ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-18
    Description: Purpose. Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Methods. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Results. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39). There was no correlation between u-PA and PAI-1 () but t-PA and PAI-1 were strongly correlated with each other (). Overexpression of PAI-1 was proportional to the calcium content of the AS valves. Conclusions. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The overexpression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.
    Topics: Biology , Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Salt stress has detrimental effects on plant growth and development. MicroRNAs (miRNAs) are a class of noncoding RNAs that are involved in post-transcriptional gene expression regulation. In this study, small RNA sequencing was employed to identify the salt stress-responsive miRNAs of the salt-sensitive Hassawi-3 and the salt-tolerant ILB4347 genotypes of faba bean, growing under salt stress. A total of 527 miRNAs in Hassawi-3 plants, and 693 miRNAs in ILB4347 plants, were found to be differentially expressed. Additionally, 284 upregulated and 243 downregulated miRNAs in Hassawi-3, and 298 upregulated and 395 downregulated miRNAs in ILB4347 plants growing in control and stress conditions were recorded. Target prediction and annotation revealed that these miRNAs regulate specific salt-responsive genes, which primarily included genes encoding transcription factors and laccases, superoxide dismutase, plantacyanin, and F-box proteins. The salt-responsive miRNAs and their targets were functionally enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, which showed that the miRNAs were involved in salt stress-related biological pathways, including the ABC transporter pathway, MAPK signaling pathway, plant hormone signal transduction, and the phosphatidylinositol signaling system, among others, suggesting that the miRNAs play an important role in the salt stress tolerance of the ILB4347 genotype. These results offer a novel understanding of the regulatory role of miRNAs in the salt response of the salt-tolerant ILB4347 and the salt-sensitive Hassawi-3 faba bean genotypes.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-15
    Description: Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-gamma (IFN-gamma) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORgamma and RORgammaT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORgamma- and RORgammaT-deficient individuals also displayed an impaired IFN-gamma response to Mycobacterium. This principally reflected profoundly defective IFN-gamma production by circulating gammadelta T cells and CD4(+)CCR6(+)CXCR3(+) alphabeta T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORgamma, RORgammaT, or both.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Satoshi -- Markle, Janet G -- Deenick, Elissa K -- Mele, Federico -- Averbuch, Dina -- Lagos, Macarena -- Alzahrani, Mohammed -- Al-Muhsen, Saleh -- Halwani, Rabih -- Ma, Cindy S -- Wong, Natalie -- Soudais, Claire -- Henderson, Lauren A -- Marzouqa, Hiyam -- Shamma, Jamal -- Gonzalez, Marcela -- Martinez-Barricarte, Ruben -- Okada, Chizuru -- Avery, Danielle T -- Latorre, Daniela -- Deswarte, Caroline -- Jabot-Hanin, Fabienne -- Torrado, Egidio -- Fountain, Jeffrey -- Belkadi, Aziz -- Itan, Yuval -- Boisson, Bertrand -- Migaud, Melanie -- Arlehamn, Cecilia S Lindestam -- Sette, Alessandro -- Breton, Sylvain -- McCluskey, James -- Rossjohn, Jamie -- de Villartay, Jean-Pierre -- Moshous, Despina -- Hambleton, Sophie -- Latour, Sylvain -- Arkwright, Peter D -- Picard, Capucine -- Lantz, Olivier -- Engelhard, Dan -- Kobayashi, Masao -- Abel, Laurent -- Cooper, Andrea M -- Notarangelo, Luigi D -- Boisson-Dupuis, Stephanie -- Puel, Anne -- Sallusto, Federica -- Bustamante, Jacinta -- Tangye, Stuart G -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900044C/AI/NIAID NIH HHS/ -- HHSN272200900044C/PHS HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- T32 AI007512/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):606-13. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ; Institut Curie, INSERM U932, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. ; Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Trudeau Institute, Saranac Lake, NY 12983, USA. ; La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; Department of Radiology, Assistance Publique-Hopitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK. ; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Howard Hughes Medical Institute, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160376" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Candida albicans/*immunology ; Candidiasis, Chronic Mucocutaneous/complications/*genetics/immunology ; Cattle ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Immunity/*genetics ; Interferon-gamma/immunology ; Interleukin-17/immunology ; Mice ; Mutation ; Mycobacterium bovis/immunology/isolation & purification ; Mycobacterium tuberculosis/immunology/isolation & purification ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Pedigree ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology ; Receptors, Antigen, T-Cell, gamma-delta/genetics/immunology ; Severe Combined Immunodeficiency/*genetics ; T-Lymphocytes/immunology ; Thymus Gland/abnormalities/immunology ; Tuberculosis, Bovine/*genetics/immunology ; Tuberculosis, Pulmonary/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-01
    Print ISSN: 1742-6588
    Electronic ISSN: 1742-6596
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-01
    Print ISSN: 1742-6588
    Electronic ISSN: 1742-6596
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...