ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (114)
  • Protein Conformation  (69)
  • American Association for the Advancement of Science (AAAS)  (170)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
  • Periodicals Archive Online (PAO)
  • 2010-2014  (109)
  • 1985-1989  (61)
  • 2011  (109)
  • 1987  (61)
Collection
Publisher
Years
  • 2010-2014  (109)
  • 1985-1989  (61)
Year
  • 1
    Publication Date: 2011-11-15
    Description: With its high-energy phosphate bonds, adenosine triphosphate (ATP) is the main intracellular energy carrier. It also functions in most signaling pathways, as a phosphate donor or a precursor for cyclic adenosine monophosphate. We show here that inositol pyrophosphates participate in the control of intracellular ATP concentration. Yeasts devoid of inositol pyrophosphates have dysfunctional mitochondria but, paradoxically, contain four times as much ATP because of increased glycolysis. We demonstrate that inositol pyrophosphates control the activity of the major glycolytic transcription factor GCR1. Thus, inositol pyrophosphates regulate ATP concentration by altering the glycolytic/mitochondrial metabolic ratio. Metabolic reprogramming through inositol pyrophosphates is an evolutionary conserved mechanism that is also preserved in mammalian systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szijgyarto, Zsolt -- Garedew, Assegid -- Azevedo, Cristina -- Saiardi, Adolfo -- G1001704/Medical Research Council/United Kingdom -- MC_U122680443/Medical Research Council/United Kingdom -- PG/10/72/28449/British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):802-5. doi: 10.1126/science.1211908.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076377" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; *Energy Metabolism ; Gene Expression Regulation, Fungal ; Glucose/metabolism ; Glycolysis/genetics ; Inositol Phosphates/*metabolism ; Mitochondria/metabolism ; Mutation ; NAD/metabolism ; Oxidation-Reduction ; Oxidative Phosphorylation ; Oxygen Consumption ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-26
    Description: Pervasive transcription of eukaryotic genomes generates a plethora of noncoding RNAs. In fission yeast, the heterochromatin factor Clr4/Suv39 methyltransferase facilitates RNA interference (RNAi)-mediated processing of centromeric transcripts into small interfering RNAs (siRNAs). Clr4 also mediates degradation of antisense RNAs at euchromatic loci, but the underlying mechanism has remained elusive. We show that Clr4 and the RNAi effector RITS (RNA-induced transcriptional silencing) interact with Mlo3, a protein related to mRNA quality control and export factors. Loss of Clr4 impairs RITS interaction with Mlo3, which is required for centromeric siRNA production and antisense suppression. Mlo3 also interacts with the RNA surveillance factor TRAMP, which suppresses antisense RNAs targeted by Clr4 and RNAi. These findings link Clr4 to RNA quality control machinery and suggest a pathway for processing potentially deleterious RNAs through the coordinated actions of RNAi and other RNA processing activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ke -- Fischer, Tamas -- Porter, Rebecca L -- Dhakshnamoorthy, Jothy -- Zofall, Martin -- Zhou, Ming -- Veenstra, Timothy -- Grewal, Shiv I S -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1624-7. doi: 10.1126/science.1198712.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, National Cancer Institute/NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436456" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/genetics/*metabolism ; Centromere/metabolism ; Euchromatin/metabolism ; Histones/metabolism ; Methylation ; Methyltransferases/genetics/*metabolism ; Mutation ; *RNA Interference ; RNA Processing, Post-Transcriptional ; RNA, Antisense/*metabolism ; RNA, Fungal/*metabolism ; RNA-Binding Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces/*genetics/*metabolism ; Schizosaccharomyces pombe Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minke, Baruch -- Peters, Maximilian -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1272-3. doi: 10.1126/science.1203482.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University, Jerusalem, Israel. baruchm@ekmd.huji.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393531" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila Proteins/genetics/metabolism/*physiology ; Drosophila melanogaster/genetics/*physiology ; Larva/physiology ; Light ; Mutation ; Photoreceptor Cells, Invertebrate/physiology ; Rhodopsin/chemistry/genetics/*physiology ; TRPC Cation Channels/metabolism ; Temperature ; *Thermosensing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsasser, Simon J -- Allis, C David -- Lewis, Peter W -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1145-6. doi: 10.1126/science.1203280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385704" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics/metabolism ; Chromatin/metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Helicases/*genetics/metabolism ; *Epigenesis, Genetic ; *Genes, Tumor Suppressor ; Histones/metabolism ; Humans ; Mutation ; Neuroendocrine Tumors/*genetics/metabolism ; Nuclear Proteins/*genetics/metabolism ; Nucleosomes/metabolism ; Pancreatic Neoplasms/*genetics/metabolism ; Proto-Oncogene Proteins/*genetics/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-12
    Description: Partitioning of chromatids during mitosis requires that chromosome compaction and spindle length scale appropriately with each other. However, it is not clear whether chromosome condensation and spindle elongation are linked. Here, we find that yeast cells could cope with a 45% increase in the length of their longest chromosome arm by increasing its condensation. The spindle midzone, aurora/Ipl1 activity, and Ser10 of histone H3 mediated this response. Thus, the anaphase spindle may function as a ruler to adapt the condensation of chromatids, promoting their segregation regardless of chromosome or spindle length.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neurohr, Gabriel -- Naegeli, Andreas -- Titos, Iris -- Theler, Dominik -- Greber, Basil -- Diez, Javier -- Gabaldon, Toni -- Mendoza, Manuel -- Barral, Yves -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):465-8. doi: 10.1126/science.1201578. Epub 2011 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393511" target="_blank"〉PubMed〈/a〉
    Keywords: Aldose-Ketose Isomerases/genetics ; *Anaphase ; Aurora Kinases ; Chromosome Segregation ; Chromosomes, Fungal/genetics/*physiology ; Histones/metabolism ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Microtubule-Associated Proteins/genetics/metabolism ; Mutation ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Saccharomyces cerevisiae/genetics/*physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Spindle Apparatus/*physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-14
    Description: We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed binding proteins may be useful for both diagnostics and therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleishman, Sarel J -- Whitehead, Timothy A -- Ekiert, Damian C -- Dreyfus, Cyrille -- Corn, Jacob E -- Strauch, Eva-Maria -- Wilson, Ian A -- Baker, David -- AI057141/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-07/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):816-21. doi: 10.1126/science.1202617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566186" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Binding Sites ; Computational Biology ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; *Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carroll, Sean B -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1100-1. doi: 10.1126/science.1211025.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin-Madison, 201 Bock Laboratories, Madison, WI 53706, USA. sbcarrol@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868661" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Biological Evolution ; Butterflies/anatomy & histology/*genetics ; *Genes, Insect ; Genetic Variation ; Mutation ; Phenotype ; Pigmentation/*genetics ; Regulatory Sequences, Nucleic Acid ; Selection, Genetic ; Wings, Animal/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-19
    Description: Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6 angstrom crystal structure of a functional dimer of two ~300-kilodalton motor domains of yeast cytoplasmic dynein. The structure reveals an unusual asymmetric arrangement of ATPase domains in the ring-shaped motor domain, the manner in which the mechanical element interacts with the ATPase ring, and an unexpected interaction between two coiled coils that create a base for the microtubule binding domain. The arrangement of these elements provides clues as to how adenosine triphosphate-driven conformational changes might be transmitted across the motor domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Andrew P -- Cho, Carol -- Jin, Lan -- Vale, Ronald D -- MC_UP_A025_1011/Medical Research Council/United Kingdom -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01 GM097312-01/GM/NIGMS NIH HHS/ -- R01 GM097312-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1159-65. doi: 10.1126/science.1202393. Epub 2011 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158, USA. cartera@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330489" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Methionine/chemistry ; Microtubules/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-03-10
    Description: Light-responsive neural activity in central brain neurons is generally conveyed through opsin-based signaling from external photoreceptors. Large lateral ventral arousal neurons (lLNvs) in Drosophila melanogaster increase action potential firing within seconds in response to light in the absence of all opsin-based photoreceptors. Light-evoked changes in membrane resting potential occur in about 100 milliseconds. The light response is selective for blue wavelengths corresponding to the spectral sensitivity of CRYPTOCHROME (CRY). cry-null lines are light-unresponsive, but restored CRY expression in the lLNv rescues responsiveness. Furthermore, expression of CRY in neurons that are normally unresponsive to light confers responsiveness. The CRY-mediated light response requires a flavin redox-based mechanism and depends on potassium channel conductance, but is independent of the classical circadian CRY-TIMELESS interaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fogle, Keri J -- Parson, Kelly G -- Dahm, Nicole A -- Holmes, Todd C -- NS046750/NS/NINDS NIH HHS/ -- R01 GM102965/GM/NIGMS NIH HHS/ -- R01 NS046750/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1409-13. doi: 10.1126/science.1199702. Epub 2011 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385718" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; *Circadian Clocks ; Circadian Rhythm ; Compound Eye, Arthropod/physiology ; Cryptochromes/genetics/*metabolism ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/genetics/*physiology ; Eye Proteins/genetics/*metabolism ; Flavins/metabolism ; Genes, Insect ; *Light ; Mutation ; Neurons/physiology ; Oxidation-Reduction ; Patch-Clamp Techniques ; Photoreceptor Cells, Invertebrate/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-29
    Description: An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 mus and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindorff-Larsen, Kresten -- Piana, Stefano -- Dror, Ron O -- Shaw, David E -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. kresten.lindorff-larsen@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034434" target="_blank"〉PubMed〈/a〉
    Keywords: Kinetics ; Molecular Dynamics Simulation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1369. doi: 10.1126/science.333.6048.1369.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds ; Disease Outbreaks/statistics & numerical data/veterinary ; Humans ; *Influenza A Virus, H5N1 Subtype/genetics/immunology ; Influenza Vaccines ; Influenza in Birds/*epidemiology/prevention & control/virology ; Influenza, Human/*epidemiology ; Mutation ; Poultry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-07-23
    Description: Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonkin, Michelle L -- Roques, Magali -- Lamarque, Mauld H -- Pugniere, Martine -- Douguet, Dominique -- Crawford, Joanna -- Lebrun, Maryse -- Boulanger, Martin J -- MOP82915/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):463-7. doi: 10.1126/science.1204988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778402" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antibodies, Monoclonal/immunology ; Antibodies, Protozoan/immunology ; Antigens, Protozoan/*chemistry/genetics/immunology/*metabolism ; *Host-Parasite Interactions ; Hydrophobic and Hydrophilic Interactions ; Membrane Proteins/chemistry/immunology/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Peptide Fragments/chemistry/metabolism ; Plasmodium falciparum/chemistry/metabolism/pathogenicity ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protozoan Proteins/*chemistry/immunology/*metabolism ; Toxoplasma/chemistry/*metabolism/*pathogenicity/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-06-28
    Description: Centrosomes organize the bipolar mitotic spindle, and centrosomal defects cause chromosome instability. Protein phosphorylation modulates centrosome function, and we provide a comprehensive map of phosphorylation on intact yeast centrosomes (18 proteins). Mass spectrometry was used to identify 297 phosphorylation sites on centrosomes from different cell cycle stages. We observed different modes of phosphoregulation via specific protein kinases, phosphorylation site clustering, and conserved phosphorylated residues. Mutating all eight cyclin-dependent kinase (Cdk)-directed sites within the core component, Spc42, resulted in lethality and reduced centrosomal assembly. Alternatively, mutation of one conserved Cdk site within gamma-tubulin (Tub4-S360D) caused mitotic delay and aberrant anaphase spindle elongation. Our work establishes the extent and complexity of this prominent posttranslational modification in centrosome biology and provides specific examples of phosphorylation control in centrosome function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Binkley, Jonathan -- Chen, Daici -- Jaspersen, Sue L -- Holinger, Eric P -- Xu, Tao -- Niepel, Mario -- Rout, Michael P -- Vogel, Jackie -- Sidow, Arend -- Yates, John R 3rd -- Winey, Mark -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MOP-64404/Canadian Institutes of Health Research/Canada -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM051312-16/GM/NIGMS NIH HHS/ -- R01 GM051312-16S1/GM/NIGMS NIH HHS/ -- R01 GM062427/GM/NIGMS NIH HHS/ -- R01 HG003039/HG/NHGRI NIH HHS/ -- T32 GM008759/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1557-61. doi: 10.1126/science.1205193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700874" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Centrosome/*metabolism/ultrastructure ; Cytoskeletal Proteins/genetics/metabolism ; Fungal Proteins/chemistry/metabolism ; Fungi/metabolism ; G1 Phase ; Mitosis ; Mutation ; Phosphoproteins/genetics/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Proteome/*metabolism ; Saccharomyces cerevisiae/cytology/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Spindle Apparatus/metabolism/ultrastructure ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- Enserink, Martin -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1694-701. doi: 10.1126/science.333.6050.1694.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940874" target="_blank"〉PubMed〈/a〉
    Keywords: Blood/virology ; DNA Contamination ; Endoribonucleases/genetics/metabolism ; Fatigue Syndrome, Chronic/*virology ; Humans ; Male ; Mutation ; Prostatic Neoplasms/virology ; Publishing ; Retroviridae Infections/*virology ; Xenotropic murine leukemia virus-related virus/classification/*isolation & ; purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-09-24
    Description: The positioning of nucleosomes within the coding regions of eukaryotic genes is aligned with respect to transcriptional start sites. This organization is likely to influence many genetic processes, requiring access to the underlying DNA. Here, we show that the combined action of Isw1 and Chd1 nucleosome-spacing enzymes is required to maintain this organization. In the absence of these enzymes, regular positioning of the majority of nucleosomes is lost. Exceptions include the region upstream of the promoter, the +1 nucleosome, and a subset of locations distributed throughout coding regions where other factors are likely to be involved. These observations indicate that adenosine triphosphate-dependent remodeling enzymes are responsible for directing the positioning of the majority of nucleosomes within the Saccharomyces cerevisiae genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428865/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428865/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gkikopoulos, Triantaffyllos -- Schofield, Pieta -- Singh, Vijender -- Pinskaya, Marina -- Mellor, Jane -- Smolle, Michaela -- Workman, Jerry L -- Barton, Geoffrey J -- Owen-Hughes, Tom -- 064414/Wellcome Trust/United Kingdom -- 095062/Wellcome Trust/United Kingdom -- G0900740/Medical Research Council/United Kingdom -- R01 GM047867/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1758-60. doi: 10.1126/science.1206097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940898" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; Adenosine Triphosphate/metabolism ; Chromatin Assembly and Disassembly ; DNA, Fungal/genetics ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; *Genome, Fungal ; Mutation ; Nucleosomes/*genetics/physiology/ultrastructure ; Saccharomyces cerevisiae/*genetics/physiology ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Transcription Initiation Site
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-03-19
    Description: Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5'-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malik, Fady I -- Hartman, James J -- Elias, Kathleen A -- Morgan, Bradley P -- Rodriguez, Hector -- Brejc, Katjusa -- Anderson, Robert L -- Sueoka, Sandra H -- Lee, Kenneth H -- Finer, Jeffrey T -- Sakowicz, Roman -- Baliga, Ramesh -- Cox, David R -- Garard, Marc -- Godinez, Guillermo -- Kawas, Raja -- Kraynack, Erica -- Lenzi, David -- Lu, Pu Ping -- Muci, Alexander -- Niu, Congrong -- Qian, Xiangping -- Pierce, Daniel W -- Pokrovskii, Maria -- Suehiro, Ion -- Sylvester, Sheila -- Tochimoto, Todd -- Valdez, Corey -- Wang, Wenyue -- Katori, Tatsuo -- Kass, David A -- Shen, You-Tang -- Vatner, Stephen F -- Morgans, David J -- 1-R43-HL-66647-1/HL/NHLBI NIH HHS/ -- R01 HL106511/HL/NHLBI NIH HHS/ -- R43 HL066647/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1439-43. doi: 10.1126/science.1200113.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Preclinical Research and Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA. fmalik@cytokinetics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415352" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/metabolism ; Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Adrenergic beta-Agonists/pharmacology ; Allosteric Regulation ; Animals ; Binding Sites ; Calcium/metabolism ; Cardiac Myosins/chemistry/*metabolism ; Cardiac Output/drug effects ; Dogs ; Female ; Heart Failure, Systolic/*drug therapy/physiopathology ; Isoproterenol/pharmacology ; Male ; Myocardial Contraction/*drug effects ; Myocytes, Cardiac/*drug effects/physiology ; Phosphates/metabolism ; Protein Binding ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Rats ; Rats, Sprague-Dawley ; Urea/*analogs & derivatives/chemistry/metabolism/pharmacology ; Ventricular Function, Left/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-07-30
    Description: The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Silva, Daniel-Adriano -- Huang, Xuhui -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-27/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-19/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):633-7. doi: 10.1126/science.1206629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798951" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-02-12
    Description: Memory B cells formed in response to microbial antigens provide immunity to later infections; however, the inability to detect rare endogenous antigen-specific cells limits current understanding of this process. Using an antigen-based technique to enrich these cells, we found that immunization with a model protein generated B memory cells that expressed isotype-switched immunoglobulins (swIg) or retained IgM. The more numerous IgM(+) cells were longer lived than the swIg(+) cells. However, swIg(+) memory cells dominated the secondary response because of the capacity to become activated in the presence of neutralizing serum immunoglobulin. Thus, we propose that memory relies on swIg(+) cells until they disappear and serum immunoglobulin falls to a low level, in which case memory resides with durable IgM(+) reserves.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pape, Kathryn A -- Taylor, Justin J -- Maul, Robert W -- Gearhart, Patricia J -- Jenkins, Marc K -- F32 AI091033/AI/NIAID NIH HHS/ -- R01 AI036914/AI/NIAID NIH HHS/ -- R01 AI039614/AI/NIAID NIH HHS/ -- R37 AI027998/AI/NIAID NIH HHS/ -- T32 CA009138/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1203-7. doi: 10.1126/science.1201730. Epub 2011 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21310965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; Antigens, CD38/analysis ; B-Lymphocyte Subsets/*immunology ; Cell Survival ; Female ; Germinal Center/cytology/immunology ; Immunization ; *Immunoglobulin Class Switching ; Immunoglobulin M/genetics/*immunology ; *Immunologic Memory ; Lymph Nodes/cytology/immunology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Phycocyanin/immunology ; Phycoerythrin/immunology ; Spleen/cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Junge, Wolfgang -- Muller, Daniel J -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):704-5. doi: 10.1126/science.1210238.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biophysics, University of Osnabruck, 49069 Osnabruck, Germany. junge@uos.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817036" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Biocatalysis ; Catalytic Domain ; *Microscopy, Atomic Force ; Models, Molecular ; Protein Conformation ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Proton-Translocating ATPases/*chemistry/*metabolism ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-13
    Description: When not transporting cargo, kinesin-1 is autoinhibited by binding of a tail region to the motor domains, but the mechanism of inhibition is unclear. We report the crystal structure of a motor domain dimer in complex with its tail domain at 2.2 angstroms and compare it with a structure of the motor domain alone at 2.7 angstroms. These structures indicate that neither an induced conformational change nor steric blocking is the cause of inhibition. Instead, the tail cross-links the motor domains at a second position, in addition to the coiled coil. This "double lockdown," by cross-linking at two positions, prevents the movement of the motor domains that is needed to undock the neck linker and release adenosine diphosphate. This autoinhibition mechanism could extend to some other kinesins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaan, Hung Yi Kristal -- Hackney, David D -- Kozielski, Frank -- NS058848/NS/NINDS NIH HHS/ -- R01 NS058848/NS/NINDS NIH HHS/ -- R01 NS058848-01A2/NS/NINDS NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):883-5. doi: 10.1126/science.1204824.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836017" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Kinesin/*antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-10-15
    Description: The mitochondrial genome is believed to be maternally inherited in many eukaryotes. Sperm-derived paternal mitochondria enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism responsible for this clearance has been unknown. Here, we show that autophagy, which delivers cytosolic components to lysosomes for degradation, is required for the elimination of paternal mitochondria in Caenorhabditis elegans. Immediately after fertilization, sperm-derived components trigger the localized induction of autophagy around sperm mitochondria. Autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genome remain even in the first larval stage. Thus, fertilization-triggered autophagy is required for selective degradation of paternal mitochondria and thereby maternal inheritance of mitochondrial DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Miyuki -- Sato, Ken -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1141-4. doi: 10.1126/science.1210333. Epub 2011 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998252" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Caenorhabditis elegans/*embryology/genetics/physiology ; Caenorhabditis elegans Proteins/genetics/metabolism ; DNA, Helminth/analysis/genetics ; DNA, Mitochondrial/analysis/genetics ; Embryo, Nonmammalian/*physiology ; Embryonic Development ; *Fertilization ; Genome, Mitochondrial ; Hermaphroditic Organisms ; Lysosomes/metabolism ; Male ; Mitochondria/genetics/*metabolism ; Mutation ; Oocytes/physiology ; Phagosomes/*physiology ; Recombinant Fusion Proteins/metabolism ; Spermatozoa/ultrastructure ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Funder, John W -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):685-6. doi: 10.1126/science.1202887.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Prince Henry's Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia. john.funder@princehenrys.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21310991" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Neoplasms/*genetics/physiopathology ; Adrenal Glands/pathology ; Adrenocortical Adenoma/*genetics/physiopathology ; Aldosterone/*metabolism ; Animals ; Disease Models, Animal ; Female ; G Protein-Coupled Inwardly-Rectifying Potassium Channels/*genetics/metabolism ; Humans ; Hyperaldosteronism/*genetics/physiopathology ; Hyperplasia ; Hypertension/physiopathology ; Male ; Mice ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-20
    Description: The unfolded protein response (UPR) detects the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and adjusts the protein-folding capacity to the needs of the cell. Under conditions of ER stress, the transmembrane protein Ire1 oligomerizes to activate its cytoplasmic kinase and ribonuclease domains. It is unclear what feature of ER stress Ire1 detects. We found that the core ER-lumenal domain (cLD) of yeast Ire1 binds to unfolded proteins in yeast cells and to peptides primarily composed of basic and hydrophobic residues in vitro. Mutation of amino acid side chains exposed in a putative peptide-binding groove of Ire1 cLD impaired peptide binding. Peptide binding caused Ire1 cLD oligomerization in vitro, suggesting that direct binding to unfolded proteins activates the UPR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202989/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202989/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, Brooke M -- Walter, Peter -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1891-4. doi: 10.1126/science.1209126. Epub 2011 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852455" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cathepsin A/chemistry/metabolism ; Endoplasmic Reticulum/*metabolism ; Fluorescence Polarization ; Fungal Proteins/chemistry/metabolism ; Glutathione Transferase/metabolism ; HSP70 Heat-Shock Proteins/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Membrane Glycoproteins/*chemistry/*metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein-Serine-Threonine Kinases/*chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Stress, Physiological ; *Unfolded Protein Response
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-10-01
    Description: Lymphocytes egress from lymphoid organs in response to sphingosine-1-phosphate (S1P); minutes later they migrate from blood into tissue against the S1P gradient. The mechanisms facilitating cell movement against the gradient have not been defined. Here, we show that heterotrimeric guanine nucleotide-binding protein-coupled receptor kinase-2 (GRK2) functions in down-regulation of S1P receptor-1 (S1PR1) on blood-exposed lymphocytes. T and B cell movement from blood into lymph nodes is reduced in the absence of GRK2 but is restored in S1P-deficient mice. In the spleen, B cell movement between the blood-rich marginal zone and follicles is disrupted by GRK2 deficiency and by mutation of an S1PR1 desensitization motif. Moreover, delivery of systemic antigen into follicles is impaired. Thus, GRK2-dependent S1PR1 desensitization allows lymphocytes to escape circulatory fluids and migrate into lymphoid tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267326/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267326/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnon, Tal I -- Xu, Ying -- Lo, Charles -- Pham, Trung -- An, Jinping -- Coughlin, Shaun -- Dorn, Gerald W -- Cyster, Jason G -- AI74847/AI/NIAID NIH HHS/ -- R01 AI074847/AI/NIAID NIH HHS/ -- R01 AI074847-05/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1898-903. doi: 10.1126/science.1208248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21960637" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Antibody Complex/immunology ; B-Lymphocytes/immunology/*physiology ; Blood ; Cell Movement ; Chemokines/physiology ; Chemotaxis, Leukocyte ; Down-Regulation ; G-Protein-Coupled Receptor Kinase 2/*metabolism ; Ligands ; Lymph Nodes/cytology ; Lysophospholipids/metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Receptors, Lysosphingolipid/genetics/*metabolism ; Signal Transduction ; Sphingosine/analogs & derivatives/metabolism ; Spleen/cytology/immunology ; T-Lymphocytes/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-06-04
    Description: Rod-shaped bacteria elongate by the action of cell wall synthesis complexes linked to underlying dynamic MreB filaments. To understand how the movements of these filaments relate to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-precision particle tracking in Bacillus subtilis. We found that MreB and the elongation machinery moved circumferentially around the cell, perpendicular to its length, with nearby synthesis complexes and MreB filaments moving independently in both directions. Inhibition of cell wall synthesis by various methods blocked the movement of MreB. Thus, bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that insert radial hoops of new peptidoglycan during their transit, possibly driving the motion of the underlying MreB filaments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235694/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235694/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garner, Ethan C -- Bernard, Remi -- Wang, Wenqin -- Zhuang, Xiaowei -- Rudner, David Z -- Mitchison, Tim -- R01 GM039565/GM/NIGMS NIH HHS/ -- R01 GM039565-24/GM/NIGMS NIH HHS/ -- R01 GM073831/GM/NIGMS NIH HHS/ -- R01 GM096450/GM/NIGMS NIH HHS/ -- R01-GM073831/GM/NIGMS NIH HHS/ -- R01-GM096450/GM/NIGMS NIH HHS/ -- R01-GM39565/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):222-5. doi: 10.1126/science.1203285. Epub 2011 Jun 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ethan.garner@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21636745" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Bacillus subtilis/drug effects/*growth & development/*metabolism/ultrastructure ; Bacterial Proteins/chemistry/genetics/*metabolism ; Cell Wall/*metabolism ; Models, Biological ; Morphogenesis ; Motion ; Mutation ; Peptidoglycan/chemistry/*metabolism ; Polymerization ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-04-16
    Description: The formate transporter FocA was described to switch its mode of operation from a passive export channel at high external pH to a secondary active formate/H(+) importer at low pH. The crystal structure of Salmonella typhimurium FocA at pH 4.0 shows that this switch involves a major rearrangement of the amino termini of individual protomers in the pentameric channel. The amino-terminal helices open or block transport in a concerted, cooperative action that indicates how FocA is gated in a pH-dependent way. Electrophysiological studies show that the protein acts as a specific formate channel at pH 7.0 and that it closes upon a shift of pH to 5.1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Wei -- Du, Juan -- Wacker, Tobias -- Gerbig-Smentek, Elke -- Andrade, Susana L A -- Einsle, Oliver -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):352-4. doi: 10.1126/science.1199098.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Biochemie, Institut fur organische Chemie und Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493860" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/isolation & purification/*metabolism ; Crystallization ; Crystallography, X-Ray ; Formates/*metabolism ; Hydrogen-Ion Concentration ; *Ion Channel Gating ; Ion Channels/*chemistry/isolation & purification/*metabolism ; Ion Transport ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; Salmonella typhimurium/*chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-06
    Description: F(1) is an adenosine triphosphate (ATP)-driven motor in which three torque-generating beta subunits in the alpha(3)beta(3) stator ring sequentially undergo conformational changes upon ATP hydrolysis to rotate the central shaft gamma unidirectionally. Although extensive experimental and theoretical work has been done, the structural basis of cooperative torque generation to realize the unidirectional rotation remains elusive. We used high-speed atomic force microscopy to show that the rotorless F(1) still "rotates"; in the isolated alpha(3)beta(3) stator ring, the three beta subunits cyclically propagate conformational states in the counterclockwise direction, similar to the rotary shaft rotation in F(1). The structural basis of unidirectionality is programmed in the stator ring. These findings have implications for cooperative interplay between subunits in other hexameric ATPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uchihashi, Takayuki -- Iino, Ryota -- Ando, Toshio -- Noji, Hiroyuki -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):755-8. doi: 10.1126/science.1205510.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817054" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacillus/enzymology ; Bacterial Proton-Translocating ATPases/*chemistry/*metabolism ; Biocatalysis ; Catalytic Domain ; Hydrolysis ; *Microscopy, Atomic Force ; Protein Conformation ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-07-19
    Description: Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheid, Johannes F -- Mouquet, Hugo -- Ueberheide, Beatrix -- Diskin, Ron -- Klein, Florian -- Oliveira, Thiago Y K -- Pietzsch, John -- Fenyo, David -- Abadir, Alexander -- Velinzon, Klara -- Hurley, Arlene -- Myung, Sunnie -- Boulad, Farid -- Poignard, Pascal -- Burton, Dennis R -- Pereyra, Florencia -- Ho, David D -- Walker, Bruce D -- Seaman, Michael S -- Bjorkman, Pamela J -- Chait, Brian T -- Nussenzweig, Michel C -- P01 AI081677/AI/NIAID NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1633-7. doi: 10.1126/science.1207227. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764753" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/immunology/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Cloning, Molecular ; Consensus Sequence ; Crystallography, X-Ray ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Immunoglobulin Heavy Chains/chemistry ; Immunoglobulin Light Chains/chemistry ; Molecular Mimicry ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-02-19
    Description: Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ataide, Sandro F -- Schmitz, Nikolaus -- Shen, Kuang -- Ke, Ailong -- Shan, Shu-ou -- Doudna, Jennifer A -- Ban, Nenad -- GM078024/GM/NIGMS NIH HHS/ -- R01 GM078024/GM/NIGMS NIH HHS/ -- R01 GM086766/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):881-6. doi: 10.1126/science.1196473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Eidgenossische Technische Hochschule Zurich (ETH Zurich), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; GTP Phosphohydrolases/chemistry/metabolism ; Guanosine Triphosphate/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport ; RNA, Bacterial/*chemistry/metabolism ; Receptors, Cytoplasmic and Nuclear/*chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/metabolism ; Signal Recognition Particle/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-04-30
    Description: The interaction of complement receptor 2 (CR2)--which is present on B cells and follicular dendritic cells--with its antigen-bound ligand C3d results in an enhanced antibody response, thus providing an important link between the innate and adaptive immune systems. Although a cocrystal structure of a complex between C3d and the ligand-binding domains of CR2 has been published, several aspects of this structure, including the position in C3d of the binding interface, remained controversial because of disagreement with biochemical data. We now report a cocrystal structure of a CR2(SCR1-2):C3d complex at 3.2 angstrom resolution in which the interaction interfaces differ markedly from the previously published structure and are consistent with the biochemical data. It is likely that, in the previous structure, the interaction was influenced by the presence of zinc acetate additive in the crystallization buffer, leading to a nonphysiological complex. Detailed knowledge of the binding interface now at hand gives the potential to exploit the interaction in vaccine design or in therapeutics directed against autoreactive B cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Elsen, Jean M H -- Isenman, David E -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):608-11. doi: 10.1126/science.1201954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. bssjmhve@bath.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527715" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Complement C3d/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Receptors, Complement 3d/*chemistry/genetics/metabolism ; Zinc Acetate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-10-25
    Description: The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azoitei, Mihai L -- Correia, Bruno E -- Ban, Yih-En Andrew -- Carrico, Chris -- Kalyuzhniy, Oleksandr -- Chen, Lei -- Schroeter, Alexandria -- Huang, Po-Ssu -- McLellan, Jason S -- Kwong, Peter D -- Baker, David -- Strong, Roland K -- Schief, William R -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):373-6. doi: 10.1126/science.1209368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021856" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Computational Biology ; Computer Simulation ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Surface Plasmon Resonance
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-04-16
    Description: The rapid spread of a novel black form (known as carbonaria) of the peppered moth Biston betularia in 19th-century Britain is a textbook example of how an altered environment may produce morphological adaptation through genetic change. However, the underlying genetic basis of the difference between the wild-type (light-colored) and carbonaria forms has remained unknown. We have genetically mapped the carbonaria morph to a 200-kilobase region orthologous to a segment of silkworm chromosome 17 and show that there is only one core sequence variant associated with the carbonaria morph, carrying a signature of recent strong selection. The carbonaria region coincides with major wing-patterning loci in other lepidopteran systems, suggesting the existence of basal color-patterning regulators in this region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van't Hof, Arjen E -- Edmonds, Nicola -- Dalikova, Martina -- Marec, Frantisek -- Saccheri, Ilik J -- New York, N.Y. -- Science. 2011 May 20;332(6032):958-60. doi: 10.1126/science.1203043. Epub 2011 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Integrative Biology, University of Liverpool, Liverpool, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493823" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Alleles ; Animals ; Chromosome Mapping ; Chromosomes, Insect/*genetics ; Genes, Insect ; Genetic Loci ; Genotype ; Great Britain ; Haplotypes ; Linkage Disequilibrium ; Melanins/*analysis/*genetics ; Moths/*genetics/physiology ; Mutation ; Pigmentation/*genetics ; Polymorphism, Single Nucleotide ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-05-14
    Description: Adenosine triphosphate (ATP)-binding cassette (ABC) transporters convert chemical energy from ATP hydrolysis to mechanical work for substrate translocation. They function by alternating between two states, exposing the substrate-binding site to either side of the membrane. A key question that remains to be addressed is how substrates initiate the transport cycle. Using x-ray crystallography, we have captured the maltose transporter in an intermediate step between the inward- and outward-facing states. We show that interactions with substrate-loaded maltose-binding protein in the periplasm induce a partial closure of the MalK dimer in the cytoplasm. ATP binding to this conformation then promotes progression to the outward-facing state. These results, interpreted in light of biochemical and functional studies, provide a structural basis to understand allosteric communication in ABC transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldham, Michael L -- Chen, Jue -- GM070515/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1202-5. doi: 10.1126/science.1200767. Epub 2011 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, Howard Hughes Medical Institute, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566157" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Binding Sites ; Biological Transport, Active ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Maltose/metabolism ; Maltose-Binding Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-05-21
    Description: All known internal covalent cross-links in proteins involve functionalized groups having oxygen, nitrogen, or sulfur atoms present to facilitate their formation. Here, we report a carbon-carbon cross-link between two unfunctionalized side chains. This valine-phenyalanine cross-link, produced in an oxygen-dependent reaction, is generated by its own carboxylate-bridged diiron center and serves to stabilize the metallocenter. This finding opens the door to new types of posttranslational modifications, and it demonstrates new catalytic potential of diiron centers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooley, Richard B -- Rhoads, Timothy W -- Arp, Daniel J -- Karplus, P Andrew -- ES00210/ES/NIEHS NIH HHS/ -- GM R01-083136/GM/NIGMS NIH HHS/ -- R01 GM083136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):929. doi: 10.1126/science.1205687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596985" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Cyanophora/*chemistry/metabolism ; Iron/*chemistry ; Metalloproteins/*chemistry/metabolism ; Oxygen/chemistry ; Phenylalanine/*chemistry ; Plant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Valine/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-27
    Description: Uterine leiomyomas, or fibroids, are benign tumors that affect millions of women worldwide and that can cause considerable morbidity. To study the genetic basis of this tumor type, we examined 18 uterine leiomyomas derived from 17 different patients by exome sequencing and identified tumor-specific mutations in the mediator complex subunit 12 (MED12) gene in 10. Through analysis of 207 additional tumors, we determined that MED12 is altered in 70% (159 of 225) of tumors from a total of 80 patients. The Mediator complex is a 26-subunit transcriptional regulator that bridges DNA regulatory sequences to the RNA polymerase II initiation complex. All mutations resided in exon 2, suggesting that aberrant function of this region of MED12 contributes to tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makinen, Netta -- Mehine, Miika -- Tolvanen, Jaana -- Kaasinen, Eevi -- Li, Yilong -- Lehtonen, Heli J -- Gentile, Massimiliano -- Yan, Jian -- Enge, Martin -- Taipale, Minna -- Aavikko, Mervi -- Katainen, Riku -- Virolainen, Elina -- Bohling, Tom -- Koski, Taru A -- Launonen, Virpi -- Sjoberg, Jari -- Taipale, Jussi -- Vahteristo, Pia -- Aaltonen, Lauri A -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):252-5. doi: 10.1126/science.1208930. Epub 2011 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868628" target="_blank"〉PubMed〈/a〉
    Keywords: Codon ; Exons ; Female ; Gene Expression Profiling ; Humans ; INDEL Mutation ; Introns ; Leiomyoma/*genetics/metabolism ; Mediator Complex/*genetics ; Mutation ; Mutation, Missense ; Signal Transduction ; Uterine Neoplasms/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-10-15
    Description: The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short beta-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pejchal, Robert -- Doores, Katie J -- Walker, Laura M -- Khayat, Reza -- Huang, Po-Ssu -- Wang, Sheng-Kai -- Stanfield, Robyn L -- Julien, Jean-Philippe -- Ramos, Alejandra -- Crispin, Max -- Depetris, Rafael -- Katpally, Umesh -- Marozsan, Andre -- Cupo, Albert -- Maloveste, Sebastien -- Liu, Yan -- McBride, Ryan -- Ito, Yukishige -- Sanders, Rogier W -- Ogohara, Cassandra -- Paulson, James C -- Feizi, Ten -- Scanlan, Christopher N -- Wong, Chi-Huey -- Moore, John P -- Olson, William C -- Ward, Andrew B -- Poignard, Pascal -- Schief, William R -- Burton, Dennis R -- Wilson, Ian A -- AI082362/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI74372/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- F32 AI074372-03/AI/NIAID NIH HHS/ -- HFE-224662/Canadian Institutes of Health Research/Canada -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI082362-03/AI/NIAID NIH HHS/ -- P01 AI082362-04/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI033292-14/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI084817-04/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U01 CA128416/CA/NCI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1097-103. doi: 10.1126/science.1213256. Epub 2011 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Skaggs Institute for Chemical Biology and International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, nhe Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998254" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry/genetics/*immunology/metabolism ; Antibody Specificity ; Binding Sites, Antibody ; Carbohydrate Conformation ; Cell Line ; Crystallography, X-Ray ; Disaccharides/chemistry/metabolism ; Epitopes ; Glycosylation ; HIV Antibodies/chemistry/genetics/*immunology/*metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology/physiology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Mannose/chemistry/immunology/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Mutation ; Oligosaccharides/chemistry/*immunology/metabolism ; Polysaccharides/chemistry/*immunology/*metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-12-24
    Description: Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of adenosine triphosphatases (ATPases). We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy among the loader, the clamp, and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelch, Brian A -- Makino, Debora L -- O'Donnell, Mike -- Kuriyan, John -- F32 GM087888/GM/NIGMS NIH HHS/ -- F32 GM087888-02/GM/NIGMS NIH HHS/ -- F32-087888/PHS HHS/ -- R01 GM038839/GM/NIGMS NIH HHS/ -- R01 GM038839-26/GM/NIGMS NIH HHS/ -- R01 GM045547/GM/NIGMS NIH HHS/ -- R01 GM045547-20/GM/NIGMS NIH HHS/ -- R01-GM308839/GM/NIGMS NIH HHS/ -- R01-GM45547/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1675-80. doi: 10.1126/science.1211884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194570" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Bacteriophage T4 ; Binding Sites ; Crystallography, X-Ray ; DNA, A-Form/*chemistry/metabolism ; DNA, Viral/*chemistry/metabolism ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Hydrolysis ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; Templates, Genetic ; Trans-Activators/*chemistry/metabolism ; Viral Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-20
    Description: Aneuploidy decreases cellular fitness, yet it is also associated with cancer, a disease of enhanced proliferative capacity. To investigate one mechanism by which aneuploidy could contribute to tumorigenesis, we examined the effects of aneuploidy on genomic stability. We analyzed 13 budding yeast strains that carry extra copies of single chromosomes and found that all aneuploid strains exhibited one or more forms of genomic instability. Most strains displayed increased chromosome loss and mitotic recombination, as well as defective DNA damage repair. Aneuploid fission yeast strains also exhibited defects in mitotic recombination. Aneuploidy-induced genomic instability could facilitate the development of genetic alterations that drive malignant growth in cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheltzer, Jason M -- Blank, Heidi M -- Pfau, Sarah J -- Tange, Yoshie -- George, Benson M -- Humpton, Timothy J -- Brito, Ilana L -- Hiraoka, Yasushi -- Niwa, Osami -- Amon, Angelika -- GM056800/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1026-30. doi: 10.1126/science.1206412.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute (HHMI), Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852501" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Chromosome Segregation ; Chromosomes, Fungal/genetics ; *DNA Damage ; *DNA Repair ; DNA Replication ; DNA, Fungal/genetics/metabolism ; *Genome, Fungal ; *Genomic Instability ; Mutagenesis ; Mutation ; Neoplasms/genetics ; Phenotype ; Rad52 DNA Repair and Recombination Protein/genetics ; *Recombination, Genetic ; Saccharomyces cerevisiae/*genetics ; Saccharomyces cerevisiae Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):130-1. doi: 10.1126/science.331.6014.130.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233351" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology ; Genetic Testing/*methods ; Heterozygote Detection/*methods ; Humans ; Mutation ; Rare Diseases/*genetics ; *Sequence Analysis, DNA ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-05-14
    Description: Genomic imprinting causes parental origin-specific monoallelic gene expression through differential DNA methylation established in the parental germ line. However, the mechanisms underlying how specific sequences are selectively methylated are not fully understood. We have found that the components of the PIWI-interacting RNA (piRNA) pathway are required for de novo methylation of the differentially methylated region (DMR) of the imprinted mouse Rasgrf1 locus, but not other paternally imprinted loci. A retrotransposon sequence within a noncoding RNA spanning the DMR was targeted by piRNAs generated from a different locus. A direct repeat in the DMR, which is required for the methylation and imprinting of Rasgrf1, served as a promoter for this RNA. We propose a model in which piRNAs and a target RNA direct the sequence-specific methylation of Rasgrf1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368507/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368507/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Toshiaki -- Tomizawa, Shin-ichi -- Mitsuya, Kohzoh -- Totoki, Yasushi -- Yamamoto, Yasuhiro -- Kuramochi-Miyagawa, Satomi -- Iida, Naoko -- Hoki, Yuko -- Murphy, Patrick J -- Toyoda, Atsushi -- Gotoh, Kengo -- Hiura, Hitoshi -- Arima, Takahiro -- Fujiyama, Asao -- Sado, Takashi -- Shibata, Tatsuhiro -- Nakano, Toru -- Lin, Haifan -- Ichiyanagi, Kenji -- Soloway, Paul D -- Sasaki, Hiroyuki -- R01 CA098597/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):848-52. doi: 10.1126/science.1203919.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Genetics and Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan. toshwatatoshiakiwatanabe@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566194" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; *DNA Methylation ; *Genomic Imprinting ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondrial Proteins/genetics/metabolism ; Models, Genetic ; Mutation ; Phospholipase D/genetics/metabolism ; Proteins/genetics/metabolism ; RNA, Small Interfering/*genetics/metabolism ; RNA, Untranslated/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Spermatogonia/metabolism ; Testis/embryology/metabolism ; Transcription, Genetic ; ras-GRF1/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-03-10
    Description: Memories are more easily disrupted than improved. Many agents can impair memories during encoding and consolidation. In contrast, the armamentarium of potential memory enhancers is so far rather modest. Moreover, the effect of the latter appears to be limited to enhancing new memories during encoding and the initial period of cellular consolidation, which can last from a few minutes to hours after learning. Here, we report that overexpression in the rat neocortex of the protein kinase C isozyme protein kinase Mzeta (PKMzeta) enhances long-term memory, whereas a dominant negative PKMzeta disrupts memory, even long after memory has been formed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shema, Reut -- Haramati, Sharon -- Ron, Shiri -- Hazvi, Shoshi -- Chen, Alon -- Sacktor, Todd Charlton -- Dudai, Yadin -- MH57068/MH/NIMH NIH HHS/ -- R01 MH53576/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1207-10. doi: 10.1126/science.1200215.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385716" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conditioning (Psychology) ; Gene Expression ; Gene Transfer Techniques ; Genetic Vectors ; Isoenzymes/genetics/metabolism ; Lentivirus/genetics ; Male ; *Memory, Long-Term ; Mutant Proteins/metabolism ; Mutation ; Neocortex/*metabolism ; Neurons/metabolism ; Protein Kinase C/*genetics/*metabolism ; Rats ; Rats, Wistar
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-04-09
    Description: Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhabha, Gira -- Lee, Jeeyeon -- Ekiert, Damian C -- Gam, Jongsik -- Wilson, Ian A -- Dyson, H Jane -- Benkovic, Stephen J -- Wright, Peter E -- GM080209/GM/NIGMS NIH HHS/ -- GM75995/GM/NIGMS NIH HHS/ -- R01 GM075995/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):234-8. doi: 10.1126/science.1198542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474759" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Folic Acid/chemistry ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; NADP/chemistry ; Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-03-12
    Description: Many animals, including the fruit fly, are sensitive to small differences in ambient temperature. The ability of Drosophila larvae to choose their ideal temperature (18 degrees C) over other comfortable temperatures (19 degrees to 24 degrees C) depends on a thermosensory signaling pathway that includes a heterotrimeric guanine nucleotide-binding protein (G protein), a phospholipase C, and the transient receptor potential TRPA1 channel. We report that mutation of the gene (ninaE) encoding a classical G protein-coupled receptor (GPCR), Drosophila rhodopsin, eliminates thermotactic discrimination in the comfortable temperature range. This role for rhodopsin in thermotaxis toward 18 degrees C was light-independent. Introduction of mouse melanopsin restored normal thermotactic behavior in ninaE mutant larvae. We propose that rhodopsins represent a class of evolutionarily conserved GPCRs that are required for initiating thermosensory signaling cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Wei L -- Kwon, Young -- Adegbola, Abidemi A -- Luo, Junjie -- Chess, Andrew -- Montell, Craig -- GM085335/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1333-6. doi: 10.1126/science.1198904.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila Proteins/genetics/metabolism/*physiology ; Drosophila melanogaster/genetics/*physiology ; Eye Proteins/genetics/*physiology ; Larva/genetics/physiology ; Light ; Mice ; Movement ; Mutation ; Photoreceptor Cells, Invertebrate/physiology ; Receptors, G-Protein-Coupled/genetics/physiology ; Rhodopsin/genetics/*physiology ; Rod Opsins/genetics/physiology ; *Signal Transduction ; TRPC Cation Channels/genetics/metabolism ; Temperature ; *Thermosensing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Fumin -- Lemmon, Mark A -- New York, N.Y. -- Science. 2011 May 27;332(6033):1043-4. doi: 10.1126/science.1208063.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617065" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Catalytic Domain ; Cell Membrane/enzymology ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/*metabolism ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-raf/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-13
    Description: Pyrazinamide (PZA) is a first-line tuberculosis drug that plays a unique role in shortening the duration of tuberculosis chemotherapy. PZA is hydrolyzed intracellularly to pyrazinoic acid (POA) by pyrazinamidase (PZase, encoded by pncA), an enzyme frequently lost in PZA-resistant strains, but the target of POA in Mycobacterium tuberculosis has remained elusive. Here, we identify a previously unknown target of POA as the ribosomal protein S1 (RpsA), a vital protein involved in protein translation and the ribosome-sparing process of trans-translation. Three PZA-resistant clinical isolates without pncA mutation harbored RpsA mutations. RpsA overexpression conferred increased PZA resistance, and we confirmed that POA bound to RpsA (but not a clinically identified DeltaAla mutant) and subsequently inhibited trans-translation rather than canonical translation. Trans-translation is essential for freeing scarce ribosomes in nonreplicating organisms, and its inhibition may explain the ability of PZA to eradicate persisting organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Wanliang -- Zhang, Xuelian -- Jiang, Xin -- Yuan, Haiming -- Lee, Jong Seok -- Barry, Clifton E 3rd -- Wang, Honghai -- Zhang, Wenhong -- Zhang, Ying -- AI44063/AI/NIAID NIH HHS/ -- ZIA AI000783-16/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1630-2. doi: 10.1126/science.1208813. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835980" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/genetics/metabolism ; Amino Acid Sequence ; Antitubercular Agents/metabolism/*pharmacology ; Bacterial Proteins/chemistry/genetics/*metabolism ; Drug Resistance, Bacterial ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Mutation ; Mycobacterium tuberculosis/*drug effects/genetics/metabolism ; Prodrugs/metabolism/pharmacology ; Protein Binding ; Protein Biosynthesis/drug effects ; Protein Structure, Tertiary ; Pyrazinamide/*analogs & derivatives/metabolism/*pharmacology ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; RNA, Transfer/metabolism ; Ribosomal Proteins/chemistry/genetics/*metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-02-12
    Description: After partitioning of cytoplasmic contents by cleavage furrow ingression, animal cells remain connected by an intercellular bridge, which subsequently splits by abscission. Here, we examined intermediate stages of abscission in human cells by using live imaging, three-dimensional structured illumination microscopy, and electron tomography. We identified helices of 17-nanometer-diameter filaments, which narrowed the cortex of the intercellular bridge to a single stalk. The endosomal sorting complex required for transport (ESCRT)-III co-localized with constriction zones and was required for assembly of 17-nanometer-diameter filaments. Simultaneous spastin-mediated removal of underlying microtubules enabled full constriction at the abscission site. The identification of contractile filament helices at the intercellular bridge has broad implications for the understanding of cell division and of ESCRT-III-mediated fission of large membrane structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guizetti, Julien -- Schermelleh, Lothar -- Mantler, Jana -- Maar, Sandra -- Poser, Ina -- Leonhardt, Heinrich -- Muller-Reichert, Thomas -- Gerlich, Daniel W -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1616-20. doi: 10.1126/science.1201847. Epub 2011 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstrasse 18, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21310966" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Adenosine Triphosphatases/genetics/metabolism ; Calcium-Binding Proteins/metabolism ; Cell Cycle Proteins/metabolism ; *Cell Division ; Cell Membrane/metabolism/ultrastructure ; Electron Microscope Tomography ; Endosomal Sorting Complexes Required for ; Transport/*chemistry/genetics/*metabolism ; HeLa Cells ; Humans ; Imaging, Three-Dimensional ; Microscopy, Electron ; Microtubules/*metabolism/*ultrastructure ; Nuclear Proteins/metabolism ; Protein Conformation ; Protein Multimerization ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-11-15
    Description: The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruz-Migoni, Abimael -- Hautbergue, Guillaume M -- Artymiuk, Peter J -- Baker, Patrick J -- Bokori-Brown, Monika -- Chang, Chung-Te -- Dickman, Mark J -- Essex-Lopresti, Angela -- Harding, Sarah V -- Mahadi, Nor Muhammad -- Marshall, Laura E -- Mobbs, George W -- Mohamed, Rahmah -- Nathan, Sheila -- Ngugi, Sarah A -- Ong, Catherine -- Ooi, Wen Fong -- Partridge, Lynda J -- Phillips, Helen L -- Raih, M Firdaus -- Ruzheinikov, Sergei -- Sarkar-Tyson, Mitali -- Sedelnikova, Svetlana E -- Smither, Sophie J -- Tan, Patrick -- Titball, Richard W -- Wilson, Stuart A -- Rice, David W -- 085162/Wellcome Trust/United Kingdom -- BB/D011795/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D524975/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E025293/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT085162AIA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):821-4. doi: 10.1126/science.1211915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076380" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Bacterial Proteins/*chemistry/genetics/metabolism/*toxicity ; Bacterial Toxins/*chemistry/genetics/metabolism/*toxicity ; Burkholderia pseudomallei/*chemistry/*pathogenicity ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Cytotoxins/chemistry/genetics/metabolism/toxicity ; Escherichia coli Proteins/chemistry ; Eukaryotic Initiation Factor-4A/*antagonists & inhibitors/metabolism ; Glutamine/metabolism ; Humans ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Mutant Proteins/toxicity ; Peptide Chain Initiation, Translational/drug effects ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West-Eberhard, Mary Jane -- Smith, J Andrew C -- Winter, Klaus -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):311-2. doi: 10.1126/science.1205336.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Smithsonian Tropical Research Institute, c/o Escuela de Biologia, Universidad de Costa Rica, Costa Rica. mjwe@sent.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493847" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/metabolism ; Chloroplasts/metabolism ; Decarboxylation ; *Evolution, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Malates/metabolism ; Mutation ; Phenotype ; Phosphoenolpyruvate Carboxylase/metabolism ; *Photosynthesis/genetics ; Plant Leaves/metabolism ; Plant Stomata/physiology ; Plants/genetics/*metabolism ; Regulatory Elements, Transcriptional ; Ribulose-Bisphosphate Carboxylase/metabolism ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-02-05
    Description: N-glycosylation of eukaryotic proteins helps them fold and traverse the cellular secretory pathway and can increase their stability, although the molecular basis for stabilization is poorly understood. Glycosylation of proteins at naive sites (ones that normally are not glycosylated) could be useful for therapeutic and research applications but currently results in unpredictable changes to protein stability. We show that placing a phenylalanine residue two or three positions before a glycosylated asparagine in distinct reverse turns facilitates stabilizing interactions between the aromatic side chain and the first N-acetylglucosamine of the glycan. Glycosylating this portable structural module, an enhanced aromatic sequon, in three different proteins stabilizes their native states by -0.7 to -2.0 kilocalories per mole and increases cellular glycosylation efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culyba, Elizabeth K -- Price, Joshua L -- Hanson, Sarah R -- Dhar, Apratim -- Wong, Chi-Huey -- Gruebele, Martin -- Powers, Evan T -- Kelly, Jeffery W -- AI072155/AI/NIAID NIH HHS/ -- F32 GM086039/GM/NIGMS NIH HHS/ -- F32 GM086039-03/GM/NIGMS NIH HHS/ -- GM051105/GM/NIGMS NIH HHS/ -- R01 AI072155/AI/NIAID NIH HHS/ -- R01 AI072155-04/AI/NIAID NIH HHS/ -- R01 GM051105/GM/NIGMS NIH HHS/ -- R01 GM051105-15/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):571-5. doi: 10.1126/science.1198461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292975" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry ; Acid Anhydride Hydrolases/*chemistry ; Amino Acid Sequence ; Animals ; Antigens, CD2/*chemistry ; Asparagine/chemistry ; Glycosylation ; Humans ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Phenylalanine/chemistry ; Polysaccharides/chemistry ; Protein Conformation ; Protein Engineering ; Protein Folding ; *Protein Stability ; Protein Structure, Tertiary ; Rats ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-07-02
    Description: The proteins encoded by ATRX and DAXX participate in chromatin remodeling at telomeres and other genomic sites. Because inactivating mutations of these genes are common in human pancreatic neuroendocrine tumors (PanNETs), we examined the telomere status of these tumors. We found that 61% of PanNETs displayed abnormal telomeres that are characteristic of a telomerase-independent telomere maintenance mechanism termed ALT (alternative lengthening of telomeres). All of the PanNETs exhibiting these abnormal telomeres had ATRX or DAXX mutations or loss of nuclear ATRX or DAXX protein. ATRX mutations also correlate with abnormal telomeres in tumors of the central nervous system. These data suggest that an alternative telomere maintenance function may operate in human tumors with alterations in the ATRX or DAXX genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174141/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174141/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heaphy, Christopher M -- de Wilde, Roeland F -- Jiao, Yuchen -- Klein, Alison P -- Edil, Barish H -- Shi, Chanjuan -- Bettegowda, Chetan -- Rodriguez, Fausto J -- Eberhart, Charles G -- Hebbar, Sachidanand -- Offerhaus, G Johan -- McLendon, Roger -- Rasheed, B Ahmed -- He, Yiping -- Yan, Hai -- Bigner, Darell D -- Oba-Shinjo, Sueli Mieko -- Marie, Suely Kazue Nagahashi -- Riggins, Gregory J -- Kinzler, Kenneth W -- Vogelstein, Bert -- Hruban, Ralph H -- Maitra, Anirban -- Papadopoulos, Nickolas -- Meeker, Alan K -- P01 CA134292/CA/NCI NIH HHS/ -- P01 CA134292-01A1/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA062924-06/CA/NCI NIH HHS/ -- P50 NS020023/NS/NINDS NIH HHS/ -- P50 NS020023-28/NS/NINDS NIH HHS/ -- R01 CA113669/CA/NCI NIH HHS/ -- R01 CA113669-06/CA/NCI NIH HHS/ -- R01 CA121113/CA/NCI NIH HHS/ -- R01 CA121113-01/CA/NCI NIH HHS/ -- R01 CA140316/CA/NCI NIH HHS/ -- R01 CA140316-01A1/CA/NCI NIH HHS/ -- R01 NS055089/NS/NINDS NIH HHS/ -- R01 NS055089-01A2/NS/NINDS NIH HHS/ -- R37 CA011898/CA/NCI NIH HHS/ -- R37 CA011898-41/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):425. doi: 10.1126/science.1207313. Epub 2011 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21719641" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics/metabolism ; Carcinoma, Neuroendocrine/*genetics/pathology/physiopathology ; Cell Nucleus/metabolism ; Central Nervous System Neoplasms/*genetics/pathology/physiopathology ; Chromatin Assembly and Disassembly ; DNA Helicases/*genetics/metabolism ; Humans ; In Situ Hybridization, Fluorescence ; Mutant Proteins/genetics/metabolism ; Mutation ; Nuclear Proteins/*genetics/metabolism ; Pancreatic Neoplasms/*genetics/pathology/physiopathology ; Phenotype ; Telomere/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-02-26
    Description: Chronic mucocutaneous candidiasis disease (CMCD) is characterized by recurrent or persistent infections of the skin, nails, and oral and genital mucosae caused by Candida albicans and, to a lesser extent, Staphylococcus aureus, in patients with no other infectious or autoimmune manifestations. We report two genetic etiologies of CMCD: autosomal recessive deficiency in the cytokine receptor, interleukin-17 receptor A (IL-17RA), and autosomal dominant deficiency of the cytokine interleukin-17F (IL-17F). IL-17RA deficiency is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. By contrast, IL-17F deficiency is partial, with mutant IL-17F-containing homo- and heterodimers displaying impaired, but not abolished, activity. These experiments of nature indicate that human IL-17A and IL-17F are essential for mucocutaneous immunity against C. albicans, but otherwise largely redundant.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070042/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070042/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puel, Anne -- Cypowyj, Sophie -- Bustamante, Jacinta -- Wright, Jill F -- Liu, Luyan -- Lim, Hye Kyung -- Migaud, Melanie -- Israel, Laura -- Chrabieh, Maya -- Audry, Magali -- Gumbleton, Matthew -- Toulon, Antoine -- Bodemer, Christine -- El-Baghdadi, Jamila -- Whitters, Matthew -- Paradis, Theresa -- Brooks, Jonathan -- Collins, Mary -- Wolfman, Neil M -- Al-Muhsen, Saleh -- Galicchio, Miguel -- Abel, Laurent -- Picard, Capucine -- Casanova, Jean-Laurent -- 5UL1RR024143-04/RR/NCRR NIH HHS/ -- UL1 RR024143/RR/NCRR NIH HHS/ -- UL1 RR024143-04/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):65-8. doi: 10.1126/science.1200439. Epub 2011 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Sante et de la Recherche Medicale, U980, and University Paris Descartes, Necker Medical School, 75015 Paris, France. anne.puel@inserm.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350122" target="_blank"〉PubMed〈/a〉
    Keywords: Candida albicans ; Candidiasis, Chronic Mucocutaneous/*genetics/*immunology ; Child ; Child, Preschool ; Female ; Genes, Dominant ; Genes, Recessive ; Humans ; Interleukin-17/*immunology ; Male ; Molecular Sequence Data ; Mutation ; Pedigree ; Receptors, Interleukin-17/genetics ; Signal Transduction/genetics ; Th17 Cells/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-10-29
    Description: Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diskin, Ron -- Scheid, Johannes F -- Marcovecchio, Paola M -- West, Anthony P Jr -- Klein, Florian -- Gao, Han -- Gnanapragasam, Priyanthi N P -- Abadir, Alexander -- Seaman, Michael S -- Nussenzweig, Michel C -- Bjorkman, Pamela J -- P01 AI081677-01/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1289-93. doi: 10.1126/science.1213782. Epub 2011 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22033520" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antibody Affinity ; Antigens, CD4/chemistry/metabolism ; Binding Sites ; Complementarity Determining Regions ; Crystallography, X-Ray ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology/metabolism ; Molecular Mimicry ; Molecular Sequence Data ; Mutant Proteins/chemistry/immunology/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pessa, Heli K J -- Frilander, Mikko J -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):184-5. doi: 10.1126/science.1205503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biotechnology, Program in Genome Biology, PL 56 (Viikinkaari 9), University of Helsinki, 00014 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474744" target="_blank"〉PubMed〈/a〉
    Keywords: Dwarfism/genetics ; Fetal Growth Retardation/genetics ; Humans ; Introns ; Inverted Repeat Sequences ; Microcephaly/genetics ; Mutation ; Osteochondrodysplasias/genetics ; RNA Precursors/genetics/metabolism ; *RNA Splicing ; RNA, Messenger/genetics/metabolism ; RNA, Small Nuclear/chemistry/*genetics/metabolism ; Ribonucleoproteins, Small Nuclear/*metabolism ; Spliceosomes/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spudich, James A -- R01 GM033289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1143-4. doi: 10.1126/science.1203978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry Department, Stanford University, Stanford, CA 94305, USA. jspudich@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385703" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Microtubules/*metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-27
    Description: Cell-to-cell communication in plants includes the selective trafficking of transcription factors and other signals through plasmodesmata. The KNOTTED1 (KN1) homeobox (KNOX) family transcription factors, which use this pathway, are essential for stem cell establishment and/or maintenance. Here we show that KN1 trafficking requires the chaperonin complex, which belongs to a group of cytosolic chaperones that fold specific substrate proteins. Genetic and physical interaction data show a functional relevance for chaperonins in KNOX family-dependent stem cell maintenance. Furthermore, tissue-specific complementation assays indicate a mechanistic basis for chaperonin function during the posttranslocational refolding process. Our study shows that chaperonins are essential for the cell-to-cell trafficking of a subset of mobile transcription factors and demonstrates the importance of chaperonin-dependent protein trafficking for plant stem cell function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Xianfeng Morgan -- Wang, Jing -- Xuan, Zhenyu -- Goldshmidt, Alexander -- Borrill, Philippa G M -- Hariharan, Nisha -- Kim, Jae Yean -- Jackson, David -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1141-4. doi: 10.1126/science.1205727.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868675" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/chemistry/metabolism ; *Cell Communication ; Chaperonins/*metabolism ; Cytoskeleton/physiology ; Homeodomain Proteins/chemistry/genetics/*metabolism ; Meristem/*cytology/physiology ; Mutation ; Plant Leaves/cytology/growth & development/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Plasmodesmata/*metabolism ; Protein Folding ; Protein Transport ; Recombinant Fusion Proteins/chemistry/metabolism ; Zea mays/cytology/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-01-06
    Description: Eukaryotic ribosomes are substantially larger and more complex than their bacterial counterparts. Although their core function is conserved, bacterial and eukaryotic protein synthesis differ considerably at the level of initiation. The eukaryotic small ribosomal subunit (40S) plays a central role in this process; it binds initiation factors that facilitate scanning of messenger RNAs and initiation of protein synthesis. We have determined the crystal structure of the Tetrahymena thermophila 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (eIF1) at a resolution of 3.9 angstroms. The structure reveals the fold of the entire 18S ribosomal RNA and of all ribosomal proteins of the 40S subunit, and defines the interactions with eIF1. It provides insights into the eukaryotic-specific aspects of protein synthesis, including the function of eIF1 as well as signaling and regulation mediated by the ribosomal proteins RACK1 and rpS6e.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabl, Julius -- Leibundgut, Marc -- Ataide, Sandro F -- Haag, Andrea -- Ban, Nenad -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):730-6. doi: 10.1126/science.1198308. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallization ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protozoan Proteins/chemistry/metabolism ; RNA, Messenger/chemistry ; RNA, Protozoan/chemistry ; RNA, Ribosomal, 18S/*chemistry ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Small, Eukaryotic/*chemistry/metabolism/*ultrastructure ; Signal Transduction ; Tetrahymena thermophila/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-04-02
    Description: The carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) in mammals undergoes extensive posttranslational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the coactivator-associated arginine methyltransferase 1 (CARM1). Although methylation at R1810 is present on the hyperphosphorylated form of RNAPII in vivo, Ser2 or Ser5 phosphorylation inhibits CARM1 activity toward this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the misexpression of a variety of small nuclear RNAs and small nucleolar RNAs, an effect that is also observed in Carm1(-/-) mouse embryo fibroblasts. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sims, Robert J 3rd -- Rojas, Luis Alejandro -- Beck, David -- Bonasio, Roberto -- Schuller, Roland -- Drury, William J 3rd -- Eick, Dirk -- Reinberg, Danny -- F32 GM071166/GM/NIGMS NIH HHS/ -- GM-37120/GM/NIGMS NIH HHS/ -- GM-71166/GM/NIGMS NIH HHS/ -- R01 GM037120/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):99-103. doi: 10.1126/science.1202663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Biochemistry, New York University School of Medicine, 522 First Avenue, Smilow 211, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/metabolism ; Cell Line ; HeLa Cells ; Humans ; Methylation ; Mice ; Mutation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/metabolism ; RNA Polymerase II/genetics/*metabolism ; RNA, Small Nuclear/metabolism ; RNA, Small Nucleolar/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raiborg, Camilla -- Stenmark, Harald -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1533-4. doi: 10.1126/science.1204208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436431" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Calcium-Binding Proteins/metabolism ; Cell Cycle Proteins/metabolism ; *Cell Division ; Cell Membrane/metabolism ; Endosomal Sorting Complexes Required for Transport/*chemistry/*metabolism ; Humans ; Microscopy, Electron ; Microtubules/*metabolism/*ultrastructure ; Models, Biological ; Nuclear Proteins/metabolism ; Protein Conformation ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brakenhoff, Ruud H -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1102-3. doi: 10.1126/science.1210986.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, 1007 MB Amsterdam, Netherlands. rh.brakenhoff@vumc.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868662" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma/*genetics/metabolism ; Carcinoma, Squamous Cell ; Cell Cycle Proteins/genetics/metabolism ; Cell Differentiation ; Exons ; F-Box Proteins/genetics/metabolism ; *Genes, Tumor Suppressor ; Head and Neck Neoplasms/*genetics/metabolism ; Humans ; Mutation ; Neoplasms, Squamous Cell/*genetics/metabolism ; Receptor, Notch1/*genetics/*metabolism ; Sequence Analysis, DNA ; Signal Transduction ; Ubiquitin-Protein Ligases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-06-28
    Description: The rules of nucleic acid base-pairing have been used to construct nanoscale architectures and organize biomolecules, but little has been done to apply this technology in vivo. We designed and assembled multidimensional RNA structures and used them as scaffolds for the spatial organization of bacterial metabolism. Engineered RNA modules were assembled into discrete, one-dimensional, and two-dimensional scaffolds with distinct protein-docking sites and used to control the spatial organization of a hydrogen-producing pathway. We increased hydrogen output as a function of scaffold architecture. Rationally designed RNA assemblies can thus be used to construct functional architectures in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delebecque, Camille J -- Lindner, Ariel B -- Silver, Pamela A -- Aldaye, Faisal A -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):470-4. doi: 10.1126/science.1206938. Epub 2011 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Department of Systems Biology, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700839" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/chemistry/metabolism ; *Biosynthetic Pathways ; Escherichia coli/growth & development/*metabolism ; Ferredoxins/chemistry/*metabolism ; Hydrogen/*metabolism ; Hydrogenase/chemistry/*metabolism ; Iron-Sulfur Proteins/chemistry/*metabolism ; Microscopy, Atomic Force ; Nanostructures ; Protein Binding ; Protein Conformation ; RNA/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Synthetic Biology/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-07-23
    Description: Type II topoisomerases (TOP2s) resolve the topological problems of DNA by transiently cleaving both strands of a DNA duplex to form a cleavage complex through which another DNA segment can be transported. Several widely prescribed anticancer drugs increase the population of TOP2 cleavage complex, which leads to TOP2-mediated chromosome DNA breakage and death of cancer cells. We present the crystal structure of a large fragment of human TOP2beta complexed to DNA and to the anticancer drug etoposide to reveal structural details of drug-induced stabilization of a cleavage complex. The interplay between the protein, the DNA, and the drug explains the structure-activity relations of etoposide derivatives and the molecular basis of drug-resistant mutations. The analysis of protein-drug interactions provides information applicable for developing an isoform-specific TOP2-targeting strategy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Chyuan-Chuan -- Li, Tsai-Kun -- Farh, Lynn -- Lin, Li-Ying -- Lin, Te-Sheng -- Yu, Yu-Jen -- Yen, Tien-Jui -- Chiang, Chia-Wang -- Chan, Nei-Li -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):459-62. doi: 10.1126/science.1204117.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778401" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA Topoisomerases, Type II/*chemistry/genetics/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Drug Resistance, Neoplasm ; Etoposide/analogs & derivatives/*chemistry/metabolism/*pharmacology ; Humans ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Mutation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Topoisomerase II Inhibitors/*chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duncan, Melinda K -- EY12221/EY/NEI NIH HHS/ -- EY15279/EY/NEI NIH HHS/ -- R01 EY012221/EY/NEI NIH HHS/ -- R01 EY015279/EY/NEI NIH HHS/ -- RR016472-10/RR/NCRR NIH HHS/ -- RR027273-01/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1523-4. doi: 10.1126/science.1204205.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA. duncanm@udel.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436425" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cataract/congenital/*genetics ; Cell Line ; Crystallins/genetics/metabolism ; Cytoplasmic Granules/metabolism ; Gene Expression ; *Gene Expression Regulation, Developmental ; Humans ; Lens, Crystalline/cytology/embryology/*metabolism ; Mice ; Mutation ; Protein Biosynthesis ; RNA, Messenger/*genetics/*metabolism ; Ribonucleoproteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-06
    Description: Malaria remains a devastating disease largely because of widespread drug resistance. New drugs and a better understanding of the mechanisms of drug action and resistance are essential for fulfilling the promise of eradicating malaria. Using high-throughput chemical screening and genome-wide association analysis, we identified 32 highly active compounds and genetic loci associated with differential chemical phenotypes (DCPs), defined as greater than or equal to fivefold differences in half-maximum inhibitor concentration (IC(50)) between parasite lines. Chromosomal loci associated with 49 DCPs were confirmed by linkage analysis and tests of genetically modified parasites, including three genes that were linked to 96% of the DCPs. Drugs whose responses mapped to wild-type or mutant pfcrt alleles were tested in combination in vitro and in vivo, which yielded promising new leads for antimalarial treatments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Jing -- Cheng, Ken Chih-Chien -- Johnson, Ronald L -- Huang, Ruili -- Pattaradilokrat, Sittiporn -- Liu, Anna -- Guha, Rajarshi -- Fidock, David A -- Inglese, James -- Wellems, Thomas E -- Austin, Christopher P -- Su, Xin-zhuan -- R01 AI050234/AI/NIAID NIH HHS/ -- R01 AI50234/AI/NIAID NIH HHS/ -- ZIB HG200319-08/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):724-9. doi: 10.1126/science.1205216.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817045" target="_blank"〉PubMed〈/a〉
    Keywords: Antimalarials/chemistry/*pharmacology ; Biological Evolution ; Chromosome Mapping ; Drug Combinations ; *Drug Resistance/genetics ; *Genes, Protozoan ; Genetic Linkage ; Genetic Loci ; *Genome, Protozoan ; Genome-Wide Association Study ; High-Throughput Screening Assays ; Inhibitory Concentration 50 ; Membrane Transport Proteins/genetics ; Molecular Structure ; Multidrug Resistance-Associated Proteins/genetics ; Mutation ; *Parasitic Sensitivity Tests ; Plasmodium falciparum/*drug effects/*genetics/growth & development/metabolism ; Polymorphism, Single Nucleotide ; Protozoan Proteins/genetics ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-09-10
    Description: How to build and maintain a reliable yet flexible circuit is a fundamental question in neurobiology. The nervous system has the capacity for undergoing modifications to adapt to the changing environment while maintaining its stability through compensatory mechanisms, such as synaptic homeostasis. Here, we describe our findings in the Drosophila larval visual system, where the variation of sensory inputs induced substantial structural plasticity in dendritic arbors of the postsynaptic neuron and concomitant changes to its physiological output. Furthermore, our genetic analyses have identified the cyclic adenosine monophosphate (cAMP) pathway and a previously uncharacterized cell surface molecule as critical components in regulating experience-dependent modification of the postsynaptic dendrite morphology in Drosophila.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114502/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114502/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Quan -- Xiang, Yang -- Yan, Zhiqiang -- Han, Chun -- Jan, Lily Yeh -- Jan, Yuh Nung -- 2R37NS040929/NS/NINDS NIH HHS/ -- R37 NS040929/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1458-62. doi: 10.1126/science.1207121.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Physiology and Biochemistry, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cyclic AMP/metabolism ; Darkness ; Dendrites/*physiology/ultrastructure ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/genetics/growth & development/*physiology ; Larva/physiology ; *Light ; *Light Signal Transduction ; Membrane Proteins/genetics/*metabolism ; Mutation ; *Neuronal Plasticity ; Neurons/physiology/ultrastructure ; Photoreceptor Cells, Invertebrate/*physiology/ultrastructure ; Signal Transduction ; Synapses/*physiology ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-02-12
    Description: The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Lin -- Pan, Lifeng -- Wei, Zhiyi -- Zhang, Mingjie -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):757-60. doi: 10.1126/science.1198848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311020" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation, Missense ; Myosins/*chemistry/metabolism ; Nerve Tissue Proteins/*chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Der, Bryan S -- Kuhlman, Brian -- New York, N.Y. -- Science. 2011 May 13;332(6031):801-2. doi: 10.1126/science.1207082.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA. bder@email.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korber, Bette -- Gnanakaran, S -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1589-90. doi: 10.1126/science.1211919.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. btk@lanl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921189" target="_blank"〉PubMed〈/a〉
    Keywords: *AIDS Vaccines ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antibody Affinity ; Antigens, CD4/chemistry/immunology/metabolism ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; Humans ; Models, Molecular ; Molecular Mimicry ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-13
    Description: Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Zhou, Tongqing -- Zhu, Jiang -- Zhang, Baoshan -- Georgiev, Ivelin -- Wang, Charlene -- Chen, Xuejun -- Longo, Nancy S -- Louder, Mark -- McKee, Krisha -- O'Dell, Sijy -- Perfetto, Stephen -- Schmidt, Stephen D -- Shi, Wei -- Wu, Lan -- Yang, Yongping -- Yang, Zhi-Yong -- Yang, Zhongjia -- Zhang, Zhenhai -- Bonsignori, Mattia -- Crump, John A -- Kapiga, Saidi H -- Sam, Noel E -- Haynes, Barton F -- Simek, Melissa -- Burton, Dennis R -- Koff, Wayne C -- Doria-Rose, Nicole A -- Connors, Mark -- NISC Comparative Sequencing Program -- Mullikin, James C -- Nabel, Gary J -- Roederer, Mario -- Shapiro, Lawrence -- Kwong, Peter D -- Mascola, John R -- 5U19 AI 067854-06/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1593-602. doi: 10.1126/science.1207532. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Base Sequence ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; *Evolution, Molecular ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; HIV-1/chemistry/*immunology ; High-Throughput Nucleotide Sequencing ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin J-Chains/genetics ; Immunoglobulin Light Chains/chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-01-06
    Description: Activation of the complement cascade induces inflammatory responses and marks cells for immune clearance. In the central complement-amplification step, a complex consisting of surface-bound C3b and factor B is cleaved by factor D to generate active convertases on targeted surfaces. We present crystal structures of the pro-convertase C3bB at 4 angstrom resolution and its complex with factor D at 3.5 angstrom resolution. Our data show how factor B binding to C3b forms an open "activation" state of C3bB. Factor D specifically binds the open conformation of factor B through a site distant from the catalytic center and is activated by the substrate, which displaces factor D's self-inhibitory loop. This concerted proteolytic mechanism, which is cofactor-dependent and substrate-induced, restricts complement amplification to C3b-tagged target cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087196/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087196/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forneris, Federico -- Ricklin, Daniel -- Wu, Jin -- Tzekou, Apostolia -- Wallace, Rachel S -- Lambris, John D -- Gros, Piet -- AI030040/AI/NIAID NIH HHS/ -- AI068730/AI/NIAID NIH HHS/ -- AI072106/AI/NIAID NIH HHS/ -- GM062134/GM/NIGMS NIH HHS/ -- P01 AI068730/AI/NIAID NIH HHS/ -- P01 AI068730-04/AI/NIAID NIH HHS/ -- R01 AI030040/AI/NIAID NIH HHS/ -- R01 AI030040-14/AI/NIAID NIH HHS/ -- R01 AI072106/AI/NIAID NIH HHS/ -- R01 AI072106-04/AI/NIAID NIH HHS/ -- R01 GM062134/GM/NIGMS NIH HHS/ -- R01 GM062134-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1816-20. doi: 10.1126/science.1195821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205667" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Complement C3 Convertase, Alternative Pathway/*chemistry/metabolism ; Complement C3b/*chemistry/metabolism ; Complement Factor B/*chemistry/metabolism ; Complement Factor D/*chemistry/metabolism ; Complement Pathway, Alternative ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Mutant Proteins/chemistry ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lane, Nick -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):184-5. doi: 10.1126/science.1214012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Evolution and Environment, University College London, London, UK. nick.lane@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998376" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Adenosine Triphosphate/metabolism ; Aging ; Animals ; Apoptosis ; *Biological Evolution ; Cell Nucleus/*genetics/metabolism ; *Cell Respiration ; Cytochromes c/metabolism ; Electron Transport ; Embryonic Development ; Fertility ; *Genes, Mitochondrial ; Genetic Fitness ; Longevity ; Mitochondria/*metabolism ; Models, Biological ; Mutation ; Reactive Oxygen Species/*metabolism ; *Selection, Genetic ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-02-05
    Description: Bacterial type III protein secretion systems deliver effector proteins into eukaryotic cells in order to modulate cellular processes. Central to the function of these protein-delivery machines is their ability to recognize and secrete substrates in a defined order. Here, we describe a mechanism by which a type III secretion system from the bacterial enteropathogen Salmonella enterica serovar Typhimurium can sort its substrates before secretion. This mechanism involves a cytoplasmic sorting platform that is sequentially loaded with the appropriate secreted proteins. The sequential loading of this platform, facilitated by customized chaperones, ensures the hierarchy in type III protein secretion. Given the presence of these machines in many important pathogens, these findings can serve as the bases for the development of novel antimicrobial strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lara-Tejero, Maria -- Kato, Junya -- Wagner, Samuel -- Liu, Xiaoyun -- Galan, Jorge E -- AI30492/AI/NIAID NIH HHS/ -- R01 AI030492/AI/NIAID NIH HHS/ -- U54 AI0157158/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1188-91. doi: 10.1126/science.1201476. Epub 2011 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292939" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, Bacterial/chemistry/metabolism ; Bacterial Proteins/chemistry/*metabolism ; Bacterial Secretion Systems/*physiology ; Cytoplasm/metabolism ; Membrane Proteins/chemistry/*metabolism ; Molecular Chaperones/chemistry/*metabolism ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Mutation ; Protein Binding ; Protein Transport ; Salmonella typhimurium/genetics/*metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-07-09
    Description: Current flu vaccines provide only limited coverage against seasonal strains of influenza viruses. The identification of V(H)1-69 antibodies that broadly neutralize almost all influenza A group 1 viruses constituted a breakthrough in the influenza field. Here, we report the isolation and characterization of a human monoclonal antibody CR8020 with broad neutralizing activity against most group 2 viruses, including H3N2 and H7N7, which cause severe human infection. The crystal structure of Fab CR8020 with the 1968 pandemic H3 hemagglutinin (HA) reveals a highly conserved epitope in the HA stalk distinct from the epitope recognized by the V(H)1-69 group 1 antibodies. Thus, a cocktail of two antibodies may be sufficient to neutralize most influenza A subtypes and, hence, enable development of a universal flu vaccine and broad-spectrum antibody therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210727/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210727/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ekiert, Damian C -- Friesen, Robert H E -- Bhabha, Gira -- Kwaks, Ted -- Jongeneelen, Mandy -- Yu, Wenli -- Ophorst, Carla -- Cox, Freek -- Korse, Hans J W M -- Brandenburg, Boerries -- Vogels, Ronald -- Brakenhoff, Just P J -- Kompier, Ronald -- Koldijk, Martin H -- Cornelissen, Lisette A H M -- Poon, Leo L M -- Peiris, Malik -- Koudstaal, Wouter -- Wilson, Ian A -- Goudsmit, Jaap -- GM080209/GM/NIGMS NIH HHS/ -- HHSN272200900060C/PHS HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- T32 GM080209-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):843-50. doi: 10.1126/science.1204839. Epub 2011 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21737702" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*immunology/isolation & purification ; Antibodies, Neutralizing/*immunology/isolation & purification ; Antibodies, Viral/*immunology/isolation & purification ; Antibody Specificity ; Antigens, Viral/chemistry/genetics/*immunology ; Binding Sites, Antibody ; Conserved Sequence ; Crystallography, X-Ray ; Epitopes/immunology ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/*immunology ; Humans ; Influenza A Virus, H3N2 Subtype/immunology ; Influenza A Virus, H7N7 Subtype/genetics/immunology ; Influenza A virus/*immunology ; Influenza Vaccines/immunology ; Influenza, Human/immunology/prevention & control/therapy ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Orthomyxoviridae Infections/immunology/prevention & control ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-07-19
    Description: During early lung development, airway tubes change shape. Tube length increases more than circumference as a large proportion of lung epithelial cells divide parallel to the airway longitudinal axis. We show that this bias is lost in mutants with increased extracellular signal-regulated kinase 1 (ERK1) and ERK2 activity, revealing a link between the ERK1/2 signaling pathway and the control of mitotic spindle orientation. Using a mathematical model, we demonstrate that change in airway shape can occur as a function of spindle angle distribution determined by ERK1/2 signaling, independent of effects on cell proliferation or cell size and shape. We identify sprouty genes, which encode negative regulators of fibroblast growth factor 10 (FGF10)-mediated RAS-regulated ERK1/2 signaling, as essential for controlling airway shape change during development through an effect on mitotic spindle orientation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260627/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260627/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Nan -- Marshall, Wallace F -- McMahon, Martin -- Metzger, Ross J -- Martin, Gail R -- 5T32HL007185/HL/NHLBI NIH HHS/ -- R01 CA131201/CA/NCI NIH HHS/ -- R01 CA131261/CA/NCI NIH HHS/ -- R01 CA78711/CA/NCI NIH HHS/ -- R01 DE17744/DE/NIDCR NIH HHS/ -- R01 GM077004/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):342-5. doi: 10.1126/science.1204831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764747" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Cell Polarity ; Cell Proliferation ; Cell Shape ; Cell Size ; Epithelial Cells/cytology ; Fibroblast Growth Factor 10/genetics/metabolism ; Intracellular Signaling Peptides and Proteins ; Lung/cytology/*embryology/metabolism ; *MAP Kinase Signaling System ; Membrane Proteins/genetics/metabolism ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase 3/*metabolism ; Mitosis ; Models, Biological ; *Morphogenesis ; Mutation ; Organogenesis ; Phosphoproteins/genetics/metabolism ; Phosphorylation ; Proto-Oncogene Proteins p21(ras)/genetics/*metabolism ; Respiratory Mucosa/cytology/*embryology ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-12-24
    Description: In eukaryotes, it is unknown whether mismatch repair (MMR) is temporally coupled to DNA replication and how strand-specific MMR is directed. We fused Saccharomyces cerevisiae MSH6 with cyclins to restrict the availability of the Msh2-Msh6 mismatch recognition complex to either S phase or G2/M phase of the cell cycle. The Msh6-S cyclin fusion was proficient for suppressing mutations at three loci that replicate at mid-S phase, whereas the Msh6-G2/M cyclin fusion was defective. However, the Msh6-G2/M cyclin fusion was functional for MMR at a very late-replicating region of the genome. In contrast, the heteroduplex rejection function of MMR during recombination was partially functional during both S phase and G2/M phase. These results indicate a temporal coupling of MMR, but not heteroduplex rejection, to DNA replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806717/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806717/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hombauer, Hans -- Srivatsan, Anjana -- Putnam, Christopher D -- Kolodner, Richard D -- GM50006/GM/NIGMS NIH HHS/ -- P30 CA023100/CA/NCI NIH HHS/ -- R01 GM050006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1713-6. doi: 10.1126/science.1210770.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Departments of Medicine and Cellular and Molecular Medicine and Cancer Center, Moores-UCSD Cancer Center, University of California School of Medicine-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194578" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division ; Cyclin B/genetics/metabolism ; *DNA Mismatch Repair ; *DNA Replication ; DNA, Fungal/*metabolism ; DNA-Binding Proteins/genetics/metabolism ; Frameshift Mutation ; G2 Phase ; Genes, Fungal ; Mutation ; Nucleic Acid Heteroduplexes/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombination, Genetic ; S Phase ; Saccharomyces cerevisiae/genetics/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-09-17
    Description: Transcription by eukaryotic RNA polymerases (Pols) II and III and archaeal Pol requires structurally related general transcription factors TFIIB, Brf1, and TFB, respectively, which are essential for polymerase recruitment and initiation events. A TFIIB-like protein was not evident in the Pol I basal transcription machinery. We report that TAF1B, a subunit of human Pol I basal transcription factor SL1, is structurally related to TFIIB/TFIIB-like proteins, through predicted amino-terminal zinc ribbon and cyclin-like fold domains. SL1, essential for Pol I recruitment to the ribosomal RNA gene promoter, also has an essential postpolymerase recruitment role, operating through TAF1B. Therefore, a TFIIB-related protein is implicated in preinitiation complex assembly and postpolymerase recruitment events in Pol I transcription, underscoring the parallels between eukaryotic Pol I, II, and III and archaeal transcription machineries.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naidu, Srivatsava -- Friedrich, J Karsten -- Russell, Jackie -- Zomerdijk, Joost C B M -- 085441/Wellcome Trust/United Kingdom -- 085441/Z/08/Z/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1640-2. doi: 10.1126/science.1207656.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921199" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; DNA, Ribosomal ; Humans ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Mutation ; Pol1 Transcription Initiation Complex Proteins/*chemistry/genetics/*metabolism ; Promoter Regions, Genetic ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase I/*metabolism ; Transcription Factor TFIIB/*chemistry/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-07-19
    Description: We present genome engineering technologies that are capable of fundamentally reengineering genomes from the nucleotide to the megabase scale. We used multiplex automated genome engineering (MAGE) to site-specifically replace all 314 TAG stop codons with synonymous TAA codons in parallel across 32 Escherichia coli strains. This approach allowed us to measure individual recombination frequencies, confirm viability for each modification, and identify associated phenotypes. We developed hierarchical conjugative assembly genome engineering (CAGE) to merge these sets of codon modifications into genomes with 80 precise changes, which demonstrate that these synonymous codon substitutions can be combined into higher-order strains without synthetic lethal effects. Our methods treat the chromosome as both an editable and an evolvable template, permitting the exploration of vast genetic landscapes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isaacs, Farren J -- Carr, Peter A -- Wang, Harris H -- Lajoie, Marc J -- Sterling, Bram -- Kraal, Laurens -- Tolonen, Andrew C -- Gianoulis, Tara A -- Goodman, Daniel B -- Reppas, Nikos B -- Emig, Christopher J -- Bang, Duhee -- Hwang, Samuel J -- Jewett, Michael C -- Jacobson, Joseph M -- Church, George M -- K99 GM081450/GM/NIGMS NIH HHS/ -- R00 GM081450/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):348-53. doi: 10.1126/science.1205822.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. farren.isaacs@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764749" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Bacterial/*genetics ; *Codon, Terminator ; *Conjugation, Genetic ; Directed Molecular Evolution ; Escherichia coli/*genetics/growth & development/physiology ; Genetic Engineering/*methods ; *Genome, Bacterial ; Genomic Instability ; Mutagenesis, Site-Directed ; Mutation ; Phenotype ; Recombination, Genetic ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-10-25
    Description: The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927129/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927129/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Min -- Morgner, Nina -- Barrera, Nelson P -- Politis, Argyris -- Isaacson, Shoshanna C -- Matak-Vinkovic, Dijana -- Murata, Takeshi -- Bernal, Ricardo A -- Stock, Daniela -- Robinson, Carol V -- 088150/Wellcome Trust/United Kingdom -- 099141/Wellcome Trust/United Kingdom -- G1000819/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):380-5. doi: 10.1126/science.1210148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021858" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cardiolipins/analysis/metabolism ; Enterococcus/enzymology ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Mass Spectrometry ; Membrane Lipids/analysis/*metabolism ; Models, Molecular ; Phosphatidylethanolamines/analysis/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Spectrometry, Mass, Electrospray Ionization ; Thermus thermophilus/*enzymology ; Vacuolar Proton-Translocating ATPases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohnen, Debra -- Tierney, Mary L -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1393-4. doi: 10.1126/science.1208641.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, BioEnergy Science Center, University of Georgia, Athens, GA 30602, USA. dmohnen@ccrc.uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680834" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/metabolism ; Carbohydrate Conformation ; Cell Wall/*metabolism ; Gene Expression Regulation, Plant ; Glycoproteins/*metabolism ; Glycosylation ; Hydroxylation ; Hydroxyproline/*metabolism ; Models, Biological ; Mutation ; Pentosyltransferases/metabolism ; Phenotype ; Plant Proteins/*metabolism ; Plant Roots/anatomy & histology/growth & development/*metabolism ; Procollagen-Proline Dioxygenase/genetics/*metabolism ; Protein Processing, Post-Translational ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-11-19
    Description: Bacteria become highly tolerant to antibiotics when nutrients are limited. The inactivity of antibiotic targets caused by starvation-induced growth arrest is thought to be a key mechanism producing tolerance. Here we show that the antibiotic tolerance of nutrient-limited and biofilm Pseudomonas aeruginosa is mediated by active responses to starvation, rather than by the passive effects of growth arrest. The protective mechanism is controlled by the starvation-signaling stringent response (SR), and our experiments link SR-mediated tolerance to reduced levels of oxidant stress in bacterial cells. Furthermore, inactivating this protective mechanism sensitized biofilms by several orders of magnitude to four different classes of antibiotics and markedly enhanced the efficacy of antibiotic treatment in experimental infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, Dao -- Joshi-Datar, Amruta -- Lepine, Francois -- Bauerle, Elizabeth -- Olakanmi, Oyebode -- Beer, Karlyn -- McKay, Geoffrey -- Siehnel, Richard -- Schafhauser, James -- Wang, Yun -- Britigan, Bradley E -- Singh, Pradeep K -- K24 HL102246/HL/NHLBI NIH HHS/ -- R01 AI101307/AI/NIAID NIH HHS/ -- R56 AI091714/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):982-6. doi: 10.1126/science.1211037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine, Microbiology and Immunology, McGill University, Montreal, Quebec, Canada. dao.nguyen@mcgill.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096200" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Biofilms/*drug effects/growth & development ; Catalase/metabolism ; Drug Resistance, Bacterial ; Drug Tolerance ; Escherichia coli/drug effects/genetics/growth & development/physiology ; Female ; Hydroxyl Radical/metabolism ; Hydroxyquinolines/metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Ofloxacin/pharmacology/therapeutic use ; Oxidative Stress ; Pseudomonas Infections/drug therapy/*microbiology ; Pseudomonas aeruginosa/*drug effects/genetics/growth & development/*physiology ; Serine/analogs & derivatives/pharmacology ; Superoxide Dismutase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-04-09
    Description: The unfolded protein response (UPR), which is activated when unfolded or misfolded proteins accumulate in the endoplasmic reticulum, has been implicated in the normal physiology of immune defense and in several human diseases, including diabetes, cancer, neurodegenerative disease, and inflammatory disease. In this study, we found that the nervous system controlled the activity of a noncanonical UPR pathway required for innate immunity in Caenorhabditis elegans. OCTR-1, a putative octopamine G protein-coupled catecholamine receptor (GPCR, G protein-coupled receptor), functioned in sensory neurons designated ASH and ASI to actively suppress innate immune responses by down-regulating the expression of noncanonical UPR genes pqn/abu in nonneuronal tissues. Our findings suggest a molecular mechanism by which the nervous system may sense inflammatory responses and respond by controlling stress-response pathways at the organismal level.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Jingru -- Singh, Varsha -- Kajino-Sakamoto, Rie -- Aballay, Alejandro -- GM070977/GM/NIGMS NIH HHS/ -- R01 GM070977/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 6;332(6030):729-32. doi: 10.1126/science.1203411. Epub 2011 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Load ; Caenorhabditis elegans/*genetics/*immunology/microbiology ; Caenorhabditis elegans Proteins/genetics/metabolism/*physiology ; Down-Regulation ; Endoplasmic Reticulum/metabolism ; *Genes, Helminth ; *Immunity, Innate ; Intestines/metabolism ; Membrane Proteins/genetics/metabolism ; Mitogen-Activated Protein Kinases/genetics/metabolism ; Mutation ; Pharynx/metabolism ; Pseudomonas aeruginosa/*immunology/pathogenicity ; Receptors, G-Protein-Coupled/genetics/*physiology ; Sensory Receptor Cells/*physiology ; Signal Transduction ; Stress, Physiological ; Transcription, Genetic ; Unfolded Protein Response/*genetics ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-20
    Description: CD40, a member of the tumor necrosis factor receptor (TNFR) superfamily, is expressed on antigen-presenting cells (APCs) and is essential for immune activation. Although agonistic CD40 antibodies have been developed for immunotherapy, their clinical efficacy has been limited. We have found that coengagement of the Fc domain of agonistic CD40 monoclonal antibodies (mAbs) with the inhibitory Fcgamma receptor FcgammaRIIB is required for immune activation. Direct comparison of mAbs to CD40 enhanced for activating FcgammaR binding, hence capable of cytotoxicity, or for inhibitory FcgammaRIIB binding, revealed that enhancing FcgammaRIIB binding conferred immunostimulatory activity and considerably greater anti-tumor responses. This unexpected requirement for FcgammaRIIB in enhancing CD40-mediated immune activation has direct implications for the design of agonistic antibodies to TNFR as therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164589/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164589/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fubin -- Ravetch, Jeffrey V -- P01 AI051573/AI/NIAID NIH HHS/ -- P01 AI051573-10/AI/NIAID NIH HHS/ -- R01 CA080757/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1030-4. doi: 10.1126/science.1206954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852502" target="_blank"〉PubMed〈/a〉
    Keywords: *Adjuvants, Immunologic ; Animals ; Antibodies, Monoclonal/*immunology/therapeutic use ; Antibody Affinity ; Antibody-Dependent Cell Cytotoxicity ; Antigen-Presenting Cells/immunology ; Antigens, CD40/agonists/*immunology/metabolism ; Cytotoxicity, Immunologic ; Dendritic Cells/immunology ; Humans ; Immunoglobulin Fc Fragments/*immunology/metabolism ; Lymphocyte Activation ; Lymphoma, B-Cell/*immunology/*therapy ; Mice ; Mice, Inbred BALB C ; Mutation ; Ovalbumin/immunology ; Receptors, IgG/genetics/*immunology/metabolism ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-12-17
    Description: The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Karen S Y -- Siebert, Matthias -- Mertel, Sara -- Knoche, Elena -- Wegener, Stephanie -- Wichmann, Carolin -- Matkovic, Tanja -- Muhammad, Karzan -- Depner, Harald -- Mettke, Christoph -- Buckers, Johanna -- Hell, Stefan W -- Muller, Martin -- Davis, Graeme W -- Schmitz, Dietmar -- Sigrist, Stephan J -- New York, N.Y. -- Science. 2011 Dec 16;334(6062):1565-9. doi: 10.1126/science.1212991.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Institute for Biology, Free University Berlin, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/physiology ; Carrier Proteins/*physiology ; Drosophila ; Drosophila Proteins/genetics/*physiology ; Male ; Mutation ; Neurotransmitter Agents/*metabolism ; Presynaptic Terminals/*physiology ; Synapses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-07-19
    Description: Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the ~300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joo, Woo -- Xu, Guozhou -- Persky, Nicole S -- Smogorzewska, Agata -- Rudge, Derek G -- Buzovetsky, Olga -- Elledge, Stephen J -- Pavletich, Nikola P -- R01 GM044664/GM/NIGMS NIH HHS/ -- R01 GM044664-10/GM/NIGMS NIH HHS/ -- R37 GM044664/GM/NIGMS NIH HHS/ -- T32 CA009216/CA/NCI NIH HHS/ -- T32 CA009216-32/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):312-6. doi: 10.1126/science.1205805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Repair ; DNA, Single-Stranded/chemistry/metabolism ; Fanconi Anemia/genetics ; Fanconi Anemia Complementation Group D2 Protein/*chemistry/metabolism ; Fanconi Anemia Complementation Group Proteins/*chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity ; Ubiquitin/chemistry ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-02-26
    Description: Animal color patterns can affect fitness in the wild; however, little is known about the mechanisms that control their formation and subsequent evolution. We took advantage of two locally camouflaged populations of Peromyscus mice to show that the negative regulator of adult pigmentation, Agouti, also plays a key developmental role in color pattern evolution. Genetic and functional analyses showed that ventral-specific embryonic expression of Agouti establishes a prepattern by delaying the terminal differentiation of ventral melanocytes. Moreover, a skin-specific increase in both the level and spatial domain of Agouti expression prevents melanocyte maturation in a regionalized manner, resulting in a novel and adaptive color pattern. Thus, natural selection favors late-acting, tissue-specific changes in embryonic Agouti expression to produce large changes in adult color pattern.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manceau, Marie -- Domingues, Vera S -- Mallarino, Ricardo -- Hoekstra, Hopi E -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1062-5. doi: 10.1126/science.1200684.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350176" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti Signaling Protein/*genetics/metabolism ; Alleles ; Animals ; *Biological Evolution ; Body Patterning ; Cell Differentiation ; Cell Proliferation ; Dermis/cytology/embryology/metabolism ; Embryo, Mammalian ; Epidermis/cytology/embryology/metabolism ; Female ; Fetus ; Gene Expression ; *Gene Expression Regulation, Developmental ; Hair Color/*genetics ; Hair Follicle/cytology/embryology/metabolism ; Male ; Melanocytes/*cytology/physiology ; Mutation ; Peromyscus/*embryology/*genetics ; Skin/cytology/*embryology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-09-17
    Description: Epigenetic information, which may affect an organism's phenotype, can be stored and stably inherited in the form of cytosine DNA methylation. Changes in DNA methylation can produce meiotically stable epialleles that affect transcription and morphology, but the rates of spontaneous gain or loss of DNA methylation are unknown. We examined spontaneously occurring variation in DNA methylation in Arabidopsis thaliana plants propagated by single-seed descent for 30 generations. We identified 114,287 CG single methylation polymorphisms and 2485 CG differentially methylated regions (DMRs), both of which show patterns of divergence compared with the ancestral state. Thus, transgenerational epigenetic variation in DNA methylation may generate new allelic states that alter transcription, providing a mechanism for phenotypic diversity in the absence of genetic mutation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210014/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210014/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, Robert J -- Schultz, Matthew D -- Lewsey, Mathew G -- O'Malley, Ronan C -- Urich, Mark A -- Libiger, Ondrej -- Schork, Nicholas J -- Ecker, Joseph R -- F32 HG004830/HG/NHGRI NIH HHS/ -- F32 HG004830-01/HG/NHGRI NIH HHS/ -- F32 HG004830-02/HG/NHGRI NIH HHS/ -- F32 HG004830-03/HG/NHGRI NIH HHS/ -- F32-HG004830/HG/NHGRI NIH HHS/ -- R01 HG003523/HG/NHGRI NIH HHS/ -- R01 HG003523-01/HG/NHGRI NIH HHS/ -- R01 HG003523-02/HG/NHGRI NIH HHS/ -- R01 HG003523-03/HG/NHGRI NIH HHS/ -- UL1 RR025774/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):369-73. doi: 10.1126/science.1212959. Epub 2011 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921155" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/metabolism ; *DNA Methylation ; DNA Transposable Elements ; DNA, Intergenic ; DNA, Plant/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; *Epigenesis, Genetic ; Genes, Plant ; Genetic Variation ; Genome, Plant ; Linear Models ; Mutation ; Polymorphism, Genetic ; Promoter Regions, Genetic ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, Luke A J -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1386-7. doi: 10.1126/science.1208448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland. laoneill@tcd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680829" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Flagellin/*immunology ; *Immunity, Innate ; Mutant Proteins/chemistry/metabolism ; Mutation ; Phosphorylation ; Plant Diseases/*immunology/microbiology ; Protein Kinases/chemistry/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Pseudomonas/immunology ; Receptors, Pattern Recognition/chemistry/*metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-02-26
    Description: Understanding the diversification of phenotypes through time--"descent with modification"--has been the focus of evolutionary biology for 150 years. If, contrary to expectations, similarity evolves in unrelated taxa, researchers are guided to uncover the genetic and developmental mechanisms responsible. Similar phenotypes may be retained from common ancestry (homology), but a phylogenetic context may instead reveal that they are independently derived, due to convergence or parallel evolution, or less likely, that they experienced reversal. Such examples of homoplasy present opportunities to discover the foundations of morphological traits. A common underlying mechanism may exist, and components may have been redeployed in a way that produces the "same" phenotype. New, robust phylogenetic hypotheses and molecular, genomic, and developmental techniques enable integrated exploration of the mechanisms by which similarity arises.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wake, David B -- Wake, Marvalee H -- Specht, Chelsea D -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1032-5. doi: 10.1126/science.1188545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA. davidbwake@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350170" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Biological Evolution ; Morphogenesis/genetics ; Mutation ; *Phenotype ; Phylogeny ; Plants/genetics ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-03-10
    Description: Type III secretion systems (T3SSs) are essential virulence factors used by many Gram-negative bacteria to inject proteins that make eukaryotic host cells accessible to invasion. The T3SS core structure, the needle complex (NC), is a ~3.5 megadalton-sized, oligomeric, membrane-embedded complex. Analyzing cryo-electron microscopy images of top views of NCs or NC substructures from Salmonella typhimurium revealed a 24-fold symmetry for the inner rings and a 15-fold symmetry for the outer rings, giving an overall C3 symmetry. Local refinement and averaging showed the organization of the central core and allowed us to reconstruct a subnanometer composite structure of the NC, which together with confident docking of atomic structures reveal insights into its overall organization and structural requirements during assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schraidt, Oliver -- Marlovits, Thomas C -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1192-5. doi: 10.1126/science.1199358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385715" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/ultrastructure ; *Bacterial Secretion Systems ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Membrane Proteins/*chemistry/ultrastructure ; Membrane Transport Proteins/*chemistry/ultrastructure ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; Salmonella typhimurium/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-06-18
    Description: Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Velasquez, Silvia M -- Ricardi, Martiniano M -- Dorosz, Javier Gloazzo -- Fernandez, Paula V -- Nadra, Alejandro D -- Pol-Fachin, Laercio -- Egelund, Jack -- Gille, Sascha -- Harholt, Jesper -- Ciancia, Marina -- Verli, Hugo -- Pauly, Markus -- Bacic, Antony -- Olsen, Carl Erik -- Ulvskov, Peter -- Petersen, Bent Larsen -- Somerville, Chris -- Iusem, Norberto D -- Estevez, Jose M -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1401-3. doi: 10.1126/science.1206657.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Fisiologia, Biologia Molecular y Neurociencias-Consejo Nacional de Investigaciones Cientificas y Tecnicas (IFIByNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680836" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Arabinose/metabolism ; Carbohydrate Conformation ; Cell Wall/*metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; Glycosyltransferases/genetics/metabolism ; Hydroxylation ; Hydroxyproline/*metabolism ; Models, Biological ; Mutation ; Pentosyltransferases/chemistry/metabolism ; Phenotype ; Plant Proteins/chemistry/*metabolism ; Plant Roots/cytology/*growth & development/metabolism ; Polysaccharides/chemistry ; Procollagen-Proline Dioxygenase/genetics/*metabolism ; Proline/metabolism ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-12-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corless, Christopher L -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1217-8. doi: 10.1126/science.1216427.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oregon Health & Science University, Portland, OR 97201, USA. corlessc@ohsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22144608" target="_blank"〉PubMed〈/a〉
    Keywords: Costs and Cost Analysis ; DNA, Neoplasm/*genetics ; *Exome ; Genome, Human ; *High-Throughput Nucleotide Sequencing/economics ; Humans ; Mutation ; Neoplasms/*diagnosis/*genetics/therapy ; Pilot Projects ; Precision Medicine ; *Sequence Analysis, DNA/economics ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1562-3. doi: 10.1126/science.333.6049.1562-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921169" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*pharmacology ; Bacteria/*drug effects/genetics ; Burkholderia/drug effects/genetics ; Burkholderia Infections/epidemiology/microbiology ; Cystic Fibrosis/microbiology ; Disease Outbreaks ; Drug Resistance, Bacterial/*genetics ; Escherichia coli/drug effects/genetics ; *Evolution, Molecular ; Humans ; Mutation ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Francis S -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):546. doi: 10.1126/science.1202894.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institutes of Health, Bethesda, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292963" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; *Genetics, Medical ; *Genome, Human ; *Human Genome Project ; Humans ; Male ; Mutation ; National Institutes of Health (U.S.) ; *Sequence Analysis, DNA ; *Translational Medical Research ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-05-28
    Description: There is a general need for the engineering of protein-like molecules that organize into geometrically specific superstructures on molecular surfaces, directing further functionalization to create richly textured, multilayered assemblies. Here we describe a computational approach whereby the surface properties and symmetry of a targeted surface define the sequence and superstructure of surface-organizing peptides. Computational design proceeds in a series of steps that encode both surface recognition and favorable intersubunit packing interactions. This procedure is exemplified in the design of peptides that assemble into a tubular structure surrounding single-walled carbon nanotubes (SWNTs). The geometrically defined, virus-like coating created by these peptides converts the smooth surfaces of SWNTs into highly textured assemblies with long-scale order, capable of directing the assembly of gold nanoparticles into helical arrays along the SWNT axis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264056/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264056/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grigoryan, Gevorg -- Kim, Yong Ho -- Acharya, Rudresh -- Axelrod, Kevin -- Jain, Rishabh M -- Willis, Lauren -- Drndic, Marija -- Kikkawa, James M -- DeGrado, William F -- 5F32GM084631-02/GM/NIGMS NIH HHS/ -- F32 GM084631/GM/NIGMS NIH HHS/ -- F32 GM084631-02/GM/NIGMS NIH HHS/ -- GM54616/GM/NIGMS NIH HHS/ -- R37 GM054616/GM/NIGMS NIH HHS/ -- R37 GM054616-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1071-6. doi: 10.1126/science.1198841.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617073" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Computer Simulation ; Gold ; Metal Nanoparticles ; Models, Molecular ; *Nanotubes, Carbon ; Peptides/*chemistry ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Stability ; Protein Structure, Secondary ; Solubility ; Surface Properties ; Viruses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-03-10
    Description: Morphogens, such as Decapentaplegic (Dpp) in the fly imaginal discs, form graded concentration profiles that control patterning and growth of developing organs. In the imaginal discs, proliferative growth is homogeneous in space, posing the conundrum of how morphogen concentration gradients could control position-independent growth. To understand the mechanism of proliferation control by the Dpp gradient, we quantified Dpp concentration and signaling levels during wing disc growth. Both Dpp concentration and signaling gradients scale with tissue size during development. On average, cells divide when Dpp signaling levels have increased by 50%. Our observations are consistent with a growth control mechanism based on temporal changes of cellular morphogen signaling levels. For a scaling gradient, this mechanism generates position-independent growth rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wartlick, O -- Mumcu, P -- Kicheva, A -- Bittig, T -- Seum, C -- Julicher, F -- Gonzalez-Gaitan, M -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1154-9. doi: 10.1126/science.1200037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Faculty of Sciences, Geneva University, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; *Cell Proliferation ; Computer Simulation ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/genetics/*growth & development/*metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Models, Biological ; Morphogenesis ; Mutation ; *Signal Transduction ; Wings, Animal/anatomy & histology/cytology/*growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-01-08
    Description: Polarized cell behaviors drive axis elongation in animal embryos, but the mechanisms underlying elongation of many tissues remain unknown. Eggs of Drosophila undergo elongation from a sphere to an ellipsoid during oogenesis. We used live imaging of follicles (developing eggs) to elucidate the cellular basis of egg elongation. We find that elongating follicles undergo repeated rounds of circumferential rotation around their long axes. Follicle epithelia mutant for integrin or collagen IV fail to rotate and elongate, which results in round eggs. We present evidence that polarized rotation is required to build a polarized, fibrillar extracellular matrix (ECM) that constrains tissue shape. Thus, global tissue rotation is a morphogenetic behavior that uses planar polarity information in the ECM to control tissue elongation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153412/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153412/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haigo, Saori L -- Bilder, David -- R01 GM068675/GM/NIGMS NIH HHS/ -- R01 GM068675-07/GM/NIGMS NIH HHS/ -- R01 GM068675-07S1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1071-4. doi: 10.1126/science.1199424. Epub 2011 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, 379 Life Sciences Addition no. 3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basement Membrane/physiology ; Cell Division ; Cell Polarity ; Cell Shape ; Collagen Type IV/chemistry/genetics/physiology ; Drosophila Proteins/chemistry/genetics/physiology ; Drosophila melanogaster/genetics/*physiology ; Epithelium/physiology ; Extracellular Matrix/chemistry/*physiology ; Female ; Integrins/genetics/physiology ; Morphogenesis ; Mutation ; *Oogenesis ; Ovum/*cytology ; Recombinant Fusion Proteins/metabolism ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-03-19
    Description: Gene transcription is highly regulated. Altered transcription can lead to cancer or developmental diseases. Mediator, a multisubunit complex conserved among eukaryotes, is generally required for RNA polymerase II (Pol II) transcription. An interaction between the two complexes is known, but its molecular nature and physiological role are unclear. We identify a direct physical interaction between the Rpb3 Pol II subunit of Saccharomyces cerevisiae and the essential Mediator subunit, Med17. Furthermore, we demonstrate a functional element in the Mediator-Pol II interface that is important for genome-wide Pol II recruitment in vivo. Our findings suggest that a direct interaction between Mediator and Pol II is generally required for transcription of class II genes in eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soutourina, Julie -- Wydau, Sandra -- Ambroise, Yves -- Boschiero, Claire -- Werner, Michel -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1451-4. doi: 10.1126/science.1200188.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commissariat a l'Energie Atomique et aux Energies Alternatives, iBiTec-S, Service de Biologie Integrative et Genetique Moleculaire, Gif-sur-Yvette cedex, France. julie.soutourina@cea.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415355" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin Immunoprecipitation ; Galactokinase/genetics ; Genes, Fungal ; Genome, Fungal ; Mediator Complex/genetics/*metabolism ; Mutation ; Promoter Regions, Genetic ; Protein Binding ; RNA Polymerase II/*metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Temperature ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-03-12
    Description: Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Fei -- Wu, Huixian -- Katritch, Vsevolod -- Han, Gye Won -- Jacobson, Kenneth A -- Gao, Zhan-Guo -- Cherezov, Vadim -- Stevens, Raymond C -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54 GM094618-01/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):322-7. doi: 10.1126/science.1202793. Epub 2011 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393508" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/chemistry/metabolism ; Adenosine A2 Receptor Agonists/chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Opsins/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Adenosine A2A/*chemistry/*metabolism ; Rhodopsin/chemistry/metabolism ; Triazines/chemistry/metabolism ; Triazoles/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-04-09
    Description: A critical event in the origin of life is thought to have been the emergence of an RNA molecule capable of replicating a primordial RNA "genome." Here we describe the evolution and engineering of an RNA polymerase ribozyme capable of synthesizing RNAs of up to 95 nucleotides in length. To overcome its sequence dependence, we recombined traits evolved separately in different ribozyme lineages. This yielded a more general polymerase ribozyme that was able to synthesize a wider spectrum of RNA sequences, as we demonstrate by the accurate synthesis of an enzymatically active RNA, a hammerhead endonuclease ribozyme. This recapitulates a central aspect of an RNA-based genetic system: the RNA-catalyzed synthesis of an active ribozyme from an RNA template.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wochner, Aniela -- Attwater, James -- Coulson, Alan -- Holliger, Philipp -- MC_U105178804/Medical Research Council/United Kingdom -- MC_US_A024_0014/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):209-12. doi: 10.1126/science.1200752.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474753" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biocatalysis ; Directed Molecular Evolution ; Genetic Engineering ; Mutation ; Nucleic Acid Conformation ; RNA/*chemistry/genetics/metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; RNA, Catalytic/*chemistry/genetics/*metabolism ; Selection, Genetic ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-06-04
    Description: The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dominguez-Escobar, Julia -- Chastanet, Arnaud -- Crevenna, Alvaro H -- Fromion, Vincent -- Wedlich-Soldner, Roland -- Carballido-Lopez, Rut -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):225-8. doi: 10.1126/science.1203466. Epub 2011 Jun 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Biochemistry, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21636744" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Bacillus subtilis/*growth & development/*metabolism/ultrastructure ; Bacterial Proteins/chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Cell Wall/*metabolism/ultrastructure ; Diffusion ; Membrane Proteins/chemistry/metabolism ; Microscopy, Fluorescence ; Models, Biological ; Morphogenesis ; Motion ; Mutation ; Peptidoglycan/*metabolism ; Polymerization ; Protein Isoforms/chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...