cells), but a new phenotype was produced by the rewiring: unlike S. cerevisiae and C. albicans, K. lactis integrates nutritional signals, by means of Rme1, into the decision of whether or not to mate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254258/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254258/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Booth, Lauren N -- Tuch, Brian B -- Johnson, Alexander D -- R01 GM037049/GM/NIGMS NIH HHS/ -- R01 GM037049-26/GM/NIGMS NIH HHS/ -- R01 GM037049-27/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):959-63. doi: 10.1038/nature09560.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164485" target="_blank"〉PubMed〈/a〉
    Keywords: Candida albicans/cytology/*genetics/metabolism/physiology ; *Evolution, Molecular ; Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Fungal/genetics ; Genes, Fungal/genetics ; Homeodomain Proteins/genetics/metabolism ; Kluyveromyces/cytology/*genetics/physiology ; Models, Biological ; Phenotype ; Protein Precursors/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae/cytology/*genetics/metabolism/physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2010-08-21
    Description: Laryngeal echolocation, used by most living bats to form images of their surroundings and to detect and capture flying prey, is considered to be a key innovation for the evolutionary success of bats, and palaeontologists have long sought osteological correlates of echolocation that can be used to infer the behaviour of fossil bats. Veselka et al. argued that the most reliable trait indicating echolocation capabilities in bats is an articulation between the stylohyal bone (part of the hyoid apparatus that supports the throat and larynx) and the tympanic bone, which forms the floor of the middle ear. They examined the oldest and most primitive known bat, Onychonycteris finneyi (early Eocene, USA), and argued that it showed evidence of this stylohyal-tympanic articulation, from which they concluded that O. finneyi may have been capable of echolocation. We disagree with their interpretation of key fossil data and instead argue that O. finneyi was probably not an echolocating bat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simmons, Nancy B -- Seymour, Kevin L -- Habersetzer, Jorg -- Gunnell, Gregg F -- England -- Nature. 2010 Aug 19;466(7309):E8; discussion E9. doi: 10.1038/nature09219.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA. simmons@amnh.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724993" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/physiology ; Animals ; Bone and Bones/physiology ; Chiroptera/anatomy & histology/*physiology ; Echolocation/*physiology ; *Fossils ; Models, Biological ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2010-11-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powers, Joseph E -- England -- Nature. 2010 Nov 18;468(7322):385-6. doi: 10.1038/468385a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085170" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification ; *Biodiversity ; Databases, Factual ; *Ecosystem ; *Fisheries ; *Fishes ; Food Chain ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viswanathan, Gandhimohan M -- England -- Nature. 2010 Jun 24;465(7301):1018-9. doi: 10.1038/4651018a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Fishes/*physiology ; *Food ; Locomotion/*physiology ; Models, Biological ; Predatory Behavior/*physiology ; *Seawater ; Swimming/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2010-12-03
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088109/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kielian, Margaret -- R01 AI075647/AI/NIAID NIH HHS/ -- R01 AI075647-17/AI/NIAID NIH HHS/ -- R01 GM057454/GM/NIGMS NIH HHS/ -- R01 GM057454-11/GM/NIGMS NIH HHS/ -- R21 AI067931/AI/NIAID NIH HHS/ -- R21 AI067931-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):645-6. doi: 10.1038/468645a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124448" target="_blank"〉PubMed〈/a〉
    Keywords: Chikungunya virus/*chemistry/physiology ; Crystallography, X-Ray ; Membrane Fusion ; Membrane Glycoproteins/*chemistry/metabolism ; Models, Biological ; Protein Multimerization ; Protein Structure, Quaternary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*physiology ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2010-01-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kilner, Rebecca -- England -- Nature. 2010 Jan 14;463(7278):165-7. doi: 10.1038/463165a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075907" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Birds/*parasitology/*physiology ; Cues ; Discrimination Learning/*physiology ; Models, Biological ; Nesting Behavior/*physiology ; Pattern Recognition, Visual/physiology ; Survival Rate ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2010-08-21
    Description: Theory predicts that the evolution of cooperative behaviour is favoured by low levels of promiscuity leading to high within-group relatedness. However, in vertebrates, cooperation often occurs between non-relatives and promiscuity rates are among the highest recorded. Here we resolve this apparent inconsistency with a phylogenetic analysis of 267 bird species, demonstrating that cooperative breeding is associated with low promiscuity; that in cooperative species, helping is more common when promiscuity is low; and that intermediate levels of promiscuity favour kin discrimination. Overall, these results suggest that promiscuity is a unifying feature across taxa in explaining transitions to and from cooperative societies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cornwallis, Charlie K -- West, Stuart A -- Davis, Katie E -- Griffin, Ashleigh S -- England -- Nature. 2010 Aug 19;466(7309):969-72. doi: 10.1038/nature09335.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/classification/genetics/*physiology ; *Cooperative Behavior ; Fathers ; Female ; Male ; Models, Biological ; Mothers ; Phylogeny ; Reproduction/genetics/physiology ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2010-06-22
    Description: Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahn, Yong-Yeol -- Bagrow, James P -- Lehmann, Sune -- U01 A1070499-01/PHS HHS/ -- England -- Nature. 2010 Aug 5;466(7307):761-4. doi: 10.1038/nature09182. Epub 2010 Jun 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Complex Network Research, Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20562860" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Phones/utilization ; Cities ; *Community Networks/statistics & numerical data ; Humans ; *Metabolic Networks and Pathways ; Models, Biological ; *Protein Interaction Mapping
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2010-04-09
    Description: Animals that travel together in groups display a variety of fascinating motion patterns thought to be the result of delicate local interactions among group members. Although the most informative way of investigating and interpreting collective movement phenomena would be afforded by the collection of high-resolution spatiotemporal data from moving individuals, such data are scarce and are virtually non-existent for long-distance group motion within a natural setting because of the associated technological difficulties. Here we present results of experiments in which track logs of homing pigeons flying in flocks of up to 10 individuals have been obtained by high-resolution lightweight GPS devices and analysed using a variety of correlation functions inspired by approaches common in statistical physics. We find a well-defined hierarchy among flock members from data concerning leading roles in pairwise interactions, defined on the basis of characteristic delay times between birds' directional choices. The average spatial position of a pigeon within the flock strongly correlates with its place in the hierarchy, and birds respond more quickly to conspecifics perceived primarily through the left eye-both results revealing differential roles for birds that assume different positions with respect to flock-mates. From an evolutionary perspective, our results suggest that hierarchical organization of group flight may be more efficient than an egalitarian one, at least for those flock sizes that permit regular pairwise interactions among group members, during which leader-follower relationships are consistently manifested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagy, Mate -- Akos, Zsuzsa -- Biro, Dora -- Vicsek, Tamas -- England -- Nature. 2010 Apr 8;464(7290):890-3. doi: 10.1038/nature08891.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Physics, Eotvos University, Pazmany Peter setany 1A, H-1117, Budapest, Hungary.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Columbidae/*physiology ; Decision Making ; Flight, Animal/*physiology ; Geographic Information Systems ; *Group Processes ; *Hierarchy, Social ; Leadership ; Locomotion/physiology ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2010-02-26
    Description: The longstanding concept that corneal epithelial stem cells reside mainly in the limbus is supported by the absence of major corneal epithelial differentiation markers, that is, K3 and K12 keratins, in limbal basal cells (these markers are expressed, however, in corneal basal cells, thus distinguishing the mode of keratin expression in corneal epithelium from that of all other stratified epithelia), the centripetal migration of corneal epithelial cells, the exclusive location of slow-cycling cells in the limbal basal layer, the superior in vitro proliferative potential of limbal epithelial cells, and the transplanted limbal cells' ability to reconstitute corneal epithelium in vivo (reviewed in refs 1-4). Moreover, previous data indicate that corneal and conjunctival epithelia represent two separate cell lineages (reviewed in refs 1-4). Majo et al. suggested, however, that corneal and conjunctival epithelia are equipotent, and that identical oligopotent stem cells are present throughout the corneal, limbal and conjunctival epithelia. We point out here that these suggestions are inconsistent with many known growth, differentiation and cell migration properties of the anterior ocular epithelia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Tung-Tien -- Tseng, Scheffer C -- Lavker, Robert M -- England -- Nature. 2010 Feb 25;463(7284):E10-1; discussion E11. doi: 10.1038/nature08805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA. sunt01@nyumc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20182462" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cell Differentiation ; Cell Lineage ; *Cell Movement ; Cell Proliferation ; Conjunctiva/cytology ; Epithelium, Corneal/*cytology ; Goblet Cells/cytology ; Humans ; Limbus Corneae/*cytology ; Mice ; Models, Biological ; Rabbits ; Reproducibility of Results ; Sheep ; Stem Cells/*cytology ; Swine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2010-10-29
    Description: Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated, is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy. Whether the dismal prognosis of patients with pancreatic cancer compared to patients with other types of cancer is a result of late diagnosis or early dissemination of disease to distant organs is not known. Here we rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers. We find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone. Thus, genetic heterogeneity of metastases reflects that within the primary carcinoma. A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell. At least five more years are required for the acquisition of metastatic ability and patients die an average of two years thereafter. These data provide novel insights into the genetic features underlying pancreatic cancer progression and define a broad time window of opportunity for early detection to prevent deaths from metastatic disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148940/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148940/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yachida, Shinichi -- Jones, Sian -- Bozic, Ivana -- Antal, Tibor -- Leary, Rebecca -- Fu, Baojin -- Kamiyama, Mihoko -- Hruban, Ralph H -- Eshleman, James R -- Nowak, Martin A -- Velculescu, Victor E -- Kinzler, Kenneth W -- Vogelstein, Bert -- Iacobuzio-Donahue, Christine A -- A62924/PHS HHS/ -- CA106610/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- GM078986/GM/NIGMS NIH HHS/ -- K08 CA106610/CA/NCI NIH HHS/ -- K08 CA106610-04/CA/NCI NIH HHS/ -- K08 CA106610-05/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA062924-10/CA/NCI NIH HHS/ -- P50 CA062924-11/CA/NCI NIH HHS/ -- P50 CA062924-12/CA/NCI NIH HHS/ -- R01 CA057345/CA/NCI NIH HHS/ -- R01 CA057345-08/CA/NCI NIH HHS/ -- R01 CA057345-09/CA/NCI NIH HHS/ -- R01 CA057345-10/CA/NCI NIH HHS/ -- R01 CA121113/CA/NCI NIH HHS/ -- R01 CA121113-03/CA/NCI NIH HHS/ -- R01 CA121113-04/CA/NCI NIH HHS/ -- R01 CA121113-05/CA/NCI NIH HHS/ -- R01 CA140599/CA/NCI NIH HHS/ -- R01 GM078986/GM/NIGMS NIH HHS/ -- R01 GM078986-02/GM/NIGMS NIH HHS/ -- R01 GM078986-03/GM/NIGMS NIH HHS/ -- R01 GM078986-04/GM/NIGMS NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37 CA043460-24/CA/NCI NIH HHS/ -- R37 CA043460-25/CA/NCI NIH HHS/ -- R37 CA043460-26/CA/NCI NIH HHS/ -- R37 CA057345/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Oct 28;467(7319):1114-7. doi: 10.1038/nature09515.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981102" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/genetics/pathology ; Autopsy ; Cell Lineage/genetics ; Clone Cells/metabolism/pathology ; DNA Mutational Analysis ; *Disease Progression ; Early Detection of Cancer ; *Evolution, Molecular ; Humans ; Liver Neoplasms/genetics/secondary ; Lung Neoplasms/genetics/secondary ; Models, Biological ; Mutation/*genetics ; Neoplasm Metastasis/*genetics/pathology ; Pancreas/metabolism/pathology ; Pancreatic Neoplasms/*genetics/*pathology ; Peritoneal Neoplasms/genetics/secondary ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2010-10-15
    Description: The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment (a process required for cell division), but the molecular mechanism underlying its function remains unknown. Here we present a subnanometre-resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component proteins. We find that the Ndc80 complex binds the microtubule with a tubulin monomer repeat, recognizing alpha- and beta-tubulin at both intra- and inter-tubulin dimer interfaces in a manner that is sensitive to tubulin conformation. Furthermore, Ndc80 complexes self-associate along protofilaments through interactions mediated by the amino-terminal tail of the NDC80 protein, which is the site of phospho-regulation by Aurora B kinase. The complex's mode of interaction with the microtubule and its oligomerization suggest a mechanism by which Aurora B could regulate the stability of load-bearing kinetochore-microtubule attachments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957311/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957311/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alushin, Gregory M -- Ramey, Vincent H -- Pasqualato, Sebastiano -- Ball, David A -- Grigorieff, Nikolaus -- Musacchio, Andrea -- Nogales, Eva -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Oct 14;467(7317):805-10. doi: 10.1038/nature09423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Graduate Group, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944740" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Humans ; Kinetochores/*chemistry/ultrastructure ; Microtubules/chemistry/*metabolism/ultrastructure ; Mitosis ; Models, Biological ; Models, Molecular ; Nuclear Proteins/*chemistry/*metabolism/ultrastructure ; Protein Conformation ; Tubulin/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2010-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nealson, Kenneth H -- England -- Nature. 2010 Feb 25;463(7284):1033-4. doi: 10.1038/4631033a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20182504" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/metabolism ; Diffusion ; *Electric Conductivity ; Electron Transport ; Geologic Sediments/*chemistry/*microbiology ; Humans ; Hydrogen Sulfide/analysis/metabolism ; Hydrogen-Ion Concentration ; Models, Biological ; Nanowires/microbiology ; Oxygen/analysis/metabolism ; Seawater/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2010-11-05
    Description: The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1-3.0 mum size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yooseph, Shibu -- Nealson, Kenneth H -- Rusch, Douglas B -- McCrow, John P -- Dupont, Christopher L -- Kim, Maria -- Johnson, Justin -- Montgomery, Robert -- Ferriera, Steve -- Beeson, Karen -- Williamson, Shannon J -- Tovchigrechko, Andrey -- Allen, Andrew E -- Zeigler, Lisa A -- Sutton, Granger -- Eisenstadt, Eric -- Rogers, Yu-Hui -- Friedman, Robert -- Frazier, Marvin -- Venter, J Craig -- England -- Nature. 2010 Nov 4;468(7320):60-6. doi: 10.1038/nature09530.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Rockville, Maryland 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048761" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms/classification/*genetics/isolation & purification/virology ; Biodiversity ; Biomass ; Databases, Protein ; Genome, Bacterial/genetics ; *Genomics ; *Metagenome ; Models, Biological ; Oceans and Seas ; Phylogeny ; Plankton/*genetics/growth & development/isolation & purification/metabolism ; Prokaryotic Cells/classification/*metabolism/virology ; RNA, Ribosomal, 16S/genetics ; Water Microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2010-05-11
    Description: Field experiments that measure natural selection in response to manipulations of the selective regime are extremely rare, even in systems where the ecological basis of adaptation has been studied extensively. The adaptive radiation of Caribbean Anolis lizards has been studied for decades, leading to precise predictions about the influence of alternative agents of selection in the wild. Here we present experimental evidence for the relative importance of two putative agents of selection in shaping the adaptive landscape for a classic island radiation. We manipulated whole-island populations of the brown anole lizard, Anolis sagrei, to measure the relative importance of predation versus competition as agents of natural selection. We excluded or included bird and snake predators across six islands that ranged from low to high population densities of lizards, then measured subsequent differences in behaviour and natural selection in each population. Predators altered the lizards' perching behaviour and increased mortality, but predation treatments did not alter selection on phenotypic traits. By contrast, experimentally increasing population density dramatically increased the strength of viability selection favouring large body size, long relative limb length and high running stamina. Our results from A. sagrei are consistent with the hypothesis that intraspecific competition is more important than predation in shaping the selective landscape for traits central to the adaptive radiation of Anolis ecomorphs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calsbeek, Ryan -- Cox, Robert M -- England -- Nature. 2010 Jun 3;465(7298):613-6. doi: 10.1038/nature09020. Epub 2010 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA. ryan.calsbeek@dartmouth.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20453837" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bahamas ; Behavior, Animal/physiology ; *Biological Evolution ; Birds/physiology ; Body Size/physiology ; Competitive Behavior/*physiology ; Extremities/anatomy & histology ; Geography ; Lizards/anatomy & histology/*physiology ; Models, Biological ; Organ Size/physiology ; Phenotype ; Population Density ; Predatory Behavior/*physiology ; Running/physiology ; Selection, Genetic/*physiology ; Snakes/physiology ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2010-02-12
    Description: Benzodiazepines are widely used in clinics and for recreational purposes, but will lead to addiction in vulnerable individuals. Addictive drugs increase the levels of dopamine and also trigger long-lasting synaptic adaptations in the mesolimbic reward system that ultimately may induce the pathological behaviour. The neural basis for the addictive nature of benzodiazepines, however, remains elusive. Here we show that benzodiazepines increase firing of dopamine neurons of the ventral tegmental area through the positive modulation of GABA(A) (gamma-aminobutyric acid type A) receptors in nearby interneurons. Such disinhibition, which relies on alpha1-containing GABA(A) receptors expressed in these cells, triggers drug-evoked synaptic plasticity in excitatory afferents onto dopamine neurons and underlies drug reinforcement. Taken together, our data provide evidence that benzodiazepines share defining pharmacological features of addictive drugs through cell-type-specific expression of alpha1-containing GABA(A) receptors in the ventral tegmental area. The data also indicate that subunit-selective benzodiazepines sparing alpha1 may be devoid of addiction liability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Kelly R -- Brown, Matthew -- Labouebe, Gwenael -- Yvon, Cedric -- Creton, Cyril -- Fritschy, Jean-Marc -- Rudolph, Uwe -- Luscher, Christian -- DA019022/DA/NIDA NIH HHS/ -- R01 DA019022/DA/NIDA NIH HHS/ -- R01 DA019022-04/DA/NIDA NIH HHS/ -- England -- Nature. 2010 Feb 11;463(7282):769-74. doi: 10.1038/nature08758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20148031" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Administration, Oral ; Animals ; Behavior, Addictive/*chemically induced/pathology/*physiopathology ; Benzodiazepines/administration & dosage/*adverse effects/*pharmacology ; Dopamine/metabolism ; Electric Conductivity ; Glutamic Acid/metabolism ; In Vitro Techniques ; Inhibitory Postsynaptic Potentials/drug effects/physiology ; Interneurons/drug effects/metabolism ; Mice ; Mice, Inbred C57BL ; Midazolam/administration & dosage/adverse effects/pharmacology ; Models, Biological ; Morphine/pharmacology ; Neuronal Plasticity/drug effects ; Neurons/*drug effects/metabolism ; Organ Specificity ; Receptors, AMPA/metabolism ; Receptors, GABA-A/deficiency/genetics/metabolism ; Substrate Specificity ; Ventral Tegmental Area/cytology/drug effects/metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2010-02-05
    Description: The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It locates its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae odorant receptor (AgOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odorants elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behaviour. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odorant receptor repertoire. We find that odorants are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carey, Allison F -- Wang, Guirong -- Su, Chih-Ying -- Zwiebel, Laurence J -- Carlson, John R -- 2T32GM07205/GM/NIGMS NIH HHS/ -- R01 AI056402/AI/NIAID NIH HHS/ -- R01 AI056402-06A2/AI/NIAID NIH HHS/ -- R01 AI056402-07/AI/NIAID NIH HHS/ -- R01 DC002174/DC/NIDCD NIH HHS/ -- R01 DC002174-24/DC/NIDCD NIH HHS/ -- R01 DC004729/DC/NIDCD NIH HHS/ -- R01 DC004729-10/DC/NIDCD NIH HHS/ -- R01 GM063364/GM/NIGMS NIH HHS/ -- R01 GM063364-08/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Mar 4;464(7285):66-71. doi: 10.1038/nature08834. Epub 2010 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/anatomy & histology/genetics/*metabolism ; Drosophila melanogaster/cytology/genetics/metabolism ; Electrophysiology ; Humans ; Insect Bites and Stings/prevention & control ; Insect Vectors/*metabolism ; *Malaria/prevention & control/transmission ; Models, Biological ; Odors/*analysis ; Olfactory Pathways/*metabolism ; Olfactory Receptor Neurons/metabolism ; Receptors, Odorant/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2010-06-29
    Description: Cells operate in dynamic environments using extraordinary communication capabilities that emerge from the interactions of genetic circuitry. The mammalian immune response is a striking example of the coordination of different cell types. Cell-to-cell communication is primarily mediated by signalling molecules that form spatiotemporal concentration gradients, requiring cells to respond to a wide range of signal intensities. Here we use high-throughput microfluidic cell culture and fluorescence microscopy, quantitative gene expression analysis and mathematical modelling to investigate how single mammalian cells respond to different concentrations of the signalling molecule tumour-necrosis factor (TNF)-alpha, and relay information to the gene expression programs by means of the transcription factor nuclear factor (NF)-kappaB. We measured NF-kappaB activity in thousands of live cells under TNF-alpha doses covering four orders of magnitude. We find, in contrast to population-level studies with bulk assays, that the activation is heterogeneous and is a digital process at the single-cell level with fewer cells responding at lower doses. Cells also encode a subtle set of analogue parameters to modulate the outcome; these parameters include NF-kappaB peak intensity, response time and number of oscillations. We developed a stochastic mathematical model that reproduces both the digital and analogue dynamics as well as most gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-alpha-induced NF-kappaB signalling in various types of cells. These results highlight the value of high-throughput quantitative measurements with single-cell resolution in understanding how biological systems operate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105528/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105528/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tay, Savas -- Hughey, Jacob J -- Lee, Timothy K -- Lipniacki, Tomasz -- Quake, Stephen R -- Covert, Markus W -- K99CA125994/CA/NCI NIH HHS/ -- R00 CA125994/CA/NCI NIH HHS/ -- R00 CA125994-05/CA/NCI NIH HHS/ -- R01-GM086885/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 8;466(7303):267-71. doi: 10.1038/nature09145. Epub 2010 Jun 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20581820" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Active Transport, Cell Nucleus/drug effects ; Animals ; Cell Culture Techniques ; Cell Nucleus/drug effects/metabolism ; Cell Survival ; Dose-Response Relationship, Drug ; Gene Expression Profiling/*methods ; Gene Expression Regulation/*drug effects ; High-Throughput Screening Assays/*methods ; Mice ; Microfluidic Analytical Techniques ; Microscopy, Fluorescence ; Models, Biological ; NF-kappa B/*metabolism ; Signal Transduction/*drug effects/*physiology ; Stochastic Processes ; Substrate Specificity ; Time Factors ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2010-01-08
    Description: The fossil record of the earliest tetrapods (vertebrates with limbs rather than paired fins) consists of body fossils and trackways. The earliest body fossils of tetrapods date to the Late Devonian period (late Frasnian stage) and are preceded by transitional elpistostegids such as Panderichthys and Tiktaalik that still have paired fins. Claims of tetrapod trackways predating these body fossils have remained controversial with regard to both age and the identity of the track makers. Here we present well-preserved and securely dated tetrapod tracks from Polish marine tidal flat sediments of early Middle Devonian (Eifelian stage) age that are approximately 18 million years older than the earliest tetrapod body fossils and 10 million years earlier than the oldest elpistostegids. They force a radical reassessment of the timing, ecology and environmental setting of the fish-tetrapod transition, as well as the completeness of the body fossil record.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niedzwiedzki, Grzegorz -- Szrek, Piotr -- Narkiewicz, Katarzyna -- Narkiewicz, Marek -- Ahlberg, Per E -- England -- Nature. 2010 Jan 7;463(7277):43-8. doi: 10.1038/nature08623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology and Evolution, Faculty of Biology, Warsaw University, 2S. Banacha Street, 02-097 Warsaw, Poland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054388" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chordata/anatomy & histology/*physiology ; Extremities/anatomy & histology/physiology ; Fishes/anatomy & histology/physiology ; *Fossils ; Gait/*physiology ; History, Ancient ; Models, Biological ; Phylogeny ; Poland
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...