ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-07
    Description: Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonachela, Juan A -- Pringle, Robert M -- Sheffer, Efrat -- Coverdale, Tyler C -- Guyton, Jennifer A -- Caylor, Kelly K -- Levin, Simon A -- Tarnita, Corina E -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):651-5. doi: 10.1126/science.1261487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. Mpala Research Centre, Post Office Box 555, Nanyuki, Kenya. ; Mpala Research Centre, Post Office Box 555, Nanyuki, Kenya. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. Mpala Research Centre, Post Office Box 555, Nanyuki, Kenya. ctarnita@princeton.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657247" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Climate Change ; Conservation of Natural Resources ; *Desert Climate ; *Ecosystem ; Feedback ; Isoptera/*physiology ; Models, Biological ; *Plant Development ; *Rain ; Soil ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-01
    Description: Niche partitioning facilitates species coexistence in a world of limited resources, thereby enriching biodiversity. For decades, biologists have sought to understand how diverse assemblages of large mammalian herbivores (LMH) partition food resources. Several complementary mechanisms have been identified, including differential consumption of grasses versus nongrasses and spatiotemporal stratification in use...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...