ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-15
    Description: Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizvi, Naiyer A -- Hellmann, Matthew D -- Snyder, Alexandra -- Kvistborg, Pia -- Makarov, Vladimir -- Havel, Jonathan J -- Lee, William -- Yuan, Jianda -- Wong, Phillip -- Ho, Teresa S -- Miller, Martin L -- Rekhtman, Natasha -- Moreira, Andre L -- Ibrahim, Fawzia -- Bruggeman, Cameron -- Gasmi, Billel -- Zappasodi, Roberta -- Maeda, Yuka -- Sander, Chris -- Garon, Edward B -- Merghoub, Taha -- Wolchok, Jedd D -- Schumacher, Ton N -- Chan, Timothy A -- K23 CA149079/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):124-8. doi: 10.1126/science.aaa1348. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. chant@mskcc.org. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Immune Monitoring Core, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Computation Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Mathematics, Columbia University, New York, NY, 10027, USA. ; Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; David Geffen School of Medicine at UCLA, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. chant@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765070" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal, Humanized/*therapeutic use ; Antineoplastic Agents/*therapeutic use ; CD8-Positive T-Lymphocytes/immunology ; Carcinoma, Non-Small-Cell Lung/*drug therapy/*genetics/immunology ; Cohort Studies ; DNA Repair/genetics ; Disease-Free Survival ; Drug Resistance, Neoplasm/*genetics ; Humans ; Lung Neoplasms/*drug therapy/*genetics/immunology ; Mutation ; Programmed Cell Death 1 Receptor/*antagonists & inhibitors ; Smoking/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8(+)tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non-small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy-induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGranahan, Nicholas -- Furness, Andrew J S -- Rosenthal, Rachel -- Ramskov, Sofie -- Lyngaa, Rikke -- Saini, Sunil Kumar -- Jamal-Hanjani, Mariam -- Wilson, Gareth A -- Birkbak, Nicolai J -- Hiley, Crispin T -- Watkins, Thomas B K -- Shafi, Seema -- Murugaesu, Nirupa -- Mitter, Richard -- Akarca, Ayse U -- Linares, Joseph -- Marafioti, Teresa -- Henry, Jake Y -- Van Allen, Eliezer M -- Miao, Diana -- Schilling, Bastian -- Schadendorf, Dirk -- Garraway, Levi A -- Makarov, Vladimir -- Rizvi, Naiyer A -- Snyder, Alexandra -- Hellmann, Matthew D -- Merghoub, Taha -- Wolchok, Jedd D -- Shukla, Sachet A -- Wu, Catherine J -- Peggs, Karl S -- Chan, Timothy A -- Hadrup, Sine R -- Quezada, Sergio A -- Swanton, Charles -- 12100/Cancer Research UK/United Kingdom -- 1R01CA155010-02/CA/NCI NIH HHS/ -- 1R01CA182461-01/CA/NCI NIH HHS/ -- 1R01CA184922-01/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1463-9. doi: 10.1126/science.aaf1490. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Francis Crick Institute, London WC2A 3LY, UK. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London (UCL), London WC1E 6BT, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, 1970 Frederiksberg C, Denmark. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; The Francis Crick Institute, London WC2A 3LY, UK. ; Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. Department of Cellular Pathology, UCL, London WC1E 6BT, UK. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium (DKTK), 69121 Heidelberg, Germany. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Hematology/Oncology Division, 177 Fort Washington Avenue, Columbia University, New York, NY 10032, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Department of Internal Medicine, Brigham and Woman's Hospital, Boston, MA 02115, USA. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940869" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/*immunology ; Aged ; Aged, 80 and over ; Antigens, Neoplasm/genetics/*immunology ; Antineoplastic Agents/therapeutic use ; CD4-Positive T-Lymphocytes/*immunology ; CTLA-4 Antigen/immunology ; Carcinoma, Non-Small-Cell Lung/genetics/immunology ; Cell Cycle Checkpoints/immunology ; Female ; Humans ; *Immunologic Surveillance ; Lung Neoplasms/drug therapy/genetics/*immunology ; Lymphocytes, Tumor-Infiltrating/immunology ; Male ; Melanoma/immunology ; Middle Aged ; Mutation ; Programmed Cell Death 1 Receptor/immunology ; Skin Neoplasms/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-03
    Description: CD8 + T cell–dependent killing of cancer cells requires efficient presentation of tumor antigens by human leukocyte antigen class I (HLA-I) molecules. However, the extent to which patient-specific HLA-I genotype influences response to anti–programmed cell death protein 1 or anti–cytotoxic T lymphocyte–associated protein 4 is currently unknown. We determined the HLA-I genotype of 1535 advanced cancer patients treated with immune checkpoint blockade (ICB). Maximal heterozygosity at HLA-I loci ("A," "B," and "C") improved overall survival after ICB compared with patients who were homozygous for at least one HLA locus. In two independent melanoma cohorts, patients with the HLA-B44 supertype had extended survival, whereas the HLA-B62 supertype (including HLA-B*15:01) or somatic loss of heterozygosity at HLA-I was associated with poor outcome. Molecular dynamics simulations of HLA-B*15:01 revealed different elements that may impair CD8 + T cell recognition of neoantigens. Our results have important implications for predicting response to ICB and for the design of neoantigen-based therapeutic vaccines.
    Keywords: Genetics, Immunology, Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...