ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (2,852)
  • Rats  (2,686)
  • *Ecosystem  (1,597)
  • *Biological Evolution  (1,390)
  • American Association for the Advancement of Science (AAAS)  (8,215)
  • American Meteorological Society
  • MDPI Publishing
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2016-01-20
    Description: The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11-base pair (bp) activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits characteristic single-bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Sensory neuron subtypes can therefore evolve through single-bp changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rister, Jens -- Razzaq, Ansa -- Boodram, Pamela -- Desai, Nisha -- Tsanis, Cleopatra -- Chen, Hongtao -- Jukam, David -- Desplan, Claude -- K99EY023995/EY/NEI NIH HHS/ -- R01 EY13010/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1258-61. doi: 10.1126/science.aab3417.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA. ; Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA. cd38@nyu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Drosophila Proteins/*genetics ; Drosophila melanogaster/genetics/growth & development ; *Gene Expression Regulation, Developmental ; Mutation ; Photoreceptor Cells, Invertebrate/*physiology ; Promoter Regions, Genetic/*genetics ; Rhodopsin/*genetics ; Transcription Factors/metabolism ; Vision, Ocular/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Underwood, Emily -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1188-90. doi: 10.1126/science.350.6265.1188.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785475" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/blood/genetics/*physiology ; Animals ; Biological Clocks/genetics/*physiology ; Biomarkers/blood/metabolism ; DNA/genetics ; DNA Methylation ; Epigenesis, Genetic ; Humans ; Mice ; Rats ; Telomere Homeostasis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-20
    Description: Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD, NDD, and CA but only 2% of patients with isolated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in RBFOX2, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal shared genetic contributions to CHD, NDD, and CA and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Homsy, Jason -- Zaidi, Samir -- Shen, Yufeng -- Ware, James S -- Samocha, Kaitlin E -- Karczewski, Konrad J -- DePalma, Steven R -- McKean, David -- Wakimoto, Hiroko -- Gorham, Josh -- Jin, Sheng Chih -- Deanfield, John -- Giardini, Alessandro -- Porter, George A Jr -- Kim, Richard -- Bilguvar, Kaya -- Lopez-Giraldez, Francesc -- Tikhonova, Irina -- Mane, Shrikant -- Romano-Adesman, Angela -- Qi, Hongjian -- Vardarajan, Badri -- Ma, Lijiang -- Daly, Mark -- Roberts, Amy E -- Russell, Mark W -- Mital, Seema -- Newburger, Jane W -- Gaynor, J William -- Breitbart, Roger E -- Iossifov, Ivan -- Ronemus, Michael -- Sanders, Stephan J -- Kaltman, Jonathan R -- Seidman, Jonathan G -- Brueckner, Martina -- Gelb, Bruce D -- Goldmuntz, Elizabeth -- Lifton, Richard P -- Seidman, Christine E -- Chung, Wendy K -- T32 HL007208/HL/NHLBI NIH HHS/ -- Arthritis Research UK/United Kingdom -- British Heart Foundation/United Kingdom -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1262-6. doi: 10.1126/science.aac9396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. NIHR Cardiovascular Biomedical Research Unit at Royal Brompton & Harefield NHS Foundation and Trust and Imperial College London, London, UK. National Heart & Lung Institute, Imperial College London, London, UK. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Cardiology, University College London and Great Ormond Street Hospital, London, UK. ; Department of Pediatrics, University of Rochester Medical Center, The School of Medicine and Dentistry, Rochester, NY, USA. ; Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Steven and Alexandra Cohen Children's Medical Center of New York, New Hyde Park, NY, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA. ; Department of Neurology, Columbia University Medical Center, New York, NY, USA. ; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA. ; Department of Cardiology, Children's Hospital Boston, Boston, MA, USA. ; Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI, USA. ; Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada. ; Department of Cardiology, Boston Children's Hospital, Boston, MA, USA. ; Department of Pediatric Cardiac Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. ; Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA. ; Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. Cardiovascular Division, Brigham & Women's Hospital, Harvard University, Boston, MA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785492" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/abnormalities/metabolism ; Child ; Congenital Abnormalities/genetics ; Exome/genetics ; Heart Defects, Congenital/*diagnosis/*genetics ; Humans ; Mutation ; Nervous System Malformations/*genetics ; Neurogenesis/*genetics ; Prognosis ; RNA Splicing/genetics ; RNA, Messenger/genetics ; RNA-Binding Proteins/genetics ; Repressor Proteins/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexandrov, Ludmil B -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1175. doi: 10.1126/science.aad7363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM 87545, USA. lba@lanl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785464" target="_blank"〉PubMed〈/a〉
    Keywords: *Computer Simulation ; DNA Mutational Analysis ; Genomics/*methods ; Humans ; *Models, Genetic ; *Mutagenesis ; Mutation ; Neoplasms/classification/*genetics/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1186-7. doi: 10.1126/science.350.6265.1186.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Caloric Restriction ; Death ; Humans ; Hydra/genetics/physiology ; Longevity/genetics/*physiology ; Mice ; Mutation ; Phosphatidylinositol 3-Kinases/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodell, Margaret A -- Rando, Thomas A -- P01 AG036695/AG/NIA NIH HHS/ -- R01 AG047820/AG/NIA NIH HHS/ -- R01 AR062185/AR/NIAMS NIH HHS/ -- R37 AG023806/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1199-204. doi: 10.1126/science.aab3388.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, and Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. goodell@bcm.edu rando@stanford.edu. ; Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA, and Center for Regenerative Rehabilitation, Veterans Administration Palo Alto Health Care System, Palo Alto, CA 94304, USA. goodell@bcm.edu rando@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785478" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*physiology ; Aging/*physiology ; Animals ; Cell Aging ; Epigenesis, Genetic ; Genetic Drift ; *Health ; Humans ; Mice ; Mutation ; Organ Specificity ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Servick, Kelly -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):15. doi: 10.1126/science.351.6268.15.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26721984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; California ; Cell Differentiation ; Clinical Trials as Topic ; Drug Industry ; Embryonic Stem Cells/cytology/*transplantation ; Financing, Organized ; Humans ; Photoreceptor Cells/physiology ; Rats ; Regenerative Medicine/*economics/*trends ; Retina/cytology/physiology ; Stem Cell Research/*economics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-26
    Description: Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Yuan -- Chen, Xiang -- Elsasser, Suzanne -- Stocks, Bradley B -- Tian, Geng -- Lee, Byung-Hoon -- Shi, Yanhong -- Zhang, Naixia -- de Poot, Stefanie A H -- Tuebing, Fabian -- Sun, Shuangwu -- Vannoy, Jacob -- Tarasov, Sergey G -- Engen, John R -- Finley, Daniel -- Walters, Kylie J -- New York, N.Y. -- Science. 2016 Feb 19;351(6275). pii: aad9421. doi: 10.1126/science.aad9421.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Linganore High School, Frederick, MD 21701, USA. ; Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912900" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Binding Proteins/metabolism ; Endopeptidases/metabolism ; Metabolic Networks and Pathways ; Models, Molecular ; Mutation ; Proteasome Endopeptidase Complex/chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Ubiquitin-Specific Proteases/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-26
    Description: Voltage-gated CaV1.2 channels (L-type calcium channel alpha1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VDeltaC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VDeltaC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VDeltaC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VDeltaC by 10 to 20 seconds. CaV1.2 VDeltaC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VDeltaC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VDeltaC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Boxing -- Tadross, Michael R -- Tsien, Richard W -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):863-7. doi: 10.1126/science.aad3647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. ; Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. tadrossm@janelia.hhmi.org. ; Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels, L-Type/chemistry/*metabolism ; *Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; *Gene Expression Regulation ; HEK293 Cells ; Hippocampus/cytology ; Humans ; Long QT Syndrome/genetics/metabolism ; Neuronal Plasticity/*genetics ; Neurons/drug effects/*metabolism ; Nimodipine/pharmacology ; Protein Conformation/drug effects ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/metabolism ; Syndactyly/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):440-3. doi: 10.1126/science.351.6272.440.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823410" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Child, Preschool ; DNA Mutational Analysis ; DNA Repair/genetics ; Female ; *Genes, Neoplasm ; *Genetic Predisposition to Disease ; Humans ; Male ; Mutation ; Neoplasms/*genetics/mortality ; Pedigree ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maxmen, Amy -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1378-80. doi: 10.1126/science.351.6280.1378.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013707" target="_blank"〉PubMed〈/a〉
    Keywords: Anal Canal/*anatomy & histology ; Animals ; *Biological Evolution ; Ctenophora/*anatomy & histology/genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-03-05
    Description: As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8(+)tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non-small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy-induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGranahan, Nicholas -- Furness, Andrew J S -- Rosenthal, Rachel -- Ramskov, Sofie -- Lyngaa, Rikke -- Saini, Sunil Kumar -- Jamal-Hanjani, Mariam -- Wilson, Gareth A -- Birkbak, Nicolai J -- Hiley, Crispin T -- Watkins, Thomas B K -- Shafi, Seema -- Murugaesu, Nirupa -- Mitter, Richard -- Akarca, Ayse U -- Linares, Joseph -- Marafioti, Teresa -- Henry, Jake Y -- Van Allen, Eliezer M -- Miao, Diana -- Schilling, Bastian -- Schadendorf, Dirk -- Garraway, Levi A -- Makarov, Vladimir -- Rizvi, Naiyer A -- Snyder, Alexandra -- Hellmann, Matthew D -- Merghoub, Taha -- Wolchok, Jedd D -- Shukla, Sachet A -- Wu, Catherine J -- Peggs, Karl S -- Chan, Timothy A -- Hadrup, Sine R -- Quezada, Sergio A -- Swanton, Charles -- 12100/Cancer Research UK/United Kingdom -- 1R01CA155010-02/CA/NCI NIH HHS/ -- 1R01CA182461-01/CA/NCI NIH HHS/ -- 1R01CA184922-01/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1463-9. doi: 10.1126/science.aaf1490. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Francis Crick Institute, London WC2A 3LY, UK. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London (UCL), London WC1E 6BT, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, 1970 Frederiksberg C, Denmark. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; The Francis Crick Institute, London WC2A 3LY, UK. ; Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. Department of Cellular Pathology, UCL, London WC1E 6BT, UK. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium (DKTK), 69121 Heidelberg, Germany. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Hematology/Oncology Division, 177 Fort Washington Avenue, Columbia University, New York, NY 10032, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Department of Internal Medicine, Brigham and Woman's Hospital, Boston, MA 02115, USA. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940869" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/*immunology ; Aged ; Aged, 80 and over ; Antigens, Neoplasm/genetics/*immunology ; Antineoplastic Agents/therapeutic use ; CD4-Positive T-Lymphocytes/*immunology ; CTLA-4 Antigen/immunology ; Carcinoma, Non-Small-Cell Lung/genetics/immunology ; Cell Cycle Checkpoints/immunology ; Female ; Humans ; *Immunologic Surveillance ; Lung Neoplasms/drug therapy/genetics/*immunology ; Lymphocytes, Tumor-Infiltrating/immunology ; Male ; Melanoma/immunology ; Middle Aged ; Mutation ; Programmed Cell Death 1 Receptor/immunology ; Skin Neoplasms/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-03-26
    Description: Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015, and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. We performed next-generation sequencing to generate seven Brazilian ZIKV genomes sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Results of phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, which we estimated to have occurred between May and December 2013, more than 12 months before the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV-endemic areas, as well as with reported outbreaks in the Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however, no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this correlation does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology of this emerging virus in the Americas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faria, Nuno Rodrigues -- Azevedo, Raimunda do Socorro da Silva -- Kraemer, Moritz U G -- Souza, Renato -- Cunha, Mariana Sequetin -- Hill, Sarah C -- Theze, Julien -- Bonsall, Michael B -- Bowden, Thomas A -- Rissanen, Ilona -- Rocco, Iray Maria -- Nogueira, Juliana Silva -- Maeda, Adriana Yurika -- Vasami, Fernanda Giseli da Silva -- Macedo, Fernando Luiz de Lima -- Suzuki, Akemi -- Rodrigues, Sueli Guerreiro -- Cruz, Ana Cecilia Ribeiro -- Nunes, Bruno Tardeli -- Medeiros, Daniele Barbosa de Almeida -- Rodrigues, Daniela Sueli Guerreiro -- Nunes Queiroz, Alice Louize -- da Silva, Eliana Vieira Pinto -- Henriques, Daniele Freitas -- Travassos da Rosa, Elisabeth Salbe -- de Oliveira, Consuelo Silva -- Martins, Livia Caricio -- Vasconcelos, Helena Baldez -- Casseb, Livia Medeiros Neves -- Simith, Darlene de Brito -- Messina, Jane P -- Abade, Leandro -- Lourenco, Jose -- Carlos Junior Alcantara, Luiz -- de Lima, Maricelia Maia -- Giovanetti, Marta -- Hay, Simon I -- de Oliveira, Rodrigo Santos -- Lemos, Poliana da Silva -- de Oliveira, Layanna Freitas -- de Lima, Clayton Pereira Silva -- da Silva, Sandro Patroca -- de Vasconcelos, Janaina Mota -- Franco, Luciano -- Cardoso, Jedson Ferreira -- Vianez-Junior, Joao Lidio da Silva Goncalves -- Mir, Daiana -- Bello, Gonzalo -- Delatorre, Edson -- Khan, Kamran -- Creatore, Marisa -- Coelho, Giovanini Evelim -- de Oliveira, Wanderson Kleber -- Tesh, Robert -- Pybus, Oliver G -- Nunes, Marcio R T -- Vasconcelos, Pedro F C -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095066/Wellcome Trust/United Kingdom -- 102427/Wellcome Trust/United Kingdom -- MR/L009528/1/Medical Research Council/United Kingdom -- R24 AT 120942/AT/NCCIH NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):345-9. doi: 10.1126/science.aaf5036. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Instituto Adolfo Lutz, University of Sao Paulo, Sao Paulo, Brazil. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. ; Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil. ; Centre of Post Graduation in Collective Health, Department of Health, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil. ; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121, USA. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. ; Laboratorio de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil. ; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada. Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada. ; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. ; Brazilian Ministry of Health, Brasilia, Brazil. ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013429" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/virology ; Americas/epidemiology ; Animals ; *Disease Outbreaks ; Female ; Genome, Viral/genetics ; Humans ; Incidence ; Insect Vectors/virology ; Microcephaly/*epidemiology/virology ; Molecular Epidemiology ; Molecular Sequence Data ; Mutation ; Pacific Islands/epidemiology ; Phylogeny ; Pregnancy ; RNA, Viral/genetics ; Sequence Analysis, RNA ; Travel ; Zika Virus/classification/*genetics/isolation & purification ; Zika Virus Infection/*epidemiology/transmission/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-01-02
    Description: Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772156/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772156/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferenczi, Emily A -- Zalocusky, Kelly A -- Liston, Conor -- Grosenick, Logan -- Warden, Melissa R -- Amatya, Debha -- Katovich, Kiefer -- Mehta, Hershel -- Patenaude, Brian -- Ramakrishnan, Charu -- Kalanithi, Paul -- Etkin, Amit -- Knutson, Brian -- Glover, Gary H -- Deisseroth, Karl -- 1F31MH105151_01/MH/NIMH NIH HHS/ -- P41 EB015891/EB/NIBIB NIH HHS/ -- R00 MH097822/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):aac9698. doi: 10.1126/science.aac9698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. ; Brain Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. ; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ; Department of Psychology, Stanford University, Stanford, CA 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA. ; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. ; Department of Radiology, Stanford University, Stanford, CA, 94305, USA. ; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA. deissero@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26722001" target="_blank"〉PubMed〈/a〉
    Keywords: Anhedonia/*physiology ; Animals ; Brain Mapping ; Corpus Striatum/cytology/drug effects/*physiology ; Depressive Disorder/physiopathology ; Dopamine/pharmacology ; Dopaminergic Neurons/drug effects/*physiology ; Female ; Magnetic Resonance Imaging ; Male ; Mesencephalon/cytology/drug effects/physiology ; *Motivation ; Nerve Net/physiology ; Oxygen/blood ; Prefrontal Cortex/cytology/drug effects/*physiology ; Rats ; Rats, Inbred LEC ; Rats, Sprague-Dawley ; *Reward ; Schizophrenia/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-03-19
    Description: Steroids regulate cell proliferation, tissue development, and cell signaling via two pathways: a nuclear receptor mechanism and genome-independent signaling. Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the latter pathway, the key components of which remain unknown. Here, we present characterization of the human sperm progesterone receptor that is conveyed by the orphan enzyme alpha/beta hydrolase domain-containing protein 2 (ABHD2). We show that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as a progesterone-dependent lipid hydrolase by depleting the endocannabinoid 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm calcium channel (CatSper), and its removal leads to calcium influx via CatSper and ensures sperm activation. This study reveals that progesterone-activated endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone exerts its genome-independent action and primes sperm for fertilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Melissa R -- Mannowetz, Nadja -- Iavarone, Anthony T -- Safavi, Rojin -- Gracheva, Elena O -- Smith, James F -- Hill, Rose Z -- Bautista, Diana M -- Kirichok, Yuriy -- Lishko, Polina V -- 1S10OD020062-01/OD/NIH HHS/ -- R01 AR059385/AR/NIAMS NIH HHS/ -- R01AR059385/AR/NIAMS NIH HHS/ -- R01GM111802/GM/NIGMS NIH HHS/ -- R01HD068914/HD/NICHD NIH HHS/ -- R21HD081403/HD/NICHD NIH HHS/ -- S10RR025622/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):555-9. doi: 10.1126/science.aad6887. Epub 2016 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. ; QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720, USA. ; Department of Cellular and Molecular Physiology; Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair (CNNR), Yale School of Medicine, Yale University, New Haven, CT 06536, USA. ; Department of Urology, University of California, San Francisco, CA 94143, USA. ; Department of Physiology, University of California, San Francisco, CA 94158, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. lishko@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989199" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Arachidonic Acids/*deficiency ; Calcium/metabolism ; Calcium Channels/metabolism ; Calcium Signaling ; Cell Membrane/metabolism ; Endocannabinoids/*deficiency ; Fertilization ; Glycerides/*deficiency ; Humans ; Hydrolases/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Progesterone/*metabolism/pharmacology ; Rats ; Rats, Wistar ; Receptors, Progesterone/genetics/*metabolism ; Sperm Motility/drug effects/*physiology ; Spermatozoa/drug effects/metabolism/*physiology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-04-16
    Description: Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Christopher D -- Siregar, Josephine E -- Mollard, Vanessa -- Vega-Rodriguez, Joel -- Syafruddin, Din -- Matsuoka, Hiroyuki -- Matsuzaki, Motomichi -- Toyama, Tomoko -- Sturm, Angelika -- Cozijnsen, Anton -- Jacobs-Lorena, Marcelo -- Kita, Kiyoshi -- Marzuki, Sangkot -- McFadden, Geoffrey I -- AI031478/AI/NIAID NIH HHS/ -- RR00052/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):349-53. doi: 10.1126/science.aad9279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. gim@unimelb.edu.au deang@unimelb.edu.au. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. ; Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia. ; Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*parasitology ; Antimalarials/*pharmacology/therapeutic use ; Atovaquone/*pharmacology/therapeutic use ; Cell Line ; Cytochromes b/*genetics ; Drug Resistance/*genetics ; Genes, Mitochondrial/genetics ; Humans ; Life Cycle Stages/drug effects/genetics ; Malaria/drug therapy/*parasitology/transmission ; Male ; Mice ; Mitochondria/*genetics ; Mutation ; Plasmodium berghei/*drug effects/genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-03-26
    Description: Cell assembly sequences during learning are "replayed" during hippocampal ripples and contribute to the consolidation of episodic memories. However, neuronal sequences may also reflect preexisting dynamics. We report that sequences of place-cell firing in a novel environment are formed from a combination of the contributions of a rigid, predominantly fast-firing subset of pyramidal neurons with low spatial specificity and limited change across sleep-experience-sleep and a slow-firing plastic subset. Slow-firing cells, rather than fast-firing cells, gained high place specificity during exploration, elevated their association with ripples, and showed increased bursting and temporal coactivation during postexperience sleep. Thus, slow- and fast-firing neurons, although forming a continuous distribution, have different coding and plastic properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grosmark, Andres D -- Buzsaki, Gyorgy -- MH102840/MH/NIMH NIH HHS/ -- MH54671/MH/NIMH NIH HHS/ -- NS075015/NS/NINDS NIH HHS/ -- R01 MH107396/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1440-3. doi: 10.1126/science.aad1935.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Columbia University Medical Center, New York, NY 10019, USA. The Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA. ; The Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA. Center for Neural Science, New York University, New York, NY 10016, USA. gyorgy.buzsaki@nyumc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013730" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Hippocampus/cytology/*physiopathology ; Learning/*physiology ; Male ; Maze Learning ; Neuronal Plasticity ; Pyramidal Cells/*physiology ; Rats ; Rats, Inbred LEC ; Sleep/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-02-26
    Description: Bruns and Taylor argue that our finding of widespread distribution among Glomeromycota "virtual taxa" is undermined by the species definition applied. Although identifying appropriate species concepts and accessing taxonomically informative traits are challenges for microorganism biogeography, the virtual taxa represent a pragmatic classification that corresponds approximately to the species rank of classical Glomeromycota taxonomy, yet is applicable to environmental DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Opik, Maarja -- Davison, John -- Moora, Mari -- Partel, Meelis -- Zobel, Martin -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):826. doi: 10.1126/science.aad5495.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Tartu, 40 Lai Street, 51005 Tartu, Estonia. maarja.opik@ut.ee. ; Department of Botany, University of Tartu, 40 Lai Street, 51005 Tartu, Estonia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Humans ; *Mycorrhizae ; Plant Roots/*microbiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-03-19
    Description: Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting that loss of function may play a role in disease. We found that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and the loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS human patient tissue. Thus, C9orf72 is required for the normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Rourke, J G -- Bogdanik, L -- Yanez, A -- Lall, D -- Wolf, A J -- Muhammad, A K M G -- Ho, R -- Carmona, S -- Vit, J P -- Zarrow, J -- Kim, K J -- Bell, S -- Harms, M B -- Miller, T M -- Dangler, C A -- Underhill, D M -- Goodridge, H S -- Lutz, C M -- Baloh, R H -- GM085796/GM/NIGMS NIH HHS/ -- NS069669/NS/NINDS NIH HHS/ -- NS078398/NS/NINDS NIH HHS/ -- NS087351/NS/NINDS NIH HHS/ -- UL1TR000124/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1324-9. doi: 10.1126/science.aaf1064.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. ; The Jackson Laboratory, Bar Harbor, ME, USA. ; Division of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. ; Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. ; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989253" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Amyotrophic Lateral Sclerosis/genetics/*immunology ; Animals ; Frontotemporal Dementia/genetics/*immunology ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/genetics/*physiology ; Heterozygote ; Humans ; Lymphatic Diseases/genetics/immunology ; Macrophages/*immunology ; Mice ; Mice, Knockout ; Microglia/*immunology ; Myeloid Cells/*immunology ; Proteins/genetics/*physiology ; Rats ; Splenomegaly/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):214-5. doi: 10.1126/science.351.6270.214. Epub 2016 Jan 14.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816357" target="_blank"〉PubMed〈/a〉
    Keywords: Anatomy, Comparative ; Animals ; *Biological Evolution ; Colubridae/anatomy & histology/physiology ; *Copulation ; Female ; Genitalia, Female/*anatomy & histology/*physiology ; Male
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ball, Steven G -- Bhattacharya, Debashish -- Weber, Andreas P M -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):659-60. doi: 10.1126/science.aad8864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite de Lille CNRS, UMR 8576-UGSF-Unite de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France. ; Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA. debash.bhattacharya@gmail.com. ; Institute for Plant Biochemistry, Center of Excellence on Plant Sciences, Heinrich-Heine-University, Universitatsstrasse 1, D-40225 Dusseldorf, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912842" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaproteobacteria/*genetics/pathogenicity ; Animals ; Archaea/metabolism ; *Biological Evolution ; Endocytosis ; Energy Metabolism/genetics ; Eukaryota/genetics ; *Host-Pathogen Interactions ; Humans ; Mitochondria/*genetics ; Plastids/*genetics ; Rickettsia/genetics/pathogenicity ; Symbiosis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-03-05
    Description: Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hnisz, Denes -- Weintraub, Abraham S -- Day, Daniel S -- Valton, Anne-Laure -- Bak, Rasmus O -- Li, Charles H -- Goldmann, Johanna -- Lajoie, Bryan R -- Fan, Zi Peng -- Sigova, Alla A -- Reddy, Jessica -- Borges-Rivera, Diego -- Lee, Tong Ihn -- Jaenisch, Rudolf -- Porteus, Matthew H -- Dekker, Job -- Young, Richard A -- AI120766/AI/NIAID NIH HHS/ -- CA109901/CA/NCI NIH HHS/ -- HG002668/HG/NHGRI NIH HHS/ -- MH104610/MH/NIMH NIH HHS/ -- NS088538/NS/NINDS NIH HHS/ -- R01 GM 112720/GM/NIGMS NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 MH104610/MH/NIMH NIH HHS/ -- U01 DA 040588/DA/NIDA NIH HHS/ -- U01 HG007910/HG/NHGRI NIH HHS/ -- U01 R01 AI 117839/AI/NIAID NIH HHS/ -- U54 CA193419/CA/NCI NIH HHS/ -- U54 DK107980/DK/NIDDK NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1454-8. doi: 10.1126/science.aad9024. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Department of Pediatrics, Stanford University, Stanford, CA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. Howard Hughes Medical Institute. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940867" target="_blank"〉PubMed〈/a〉
    Keywords: *Chromosome Aberrations ; Chromosome Mapping ; *Gene Expression Regulation, Leukemic ; HEK293 Cells ; Humans ; Mutation ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Proto-Oncogenes/*genetics ; *Sequence Deletion ; Transcriptional Activation ; *Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-03-26
    Description: Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrera, Luis A -- Vedenko, Anastasia -- Kurland, Jesse V -- Rogers, Julia M -- Gisselbrecht, Stephen S -- Rossin, Elizabeth J -- Woodard, Jaie -- Mariani, Luca -- Kock, Kian Hong -- Inukai, Sachi -- Siggers, Trevor -- Shokri, Leila -- Gordan, Raluca -- Sahni, Nidhi -- Cotsapas, Chris -- Hao, Tong -- Yi, Song -- Kellis, Manolis -- Daly, Mark J -- Vidal, Marc -- Hill, David E -- Bulyk, Martha L -- P50 HG004233/HG/NHGRI NIH HHS/ -- R01 HG003985/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1450-4. doi: 10.1126/science.aad2257. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. ; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Center for Human Genetics Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013732" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Exome/genetics ; *Gene Expression Regulation ; Genetic Diseases, Inborn/*genetics ; Genetic Variation ; Genome, Human ; Humans ; Mutation ; Polymorphism, Single Nucleotide ; Protein Array Analysis ; Protein Binding ; Sequence Analysis, DNA ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-01-02
    Description: Antibiotic treatment has two conflicting effects: the desired, immediate effect of inhibiting bacterial growth and the undesired, long-term effect of promoting the evolution of resistance. Although these contrasting outcomes seem inextricably linked, recent work has revealed several ways by which antibiotics can be combined to inhibit bacterial growth while, counterintuitively, selecting against resistant mutants. Decoupling treatment efficacy from the risk of resistance can be achieved by exploiting specific interactions between drugs, and the ways in which resistance mutations to a given drug can modulate these interactions or increase the sensitivity of the bacteria to other compounds. Although their practical application requires much further development and validation, and relies on advances in genomic diagnostics, these discoveries suggest novel paradigms that may restrict or even reverse the evolution of resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baym, Michael -- Stone, Laura K -- Kishony, Roy -- R01-GM081617/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):aad3292. doi: 10.1126/science.aad3292.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA, USA. ; Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Department of Biology and Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel. rkishony@technion.ac.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26722002" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*pharmacology ; Bacteria/*drug effects/*genetics ; Drug Resistance, Bacterial/*genetics ; *Evolution, Molecular ; Humans ; Mutation ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hulme, Philip E -- Le Roux, Johannes J -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422. doi: 10.1126/science.352.6284.422-b. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. philip.hulme@lincoln.ac.nz. ; The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-02-06
    Description: SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56beta, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bidinosti, Michael -- Botta, Paolo -- Kruttner, Sebastian -- Proenca, Catia C -- Stoehr, Natacha -- Bernhard, Mario -- Fruh, Isabelle -- Mueller, Matthias -- Bonenfant, Debora -- Voshol, Hans -- Carbone, Walter -- Neal, Sarah J -- McTighe, Stephanie M -- Roma, Guglielmo -- Dolmetsch, Ricardo E -- Porter, Jeffrey A -- Caroni, Pico -- Bouwmeester, Tewis -- Luthi, Andreas -- Galimberti, Ivan -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1199-203. doi: 10.1126/science.aad5487. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Friedrich Miescher Institute, Basel, Switzerland. ; Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA. ; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ivan.galimberti@novartis.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autism Spectrum Disorder/*drug therapy/enzymology/genetics ; Chromosome Deletion ; Chromosome Disorders/genetics ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Down-Regulation ; Gene Knockdown Techniques ; Humans ; Insulin-Like Growth Factor I/metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nerve Tissue Proteins/*genetics ; Neurons/enzymology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt/genetics/metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-03-26
    Description: Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naive B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naive B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Kulp, Daniel W -- Havenar-Daughton, Colin -- Sarkar, Anita -- Briney, Bryan -- Sok, Devin -- Sesterhenn, Fabian -- Ereno-Orbea, June -- Kalyuzhniy, Oleksandr -- Deresa, Isaiah -- Hu, Xiaozhen -- Spencer, Skye -- Jones, Meaghan -- Georgeson, Erik -- Adachi, Yumiko -- Kubitz, Michael -- deCamp, Allan C -- Julien, Jean-Philippe -- Wilson, Ian A -- Burton, Dennis R -- Crotty, Shane -- Schief, William R -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI110657/AI/NIAID NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1458-63. doi: 10.1126/science.aad9195.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Vaccine and Infectious Disease Division, Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. schief@scripps.edu shane@lji.org. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. schief@scripps.edu shane@lji.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013733" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/*immunology/isolation & purification ; Antibodies, Neutralizing/chemistry/*immunology/isolation & purification ; Antibody Affinity ; B-Lymphocytes/immunology ; Cell Separation ; Combinatorial Chemistry Techniques ; Epitopes, B-Lymphocyte/chemistry/genetics/*immunology ; Germ Cells/*immunology ; HIV Antibodies/chemistry/*immunology/isolation & purification ; HIV-1/*immunology ; Humans ; Molecular Sequence Data ; Mutation ; Peptide Library ; Precursor Cells, B-Lymphoid/*immunology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-01-09
    Description: The lung is constantly exposed to environmental atmospheric cues. How it senses and responds to these cues is poorly defined. Here, we show that Roundabout receptor (Robo) genes are expressed in pulmonary neuroendocrine cells (PNECs), a rare, innervated epithelial population. Robo inactivation in mouse lung results in an inability of PNECs to cluster into sensory organoids and triggers increased neuropeptide production upon exposure to air. Excess neuropeptides lead to an increase in immune infiltrates, which in turn remodel the matrix and irreversibly simplify the alveoli. We demonstrate in vivo that PNECs act as precise airway sensors that elicit immune responses via neuropeptides. These findings suggest that the PNEC and neuropeptide abnormalities documented in a wide array of pulmonary diseases may profoundly affect symptoms and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branchfield, Kelsey -- Nantie, Leah -- Verheyden, Jamie M -- Sui, Pengfei -- Wienhold, Mark D -- Sun, Xin -- 5T32AI007635/AI/NIAID NIH HHS/ -- HL097134/HL/NHLBI NIH HHS/ -- HL122406/HL/NHLBI NIH HHS/ -- R01 HL113870/HL/NHLBI NIH HHS/ -- T32 GM007133/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):707-10. doi: 10.1126/science.aad7969. Epub 2016 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA. ; Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA. ; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA. xsun@wisc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26743624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Clodronic Acid/pharmacology ; Lung/cytology/*immunology ; Lung Diseases/genetics/immunology ; Macrophages/drug effects/immunology ; Mice ; Mice, Mutant Strains ; Mutation ; Nerve Tissue Proteins/genetics/*physiology ; Neuroendocrine Cells/*immunology/metabolism ; Neuropeptides/*biosynthesis ; Receptors, Immunologic/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Leslie -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):403. doi: 10.1126/science.352.6284.403. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102460" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/pharmacology/*therapeutic use ; Artemisinins/pharmacology/*therapeutic use ; Drug Resistance/*genetics ; Humans ; Malaria, Falciparum/*drug therapy/epidemiology/*parasitology ; Mutation ; Myanmar/epidemiology ; Plasmodium falciparum/*drug effects/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-01-30
    Description: The "cancerized field" concept posits that cancer-prone cells in a given tissue share an oncogenic mutation, but only discreet clones within the field initiate tumors. Most benign nevi carry oncogenic BRAF(V600E) mutations but rarely become melanoma. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and specifically reexpressed in melanoma. Live imaging of transgenic zebrafish crestin reporters shows that within a cancerized field (BRAF(V600E)-mutant; p53-deficient), a single melanocyte reactivates the NCP state, revealing a fate change at melanoma initiation in this model. NCP transcription factors, including sox10, regulate crestin expression. Forced sox10 overexpression in melanocytes accelerated melanoma formation, which is consistent with activation of NCP genes and super-enhancers leading to melanoma. Our work highlights NCP state reemergence as a key event in melanoma initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaufman, Charles K -- Mosimann, Christian -- Fan, Zi Peng -- Yang, Song -- Thomas, Andrew J -- Ablain, Julien -- Tan, Justin L -- Fogley, Rachel D -- van Rooijen, Ellen -- Hagedorn, Elliott J -- Ciarlo, Christie -- White, Richard M -- Matos, Dominick A -- Puller, Ann-Christin -- Santoriello, Cristina -- Liao, Eric C -- Young, Richard A -- Zon, Leonard I -- HG002668/HG/NHGRI NIH HHS/ -- K08 AR061071/AR/NIAMS NIH HHS/ -- R01 CA103846/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):aad2197. doi: 10.1126/science.aad2197. Epub 2016 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02115, USA. ; Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. ; Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10075, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. ; Research Institute Children's Cancer Center Hamburg and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. ; Harvard Stem Cell Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. zon@enders.tch.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823433" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Carcinogenesis/*genetics ; Embryonic Stem Cells/metabolism ; Enhancer Elements, Genetic ; *Gene Expression Regulation, Developmental ; *Gene Expression Regulation, Neoplastic ; Genes, Reporter ; Green Fluorescent Proteins/genetics ; Melanocytes/metabolism ; Melanoma/*genetics ; Melanoma, Experimental/*genetics ; Mutation ; Nerve Tissue Proteins/genetics ; Neural Crest/*metabolism ; Proto-Oncogene Proteins B-raf/genetics ; SOXE Transcription Factors/genetics ; Skin Neoplasms/*genetics ; Tumor Suppressor Protein p53/genetics ; *Zebrafish ; Zebrafish Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-04-23
    Description: The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of alpha-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robison, Patrick -- Caporizzo, Matthew A -- Ahmadzadeh, Hossein -- Bogush, Alexey I -- Chen, Christina Yingxian -- Margulies, Kenneth B -- Shenoy, Vivek B -- Prosser, Benjamin L -- HL089847/HL/NHLBI NIH HHS/ -- HL105993/HL/NHLBI NIH HHS/ -- R00-HL114879/HL/NHLBI NIH HHS/ -- R01EB017753/EB/NIBIB NIH HHS/ -- T32AR053461-09/AR/NIAMS NIH HHS/ -- T32HL007954/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):aaf0659. doi: 10.1126/science.aaf0659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA. ; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. bpros@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Desmin/metabolism ; Elasticity ; Heart Failure/metabolism/physiopathology ; Humans ; Male ; Mice ; Microtubules/*metabolism ; Models, Biological ; *Myocardial Contraction ; Myocytes, Cardiac/metabolism/*physiology ; Peptide Synthases/genetics/metabolism ; *Protein Processing, Post-Translational ; RNA, Small Interfering/genetics ; Rats ; Rats, Sprague-Dawley ; Sarcomeres/metabolism ; Tubulin/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-02-26
    Description: Davison et al. (Reports, 28 August 2015, p. 970) claim that virtual taxa of Glomeromycota show little endemism and that endemism that exists is similar to the levels seen in plant families. We show that this is likely due to the conservative species definition rather than to any ecological pattern.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bruns, Thomas D -- Taylor, John W -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):826. doi: 10.1126/science.aad4228.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, CA 94720-3102, USA. pogon@berkeley.edu. ; Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, CA 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912889" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Humans ; *Mycorrhizae ; Plant Roots/*microbiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-03-12
    Description: Type IVa pili are filamentous cell surface structures observed in many bacteria. They pull cells forward by extending, adhering to surfaces, and then retracting. We used cryo-electron tomography of intact Myxococcus xanthus cells to visualize type IVa pili and the protein machine that assembles and retracts them (the type IVa pilus machine, or T4PM) in situ, in both the piliated and nonpiliated states, at a resolution of 3 to 4 nanometers. We found that T4PM comprises an outer membrane pore, four interconnected ring structures in the periplasm and cytoplasm, a cytoplasmic disc and dome, and a periplasmic stem. By systematically imaging mutants lacking defined T4PM proteins or with individual proteins fused to tags, we mapped the locations of all 10 T4PM core components and the minor pilins, thereby providing insights into pilus assembly, structure, and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yi-Wei -- Rettberg, Lee A -- Treuner-Lange, Anke -- Iwasa, Janet -- Sogaard-Andersen, Lotte -- Jensen, Grant J -- R01 GM094800B/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):aad2001. doi: 10.1126/science.aad2001. Epub 2016 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA. ; Howard Hughes Medical Institute, Pasadena, CA 91125, USA. ; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany. ; University of Utah, Salt Lake City, UT 84112, USA. ; California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA. jensen@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965631" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Adhesion ; Cryoelectron Microscopy ; Fimbriae, Bacterial/genetics/*ultrastructure ; Microscopy, Electron, Transmission ; Models, Molecular ; Mutation ; Myxococcus xanthus/genetics/physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarrazin, Francois -- Lecomte, Jane -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422-3. doi: 10.1126/science.352.6284.422-c. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sorbonne Universites, UPMC Univ. Paris 06, Museum National d'Histoire Naturelle, CNRS, CESCO, UMR 7204, 75005 Paris, France. sarrazin@mnhn.fr. ; Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Universite Paris-Saclay, 91400 Orsay, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dantzer, Ben -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):822-3. doi: 10.1126/science.aaa6480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. dantzer@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700499" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Competitive Behavior ; *Ecosystem ; Female ; Male ; *Maternal Behavior ; Songbirds/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-03-07
    Description: Human higher cognition is attributed to the evolutionary expansion and elaboration of the human cerebral cortex. However, the genetic mechanisms contributing to these developmental changes are poorly understood. We used comparative epigenetic profiling of human, rhesus macaque, and mouse corticogenesis to identify promoters and enhancers that have gained activity in humans. These gains are significantly enriched in modules of coexpressed genes in the cortex that function in neuronal proliferation, migration, and cortical-map organization. Gain-enriched modules also showed correlated gene expression patterns and similar transcription factor binding site enrichments in promoters and enhancers, suggesting that they are connected by common regulatory mechanisms. Our results reveal coordinated patterns of potential regulatory changes associated with conserved developmental processes during corticogenesis, providing insight into human cortical evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426903/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426903/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reilly, Steven K -- Yin, Jun -- Ayoub, Albert E -- Emera, Deena -- Leng, Jing -- Cotney, Justin -- Sarro, Richard -- Rakic, Pasko -- Noonan, James P -- 099175/Z/12/Z/Wellcome Trust/United Kingdom -- DA023999/DA/NIDA NIH HHS/ -- F32 GM106628/GM/NIGMS NIH HHS/ -- GM094780/GM/NIGMS NIH HHS/ -- NS014841/NS/NINDS NIH HHS/ -- P30 CA016359/CA/NCI NIH HHS/ -- R01 DA023999/DA/NIDA NIH HHS/ -- R01 GM094780/GM/NIGMS NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1155-9. doi: 10.1126/science.1260943.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. ; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA. Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA. ; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA. ; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA. Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA. james.noonan@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745175" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/*growth & development ; Enhancer Elements, Genetic/*genetics ; *Epigenesis, Genetic ; *Evolution, Molecular ; *Gene Expression Regulation, Developmental ; Humans ; Macaca mulatta ; Mice ; Organogenesis/*genetics ; Promoter Regions, Genetic/*genetics ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mervis, Jeffrey -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):1454. doi: 10.1126/science.350.6267.1454.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680170" target="_blank"〉PubMed〈/a〉
    Keywords: Contract Services/*economics ; Ecology/*economics ; *Ecosystem ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-04-04
    Description: Plant immunity against foreign gene invasion takes advantage of posttranscriptional gene silencing (PTGS). How plants elaborately avert inappropriate PTGS of endogenous coding genes remains unclear. We demonstrate in Arabidopsis that both 5'-3' and 3'-5' cytoplasmic RNA decay pathways act as repressors of transgene and endogenous PTGS. Disruption of bidirectional cytoplasmic RNA decay leads to pleiotropic developmental defects and drastic transcriptomic alterations, which are substantially rescued by PTGS mutants. Upon dysfunction of bidirectional RNA decay, a large number of 21- to 22-nucleotide endogenous small interfering RNAs are produced from coding transcripts, including multiple microRNA targets, which could interfere with their cognate gene expression and functions. This study highlights the risk of unwanted PTGS and identifies cytoplasmic RNA decay pathways as safeguards of plant transcriptome and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xinyan -- Zhu, Ying -- Liu, Xiaodan -- Hong, Xinyu -- Xu, Yang -- Zhu, Ping -- Shen, Yang -- Wu, Huihui -- Ji, Yusi -- Wen, Xing -- Zhang, Chen -- Zhao, Qiong -- Wang, Yichuan -- Lu, Jian -- Guo, Hongwei -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):120-3. doi: 10.1126/science.aaa2618.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. ; Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China. ; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. ; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. ; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. hongweig@pku.edu.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838384" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/physiology ; Cytoplasm/*metabolism ; *Gene Expression Regulation, Plant ; Metabolic Networks and Pathways ; MicroRNAs/genetics/metabolism ; Mutation ; Plant Immunity/*genetics ; *RNA Interference ; RNA Replicase/genetics/physiology ; *RNA Stability ; RNA, Plant/*genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; *Suppression, Genetic ; Transcriptome ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-09-01
    Description: The global biogeography of microorganisms remains largely unknown, in contrast to the well-studied diversity patterns of macroorganisms. We used arbuscular mycorrhizal (AM) fungus DNA from 1014 plant-root samples collected worldwide to determine the global distribution of these plant symbionts. We found that AM fungal communities reflected local environmental conditions and the spatial distance between sites. However, despite AM fungi apparently possessing limited dispersal ability, we found 93% of taxa on multiple continents and 34% on all six continents surveyed. This contrasts with the high spatial turnover of other fungal taxa and with the endemism displayed by plants at the global scale. We suggest that the biogeography of AM fungi is driven by unexpectedly efficient dispersal, probably via both abiotic and biotic vectors, including humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davison, J -- Moora, M -- Opik, M -- Adholeya, A -- Ainsaar, L -- Ba, A -- Burla, S -- Diedhiou, A G -- Hiiesalu, I -- Jairus, T -- Johnson, N C -- Kane, A -- Koorem, K -- Kochar, M -- Ndiaye, C -- Partel, M -- Reier, U -- Saks, U -- Singh, R -- Vasar, M -- Zobel, M -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):970-3. doi: 10.1126/science.aab1161.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. ; Centre for Mycorrhizal Research, The Energy and Resources Institute (TERI), India Habitat Centre, Lodhi Road, New Delhi 110 003, India. ; Laboratoire des Symbioses Tropicales et Mediterraneennes, Unite Mixte de Recherche 113, Laboratoire de Biologie et Physiologie Vegetales, Faculte des Sciences Exactes et Naturelles, Universite des Antilles, BP 592, 97159, Pointe-a-Pitre, Guadeloupe (French West Indies). ; Laboratoire Commun de Microbiologie de l'Institut de Recherche pour le Developpement-Institut Senegalais de Recherches Agricoles-Universite Cheikh Anta Diop (UCAD), Departement de Biologie Vegetale, UCAD, BP 5005 Dakar, Senegal. ; Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. Institute of Botany, Czech Academy of Sciences, Dukelska 135, 379 01 Trebon, Czech Republic. ; School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011-5694, USA. ; Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands. ; TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, TERI, India Habitat Centre, Lodhi Road, New Delhi 110 003, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315436" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; DNA, Fungal/analysis ; *Ecosystem ; Environment ; Humans ; *Mycorrhizae/genetics/isolation & purification/physiology ; Phylogeny ; Phylogeography ; Plant Roots/*microbiology ; *Symbiosis ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-10-17
    Description: Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase beta adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blomen, Vincent A -- Majek, Peter -- Jae, Lucas T -- Bigenzahn, Johannes W -- Nieuwenhuis, Joppe -- Staring, Jacqueline -- Sacco, Roberto -- van Diemen, Ferdy R -- Olk, Nadine -- Stukalov, Alexey -- Marceau, Caleb -- Janssen, Hans -- Carette, Jan E -- Bennett, Keiryn L -- Colinge, Jacques -- Superti-Furga, Giulio -- Brummelkamp, Thijn R -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1092-6. doi: 10.1126/science.aac7557. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. ; Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA. ; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. University of Montpellier, Institut de Recherche en Cancerologie de Montpellier Inserm U1194, Institut regional du Cancer Montpellier, 34000 Montpellier, France. jacques.colinge@inserm.fr gsuperti@cemm.at t.brummelkamp@nki.nl. ; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria. jacques.colinge@inserm.fr gsuperti@cemm.at t.brummelkamp@nki.nl. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066CX, Amsterdam, Netherlands. jacques.colinge@inserm.fr gsuperti@cemm.at t.brummelkamp@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472760" target="_blank"〉PubMed〈/a〉
    Keywords: *Gene Regulatory Networks ; *Genes, Essential ; *Genes, Lethal ; Genetic Fitness/*genetics ; Golgi Apparatus/genetics ; *Haploidy ; Hexosyltransferases/genetics ; Humans ; Membrane Proteins/genetics ; Mutagenesis, Insertional ; Mutation ; Saccharomyces cerevisiae/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-03-15
    Description: Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizvi, Naiyer A -- Hellmann, Matthew D -- Snyder, Alexandra -- Kvistborg, Pia -- Makarov, Vladimir -- Havel, Jonathan J -- Lee, William -- Yuan, Jianda -- Wong, Phillip -- Ho, Teresa S -- Miller, Martin L -- Rekhtman, Natasha -- Moreira, Andre L -- Ibrahim, Fawzia -- Bruggeman, Cameron -- Gasmi, Billel -- Zappasodi, Roberta -- Maeda, Yuka -- Sander, Chris -- Garon, Edward B -- Merghoub, Taha -- Wolchok, Jedd D -- Schumacher, Ton N -- Chan, Timothy A -- K23 CA149079/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):124-8. doi: 10.1126/science.aaa1348. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. chant@mskcc.org. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Immune Monitoring Core, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Computation Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Mathematics, Columbia University, New York, NY, 10027, USA. ; Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; David Geffen School of Medicine at UCLA, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. chant@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765070" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal, Humanized/*therapeutic use ; Antineoplastic Agents/*therapeutic use ; CD8-Positive T-Lymphocytes/immunology ; Carcinoma, Non-Small-Cell Lung/*drug therapy/*genetics/immunology ; Cohort Studies ; DNA Repair/genetics ; Disease-Free Survival ; Drug Resistance, Neoplasm/*genetics ; Humans ; Lung Neoplasms/*drug therapy/*genetics/immunology ; Mutation ; Programmed Cell Death 1 Receptor/*antagonists & inhibitors ; Smoking/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-09-12
    Description: The function of neural circuits depends on the generation of specific classes of neurons. Neural identity is typically established near the time when neurons exit the cell cycle to become postmitotic cells, and it is generally accepted that, once the identity of a neuron has been established, its fate is maintained throughout life. Here, we show that network activity dynamically modulates the properties of fast-spiking (FS) interneurons through the postmitotic expression of the transcriptional regulator Er81. In the adult cortex, Er81 protein levels define a spectrum of FS basket cells with different properties, whose relative proportions are, however, continuously adjusted in response to neuronal activity. Our findings therefore suggest that interneuron properties are malleable in the adult cortex, at least to a certain extent.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702376/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702376/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehorter, Nathalie -- Ciceri, Gabriele -- Bartolini, Giorgia -- Lim, Lynette -- del Pino, Isabel -- Marin, Oscar -- 103714MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Sep 11;349(6253):1216-20. doi: 10.1126/science.aab3415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Centre for Developmental Neurobiology, Medical Research Council, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK. Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain. ; Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain. ; MRC Centre for Developmental Neurobiology, Medical Research Council, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK. Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain. oscar.marin@kcl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359400" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/cytology/metabolism/*physiology ; DNA-Binding Proteins/genetics/*metabolism ; Interneurons/cytology/metabolism/*physiology ; Mice ; Mice, Mutant Strains ; Mitosis ; Mutation ; Nerve Net/cytology/metabolism/*physiology ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krupic, Julija -- New York, N.Y. -- Science. 2015 Oct 2;350(6256):47. doi: 10.1126/science.aad3002.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK. j.krupic@ucl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26430112" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; Brain/*physiology/*ultrastructure ; *Distance Perception ; Fourier Analysis ; Humans ; Metric System ; Neurons/*physiology/*ultrastructure ; Rats ; Spatial Navigation/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mervis, Jeffrey -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1054. doi: 10.1126/science.347.6226.1054.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745139" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Biology/*education ; Curriculum ; *Faculty ; Knowledge ; *Professional Competence ; *Religion and Science ; Role ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-02-28
    Description: A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, Tiffany B -- Mulley, Geraldine -- Dills, Alexander H -- Alsohim, Abdullah S -- McGuffin, Liam J -- Studholme, David J -- Silby, Mark W -- Brockhurst, Michael A -- Johnson, Louise J -- Jackson, Robert W -- BB/J015350/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/K003240/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT097835MF/Wellcome Trust/United Kingdom -- WT101650MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1014-7. doi: 10.1126/science.1259145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. ; Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. Department of Plant Production and Protection, Qassim University, Qassim, P.O. Box 6622, Saudi Arabia. ; College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK. ; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. l.j.johnson@reading.ac.uk. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. The University of Akureyri, Borgir vid Nordurslod, IS-600 Akureyri, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722415" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/*physiology ; *Biological Evolution ; Flagella/genetics/metabolism/*physiology ; Gene Deletion ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Nitrogen/*metabolism ; Pseudomonas fluorescens/genetics/metabolism/*physiology ; Regulon ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kupferschmidt, Kai -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):263-4. doi: 10.1126/science.350.6258.263.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/*ultrastructure ; *Computer Simulation ; Investments ; *Models, Neurological ; Neurons/*ultrastructure ; Neurosciences/*economics ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohannon, John -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1300. doi: 10.1126/science.347.6228.1300.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25792310" target="_blank"〉PubMed〈/a〉
    Keywords: Albinism/genetics ; Animals ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Culicidae/genetics ; Drosophila melanogaster/*genetics ; Gene Targeting/*methods ; *Gene Transfer Techniques ; Gene Transfer, Horizontal ; *Genes, Recessive ; *Genes, X-Linked ; Humans ; Malaria/prevention & control ; Mutagenesis ; Mutation ; Pigmentation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-02-07
    Description: Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonachela, Juan A -- Pringle, Robert M -- Sheffer, Efrat -- Coverdale, Tyler C -- Guyton, Jennifer A -- Caylor, Kelly K -- Levin, Simon A -- Tarnita, Corina E -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):651-5. doi: 10.1126/science.1261487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. Mpala Research Centre, Post Office Box 555, Nanyuki, Kenya. ; Mpala Research Centre, Post Office Box 555, Nanyuki, Kenya. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. Mpala Research Centre, Post Office Box 555, Nanyuki, Kenya. ctarnita@princeton.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657247" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Climate Change ; Conservation of Natural Resources ; *Desert Climate ; *Ecosystem ; Feedback ; Isoptera/*physiology ; Models, Biological ; *Plant Development ; *Rain ; Soil ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-03-06
    Description: Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to 2.58-million-year-old fossil and hominin-bearing sediments in the Ledi-Geraru research area of Afar, Ethiopia, that have produced the earliest record of the genus Homo. Vertebrate fossils record a faunal turnover indicative of more open and probably arid habitats than those reconstructed earlier in this region, which is in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time. Geological analyses constrain depositional and structural models of Afar and date the LD 350-1 Homo mandible to 2.80 to 2.75 Ma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DiMaggio, Erin N -- Campisano, Christopher J -- Rowan, John -- Dupont-Nivet, Guillaume -- Deino, Alan L -- Bibi, Faysal -- Lewis, Margaret E -- Souron, Antoine -- Garello, Dominique -- Werdelin, Lars -- Reed, Kaye E -- Arrowsmith, J Ramon -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1355-9. doi: 10.1126/science.aaa1415. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. dimaggio@psu.edu kreed@asu.edu. ; Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; CNRS Geosciences Rennes, Campus de Beaulieu, 35042 Rennes, France. ; Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA. ; Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany. ; Biology Program, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA. ; Human Evolution Research Center, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. ; Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, SE-10405 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739409" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Ecosystem ; Ethiopia ; Fossils ; *Geologic Sediments ; *Hominidae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-04-04
    Description: Adoptive cell therapy (ACT) is a highly personalized cancer therapy that involves administration to the cancer-bearing host of immune cells with direct anticancer activity. ACT using naturally occurring tumor-reactive lymphocytes has mediated durable, complete regressions in patients with melanoma, probably by targeting somatic mutations exclusive to each cancer. These results have expanded the reach of ACT to the treatment of common epithelial cancers. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenberg, Steven A -- Restifo, Nicholas P -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):62-8. doi: 10.1126/science.aaa4967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgery Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 9000 Rockville Pike, CRC Building, Room 3W-3940, Bethesda, MD 20892, USA. sar@nih.gov restifo@nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838374" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Neoplasm/immunology ; Genetic Engineering ; Humans ; Immunotherapy, Adoptive/*methods ; Lymphocyte Depletion ; Melanoma/genetics/secondary/therapy ; Mutation ; Neoplasms/genetics/immunology/*therapy ; Precision Medicine/*methods ; Skin Neoplasms/genetics/pathology/therapy ; T-Lymphocytes/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-01-03
    Description: Some tissue types give rise to human cancers millions of times more often than other tissue types. Although this has been recognized for more than a century, it has never been explained. Here, we show that the lifetime risk of cancers of many different types is strongly correlated (0.81) with the total number of divisions of the normal self-renewing cells maintaining that tissue's homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to "bad luck," that is, random mutations arising during DNA replication in normal, noncancerous stem cells. This is important not only for understanding the disease but also for designing strategies to limit the mortality it causes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomasetti, Cristian -- Vogelstein, Bert -- P30 CA006973/CA/NCI NIH HHS/ -- P30-CA006973/CA/NCI NIH HHS/ -- P50-CA62924/CA/NCI NIH HHS/ -- R01-CA57345/CA/NCI NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37-CA43460/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):78-81. doi: 10.1126/science.1260825.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 550 North Broadway, Baltimore, MD 21205, USA. ctomasetti@jhu.edu vogelbe@jhmi.edu. ; Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, Baltimore, MD 21205, USA. ctomasetti@jhu.edu vogelbe@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554788" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division/*genetics ; Gene-Environment Interaction ; Genetic Variation ; Humans ; Mutation ; Neoplasms/classification/*epidemiology/*genetics ; Risk ; Stem Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-11-01
    Description: It is unknown whether the human immune system frequently mounts a T cell response against mutations expressed by common epithelial cancers. Using a next-generation sequencing approach combined with high-throughput immunologic screening, we demonstrated that tumor-infiltrating lymphocytes (TILs) from 9 out of 10 patients with metastatic gastrointestinal cancers contained CD4(+) and/or CD8(+) T cells that recognized one to three neo-epitopes derived from somatic mutations expressed by the patient's own tumor. There were no immunogenic epitopes shared between these patients. However, we identified in one patient a human leukocyte antigen-C*08:02-restricted T cell receptor from CD8(+) TILs that targeted the KRAS(G12D) hotspot driver mutation found in many human cancers. Thus, a high frequency of patients with common gastrointestinal cancers harbor immunogenic mutations that can potentially be exploited for the development of highly personalized immunotherapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Eric -- Ahmadzadeh, Mojgan -- Lu, Yong-Chen -- Gros, Alena -- Turcotte, Simon -- Robbins, Paul F -- Gartner, Jared J -- Zheng, Zhili -- Li, Yong F -- Ray, Satyajit -- Wunderlich, John R -- Somerville, Robert P -- Rosenberg, Steven A -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1387-90. doi: 10.1126/science.aad1253. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. sar@mail.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516200" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; CD8-Positive T-Lymphocytes/immunology ; Cell Line, Tumor ; Female ; Gastrointestinal Neoplasms/*genetics/*immunology/therapy ; HLA-C Antigens/genetics/immunology ; Humans ; Immunodominant Epitopes/genetics/immunology ; Immunotherapy/methods ; Lymphocytes, Tumor-Infiltrating/immunology ; Male ; Middle Aged ; Mutation ; Precision Medicine/methods ; Proto-Oncogene Proteins/genetics/immunology ; Receptors, Antigen, T-Cell/immunology ; ras Proteins/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-11-21
    Description: The nonrandom distribution of meiotic recombination shapes heredity and genetic diversification. Theoretically, hotspots--favored sites of recombination initiation--either evolve rapidly toward extinction or are conserved, especially if they are chromosomal features under selective constraint, such as promoters. We tested these theories by comparing genome-wide recombination initiation maps from widely divergent Saccharomyces species. We find that hotspots frequently overlap with promoters in the species tested, and consequently, hotspot positions are well conserved. Remarkably, the relative strength of individual hotspots is also highly conserved, as are larger-scale features of the distribution of recombination initiation. This stability, not predicted by prior models, suggests that the particular shape of the yeast recombination landscape is adaptive and helps in understanding evolutionary dynamics of recombination in other species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656144/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656144/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Isabel -- Keeney, Scott -- F31 GM097861/GM/NIGMS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM058673/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):932-7. doi: 10.1126/science.aad0814.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. s-keeney@ski.mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586758" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Chromosomes, Fungal/genetics ; *DNA Breaks, Double-Stranded ; Genome, Fungal/genetics ; *Homologous Recombination ; Meiosis/*genetics ; Phylogeny ; Saccharomyces cerevisiae/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-11-07
    Description: Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boualem, Adnane -- Troadec, Christelle -- Camps, Celine -- Lemhemdi, Afef -- Morin, Halima -- Sari, Marie-Agnes -- Fraenkel-Zagouri, Rina -- Kovalski, Irina -- Dogimont, Catherine -- Perl-Treves, Rafael -- Bendahmane, Abdelhafid -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):688-91. doi: 10.1126/science.aac8370.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. ; Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Universite Rene Descartes, Paris, France. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; INRA, UR 1052, Unite de Genetique et d'Amelioration des Fruits et Legumes, BP 94, F-84143 Montfavet, France. ; Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. bendahm@evry.inra.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542573" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; *Biological Evolution ; Cucumis sativus/enzymology/genetics/growth & development ; Cucurbitaceae/enzymology/genetics/*growth & development ; Ethylenes/biosynthesis ; Flowers/enzymology/genetics/*growth & development ; Genes, Plant/genetics/physiology ; Lyases/genetics/*physiology ; Molecular Sequence Data ; Phloem/enzymology/genetics/growth & development ; Plant Proteins/genetics/*physiology ; Sex Determination Processes/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-02-24
    Description: An important question in ecology is how mechanistic processes occurring among individuals drive large-scale patterns of community formation and change. Here we show that in two species of bluebirds, cycles of replacement of one by the other emerge as an indirect consequence of maternal influence on offspring behavior in response to local resource availability. Sampling across broad temporal and spatial scales, we found that western bluebirds, the more competitive species, bias the birth order of offspring by sex in a way that influences offspring aggression and dispersal, setting the stage for rapid increases in population density that ultimately result in the replacement of their sister species. Our results provide insight into how predictable community dynamics can occur despite the contingency of local behavioral interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duckworth, Renee A -- Belloni, Virginia -- Anderson, Samantha R -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):875-7. doi: 10.1126/science.1260154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. rad3@email.arizona.edu. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700519" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/analysis ; Animals ; *Biological Evolution ; Clutch Size ; *Competitive Behavior ; *Ecosystem ; Egg Yolk/chemistry ; Female ; Fires ; Male ; *Maternal Behavior ; Population Density ; Songbirds/*physiology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-06-20
    Description: Villmoare et al. (Reports, 20 March 2015, p. 1352) report on a hominin mandible from the Ledi-Geraru research area, Ethiopia, which they claim to be the earliest known representative of the genus Homo. However, certain measurements and observations for Australopithecus sediba mandibles presented are incorrect or are not included in critical aspects of the study. When correctly used, these data demonstrate that specimen LD 350-1 cannot be unequivocally assigned to the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawks, John -- de Ruiter, Darryl J -- Berger, Lee R -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aab0591.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA. Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa. jhawks@wisc.edu. ; Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa. Department of Anthropology, Texas A&M University, College Station, TX 77843, USA. ; Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hominidae/*anatomy & histology ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-03-15
    Description: After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier-permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445125/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445125/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruschel, Jorg -- Hellal, Farida -- Flynn, Kevin C -- Dupraz, Sebastian -- Elliott, David A -- Tedeschi, Andrea -- Bates, Margaret -- Sliwinski, Christopher -- Brook, Gary -- Dobrindt, Kristina -- Peitz, Michael -- Brustle, Oliver -- Norenberg, Michael D -- Blesch, Armin -- Weidner, Norbert -- Bunge, Mary Bartlett -- Bixby, John L -- Bradke, Frank -- R01 HD057632/HD/NICHD NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):347-52. doi: 10.1126/science.aaa2958. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany. ; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 Northwest 14th Terrace, Miami, FL33136, USA. ; Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany. ; Institute for Neuropathology, RWTH Aachen University, Steinbergweg 20, 52074, Aachen, Germany. Julich-Aachen Research Alliance-Translational Brain Medicine. ; Institute of Reconstructive Neurobiology, Life&Brain Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany. ; Departments of Pathology, Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101, USA. ; Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany. frank.bradke@dzne.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*drug effects/physiology ; Cell Movement/drug effects ; Cell Polarity/drug effects ; Cicatrix/pathology/*prevention & control ; Epothilones/*administration & dosage ; Fibroblasts/drug effects/pathology ; Humans ; Meninges/drug effects/pathology ; Motor Activity/drug effects ; Nerve Regeneration/*drug effects ; Neurons/drug effects/pathology ; Rats ; Spinal Cord Injuries/*drug therapy/pathology/physiopathology ; Tubulin Modulators/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-01-17
    Description: Vegetation structure is a key determinant of ecosystems and ecosystem function, but paleoecological techniques to quantify it are lacking. We present a method for reconstructing leaf area index (LAI) based on light-dependent morphology of leaf epidermal cells and phytoliths derived from them. Using this proxy, we reconstruct LAI for the Cenozoic (49 million to 11 million years ago) of middle-latitude Patagonia. Our record shows that dense forests opened up by the late Eocene; open forests and shrubland habitats then fluctuated, with a brief middle-Miocene regreening period. Furthermore, endemic herbivorous mammals show accelerated tooth crown height evolution during open, yet relatively grass-free, shrubland habitat intervals. Our Patagonian LAI record provides a high-resolution, sensitive tool with which to dissect terrestrial ecosystem response to changing Southern Ocean conditions during the Cenozoic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dunn, Regan E -- Stromberg, Caroline A E -- Madden, Richard H -- Kohn, Matthew J -- Carlini, Alfredo A -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):258-61. doi: 10.1126/science.1260947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA. dunnr@u.washington.edu. ; Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA. ; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA. ; Department of Geosciences, Boise State University, Boise, ID 83725, USA. ; Paleontologia de Vertebrados, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), La Plata, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25593182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Cell Shape ; Cell Size ; *Climate Change ; Costa Rica ; *Ecosystem ; *Forests ; Fossils ; Grassland ; Mammals/anatomy & histology ; Plant Epidermis/cytology ; *Plant Leaves/anatomy & histology ; *Plants ; South America ; Time ; Tooth Crown/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-03-31
    Description: During intracellular membrane trafficking, N-ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment protein (alpha-SNAP) disassemble the soluble NSF attachment protein receptor (SNARE) complex for recycling of the SNARE proteins. The molecular mechanism by which NSF disassembles the SNARE complex is largely unknown. Using single-molecule fluorescence spectroscopy and magnetic tweezers, we found that NSF disassembled a single SNARE complex in only one round of adenosine triphosphate (ATP) turnover. Upon ATP cleavage, the NSF hexamer developed internal tension with dissociation of phosphate ions. After latent time measuring tens of seconds, NSF released the built-up tension in a burst within 20 milliseconds, resulting in disassembly followed by immediate release of the SNARE proteins. Thus, NSF appears to use a "spring-loaded" mechanism to couple ATP hydrolysis and unfolding of substrate proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441202/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441202/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryu, Je-Kyung -- Min, Duyoung -- Rah, Sang-Hyun -- Kim, Soo Jin -- Park, Yongsoo -- Kim, Haesoo -- Hyeon, Changbong -- Kim, Ho Min -- Jahn, Reinhard -- Yoon, Tae-Young -- 3P01GM072694-05S1/GM/NIGMS NIH HHS/ -- P01 GM072694/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1485-9. doi: 10.1126/science.aaa5267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea. ; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, South Korea. ; Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Korea Institute for Advanced Study, Seoul 130-722, South Korea. ; Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. rjahn@gwdg.de tyyoon@kaist.ac.kr. ; National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea. rjahn@gwdg.de tyyoon@kaist.ac.kr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814585" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Animals ; Cattle ; Cricetinae ; Fluorescence Resonance Energy Transfer ; Hydrolysis ; N-Ethylmaleimide-Sensitive Proteins/*metabolism ; Rats ; SNARE Proteins/*metabolism ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/*metabolism ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-02-24
    Description: Cope's rule proposes that animal lineages evolve toward larger body size over time. To test this hypothesis across all marine animals, we compiled a data set of body sizes for 17,208 genera of marine animals spanning the past 542 million years. Mean biovolume across genera has increased by a factor of 150 since the Cambrian, whereas minimum biovolume has decreased by less than a factor of 10, and maximum biovolume has increased by more than a factor of 100,000. Neutral drift from a small initial value cannot explain this pattern. Instead, most of the size increase reflects differential diversification across classes, indicating that the pattern does not reflect a simple scaling-up of widespread and persistent selection for larger size within populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heim, Noel A -- Knope, Matthew L -- Schaal, Ellen K -- Wang, Steve C -- Payne, Jonathan L -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):867-70. doi: 10.1126/science.1260065.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA. naheim@stanford.edu. ; Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA. ; Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA 19081, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; *Biological Evolution ; *Body Size
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-08-01
    Description: The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heisler, David B -- Kudryashova, Elena -- Grinevich, Dmitry O -- Suarez, Cristian -- Winkelman, Jonathan D -- Birukov, Konstantin G -- Kotha, Sainath R -- Parinandi, Narasimham L -- Vavylonis, Dimitrios -- Kovar, David R -- Kudryashov, Dmitri S -- R01 GM079265/GM/NIGMS NIH HHS/ -- R01 GM098430/GM/NIGMS NIH HHS/ -- R01 GM114666/GM/NIGMS NIH HHS/ -- R01 HL076259/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):535-9. doi: 10.1126/science.aab4090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. ; Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. ; Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA. ; Department of Physics, Lehigh University, Bethlehem, PA 18015, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228148" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Antigens, Bacterial/*chemistry/genetics/*toxicity ; Bacterial Toxins/*chemistry/genetics/*toxicity ; Cell Line ; Fetal Proteins/*antagonists & inhibitors ; Intestinal Mucosa/drug effects/metabolism ; Microfilament Proteins/*antagonists & inhibitors ; Nuclear Proteins/*antagonists & inhibitors ; Polymerization/drug effects ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-05-23
    Description: Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex cross-talk between microenvironment, ILCs, and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed in order to regulate or enhance immune responses in disease prevention and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eberl, Gerard -- Colonna, Marco -- Di Santo, James P -- McKenzie, Andrew N J -- 100963/Wellcome Trust/United Kingdom -- 1U01AI095542/AI/NIAID NIH HHS/ -- MC_U105178805/Medical Research Council/United Kingdom -- R01DE021255/DE/NIDCR NIH HHS/ -- R21CA16719/CA/NCI NIH HHS/ -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 May 22;348(6237):aaa6566. doi: 10.1126/science.aaa6566. Epub 2015 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Microenvironment and Immunity Unit, 75724 Paris, France. gerard.eberl@pasteur.fr. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Institut Pasteur, Innate Immunity Unit, INSERM U668, 75724 Paris, France. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999512" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Adipose Tissue/immunology ; *Biological Evolution ; Bone Marrow/immunology ; Cytokines/immunology ; Diet ; Humans ; *Immunity, Innate ; Immunotherapy ; Inflammation/immunology ; Liver/embryology/immunology ; Lymphocyte Activation ; Lymphocytes/*immunology ; Microbiota/immunology ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-10-17
    Description: Research in the genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. Although the exact identity of many of the genes remains to be discovered, genes identified to date encode proteins that play roles in certain conserved pathways: protein synthesis, transcriptional and epigenetic regulation, and synaptic signaling. The next generation of research in neurodevelopmental disorders must address the neural circuitry underlying the behavioral symptoms and comorbidities, the cell types playing critical roles in these circuits, and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we can leverage the heterogeneity of neurodevelopmental disorders into precision medicine will the mechanism-based therapeutics for these disorders start to unlock success.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739545/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739545/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sahin, Mustafa -- Sur, Mriganka -- EF1451125/PHS HHS/ -- EY007023/EY/NEI NIH HHS/ -- MH085802/MH/NIMH NIH HHS/ -- NS090473/NS/NINDS NIH HHS/ -- P20 NS080199/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- U01 NS082320/NS/NINDS NIH HHS/ -- U54 NS092090/NS/NINDS NIH HHS/ -- U54NS092090/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263). pii: aab3897. doi: 10.1126/science.aab3897. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA. mustafa.sahin@childrens.harvard.edu msur@mit.edu. ; Simons Center for the Social Brain, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. mustafa.sahin@childrens.harvard.edu msur@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/drug therapy/genetics ; Behavior ; Brain/growth & development/metabolism ; Chromatin Assembly and Disassembly ; Clinical Trials as Topic ; Epigenesis, Genetic ; Genes ; *Genetic Predisposition to Disease ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neural Pathways/metabolism ; Neurodevelopmental Disorders/*drug therapy/*genetics ; Precision Medicine/*methods ; Protein Biosynthesis/genetics ; Transcription, Genetic ; Translational Medical Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-05-23
    Description: Viruses influence ecosystems by modulating microbial population size, diversity, metabolic outputs, and gene flow. Here, we use quantitative double-stranded DNA (dsDNA) viral-fraction metagenomes (viromes) and whole viral community morphological data sets from 43 Tara Oceans expedition samples to assess viral community patterns and structure in the upper ocean. Protein cluster cataloging defined pelagic upper-ocean viral community pan and core gene sets and suggested that this sequence space is well-sampled. Analyses of viral protein clusters, populations, and morphology revealed biogeographic patterns whereby viral communities were passively transported on oceanic currents and locally structured by environmental conditions that affect host community structure. Together, these investigations establish a global ocean dsDNA viromic data set with analyses supporting the seed-bank hypothesis to explain how oceanic viral communities maintain high local diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brum, Jennifer R -- Ignacio-Espinoza, J Cesar -- Roux, Simon -- Doulcier, Guilhem -- Acinas, Silvia G -- Alberti, Adriana -- Chaffron, Samuel -- Cruaud, Corinne -- de Vargas, Colomban -- Gasol, Josep M -- Gorsky, Gabriel -- Gregory, Ann C -- Guidi, Lionel -- Hingamp, Pascal -- Iudicone, Daniele -- Not, Fabrice -- Ogata, Hiroyuki -- Pesant, Stephane -- Poulos, Bonnie T -- Schwenck, Sarah M -- Speich, Sabrina -- Dimier, Celine -- Kandels-Lewis, Stefanie -- Picheral, Marc -- Searson, Sarah -- Tara Oceans Coordinators -- Bork, Peer -- Bowler, Chris -- Sunagawa, Shinichi -- Wincker, Patrick -- Karsenti, Eric -- Sullivan, Matthew B -- New York, N.Y. -- Science. 2015 May 22;348(6237):1261498. doi: 10.1126/science.1261498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. ; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Superieure (IBENS), CNRS, UMR8197, INSERM U1024, 75230 Paris, France. ; Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Maritim de la Barceloneta 37-49, Barcelona, E08003, Spain. ; Genoscope, Commissariat a l'Energie Atomique (CEA)-Institut de Genomique, 2 rue Gaston Cremieux, 91057 Evry, France. ; Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Center for the Biology of Disease, VIB KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. ; CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie, Universite Paris 06, and UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; CNRS, UMR 7093, Laboratoire d'oceanographie de Villefranche (LOV), Observatoire Oceanologique, 06230 Villefranche-sur-mer, France. Sorbonne Universites, Uiversite Pierre et Marie Curie, Universite Paris 06, UMR 7093, Laboratoire d'oceanographie de Villefranche (LOV), Observatoire Oceanologique, 06230 Villefranche-sur-mer, France. ; Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721, USA. ; Aix Marseille Universite, CNRS IGS UMR 7256, 13288 Marseille, France. ; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. ; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0001, Japan. ; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, 28359 Bremen, Germany. MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany. ; Laboratoire de Physique des Oceans, Institut Universitaire Europeen de la Mer, Universite de Bretagne Occidentale (UBO-IUEM), Place Copernic, 29820 Plouzane, France. ; CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, Universite Pierre et Marie Curie, Universite Paris 06, and UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Institut de Biologie de l'Ecole Normale Superieure (IBENS), and INSERM U1024, and CNRS UMR 8197, Paris, 75005, France. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Directors' Research, European Molecular Biology Laboratory Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Max-Delbruck-Centre for Molecular Medicine, 13092 Berlin, Germany. ; Institut de Biologie de l'Ecole Normale Superieure (IBENS), and INSERM U1024, and CNRS UMR 8197, Paris, 75005, France. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Genoscope, Commissariat a l'Energie Atomique (CEA)-Institut de Genomique, 2 rue Gaston Cremieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, 91057 Evry, France. Universite d'Evry, UMR 8030, CP5706, 91057 Evry, France. ; Institut de Biologie de l'Ecole Normale Superieure (IBENS), and INSERM U1024, and CNRS UMR 8197, Paris, 75005, France. Directors' Research, European Molecular Biology Laboratory Meyerhofstrasse 1, 69117 Heidelberg, Germany. mbsulli@gmail.com karsenti@embl.de. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA. Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721, USA. mbsulli@gmail.com karsenti@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999515" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; DNA, Viral/genetics ; Ecological and Environmental Processes ; *Ecosystem ; Metagenome/genetics ; Microbiota/genetics ; Oceans and Seas ; Plankton/*classification/genetics ; Seawater/*virology ; Viral Proteins/genetics ; Viruses/*classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-07-04
    Description: Larger brains tend to have more folded cortices, but what makes the cortex fold has remained unknown. We show that the degree of cortical folding scales uniformly across lissencephalic and gyrencephalic species, across individuals, and within individual cortices as a function of the product of cortical surface area and the square root of cortical thickness. This relation is derived from the minimization of the effective free energy associated with cortical shape according to a simple physical model, based on known mechanisms of axonal elongation. This model also explains the scaling of the folding index of crumpled paper balls. We discuss the implications of this finding for the evolutionary and developmental origin of folding, including the newfound continuum between lissencephaly and gyrencephaly, and for pathologies such as human lissencephaly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mota, Bruno -- Herculano-Houzel, Suzana -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):74-7. doi: 10.1126/science.aaa9101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. ; Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Instituto Nacional de Neurociencia Translacional, INCT/MCT, Sao Paulo, Brazil. suzanahh@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; *Cerebral Cortex/cytology/embryology/pathology ; Humans ; Lissencephaly/*pathology ; Mice ; Models, Neurological ; Neurons/*cytology/pathology ; Rats ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-11-14
    Description: Following the end-Devonian mass extinction (359 million years ago), vertebrates experienced persistent reductions in body size for at least 36 million years. Global shrinkage was not related to oxygen or temperature, which suggests that ecological drivers played a key role in determining the length and direction of size trends. Small, fast-breeding ray-finned fishes, sharks, and tetrapods, most under 1 meter in length from snout to tail, radiated to dominate postextinction ecosystems and vertebrae biodiversity. The few large-bodied, slow-breeding survivors failed to diversify, facing extinction despite earlier evolutionary success. Thus, the recovery interval resembled modern ecological successions in terms of active selection on size and related life histories. Disruption of global vertebrate, and particularly fish, biotas may commonly lead to widespread, long-term reduction in body size, structuring future biodiversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sallan, Lauren -- Galimberti, Andrew K -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):812-5. doi: 10.1126/science.aac7373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA. lsallan@sas.upenn.edu. ; Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; *Body Size ; Extinction, Biological ; Fishes/*anatomy & histology ; Tail/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naeem, S -- Ingram, J C -- Varga, A -- Agardy, T -- Barten, P -- Bennett, G -- Bloomgarden, E -- Bremer, L L -- Burkill, P -- Cattau, M -- Ching, C -- Colby, M -- Cook, D C -- Costanza, R -- DeClerck, F -- Freund, C -- Gartner, T -- Goldman-Benner, R -- Gunderson, J -- Jarrett, D -- Kinzig, A P -- Kiss, A -- Koontz, A -- Kumar, P -- Lasky, J R -- Masozera, M -- Meyers, D -- Milano, F -- Naughton-Treves, L -- Nichols, E -- Olander, L -- Olmsted, P -- Perge, E -- Perrings, C -- Polasky, S -- Potent, J -- Prager, C -- Quetier, F -- Redford, K -- Saterson, K -- Thoumi, G -- Vargas, M T -- Vickerman, S -- Weisser, W -- Wilkie, D -- Wunder, S -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1206-7. doi: 10.1126/science.aaa1403. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766222" target="_blank"〉PubMed〈/a〉
    Keywords: *Conservation of Natural Resources/economics ; *Ecosystem ; *Environment ; Guidelines as Topic ; Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-04-18
    Description: Human-like modes of communication, including mutual gaze, in dogs may have been acquired during domestication with humans. We show that gazing behavior from dogs, but not wolves, increased urinary oxytocin concentrations in owners, which consequently facilitated owners' affiliation and increased oxytocin concentration in dogs. Further, nasally administered oxytocin increased gazing behavior in dogs, which in turn increased urinary oxytocin concentrations in owners. These findings support the existence of an interspecies oxytocin-mediated positive loop facilitated and modulated by gazing, which may have supported the coevolution of human-dog bonding by engaging common modes of communicating social attachment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagasawa, Miho -- Mitsui, Shouhei -- En, Shiori -- Ohtani, Nobuyo -- Ohta, Mitsuaki -- Sakuma, Yasuo -- Onaka, Tatsushi -- Mogi, Kazutaka -- Kikusui, Takefumi -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):333-6. doi: 10.1126/science.1261022. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan. ; Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. ; University of Tokyo Health Sciences, Tama, Tokyo, Japan. ; Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan. ; Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. kikusui@azabu-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*psychology ; *Biological Evolution ; *Bonding, Human-Pet ; *Communication ; Dogs/*psychology ; Female ; *Fixation, Ocular ; Humans ; Oxytocin/*physiology ; Wolves/*psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buzsaki, Gyorgy -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):612-3. doi: 10.1126/science.aaa6505.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York University Neuroscience Institute, New York University Langone Center, New York, NY 10016, USA. gyorgy.buzsaki@nyumc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Hippocampus/*physiology ; Maze Learning ; Pyramidal Cells/*physiology ; Rats ; Sensation/*physiology ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-06-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hochberg, Yael V -- Fehder, Daniel C -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1202-3. doi: 10.1126/science.aab3351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rice University, Houston, TX 77251, USA. Massachusetts Institute of Technology, Cambridge, MA 02139, USA. National Bureau of Economic Research, Cambridge, MA 02138, USA. hochberg@rice.edu. ; Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068829" target="_blank"〉PubMed〈/a〉
    Keywords: *Ecosystem ; *Entrepreneurship ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-09-12
    Description: Monoclonal antibodies directed against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of response to these therapies remain incompletely characterized. To investigate the roles of tumor-specific neoantigens and alterations in the tumor microenvironment in the response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor biopsies and matching germline tissue samples from 110 patients. For 40 of these patients, we also obtained and analyzed transcriptome data from the pretreatment tumor samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in the immune microenvironment were significantly associated with clinical benefit. However, no recurrent neoantigen peptide sequences predicted responder patient populations. Thus, detailed integrated molecular characterization of large patient cohorts may be needed to identify robust determinants of response and resistance to immune checkpoint inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Allen, Eliezer M -- Miao, Diana -- Schilling, Bastian -- Shukla, Sachet A -- Blank, Christian -- Zimmer, Lisa -- Sucker, Antje -- Hillen, Uwe -- Foppen, Marnix H Geukes -- Goldinger, Simone M -- Utikal, Jochen -- Hassel, Jessica C -- Weide, Benjamin -- Kaehler, Katharina C -- Loquai, Carmen -- Mohr, Peter -- Gutzmer, Ralf -- Dummer, Reinhard -- Gabriel, Stacey -- Wu, Catherine J -- Schadendorf, Dirk -- Garraway, Levi A -- U54 HG003067/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):207-11. doi: 10.1126/science.aad0095. Epub 2015 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium(DKTK), 69121 Heidelberg, Germany. ; Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland. ; Skin Cancer Unit, German Cancer Research Center(DKTK), 69121 Heidelberg, Germany. Skin Cancer Unit, German Cancer Research Center(DKTK), 69121 Heidelberg, Germany. Department of Dermatology, Venerology, and Allergology, University Medical Center, Ruprecht-Karls University of Heidelberg, 68167 Mannheim, Germany. ; Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany. ; Department of Dermatology, University Hospital Tubingen, 72076 Tubingen, Germany. ; Department of Dermatology, University Hospital Kiel, 24105 Kiel, Germany. ; Department of Dermatology, University Medical Center, 55131 Mainz, Germany. ; Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany. ; Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, 30625 Hannover, Germany. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium(DKTK), 69121 Heidelberg, Germany. levi_garraway@dfci.harvard.edu dirk.schadendorf@uk-essen.de. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. levi_garraway@dfci.harvard.edu dirk.schadendorf@uk-essen.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359337" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; Antibodies, Monoclonal/*pharmacology/therapeutic use ; Antigens, Neoplasm/*genetics ; *Biomarkers, Pharmacological ; CTLA-4 Antigen/*antagonists & inhibitors ; Cell Cycle Checkpoints/genetics/immunology ; Cohort Studies ; DNA Mutational Analysis ; Drug Resistance, Neoplasm/genetics ; Exome ; Female ; Genomics ; HLA Antigens/genetics ; Humans ; Male ; Melanoma/*drug therapy/*genetics/secondary ; Middle Aged ; Mutation ; Skin Neoplasms/*drug therapy/*genetics/pathology ; Tumor Microenvironment/drug effects/immunology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-02-28
    Description: Polycomb and Trithorax group proteins encode the epigenetic memory of cellular positional identity by establishing inheritable domains of repressive and active chromatin within the Hox clusters. Here we demonstrate that the CCCTC-binding factor (CTCF) functions to insulate these adjacent yet antagonistic chromatin domains during embryonic stem cell differentiation into cervical motor neurons. Deletion of CTCF binding sites within the Hox clusters results in the expansion of active chromatin into the repressive domain. CTCF functions as an insulator by organizing Hox clusters into spatially disjoint domains. Ablation of CTCF binding disrupts topological boundaries such that caudal Hox genes leave the repressed domain and become subject to transcriptional activation. Hence, CTCF is required to insulate facultative heterochromatin from impinging euchromatin to produce discrete positional identities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428148/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428148/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narendra, Varun -- Rocha, Pedro P -- An, Disi -- Raviram, Ramya -- Skok, Jane A -- Mazzoni, Esteban O -- Reinberg, Danny -- GM-64844/GM/NIGMS NIH HHS/ -- GM086852/GM/NIGMS NIH HHS/ -- GM112192/GM/NIGMS NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 GM086852/GM/NIGMS NIH HHS/ -- R01 GM112192/GM/NIGMS NIH HHS/ -- R01 HD079682/HD/NICHD NIH HHS/ -- R01HD079682/HD/NICHD NIH HHS/ -- R37-37120/PHS HHS/ -- T32 GM007238/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1017-21. doi: 10.1126/science.1262088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. ; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA. ; Department of Biology, New York University, New York, NY 10003, USA. ; Department of Biology, New York University, New York, NY 10003, USA. danny.reinberg@nyumc.org eom204@nyu.edu. ; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. danny.reinberg@nyumc.org eom204@nyu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Chromatin/chemistry/genetics/*metabolism ; Dogs ; Embryonic Stem Cells/*cytology ; *Gene Expression Regulation ; *Genes, Homeobox ; Humans ; Mice ; Motor Neurons/*cytology ; Multigene Family ; Neck ; Protein Structure, Tertiary ; Rats ; Repressor Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Evans, Susan -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):374-5. doi: 10.1126/science.aac5672. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University College London, London, UK. s.e.evans@ucl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206915" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Extremities/*anatomy & histology ; Lizards/*anatomy & histology ; Snakes/*anatomy & histology/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-04-04
    Description: T cell immunity directed against tumor-encoded amino acid substitutions occurs in some melanoma patients. This implicates missense mutations as a source of patient-specific neoantigens. However, a systematic evaluation of these putative neoantigens as targets of antitumor immunity is lacking. Moreover, it remains unknown whether vaccination can augment such responses. We found that a dendritic cell vaccine led to an increase in naturally occurring neoantigen-specific immunity and revealed previously undetected human leukocyte antigen (HLA) class I-restricted neoantigens in patients with advanced melanoma. The presentation of neoantigens by HLA-A*02:01 in human melanoma was confirmed by mass spectrometry. Vaccination promoted a diverse neoantigen-specific T cell receptor (TCR) repertoire in terms of both TCR-beta usage and clonal composition. Our results demonstrate that vaccination directed at tumor-encoded amino acid substitutions broadens the antigenic breadth and clonal diversity of antitumor immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549796/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549796/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carreno, Beatriz M -- Magrini, Vincent -- Becker-Hapak, Michelle -- Kaabinejadian, Saghar -- Hundal, Jasreet -- Petti, Allegra A -- Ly, Amy -- Lie, Wen-Rong -- Hildebrand, William H -- Mardis, Elaine R -- Linette, Gerald P -- 5U54HG00307/HG/NHGRI NIH HHS/ -- P30 CA091842/CA/NCI NIH HHS/ -- P30 CA91842/CA/NCI NIH HHS/ -- R21 CA179695/CA/NCI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 May 15;348(6236):803-8. doi: 10.1126/science.aaa3828. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA. bcarreno@dom.wustl.edu. ; Genome Institute, Washington University School of Medicine, St. Louis, MO, USA. ; Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA. ; Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA. ; EMD Millipore Corporation, Billerica, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837513" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution/immunology ; Antigen Presentation ; Antigens, Neoplasm/genetics/*immunology ; Cancer Vaccines/immunology/*therapeutic use ; Dendritic Cells/immunology/*transplantation ; HLA-A2 Antigen/genetics/*immunology ; Humans ; Immunotherapy, Active/*methods ; Melanoma/genetics/immunology/*therapy ; Monitoring, Immunologic ; Mutation ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; Skin Neoplasms/genetics/immunology/*therapy ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leslie, Mitch -- New York, N.Y. -- Science. 2015 May 8;348(6235):615-6. doi: 10.1126/science.348.6235.615.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25953984" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/enzymology/genetics/ultrastructure ; Bacteria/enzymology/genetics/ultrastructure ; *Biological Evolution ; Chloroplasts ; Eukaryota/*classification/genetics/*ultrastructure ; Mitochondria ; Oceans and Seas ; Seawater/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vermeij, Geerat -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1038. doi: 10.1126/science.aad7032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA. gjvermeij@ucdavis.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26612940" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; *Biological Evolution ; Cichlids/*anatomy & histology ; *Extinction, Biological ; Jaw/*anatomy & histology ; Pharynx/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-04-04
    Description: The clinical relevance of T cells in the control of a diverse set of human cancers is now beyond doubt. However, the nature of the antigens that allow the immune system to distinguish cancer cells from noncancer cells has long remained obscure. Recent technological innovations have made it possible to dissect the immune response to patient-specific neoantigens that arise as a consequence of tumor-specific mutations, and emerging data suggest that recognition of such neoantigens is a major factor in the activity of clinical immunotherapies. These observations indicate that neoantigen load may form a biomarker in cancer immunotherapy and provide an incentive for the development of novel therapeutic approaches that selectively enhance T cell reactivity against this class of antigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, Ton N -- Schreiber, Robert D -- R01CA04305926/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):69-74. doi: 10.1126/science.aaa4971.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.schumacher@nki.nl schreiber@immunology.wustl.edu. ; Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. t.schumacher@nki.nl schreiber@immunology.wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838375" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Neoplasm/genetics/*immunology ; Biomarkers, Tumor/genetics/*immunology ; DNA Mutational Analysis ; Exome ; Female ; Genes, Neoplasm ; Humans ; Immunotherapy/*methods ; Mutation ; Neoplasms/genetics/immunology/*therapy ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-06-20
    Description: Hawks et al. argue that our analysis of Australopithecus sediba mandibles is flawed and that specimen LD 350-1 cannot be distinguished from this, or any other, Australopithecus species. Our reexamination of the evidence confirms that LD 350-1 falls outside of the pattern that A. sediba shares with Australopithecus and thus is reasonably assigned to the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Villmoare, Brian -- Kimbel, William H -- Seyoum, Chalachew -- Campisano, Christopher J -- DiMaggio, Erin -- Rowan, John -- Braun, David R -- Arrowsmith, J Ramon -- Reed, Kaye E -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aab1122.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA. Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. Department of Anthropology, University College London, London WC1H 0BW, UK. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. Authority for Research and Conservation of Cultural Heritage, Addis Ababa, Ethiopia. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. ; Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. ; Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hominidae/*anatomy & histology ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-03-21
    Description: Base-pairing interactions between nucleic acids mediate target recognition in many biological processes. We developed a super-resolution imaging and modeling platform that enabled the in vivo determination of base pairing-mediated target recognition kinetics. We examined a stress-induced bacterial small RNA, SgrS, which induces the degradation of target messenger RNAs (mRNAs). SgrS binds to a primary target mRNA in a reversible and dynamic fashion, and formation of SgrS-mRNA complexes is rate-limiting, dictating the overall regulation efficiency in vivo. Examination of a secondary target indicated that differences in the target search kinetics contribute to setting the regulation priority among different target mRNAs. This super-resolution imaging and analysis approach provides a conceptual framework that can be generalized to other small RNA systems and other target search processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410144/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410144/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fei, Jingyi -- Singh, Digvijay -- Zhang, Qiucen -- Park, Seongjin -- Balasubramanian, Divya -- Golding, Ido -- Vanderpool, Carin K -- Ha, Taekjip -- GM 112659/GM/NIGMS NIH HHS/ -- GM065367/GM/NIGMS NIH HHS/ -- GM082837/GM/NIGMS NIH HHS/ -- GM092830/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- R01 GM082837/GM/NIGMS NIH HHS/ -- R01 GM092830/GM/NIGMS NIH HHS/ -- R01 GM112659/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1371-4. doi: 10.1126/science.1258849.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Physics of Living Cells, Department of Physics, University of Illinois, Urbana, IL, USA. ; Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA. ; Department of Microbiology, University of Illinois, Urbana, IL, USA. ; Center for the Physics of Living Cells, Department of Physics, University of Illinois, Urbana, IL, USA. Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA. ; Department of Microbiology, University of Illinois, Urbana, IL, USA. tjha@illinois.edu cvanderp@life.uiuc.edu. ; Center for the Physics of Living Cells, Department of Physics, University of Illinois, Urbana, IL, USA. Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA. Carl R. Woese Institute for Genomic Biology, Howard Hughes Medical Institute, Urbana, IL, USA. Howard Hughes Medical Institute, Urbana, IL, USA. tjha@illinois.edu cvanderp@life.uiuc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25792329" target="_blank"〉PubMed〈/a〉
    Keywords: *Base Pairing ; Endoribonucleases/chemistry/genetics ; Escherichia coli/genetics/metabolism ; Kinetics ; Molecular Imaging/*methods ; Mutation ; Phosphoenolpyruvate Sugar Phosphotransferase System/genetics ; *RNA Stability ; RNA, Messenger/*chemistry ; RNA, Small Untranslated/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-03-06
    Description: Our understanding of the origin of the genus Homo has been hampered by a limited fossil record in eastern Africa between 2.0 and 3.0 million years ago (Ma). Here we report the discovery of a partial hominin mandible with teeth from the Ledi-Geraru research area, Afar Regional State, Ethiopia, that establishes the presence of Homo at 2.80 to 2.75 Ma. This specimen combines primitive traits seen in early Australopithecus with derived morphology observed in later Homo, confirming that dentognathic departures from the australopith pattern occurred early in the Homo lineage. The Ledi-Geraru discovery has implications for hypotheses about the timing and place of origin of the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Villmoare, Brian -- Kimbel, William H -- Seyoum, Chalachew -- Campisano, Christopher J -- DiMaggio, Erin N -- Rowan, John -- Braun, David R -- Arrowsmith, J Ramon -- Reed, Kaye E -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1352-5. doi: 10.1126/science.aaa1343. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA. Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. Department of Anthropology, University College London, London WC1H 0BW, UK. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. Authority for Research and Conservation of Cultural Heritage, Addis Ababa, Ethiopia. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. ; Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739410" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Ethiopia ; Fossils ; Hominidae/*anatomy & histology ; Humans ; Mandible/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):261-2. doi: 10.1126/science.350.6258.261.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; *Chimera ; *Embryonic Stem Cells ; *Financing, Organized ; Humans ; Mice ; National Institutes of Health (U.S.)/*economics ; Organ Transplantation ; Rats ; Stem Cell Research/*economics ; Swine ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1407. doi: 10.1126/science.347.6229.1407.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814564" target="_blank"〉PubMed〈/a〉
    Keywords: Ebola Vaccines/*genetics ; Ebolavirus/*genetics ; *Evolution, Molecular ; Hemorrhagic Fever, Ebola/*prevention & control/*virology ; Humans ; Mali/epidemiology ; Mutation ; Sequence Analysis, RNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lichten, Michael -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):913. doi: 10.1126/science.aad5404. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Bethesda, MD 20892, USA. mlichten@helix.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586748" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *DNA Breaks, Double-Stranded ; *Evolution, Molecular ; Finches/*genetics ; *Gene Expression Regulation ; *Homologous Recombination ; Meiosis/*genetics ; *Recombination, Genetic ; Repressor Proteins/*genetics ; Saccharomyces cerevisiae/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-08-15
    Description: Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1(E861A), where E861A denotes Glu(861)--〉Ala(861)). Adar1(E861A/E861A) embryos died at ~E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)-sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3' untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1(E861A/E861A) were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liddicoat, Brian J -- Piskol, Robert -- Chalk, Alistair M -- Ramaswami, Gokul -- Higuchi, Miyoko -- Hartner, Jochen C -- Li, Jin Billy -- Seeburg, Peter H -- Walkley, Carl R -- R01GM102484/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1115-20. doi: 10.1126/science.aac7049. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. ; Department of Genetics, Stanford University, Stanford, CA 94305, USA. ; Department of Molecular Neurobiology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany. ; Taconic Biosciences, 51063 Cologne, Germany. ; St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. cwalkley@svi.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26275108" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adenosine/genetics ; Adenosine Deaminase/genetics/*metabolism ; Animals ; DEAD-box RNA Helicases/genetics/*metabolism ; Embryo Loss/*genetics ; Gene Deletion ; Gene Knock-In Techniques ; Inosine/genetics ; Mice ; Mice, Mutant Strains ; Mutation ; Nucleic Acid Conformation ; *RNA Editing ; RNA, Double-Stranded/chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):677. doi: 10.1126/science.349.6249.677.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273032" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Opioid/*metabolism ; Animals ; Carbohydrates ; *Genetic Engineering ; Papaver/genetics/*metabolism ; Rats ; Saccharomyces cerevisiae/genetics/*metabolism ; Synthetic Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):372-3. doi: 10.1126/science.349.6246.372.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206914" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Collagen/chemistry ; *Extinction, Biological ; Fossils ; Humans ; Mammals ; Paleontology/*methods ; Proteomics/*methods ; Sequence Analysis, Protein/*methods ; Skull
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-06-06
    Description: Retroviruses depend on self-assembly of their capsid proteins (core particle) to yield infectious mature virions. Despite the essential role of the retroviral core, its high polymorphism has hindered high-resolution structural analyses. Here, we report the x-ray structure of the native capsid (CA) protein from bovine leukemia virus. CA is organized as hexamers that deviate substantially from sixfold symmetry, yet adjust to make two-dimensional pseudohexagonal arrays that mimic mature retroviral cores. Intra- and interhexameric quasi-equivalent contacts are uncovered, with flexible trimeric lateral contacts among hexamers, yet preserving very similar dimeric interfaces making the lattice. The conformation of each capsid subunit in the hexamer is therefore dictated by long-range interactions, revealing how the hexamers can also assemble into closed core particles, a relevant feature of retrovirus biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obal, G -- Trajtenberg, F -- Carrion, F -- Tome, L -- Larrieux, N -- Zhang, X -- Pritsch, O -- Buschiazzo, A -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):95-8. doi: 10.1126/science.aaa5182. Epub 2015 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la Republica, Avenida General Flores 2125, 11800, Montevideo, Uruguay. ; Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, 11400, Montevideo, Uruguay. ; Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. ; Institut Pasteur, Unite de Virologie Structurale, Departement de Virologie and CNRS Unite Mixte de Recherche 3569, 28, Rue du Docteur Roux, 75015, Paris, France. ; Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la Republica, Avenida General Flores 2125, 11800, Montevideo, Uruguay. pritsch@pasteur.edu.uy alebus@pasteur.edu.uy. ; Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, 11400, Montevideo, Uruguay. Institut Pasteur, Department of Structural Biology and Chemistry, 25, Rue du Dr Roux, 75015, Paris, France. pritsch@pasteur.edu.uy alebus@pasteur.edu.uy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26044299" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Capsid/*chemistry ; Capsid Proteins/*chemistry/genetics ; Cattle ; Crystallography, X-Ray ; Leukemia Virus, Bovine/*chemistry/genetics ; Molecular Sequence Data ; Mutation ; Protein Multimerization ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-03-15
    Description: Wireless deep brain stimulation of well-defined neuronal populations could facilitate the study of intact brain circuits and the treatment of neurological disorders. Here, we demonstrate minimally invasive and remote neural excitation through the activation of the heat-sensitive capsaicin receptor TRPV1 by magnetic nanoparticles. When exposed to alternating magnetic fields, the nanoparticles dissipate heat generated by hysteresis, triggering widespread and reversible firing of TRPV1(+) neurons. Wireless magnetothermal stimulation in the ventral tegmental area of mice evoked excitation in subpopulations of neurons in the targeted brain region and in structures receiving excitatory projections. The nanoparticles persisted in the brain for over a month, allowing for chronic stimulation without the need for implants and connectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Ritchie -- Romero, Gabriela -- Christiansen, Michael G -- Mohr, Alan -- Anikeeva, Polina -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1477-80. doi: 10.1126/science.1261821. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. anikeeva@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765068" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Deep Brain Stimulation/*methods ; Evoked Potentials ; HEK293 Cells ; Humans ; *Magnetite Nanoparticles ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/physiology ; Rats ; TRPV Cation Channels/agonists ; Ventral Tegmental Area/physiology ; *Wireless Technology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wade, Lizzie -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):370-1. doi: 10.1126/science.349.6246.370. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206913" target="_blank"〉PubMed〈/a〉
    Keywords: Analytic Sample Preparation Methods ; Animals ; Biodiversity ; *Biological Evolution ; *Caves ; Cold Temperature ; DNA/chemistry/*genetics/*isolation & purification ; Hot Temperature ; Mexico ; Rodentia/*genetics ; Tooth/chemistry ; *Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-01-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):114. doi: 10.1126/science.347.6218.114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25573999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bionics ; *Electrodes, Implanted ; Movement ; Paralysis/physiopathology/*therapy ; Rats ; Sensation ; Spinal Cord Injuries/physiopathology/*therapy ; *Walking
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Peter J -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):736-7. doi: 10.1126/science.aad6283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA. wagnerpj@si.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Body Size ; Fishes/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-06-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fredrickson, James K -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1425-7. doi: 10.1126/science.aab0946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA. jim.fredrickson@pnnl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113703" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics/physiology ; Bacteria/genetics ; Genetic Fitness ; Microbial Consortia/genetics/*physiology ; Microbial Interactions/genetics/*physiology ; Mutation ; Synthetic Biology ; Yeasts/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-07-15
    Description: Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-gamma (IFN-gamma) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORgamma and RORgammaT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORgamma- and RORgammaT-deficient individuals also displayed an impaired IFN-gamma response to Mycobacterium. This principally reflected profoundly defective IFN-gamma production by circulating gammadelta T cells and CD4(+)CCR6(+)CXCR3(+) alphabeta T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORgamma, RORgammaT, or both.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Satoshi -- Markle, Janet G -- Deenick, Elissa K -- Mele, Federico -- Averbuch, Dina -- Lagos, Macarena -- Alzahrani, Mohammed -- Al-Muhsen, Saleh -- Halwani, Rabih -- Ma, Cindy S -- Wong, Natalie -- Soudais, Claire -- Henderson, Lauren A -- Marzouqa, Hiyam -- Shamma, Jamal -- Gonzalez, Marcela -- Martinez-Barricarte, Ruben -- Okada, Chizuru -- Avery, Danielle T -- Latorre, Daniela -- Deswarte, Caroline -- Jabot-Hanin, Fabienne -- Torrado, Egidio -- Fountain, Jeffrey -- Belkadi, Aziz -- Itan, Yuval -- Boisson, Bertrand -- Migaud, Melanie -- Arlehamn, Cecilia S Lindestam -- Sette, Alessandro -- Breton, Sylvain -- McCluskey, James -- Rossjohn, Jamie -- de Villartay, Jean-Pierre -- Moshous, Despina -- Hambleton, Sophie -- Latour, Sylvain -- Arkwright, Peter D -- Picard, Capucine -- Lantz, Olivier -- Engelhard, Dan -- Kobayashi, Masao -- Abel, Laurent -- Cooper, Andrea M -- Notarangelo, Luigi D -- Boisson-Dupuis, Stephanie -- Puel, Anne -- Sallusto, Federica -- Bustamante, Jacinta -- Tangye, Stuart G -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900044C/AI/NIAID NIH HHS/ -- HHSN272200900044C/PHS HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- T32 AI007512/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):606-13. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ; Institut Curie, INSERM U932, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. ; Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Trudeau Institute, Saranac Lake, NY 12983, USA. ; La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; Department of Radiology, Assistance Publique-Hopitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK. ; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Howard Hughes Medical Institute, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160376" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Candida albicans/*immunology ; Candidiasis, Chronic Mucocutaneous/complications/*genetics/immunology ; Cattle ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Immunity/*genetics ; Interferon-gamma/immunology ; Interleukin-17/immunology ; Mice ; Mutation ; Mycobacterium bovis/immunology/isolation & purification ; Mycobacterium tuberculosis/immunology/isolation & purification ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Pedigree ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology ; Receptors, Antigen, T-Cell, gamma-delta/genetics/immunology ; Severe Combined Immunodeficiency/*genetics ; T-Lymphocytes/immunology ; Thymus Gland/abnormalities/immunology ; Tuberculosis, Bovine/*genetics/immunology ; Tuberculosis, Pulmonary/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: Mammoths provide a detailed example of species origins and dispersal, but understanding has been impeded by taxonomic confusion, especially in North America. The Columbian mammoth Mammuthus columbi was thought to have evolved in North America from a more primitive Eurasian immigrant. The earliest American mammoths (1.5 million years ago), however, resemble the advanced Eurasian M. trogontherii that crossed the Bering land bridge around that time, giving rise directly to M. columbi. Woolly mammoth M. primigenius later evolved in Beringia and spread into Europe and North America, leading to a diversity of morphologies as it encountered endemic M. trogontherii and M. columbi, respectively. In North America, this included intermediates ("M. jeffersonii"), suggesting introgression of M. primigenius with M. columbi. The lineage illustrates the dynamic interplay of local adaptation, dispersal, and gene flow in the evolution of a widely distributed species complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, A M -- Sher, A V -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):805-9. doi: 10.1126/science.aac5660.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. a.lister@nhm.ac.uk. ; Severtsov Institute of Ecology and Evolution, Moscow 119071, Russia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564853" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animal Migration ; Animals ; *Biological Evolution ; Europe ; Fossils ; Gene Flow ; Mammoths/anatomy & histology/*classification/genetics ; Molar/anatomy & histology ; North America ; Tooth Wear/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-06-13
    Description: Steffen et al. (Research Articles, 13 February 2015, p. 736) recently assessed current global freshwater use, finding it to be well below a corresponding planetary boundary. However, they ignored recent scientific advances implying that the global consumptive use of freshwater may have already crossed the associated planetary boundary.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaramillo, Fernando -- Destouni, Georgia -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1217. doi: 10.1126/science.aaa9629. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Geography, Stockholm University, SE-106 91, Stockholm, Sweden. Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden. fernando.jaramillo@natgeo.su.se. ; Department of Physical Geography, Stockholm University, SE-106 91, Stockholm, Sweden. Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068843" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-04-25
    Description: An organism with a single recessive loss-of-function allele will typically have a wild-type phenotype, whereas individuals homozygous for two copies of the allele will display a mutant phenotype. We have developed a method called the mutagenic chain reaction (MCR), which is based on the CRISPR/Cas9 genome-editing system for generating autocatalytic mutations, to produce homozygous loss-of-function mutations. In Drosophila, we found that MCR mutations efficiently spread from their chromosome of origin to the homologous chromosome, thereby converting heterozygous mutations to homozygosity in the vast majority of somatic and germline cells. MCR technology should have broad applications in diverse organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gantz, Valentino M -- Bier, Ethan -- R01 AI070654/AI/NIAID NIH HHS/ -- R01 AI110713/AI/NIAID NIH HHS/ -- R01 GM067247/GM/NIGMS NIH HHS/ -- R56 NS029870/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 24;348(6233):442-4. doi: 10.1126/science.aaa5945. Epub 2015 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92095, USA. vgantz@ucsd.edu ebier@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25908821" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Caspase 9 ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Drosophila melanogaster/genetics ; Female ; Genetic Engineering/*methods ; Genome, Insect ; Germ Cells ; *Heterozygote ; *Homozygote ; Male ; *Mutagenesis ; Mutation ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-03-31
    Description: Severe influenza disease strikes otherwise healthy children and remains unexplained. We report compound heterozygous null mutations in IRF7, which encodes the transcription factor interferon regulatory factor 7, in an otherwise healthy child who suffered life-threatening influenza during primary infection. In response to influenza virus, the patient's leukocytes and plasmacytoid dendritic cells produced very little type I and III interferons (IFNs). Moreover, the patient's dermal fibroblasts and induced pluripotent stem cell (iPSC)-derived pulmonary epithelial cells produced reduced amounts of type I IFN and displayed increased influenza virus replication. These findings suggest that IRF7-dependent amplification of type I and III IFNs is required for protection against primary infection by influenza virus in humans. They also show that severe influenza may result from single-gene inborn errors of immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431581/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431581/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ciancanelli, Michael J -- Huang, Sarah X L -- Luthra, Priya -- Garner, Hannah -- Itan, Yuval -- Volpi, Stefano -- Lafaille, Fabien G -- Trouillet, Celine -- Schmolke, Mirco -- Albrecht, Randy A -- Israelsson, Elisabeth -- Lim, Hye Kyung -- Casadio, Melina -- Hermesh, Tamar -- Lorenzo, Lazaro -- Leung, Lawrence W -- Pedergnana, Vincent -- Boisson, Bertrand -- Okada, Satoshi -- Picard, Capucine -- Ringuier, Benedicte -- Troussier, Francoise -- Chaussabel, Damien -- Abel, Laurent -- Pellier, Isabelle -- Notarangelo, Luigi D -- Garcia-Sastre, Adolfo -- Basler, Christopher F -- Geissmann, Frederic -- Zhang, Shen-Ying -- Snoeck, Hans-Willem -- Casanova, Jean-Laurent -- 1U19AI109945/AI/NIAID NIH HHS/ -- 5R01AI100887/AI/NIAID NIH HHS/ -- 5R01NS072381/NS/NINDS NIH HHS/ -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272201400008C/PHS HHS/ -- R01 AI100887/AI/NIAID NIH HHS/ -- R01 NS072381/NS/NINDS NIH HHS/ -- U19 AI109945/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 24;348(6233):448-53. doi: 10.1126/science.aaa1578. Epub 2015 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. ; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA. Department of Medicine, Columbia University Medical Center, New York, NY, USA. ; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London SE1 1UL, UK. ; Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA, USA. Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy. ; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. Study Centre for Primary Immunodeficiencies, AP-HP, Necker Hospital, Paris, France. ; Pediatric Intensive Care Unit, University Hospital, Angers, France. ; General Pediatrics Unit, University Hospital, Angers, France. ; Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA. Department of Systems Biology, Sidra Medical and Research Center, Doha, Qatar. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. ; Pediatric Immunology, Hematology and Oncology Unit, University Hospital Centre of Angers, Angers, France. INSERM U892, CNRS U6299, Angers, France. ; Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA, USA. ; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. Pediatric Immuno-Hematology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France. Howard Hughes Medical Institute, New York, NY, USA. jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814066" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Dendritic Cells/immunology ; Female ; Fibroblasts/immunology ; Genes, Recessive ; *Heterozygote ; Humans ; Induced Pluripotent Stem Cells/immunology ; *Influenza A Virus, H1N1 Subtype ; Influenza, Human/complications/genetics/*immunology ; Interferon Regulatory Factor-7/*genetics ; Interferon Type I/*biosynthesis/genetics ; Leukocytes/immunology ; Lung/immunology ; Mutation ; Respiratory Distress Syndrome, Adult/genetics/*immunology/virology ; Respiratory Mucosa/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-10-31
    Description: Miocene small-bodied anthropoid primates from Africa and Eurasia are generally considered to precede the divergence between the two groups of extant catarrhines-hominoids (apes and humans) and Old World monkeys-and are thus viewed as more primitive than the stem ape Proconsul. Here we describe Pliobates cataloniae gen. et sp. nov., a small-bodied (4 to 5 kilograms) primate from the Iberian Miocene (11.6 million years ago) that displays a mosaic of primitive characteristics coupled with multiple cranial and postcranial shared derived features of extant hominoids. Our cladistic analyses show that Pliobates is a stem hominoid that is more derived than previously described small catarrhines and Proconsul. This forces us to reevaluate the role played by small-bodied catarrhines in ape evolution and provides key insight into the last common ancestor of hylobatids (gibbons) and hominids (great apes and humans).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alba, David M -- Almecija, Sergio -- DeMiguel, Daniel -- Fortuny, Josep -- Perez de los Rios, Miriam -- Pina, Marta -- Robles, Josep M -- Moya-Sola, Salvador -- New York, N.Y. -- Science. 2015 Oct 30;350(6260):aab2625. doi: 10.1126/science.aab2625. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA. Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. FOSSILIA Serveis Paleontologics i Geologics, Jaume I 87, 5e 1a, 08470 Sant Celoni, Barcelona, Spain. ; Institucio Catalana de Recerca i Estudis Avancats at ICP and Unitat d'Antropologia Biologica (Department de Biologia Animal, de Biologia Vegetal i d'Ecologia), Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Weight ; Bone and Bones/anatomy & histology ; Brain/anatomy & histology/growth & development ; Dentition ; Hominidae/anatomy & histology/*classification/growth & development ; Humans ; Hylobates/anatomy & histology/*classification/growth & development ; Phylogeny ; Skull/anatomy & histology/growth & development ; Spain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-05-02
    Description: The hippocampus computes diverse information involving spatial memory, anxiety, or reward and directly projects to several brain areas. Are different computations transmitted to all downstream targets uniformly, or does the hippocampus selectively route information according to content and target region? By recording from ventral hippocampal CA1 neurons in rats during different behavioral tasks and determining axonal projections with optogenetics, we observed subsets of neurons changing firing at places of elevated anxiety or changing activity during goal approach. Anxiety-related firing was selectively increased in neurons projecting to the prefrontal cortex. Goal-directed firing was most prominent in neurons targeting the nucleus accumbens; and triple-projecting neurons, targeting the prefrontal cortex, amygdala, and nucleus accumbens, were most active during tasks and sharp wave/ripples. Thus, hippocampal neurons route distinct behavior-contingent information selectively to different target areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ciocchi, S -- Passecker, J -- Malagon-Vina, H -- Mikus, N -- Klausberger, T -- New York, N.Y. -- Science. 2015 May 1;348(6234):560-3. doi: 10.1126/science.aaa3245.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Brain Research, Department for Cognitive Neurobiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria. stephane.ciocchi@meduniwien.ac.at thomas.klausberger@meduniwien.ac.at. ; Center for Brain Research, Department for Cognitive Neurobiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria. ; Center for Brain Research, Department for Cognitive Neurobiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria. Medical Research Council, Anatomical Neuropharmacology Unit, Oxford University, Mansfield Road, Oxford OX1 3TH, UK. stephane.ciocchi@meduniwien.ac.at thomas.klausberger@meduniwien.ac.at.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25931556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/physiopathology ; CA1 Region, Hippocampal/*physiology ; Cell Communication ; Male ; Mental Processes/*physiology ; Neurons/physiology ; Nucleus Accumbens/physiology ; Optogenetics ; Prefrontal Cortex/physiology ; Rats ; Rats, Inbred LEC ; *Spatial Learning
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-07-04
    Description: The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems-and the goods and services they provide-for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario-consistent with the Copenhagen Accord's goal of a global temperature increase of less than 2 degrees C-is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gattuso, J-P -- Magnan, A -- Bille, R -- Cheung, W W L -- Howes, E L -- Joos, F -- Allemand, D -- Bopp, L -- Cooley, S R -- Eakin, C M -- Hoegh-Guldberg, O -- Kelly, R P -- Portner, H-O -- Rogers, A D -- Baxter, J M -- Laffoley, D -- Osborn, D -- Rankovic, A -- Rochette, J -- Sumaila, U R -- Treyer, S -- Turley, C -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):aac4722. doi: 10.1126/science.aac4722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Oceanographie de Villefranche, CNRS-Institut National des Sciences de l'Univers, F-06230 Villefranche-sur-mer, France. Sorbonne Universites, Universite Pierre et Marie Curie, Univ Paris 06, Observatoire Oceanologique, F-06230 Villefranche-sur-mer, France. Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France. gattuso@obs-vlfr.fr. ; Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France. ; Secretariat of the Pacific Community, B.P. D5, 98848 Noumea Cedex, New Caledonia. ; Nippon Foundation-UBC Nereus Program, University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada. ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremenrhaven, Germany. ; Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland. ; Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000 Monaco, Principality of Monaco. Institut Pierre Simon Laplace/Laboratoire des Science du Climat et de l'Environnement, UMR8212, CNRS-Commissariat a l'Energie Atomique et aux Energies Alternatives-Universite de Versailles Saint-Quentin-en-Yvelines, Gif sur Yvette, France. ; Ocean Conservancy, 1300 19th Street NW, 8th Floor, Washington, DC 20036, USA. ; Coral Reef Watch, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA. ; Global Change Institute and Australian Research Council Centre for Excellence in Coral Reef Studies, University of Queensland, Building 20, St Lucia, 4072 Queensland, Australia. ; School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh EH12 7AT, Scotland. ; IUCN, Rue Mauverney 28, CH-1196 Gland, Switzerland. ; Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco. ; Program on Science, Technology, and Society, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138, USA. ; Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France. Fisheries Economics Research Unit, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. ; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138982" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquaculture ; *Aquatic Organisms ; *Carbon Dioxide ; *Ecosystem ; *Global Warming ; *Greenhouse Effect ; Health ; Humans ; Oceans and Seas ; Risk ; Travel
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...