ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphorylation
  • American Association for the Advancement of Science (AAAS)  (195)
  • Springer
  • 2005-2009  (195)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2006-11-18
    Description: During development, cells acquire positional information by reading the concentration of morphogens. In the developing fly wing, a gradient of the transforming growth factor-beta (TGF-beta)-type morphogen decapentaplegic (Dpp) is transduced into a gradient of concentration of the phosphorylated form of the R-Smad transcription factor Mad. The endosomal protein Sara (Smad anchor for receptor activation) recruits R-Smads for phosphorylation by the type I TGF-beta receptor. We found that Sara, Dpp, and its type I receptor Thickveins were targeted to a subpopulation of apical endosomes in the developing wing epithelial cells. During mitosis, the Sara endosomes and the receptors therein associated with the spindle machinery to segregate into the two daughter cells. Daughter cells thereby inherited equal amounts of signaling molecules and thus retained the Dpp signaling levels of the mother cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokel, Christian -- Schwabedissen, Anja -- Entchev, Eugeni -- Renaud, Olivier -- Gonzalez-Gaitan, Marcos -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1135-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Division ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/*metabolism ; Endosomes/*metabolism ; Epithelial Cells/cytology/metabolism ; *Mitosis ; Phosphorylation ; Point Mutation ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction ; Smad Proteins, Receptor-Regulated/metabolism ; Transcription Factors/metabolism ; Transforming Growth Factor beta/*metabolism ; Wings, Animal/cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-25
    Description: The transcription factor NF-kappaB modulates apoptotic responses induced by genotoxic stress. We show that NF-kappaB essential modulator (NEMO), the regulatory subunit of IkappaB kinase (IKK) (which phosphorylates the NF-kappaB inhibitor IkappaB), associates with activated ataxia telangiectasia mutated (ATM) after the induction of DNA double-strand breaks. ATM phosphorylates serine-85 of NEMO to promote its ubiquitin-dependent nuclear export. ATM is also exported in a NEMO-dependent manner to the cytoplasm, where it associates with and causes the activation of IKK in a manner dependent on another IKK regulator, a protein rich in glutamate, leucine, lysine, and serine (ELKS). Thus, regulated nuclear shuttling of NEMO links two signaling kinases, ATM and IKK, to activate NF-kappaB by genotoxic signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Zhao-Hui -- Shi, Yuling -- Tibbetts, Randal S -- Miyamoto, Shigeki -- R01-CA77474/CA/NCI NIH HHS/ -- R01-CA81065/CA/NCI NIH HHS/ -- R01-GM067868/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1141-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Wisconsin-Madison, 301 SMI, 1300 University Avenue, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497931" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing/genetics/metabolism ; Amino Acid Motifs ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/*metabolism ; Humans ; I-kappa B Kinase/*metabolism ; I-kappa B Proteins/genetics/metabolism ; NF-kappa B/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; SUMO-1 Protein/metabolism ; *Signal Transduction ; Tumor Suppressor Proteins/*metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-06-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neels, Jaap G -- Olefsky, Jerrold M -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1756-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA. jolefsky@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794069" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/antagonists & inhibitors/*metabolism ; Adipocytes/metabolism ; Adipose Tissue/*metabolism ; Animals ; Cell Cycle Proteins/*metabolism ; Energy Intake ; Energy Metabolism ; Enzyme Activation ; Fasting ; Fatty Acids/metabolism ; Hepatocytes/metabolism ; Insulin/physiology ; Insulin Resistance ; *Lipid Metabolism ; Lipogenesis ; Liver/metabolism ; Malonyl Coenzyme A/metabolism ; Mice ; Models, Biological ; Nuclear Proteins/*metabolism ; Obesity/therapy ; Oxidation-Reduction ; Phosphorylation ; Proto-Oncogene Proteins c-akt/antagonists & inhibitors/metabolism ; Signal Transduction ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-06-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haince, Jean-Francois -- Rouleau, Michele -- Poirier, Guy G -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1752-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Health and Environment Unit, Faculty of Medicine, Laval University Medical Research Center, 2705 Boulevard Laurier, Quebec City, QC, G1V 4G2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794066" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/chemistry/metabolism ; DNA/*metabolism ; DNA Repair ; DNA Topoisomerases, Type II/*metabolism ; DNA-Activated Protein Kinase/metabolism ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; Enzyme Activation ; Gene Expression ; Histones/metabolism ; Humans ; Models, Genetic ; Nucleosomes/metabolism ; Phosphorylation ; Poly Adenosine Diphosphate Ribose/metabolism ; Poly(ADP-ribose) Polymerases/*metabolism ; Response Elements ; Topoisomerase II Inhibitors ; Transcription Factors/metabolism ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-08-26
    Description: The ataxia telangiectasia mutated (ATM) protein kinase is a critical component of a DNA-damage response network configured to maintain genomic integrity. The abundance of an essential downstream effecter of this pathway, the tumor suppressor protein p53, is tightly regulated by controlled degradation through COP1 and other E3 ubiquitin ligases, such as MDM2 and Pirh2; however, the signal transduction pathway that regulates the COP1-p53 axis following DNA damage remains enigmatic. We observed that in response to DNA damage, ATM phosphorylated COP1 on Ser(387) and stimulated a rapid autodegradation mechanism. Ionizing radiation triggered an ATM-dependent movement of COP1 from the nucleus to the cytoplasm, and ATM-dependent phosphorylation of COP1 on Ser(387) was both necessary and sufficient to disrupt the COP1-p53 complex and subsequently to abrogate the ubiquitination and degradation of p53. Furthermore, phosphorylation of COP1 on Ser(387) was required to permit p53 to become stabilized and to exert its tumor suppressor properties in response to DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornan, David -- Shimizu, Harumi -- Mah, Angie -- Dudhela, Tanay -- Eby, Michael -- O'rourke, Karen -- Seshagiri, Somasekar -- Dixit, Vishva M -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931761" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/genetics/*metabolism ; Escherichia coli/genetics/metabolism ; Etoposide/pharmacology ; Humans ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA, Small Interfering ; Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics/metabolism ; Tumor Suppressor Proteins/genetics/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-10-21
    Description: The tumor suppressor programmed cell death protein 4 (PDCD4) inhibits the translation initiation factor eIF4A, an RNA helicase that catalyzes the unwinding of secondary structure at the 5' untranslated region (5'UTR) of messenger RNAs (mRNAs). In response to mitogens, PDCD4 was rapidly phosphorylated on Ser67 by the protein kinase S6K1 and subsequently degraded via the ubiquitin ligase SCF(betaTRCP). Expression in cultured cells of a stable PDCD4 mutant that is unable to bind betaTRCP inhibited translation of an mRNA with a structured 5'UTR, resulted in smaller cell size, and slowed down cell cycle progression. We propose that regulated degradation of PDCD4 in response to mitogens allows efficient protein synthesis and consequently cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorrello, N Valerio -- Peschiaroli, Angelo -- Guardavaccaro, Daniele -- Colburn, Nancy H -- Sherman, Nicholas E -- Pagano, Michele -- R01-CA76584/CA/NCI NIH HHS/ -- R01-GM57587/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):467-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053147" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Amino Acid Motifs ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cell Size ; Eukaryotic Initiation Factor-4A/antagonists & inhibitors/metabolism ; Eukaryotic Initiation Factor-4F/metabolism ; Eukaryotic Initiation Factor-4G/metabolism ; Eukaryotic Initiation Factors/metabolism ; Humans ; Mitogens/pharmacology ; Phosphorylation ; *Protein Biosynthesis ; RNA, Small Interfering ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Ribosomal Protein S6 Kinases/metabolism ; SKP Cullin F-Box Protein Ligases/*metabolism ; Serine/metabolism ; Serum ; Signal Transduction ; beta-Transducin Repeat-Containing Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-01-10
    Description: The cell lineages that form the transporting tissues (xylem and phloem) and the intervening pluripotent procambial tissue originate from stem cells near the root tip. We demonstrate that in Arabidopsis, cytokinin phytohormones negatively regulate protoxylem specification. AHP6, an inhibitory pseudophosphotransfer protein, counteracts cytokinin signaling, allowing protoxylem formation. Conversely, cytokinin signaling negatively regulates the spatial domain of AHP6 expression. Thus, by controlling the identity of cell lineages, the reciprocal interaction of cytokinin signaling and its spatially specific modulator regulates proliferation and differentiation of cell lineages during vascular development, demonstrating a previously unrecognized regulatory circuit underlying meristem organization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahonen, Ari Pekka -- Bishopp, Anthony -- Higuchi, Masayuki -- Nieminen, Kaisa M -- Kinoshita, Kaori -- Tormakangas, Kirsi -- Ikeda, Yoshihisa -- Oka, Atsuhiro -- Kakimoto, Tatsuo -- Helariutta, Yka -- New York, N.Y. -- Science. 2006 Jan 6;311(5757):94-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Molecular Biology Laboratory, Institute of Biotechnology, POB 56, FI-00014, University of Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16400151" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Alleles ; Arabidopsis/*cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism/physiology ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cloning, Molecular ; Cytokinins/*metabolism ; Genes, Plant ; Kinetin/metabolism/pharmacology ; Meristem/cytology/growth & development/metabolism ; Morphogenesis ; Phenotype ; Phosphorylation ; Plant Growth Regulators/*metabolism ; Plant Roots/*cytology/growth & development/metabolism ; Plant Shoots/metabolism ; Plants, Genetically Modified ; *Signal Transduction ; Suppression, Genetic ; Zeatin/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-08-12
    Description: Transient infection of eukaryotic cells with commensal and extraintestinal pathogenic Escherichia coli of phylogenetic group B2 blocks mitosis and induces megalocytosis. This trait is linked to a widely spread genomic island that encodes giant modular nonribosomal peptide and polyketide synthases. Contact with E. coli expressing this gene cluster causes DNA double-strand breaks and activation of the DNA damage checkpoint pathway, leading to cell cycle arrest and eventually to cell death. Discovery of hybrid peptide-polyketide genotoxins in E. coli will change our view on pathogenesis and commensalism and open new biotechnological applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nougayrede, Jean-Philippe -- Homburg, Stefan -- Taieb, Frederic -- Boury, Michele -- Brzuszkiewicz, Elzbieta -- Gottschalk, Gerhard -- Buchrieser, Carmen -- Hacker, Jorg -- Dobrindt, Ulrich -- Oswald, Eric -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):848-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INRA, UMR1225, Ecole Nationale Veterinaire de Toulouse, Toulouse F-31076, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cell Death ; Cell Line ; Cell Nucleus/chemistry ; Cytotoxins/*metabolism ; DNA/analysis ; *DNA Damage ; DNA-Binding Proteins/metabolism ; Escherichia coli/genetics/*pathogenicity/*physiology ; G2 Phase ; *Genomic Islands ; HeLa Cells ; Histones/metabolism ; Humans ; Intestinal Mucosa/cytology/microbiology ; Molecular Sequence Data ; Mutagenesis ; Mutagens/*metabolism ; Peptides/*metabolism ; Phosphorylation ; Polyketide Synthases/genetics ; Protein-Serine-Threonine Kinases/metabolism ; Rats ; Signal Transduction ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bartek, Jiri -- Lukas, Jiri -- New York, N.Y. -- Science. 2006 Oct 13;314(5797):261-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark. jb@cancer.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BRCA2 Protein/metabolism ; Cell Cycle ; Cell Nucleus/metabolism ; Cell Survival ; Cyclin-Dependent Kinase 2/antagonists & inhibitors/*metabolism ; *DNA Damage ; DNA Repair ; DNA Replication ; Forkhead Transcription Factors/*metabolism ; Gene Expression Regulation ; Humans ; Mice ; Models, Biological ; Phosphorylation ; RNA, Small Interfering ; Transcription, Genetic ; cdc25 Phosphatases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-07-11
    Description: The spindle checkpoint delays cell cycle progression until microtubules attach each pair of sister chromosomes to opposite poles of the mitotic spindle. Following sister chromatid separation, however, the checkpoint ignores chromosomes whose kinetochores are attached to only one spindle pole, a state that activates the checkpoint prior to metaphase. We demonstrate that, in budding yeast, mutual inhibition between the anaphase-promoting complex (APC) and Mps1, an essential component of the checkpoint, leads to sustained inactivation of the spindle checkpoint. Mps1 protein abundance decreases in anaphase, and Mps1 is a target of the APC. Furthermore, expression of Mps1 in anaphase, or repression of the APC in anaphase, reactivates the spindle checkpoint. This APC-Mps1 feedback circuit allows cells to irreversibly inactivate the checkpoint during anaphase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palframan, William J -- Meehl, Janet B -- Jaspersen, Sue L -- Winey, Mark -- Murray, Andrew W -- GM43987/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- R37 GM043987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):680-4. Epub 2006 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825537" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase/*physiology ; Anaphase-Promoting Complex-Cyclosome ; Cdc20 Proteins ; Cell Cycle Proteins/metabolism ; Chromosomes, Fungal/physiology ; Feedback, Physiological ; GTP-Binding Proteins/metabolism ; Kinetochores/physiology ; Mad2 Proteins ; Mitosis ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*cytology/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Securin ; Spindle Apparatus/*physiology ; Ubiquitin-Protein Ligase Complexes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2006-09-16
    Description: Liver regeneration is an orchestrated cellular response that coordinates cell activation, lipid metabolism, and cell division. We found that caveolin-1 gene-disrupted mice (cav1-/- mice) exhibited impaired liver regeneration and low survival after a partial hepatectomy. Hepatocytes showed dramatically reduced lipid droplet accumulation and did not advance through the cell division cycle. Treatment of cav1-/- mice with glucose (which is a predominant energy substrate when compared to lipids) drastically increased survival and reestablished progression of the cell cycle. Thus, caveolin-1 plays a crucial role in the mechanisms that coordinate lipid metabolism with the proliferative response occurring in the liver after cellular injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Manuel A -- Albor, Cecilia -- Ingelmo-Torres, Mercedes -- Nixon, Susan J -- Ferguson, Charles -- Kurzchalia, Teymuras -- Tebar, Francesc -- Enrich, Carlos -- Parton, Robert G -- Pol, Albert -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1628-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Cellular, Facultat de Medicina, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caveolae/metabolism ; Caveolin 1/genetics/*physiology ; Cell Cycle ; Cell Division ; Fatty Acids/blood/metabolism ; Glucose/administration & dosage ; Hepatectomy ; Hepatocyte Growth Factor/metabolism ; Hepatocytes/cytology/*metabolism ; *Lipid Metabolism ; Lipids/blood ; Liver/metabolism/ultrastructure ; *Liver Regeneration ; Male ; Mice ; Phosphorylation ; RNA, Small Interfering ; STAT3 Transcription Factor/metabolism ; Signal Transduction ; Triglycerides/blood/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-08-04
    Description: In flowering plants, signaling between the male pollen tube and the synergid cells of the female gametophyte is required for fertilization. In the Arabidopsis thaliana mutant feronia (fer), fertilization is impaired; the pollen tube fails to arrest and thus continues to grow inside the female gametophyte. FER encodes a synergid-expressed, plasma membrane-localized receptor-like kinase. We found that the FER protein accumulates asymmetrically in the synergid membrane at the filiform apparatus. Interspecific crosses using pollen from Arabidopsis lyrata and Cardamine flexuosa on A. thaliana stigmas resulted in a fer-like phenotype that correlates with sequence divergence in the extracellular domain of FER. Our findings show that the female control of pollen tube reception is based on a FER-dependent signaling pathway, which may play a role in reproductive isolation barriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Escobar-Restrepo, Juan-Miguel -- Huck, Norbert -- Kessler, Sharon -- Gagliardini, Valeria -- Gheyselinck, Jacqueline -- Yang, Wei-Cai -- Grossniklaus, Ueli -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):656-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673660" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/*physiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Brassicaceae/genetics/physiology ; Cell Membrane/enzymology ; Crosses, Genetic ; Evolution, Molecular ; Flowers/cytology/enzymology/*physiology ; Gene Expression ; Genes, Plant ; Germination ; Ligands ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphotransferases/chemistry/*genetics/*metabolism ; Plant Epidermis/enzymology ; Pollen Tube/growth & development/*physiology ; Recombinant Fusion Proteins/metabolism ; Reproduction ; Seeds/growth & development ; Signal Transduction ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-04-07
    Description: Pleckstrin homology (PH) domain-mediated protein recruitment to cellular membranes is of paramount importance for signal transduction. The recruitment of many PH domains is controlled through production and turnover of their membrane ligand, phosphatidylinositol 3,4,5-trisphosphate (PIP3). We show that phosphorylation of the second messenger inositol 1,4,5-trisphosphate (IP3) into inositol 1,3,4,5-tetrakisphosphate (IP4) establishes another mode of PH domain regulation through a soluble ligand. At physiological concentrations, IP4 promoted PH domain binding to PIP3. In primary mouse CD4+CD8+ thymocytes, this was required for full activation of the protein tyrosine kinase Itk after T cell receptor engagement. Our data suggest that IP4 establishes a feedback loop of phospholipase C-gamma1 activation through Itk that is essential for T cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yina H -- Grasis, Juris A -- Miller, Andrew T -- Xu, Ruo -- Soonthornvacharin, Stephen -- Andreotti, Amy H -- Tsoukas, Constantine D -- Cooke, Michael P -- Sauer, Karsten -- AR048848/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 11;316(5826):886-9. Epub 2007 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412921" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; *Amino Acid Motifs ; Animals ; Diglycerides/metabolism ; Feedback, Physiological ; Inositol 1,4,5-Trisphosphate/metabolism ; Inositol Phosphates/*metabolism/pharmacology ; Lymphopoiesis ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Organ Culture Techniques ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C gamma/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Receptors, Antigen, T-Cell/immunology ; Second Messenger Systems ; Signal Transduction ; Solubility ; T-Lymphocytes/cytology/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2006-10-14
    Description: The function of cyclin-dependent kinase 2 (CDK2) is often abolished after DNA damage. The inhibition of CDK2 plays a central role in DNA damage-induced cell cycle arrest and DNA repair. However, whether CDK2 also influences the survival of cells under genotoxic stress is unknown. Forkhead box O (FOXO) transcription factors are emerging as key regulators of cell survival. CDK2 specifically phosphorylated FOXO1 at serine-249 (Ser249) in vitro and in vivo. Phosphorylation of Ser249 resulted in cytoplasmic localization and inhibition of FOXO1. This phosphorylation was abrogated upon DNA damage through the cell cycle checkpoint pathway that is dependent on the protein kinases Chk1 and Chk2. Moreover, silencing of FOXO1 by small interfering RNA diminished DNA damage-induced death in both p53-deficient and p53-proficient cells. This effect was reversed by restored expression of FOXO1 in a manner depending on phosphorylation of Ser249. Functional interaction between CDK2 and FOXO1 provides a mechanism that regulates apoptotic cell death after DNA strand breakage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Haojie -- Regan, Kevin M -- Lou, Zhenkun -- Chen, Junjie -- Tindall, Donald J -- CA91956/CA/NCI NIH HHS/ -- DK60920/DK/NIDDK NIH HHS/ -- DK65236/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 13;314(5797):294-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038621" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Camptothecin/pharmacology ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Checkpoint Kinase 2 ; Cyclin-Dependent Kinase 2/antagonists & inhibitors/genetics/*metabolism ; Cytoplasm/metabolism ; *DNA Damage ; Forkhead Transcription Factors/antagonists & inhibitors/*metabolism ; Humans ; Mice ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription, Genetic ; Transfection ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2006-12-13
    Description: The PhoP/PhoQ two-component system is a master regulator of Salmonella pathogenicity. Here we report that induction of the PhoP/PhoQ system results in an initial surge of PhoP phosphorylation; the occupancy of target promoters by the PhoP protein; and the transcription of PhoP-activated genes, which then subsides to reach new steady-state levels. This surge in PhoP activity is due to PhoP positively activating its own transcription, because a strain constitutively expressing the PhoP protein attained steady-state levels of activation asymptotically, without the surge. The strain constitutively expressing the PhoP protein was attenuated for virulence in mice, demonstrating that the surge conferred by PhoP's positive feedback loop is necessary to jump-start Salmonella's virulence program.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, Dongwoo -- Lee, Eun-Jin -- Huang, Henry -- Groisman, Eduardo A -- AI49561/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1607-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/*genetics/*metabolism ; *Feedback, Physiological ; Gene Expression Regulation, Bacterial ; Magnesium/metabolism ; Mice ; Phosphorylation ; Promoter Regions, Genetic ; RNA, Bacterial/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Salmonella Infections, Animal/microbiology ; Salmonella typhimurium/*genetics/metabolism/*pathogenicity ; *Transcription, Genetic ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2006-02-18
    Description: In the mammalian nervous system, neuronal activity regulates the strength and number of synapses formed. The genetic program that coordinates this process is poorly understood. We show that myocyte enhancer factor 2 (MEF2) transcription factors suppressed excitatory synapse number in a neuronal activity- and calcineurin-dependent manner as hippocampal neurons formed synapses. In response to increased neuronal activity, calcium influx into neurons induced the activation of the calcium/calmodulin-regulated phosphatase calcineurin, which dephosphorylated and activated MEF2. When activated, MEF2 promoted the transcription of a set of genes, including arc and synGAP, that restrict synapse number. These findings define an activity-dependent transcriptional program that may control synapse number during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavell, Steven W -- Cowan, Christopher W -- Kim, Tae-Kyung -- Greer, Paul L -- Lin, Yingxi -- Paradis, Suzanne -- Griffith, Eric C -- Hu, Linda S -- Chen, Chinfei -- Greenberg, Michael E -- AG05870/AG/NIA NIH HHS/ -- HD18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- R01 EY013613/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1008-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Program, Children's Hospital, and Departments of Neurology and Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcium/metabolism ; Cells, Cultured ; Cytoskeletal Proteins/genetics ; Dendrites/physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; GTPase-Activating Proteins/genetics ; Gene Expression Regulation ; Glutamic Acid/metabolism ; Hippocampus/cytology/*physiology ; MEF2 Transcription Factors ; Mutation ; Myogenic Regulatory Factors/genetics/*physiology ; Nerve Tissue Proteins/genetics ; Neurons/*physiology ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; RNA Interference ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Synapses/*physiology ; Synaptic Transmission ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2006-11-04
    Description: Guanosine triphosphatases of the Rab family are key regulators of membrane trafficking, with Rab11 playing a specific role in membrane recycling. We identified a mammalian protein, protrudin, that promoted neurite formation through interaction with the guanosine diphosphate (GDP)-bound form of Rab11. Phosphorylation of protrudin by extracellular signal-regulated kinase (ERK) in response to nerve growth factor promoted protrudin association with Rab11-GDP. Down-regulation of protrudin by RNA interference induced membrane extension in all directions and inhibited neurite formation. Thus, protrudin regulates Rab11-dependent membrane recycling to promote the directional membrane trafficking required for neurite formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirane, Michiko -- Nakayama, Keiichi I -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082457" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Adhesion Molecules/metabolism ; Cell Line ; Cell Membrane/*metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Guanosine Diphosphate/metabolism ; HeLa Cells ; Humans ; MAP Kinase Kinase 1/metabolism ; Membrane Proteins ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Nerve Growth Factor/pharmacology/physiology ; Neurites/*physiology ; PC12 Cells ; Phosphorylation ; RNA Interference ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Vesicular Transport Proteins ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irvine, Robin -- New York, N.Y. -- Science. 2007 May 11;316(5826):845-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK. rfi20@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17495162" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Inositol 1,4,5-Trisphosphate/metabolism ; Inositol Phosphates/*metabolism ; Lymphocytes/physiology ; Mice ; Phosphatidylinositol Diacylglycerol-Lyase/genetics/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Schizosaccharomyces/genetics/metabolism ; Second Messenger Systems ; *Signal Transduction ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2007-02-03
    Description: The 66-kilodalton isoform of the growth factor adapter Shc (p66Shc) translates oxidative damage into cell death by acting as reactive oxygen species (ROS) producer within mitochondria. However, the signaling link between cellular stress and mitochondrial proapoptotic activity of p66Shc was not known. We demonstrate that protein kinase C beta, activated by oxidative conditions in the cell, induces phosphorylation of p66Shc and triggers mitochondrial accumulation of the protein after it is recognized by the prolyl isomerase Pin1. Once imported, p66Shc causes alterations of mitochondrial Ca2+ responses and three-dimensional structure, thus inducing apoptosis. These data identify a signaling route that activates an apoptotic inducer shortening the life span and could be a potential target of pharmacological approaches to inhibit aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pinton, Paolo -- Rimessi, Alessandro -- Marchi, Saverio -- Orsini, Francesca -- Migliaccio, Enrica -- Giorgio, Marco -- Contursi, Cristina -- Minucci, Saverio -- Mantovani, Fiamma -- Wieckowski, Mariusz R -- Del Sal, Giannino -- Pelicci, Pier Giuseppe -- Rizzuto, Rosario -- GGP05284/Telethon/Italy -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):659-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrera, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272725" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/*metabolism ; Adenosine Triphosphate/metabolism/pharmacology ; Animals ; *Apoptosis ; Calcium/metabolism ; Calcium Signaling ; *Cell Aging ; Cell Survival ; Cells, Cultured ; Cyclosporine/pharmacology ; Hydrogen Peroxide/metabolism/pharmacology ; Mice ; Mitochondria/*metabolism/ultrastructure ; Mutation ; Oxidative Stress ; Peptidylprolyl Isomerase/*metabolism ; Permeability ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/genetics/*metabolism ; Protein Kinase C beta ; Reactive Oxygen Species/metabolism ; Recombinant Fusion Proteins/metabolism ; Shc Signaling Adaptor Proteins ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poon, Andy C -- Ferrell, James E Jr -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):757-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA. james.ferrell@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975056" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/metabolism/*physiology ; Biological Clocks/*physiology ; Circadian Rhythm/physiology ; Circadian Rhythm Signaling Peptides and Proteins ; Organophosphates ; Phosphorylation ; Serine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2007-10-20
    Description: To investigate the unregulated Ras activation associated with cancer, we developed and validated a mathematical model of Ras signaling. The model-based predictions and associated experiments help explain why only one of two classes of activating Ras point mutations with in vitro transformation potential is commonly found in cancers. Model-based analysis of these mutants uncovered a systems-level process that contributes to total Ras activation in cells. This predicted behavior was supported by experimental observations. We also used the model to identify a strategy in which a drug could cause stronger inhibition on the cancerous Ras network than on the wild-type network. This system-level analysis of the oncogenic Ras network provides new insights and potential therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stites, Edward C -- Trampont, Paul C -- Ma, Zhong -- Ravichandran, Kodi S -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):463-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947584" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/metabolism/pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; *Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/metabolism ; GTP Phosphohydrolases/metabolism ; GTPase-Activating Proteins/antagonists & inhibitors/metabolism ; Genes, ras ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Mathematics ; *Metabolic Networks and Pathways ; *Models, Biological ; Neoplasms/*metabolism ; Phosphorylation ; Point Mutation ; *Signal Transduction ; ras Proteins/antagonists & inhibitors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-01-06
    Description: Endoplasmic reticulum-localized protein-tyrosine phosphatase PTP1B terminates growth factor signal transduction by dephosphorylation of receptor tyrosine kinases (RTKs). But how PTP1B allows for RTK signaling in the cytoplasm is unclear. In order to test whether PTP1B activity is spatially regulated, we developed a method based on Forster resonant energy transfer for imaging enzyme-substrate (ES) intermediates in live cells. We observed the establishment of a steady-state ES gradient across the cell. This gradient exhibited robustness to cell-to-cell variability, growth factor activation, and RTK localization, which demonstrated spatial regulation of PTP1B activity. Such regulation may be important for generating distinct cellular environments that permit RTK signal transduction and that mediate its eventual termination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yudushkin, Ivan A -- Schleifenbaum, Andreas -- Kinkhabwala, Ali -- Neel, Benjamin G -- Schultz, Carsten -- Bastiaens, Philippe I H -- R01 DK60838/DK/NIDDK NIH HHS/ -- R37 49152/PHS HHS/ -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):115-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Catalysis ; Cell Line, Tumor ; Cercopithecus aethiops ; Epidermal Growth Factor/metabolism/pharmacology ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Mathematics ; Microscopy, Fluorescence ; Models, Biological ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases/*metabolism ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-09-18
    Description: Targeted therapies that inhibit receptor tyrosine kinases (RTKs) and the downstream phosphatidylinositol 3-kinase (PI3K) signaling pathway have shown promising anticancer activity, but their efficacy in the brain tumor glioblastoma multiforme (GBM) and other solid tumors has been modest. We hypothesized that multiple RTKs are coactivated in these tumors and that redundant inputs drive and maintain downstream signaling, thereby limiting the efficacy of therapies targeting single RTKs. Tumor cell lines, xenotransplants, and primary tumors indeed show multiple concomitantly activated RTKs. Combinations of RTK inhibitors and/or RNA interference, but not single agents, decreased signaling, cell survival, and anchorage-independent growth even in glioma cells deficient in PTEN, a frequently inactivated inhibitor of PI3K. Thus, effective GBM therapy may require combined regimens targeting multiple RTKs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stommel, Jayne M -- Kimmelman, Alec C -- Ying, Haoqiang -- Nabioullin, Roustem -- Ponugoti, Aditya H -- Wiedemeyer, Ruprecht -- Stegh, Alexander H -- Bradner, James E -- Ligon, Keith L -- Brennan, Cameron -- Chin, Lynda -- DePinho, Ronald A -- 5P01CA95616/CA/NCI NIH HHS/ -- R01CA99041/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):287-90. Epub 2007 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872411" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; Antineoplastic Combined Chemotherapy Protocols/pharmacology/therapeutic use ; Brain Neoplasms/drug therapy/*enzymology ; Cell Line, Tumor ; Cell Survival ; Enzyme Activation ; Erlotinib Hydrochloride ; Glioblastoma/drug therapy/*enzymology ; Humans ; Indoles/pharmacology ; PTEN Phosphohydrolase/genetics/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Piperazines/pharmacology ; Protein Kinase Inhibitors/*pharmacology ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-met ; Quinazolines/pharmacology ; Receptor Protein-Tyrosine Kinases/antagonists & inhibitors/*metabolism ; Receptor, Epidermal Growth Factor/antagonists & inhibitors/metabolism ; Receptors, Growth Factor/metabolism ; Signal Transduction ; Sulfonamides/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2007-10-06
    Description: The simple circadian oscillator found in cyanobacteria can be reconstituted in vitro using three proteins-KaiA, KaiB, and KaiC. The total phosphorylation level of KaiC oscillates with a circadian period, but the mechanism underlying its sustained oscillation remains unclear. We have shown that four forms of KaiC differing in their phosphorylation state appear in an ordered pattern arising from the intrinsic autokinase and autophosphatase rates of KaiC and their modulation by KaiA. Kinetic and biochemical data indicate that one of these phosphoforms inhibits the activity of KaiA through interaction with KaiB, providing the crucial feedback that sustains oscillation. A mathematical model constrained by experimental data quantitatively reproduces the circadian period and the distinctive dynamics of the four phosphoforms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rust, Michael J -- Markson, Joseph S -- Lane, William S -- Fisher, Daniel S -- O'Shea, Erin K -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):809-12. Epub 2007 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Departments of Molecular and Cellular Biology and of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916691" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Circadian Rhythm Signaling Peptides and Proteins ; Models, Biological ; Phosphorylation ; Synechococcus/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-03-03
    Description: IKKepsilon is an IKK (inhibitor of nuclear factor kappaBkinase)-related kinase implicated in virus induction of interferon-beta (IFNbeta). We report that, although mice lacking IKKepsilon produce normal amounts of IFNbeta, they are hypersusceptible to viral infection because of a defect in the IFN signaling pathway. Specifically, a subset of type I IFN-stimulated genes are not activated in the absence of IKKepsilon because the interferon-stimulated gene factor 3 complex (ISGF3) does not bind to promoter elements of the affected genes. We demonstrate that IKKepsilon is activated by IFNbeta and that IKKepsilon directly phosphorylates signal transducer and activator of transcription 1 (STAT1), a component of ISGF3. We conclude that IKKepsilon plays a critical role in the IFN-inducible antiviral transcriptional response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tenoever, Benjamin R -- Ng, Sze-Ling -- Chua, Mark A -- McWhirter, Sarah M -- Garcia-Sastre, Adolfo -- Maniatis, Tom -- F31 AI056678/AI/NIAID NIH HHS/ -- P01AI058113/AI/NIAID NIH HHS/ -- R01AI46954/AI/NIAID NIH HHS/ -- U19AI62623/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 2;315(5816):1274-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17332413" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/genetics/metabolism ; Animals ; Cells, Cultured ; Dimerization ; *Gene Expression Regulation ; I-kappa B Kinase/genetics/*metabolism ; *Influenza A Virus, H1N1 Subtype/immunology/physiology ; Interferon-Stimulated Gene Factor 3/metabolism ; Interferon-beta/*immunology/metabolism ; Lung/pathology/virology ; Mice ; Mice, Knockout ; Orthomyxoviridae Infections/*immunology/metabolism/pathology/virology ; Phosphorylation ; Promoter Regions, Genetic ; RNA-Binding Proteins ; STAT1 Transcription Factor/metabolism ; STAT2 Transcription Factor/metabolism ; Signal Transduction ; Transcription, Genetic ; Viral Load ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-10-20
    Description: Nuclear import of transfer DNA (T-DNA) is a central event in Agrobacterium transformation of plant cells and is thought to occur by the hijacking of certain host cell proteins. The T-DNA-associated virulence protein VirE2 mediates this process by binding to the nuclear import machinery via the host cell factor VIP1, whose role in plants has been so far unknown. Here we show that VIP1 is a transcription factor that is a direct target of the Agrobacterium-induced mitogen-activated protein kinase (MAPK) MPK3. Upon phosphorylation by MPK3, VIP1 relocalizes from the cytoplasm to the nucleus and regulates the expression of the PR1 pathogenesis-related gene. MAPK-dependent phosphorylation of VIP1 is necessary for VIP1-mediated Agrobacterium T-DNA transfer, indicating that Agrobacterium abuses the MAPK-targeted VIP1 defense signaling pathway for nuclear delivery of the T-DNA complex as a Trojan horse.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Djamei, Armin -- Pitzschke, Andrea -- Nakagami, Hirofumi -- Rajh, Iva -- Hirt, Heribert -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):453-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947581" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Agrobacterium tumefaciens/*genetics/pathogenicity ; Arabidopsis/immunology/*metabolism/*microbiology ; Arabidopsis Proteins/*metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; DNA, Bacterial/genetics/*metabolism ; DNA, Single-Stranded/genetics/metabolism ; Enzyme Activation ; Flagellin/immunology ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/*metabolism ; Phosphorylation ; Plant Leaves/metabolism/microbiology ; Plants, Genetically Modified ; Recombinant Fusion Proteins/metabolism ; *Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hajnoczky, Gyorgy -- Hoek, Jan B -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):607-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA. gyorgy.hajnoczky@jefferson.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272709" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; *Apoptosis ; Autophagy ; Calcium Signaling ; *Cell Aging ; Cytoplasm/metabolism ; Hydrogen Peroxide/metabolism/pharmacology ; Intracellular Membranes/metabolism ; Mice ; Mitochondria/*metabolism ; Models, Biological ; Peptidylprolyl Isomerase/metabolism ; Permeability ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Kinase C beta ; Protein Transport ; Reactive Oxygen Species/metabolism ; Shc Signaling Adaptor Proteins ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-07-14
    Description: Changes in protein-protein interactions may allow polypeptides to perform unexpected regulatory functions. Mammalian ShcA docking proteins have amino-terminal phosphotyrosine (pTyr) binding (PTB) and carboxyl-terminal Src homology 2 (SH2) domains, which recognize specific pTyr sites on activated receptors, and a central region with two phosphorylated tyrosine-X-asparagine (pYXN) motifs (where X represents any amino acid) that each bind the growth factor receptor-bound protein 2 (Grb2) adaptor. Phylogenetic analysis indicates that ShcA may signal through both pYXN-dependent and -independent pathways. We show that, in mice, cardiomyocyte-expressed ShcA directs mid-gestational heart development by a PTB-dependent mechanism that does not require the pYXN motifs. In contrast, the pYXN motifs are required with PTB and SH2 domains in the same ShcA molecule for the formation of muscle spindles, skeletal muscle sensory organs that regulate motor behavior. Thus, combinatorial differences in ShcA docking interactions may yield multiple signaling mechanisms to support diversity in tissue morphogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575375/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575375/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardy, W Rod -- Li, Lingying -- Wang, Zhi -- Sedy, Jiri -- Fawcett, James -- Frank, Eric -- Kucera, Jan -- Pawson, Tony -- R01 NS024373/NS/NINDS NIH HHS/ -- R01 NS024373-18/NS/NINDS NIH HHS/ -- R01 NS024373-19/NS/NINDS NIH HHS/ -- R01 NS024373-20/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):251-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626887" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/genetics/*metabolism ; Amino Acid Motifs ; Animals ; Ataxia ; Excitatory Postsynaptic Potentials ; Genetic Complementation Test ; Heart/*embryology ; Mice ; Mice, Knockout ; *Morphogenesis ; Motor Activity ; Muscle Spindles/*embryology ; Muscle, Skeletal/*embryology/metabolism ; Mutation ; Myocytes, Cardiac/*metabolism ; Neurons, Afferent/physiology ; Phosphorylation ; Protein Structure, Tertiary ; Shc Signaling Adaptor Proteins ; Signal Transduction ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-06-16
    Description: Endotoxic lipopolysaccharide (LPS) with potent immunostimulatory activity is recognized by the receptor complex of MD-2 and Toll-like receptor 4. Crystal structures of human MD-2 and its complex with the antiendotoxic tetra-acylated lipid A core of LPS have been determined at 2.0 and 2.2 angstrom resolutions, respectively. MD-2 shows a deep hydrophobic cavity sandwiched by two beta sheets, in which four acyl chains of the ligand are fully confined. The phosphorylated glucosamine moieties are located at the entrance to the cavity. These structures suggest that MD-2 plays a principal role in endotoxin recognition and provide a basis for antiseptic drug development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohto, Umeharu -- Fukase, Koichi -- Miyake, Kensuke -- Satow, Yoshinori -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1632-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569869" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Fatty Acids/chemistry ; Glycolipids/*chemistry/metabolism ; Glycosylation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lipid A/*analogs & derivatives/chemistry/metabolism ; Lymphocyte Antigen 96/*chemistry/metabolism ; Models, Molecular ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2008-12-06
    Description: A high-fat diet causes activation of the regulatory protein c-Jun NH2-terminal kinase 1 (JNK1) and triggers development of insulin resistance. JNK1 is therefore a potential target for therapeutic treatment of metabolic syndrome. We explored the mechanism of JNK1 signaling by engineering mice in which the Jnk1 gene was ablated selectively in adipose tissue. JNK1 deficiency in adipose tissue suppressed high-fat diet-induced insulin resistance in the liver. JNK1-dependent secretion of the inflammatory cytokine interleukin-6 by adipose tissue caused increased expression of liver SOCS3, a protein that induces hepatic insulin resistance. Thus, JNK1 activation in adipose tissue can cause insulin resistance in the liver.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabio, Guadalupe -- Das, Madhumita -- Mora, Alfonso -- Zhang, Zhiyou -- Jun, John Y -- Ko, Hwi Jin -- Barrett, Tamera -- Kim, Jason K -- Davis, Roger J -- DK52530/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 CA065861-14/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1539-43. doi: 10.1126/science.1160794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056984" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/metabolism ; Animals ; Dietary Fats/administration & dosage ; Enzyme Activation ; Glucose/metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins/metabolism ; *Insulin Resistance ; Interleukin-6/administration & dosage/metabolism ; Liver/*metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; *Signal Transduction ; *Stress, Physiological ; Suppressor of Cytokine Signaling Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2008-11-29
    Description: Altered abundance of several intrinsically unstructured proteins (IUPs) has been associated with perturbed cellular signaling that may lead to pathological conditions such as cancer. Therefore, it is important to understand how cells precisely regulate the availability of IUPs. We observed that regulation of transcript clearance, proteolytic degradation, and translational rate contribute to controlling the abundance of IUPs, some of which are present in low amounts and for short periods of time. Abundant phosphorylation and low stochasticity in transcription and translation indicate that the availability of IUPs can be finely tuned. Fidelity in signaling may require that most IUPs be available in appropriate amounts and not present longer than needed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803065/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803065/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gsponer, Jorg -- Futschik, Matthias E -- Teichmann, Sarah A -- Babu, M Madan -- G0600158/Medical Research Council/United Kingdom -- MC_U105161047/Medical Research Council/United Kingdom -- MC_U105185859/Medical Research Council/United Kingdom -- U.1051.04.027.00001.01 (85859)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Nov 28;322(5906):1365-8. doi: 10.1126/science.1163581.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. jgsponer@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19039133" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Cycle ; Computational Biology ; Genes, Fungal ; Humans ; Phosphorylation ; Protein Biosynthesis ; Protein Conformation ; Protein Kinases/metabolism ; Proteome/chemistry ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/chemistry/cytology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2008-03-08
    Description: Chronic hyperglycemia contributes to the development of diabetes-associated complications. Increases in the concentration of circulating glucose activate the hexosamine biosynthetic pathway (HBP) and promote the O-glycosylation of proteins by O-glycosyl transferase (OGT). We show that OGT triggered hepatic gluconeogenesis through the O-glycosylation of the transducer of regulated cyclic adenosine monophosphate response element-binding protein (CREB) 2 (TORC2 or CRTC2). CRTC2 was O-glycosylated at sites that normally sequester CRTC2 in the cytoplasm through a phosphorylation-dependent mechanism. Decreasing amounts of O-glycosylated CRTC2 by expression of the deglycosylating enzyme O-GlcNAcase blocked effects of glucose on gluconeogenesis, demonstrating the importance of the HBP in the development of glucose intolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dentin, Renaud -- Hedrick, Susan -- Xie, Jianxin -- Yates, John 3rd -- Montminy, Marc -- R01 GM037828/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1402-5. doi: 10.1126/science.1151363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323454" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Blood Glucose/metabolism ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Diabetes Mellitus/metabolism ; *Gluconeogenesis ; Glucose/*metabolism ; Glycosylation ; Glycosyltransferases/metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Liver/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; RNA Interference ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transcription Factors ; beta-N-Acetylhexosaminidases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2008-10-04
    Description: A commonly used strategy by microorganisms to survive multiple stresses involves a signal transduction cascade that increases the expression of stress-responsive genes. Stress signals can be integrated by a multiprotein signaling hub that responds to various signals to effect a single outcome. We obtained a medium-resolution cryo-electron microscopy reconstruction of the 1.8-megadalton "stressosome" from Bacillus subtilis. Fitting known crystal structures of components into this reconstruction gave a pseudoatomic structure, which had a virus capsid-like core with sensory extensions. We suggest that the different sensory extensions respond to different signals, whereas the conserved domains in the core integrate the varied signals. The architecture of the stressosome provides the potential for cooperativity, suggesting that the response could be tuned dependent on the magnitude of chemophysical insult.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marles-Wright, Jon -- Grant, Tim -- Delumeau, Olivier -- van Duinen, Gijs -- Firbank, Susan J -- Lewis, Peter J -- Murray, James W -- Newman, Joseph A -- Quin, Maureen B -- Race, Paul R -- Rohou, Alexis -- Tichelaar, Willem -- van Heel, Marin -- Lewis, Richard J -- BB/D000521/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F001533/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Oct 3;322(5898):92-6. doi: 10.1126/science.1159572.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18832644" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus subtilis/*chemistry/metabolism/ultrastructure ; Bacterial Proteins/*chemistry/metabolism/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/*chemistry/metabolism/ultrastructure ; Phosphoproteins/*chemistry/metabolism/ultrastructure ; Phosphorylation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/metabolism/ultrastructure ; Sigma Factor/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2008-09-06
    Description: The canonical Wnt-beta-catenin signaling pathway is initiated by inducing phosphorylation of one of the Wnt receptors, low-density lipoprotein receptor-related protein 6 (LRP6), at threonine residue 1479 (Thr1479) and serine residue 1490 (Ser1490). By screening a human kinase small interfering RNA library, we identified phosphatidylinositol 4-kinase type II alpha and phosphatidylinositol-4-phosphate 5-kinase type I (PIP5KI) as required for Wnt3a-induced LRP6 phosphorylation at Ser1490 in mammalian cells and confirmed that these kinases are important for Wnt signaling in Xenopus embryos. Wnt3a stimulates the formation of phosphatidylinositol 4,5-bisphosphates [PtdIns (4,5)P2] through frizzled and dishevelled, the latter of which directly interacted with and activated PIP5KI. In turn, PtdIns (4,5)P2 regulated phosphorylation of LRP6 at Thr1479 and Ser1490. Therefore, our study reveals a signaling mechanism for Wnt to regulate LRP6 phosphorylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Weijun -- Choi, Sun-Cheol -- Wang, He -- Qin, Yuanbo -- Volpicelli-Daley, Laura -- Swan, Laura -- Lucast, Louise -- Khoo, Cynthia -- Zhang, Xiaowu -- Li, Lin -- Abrams, Charles S -- Sokol, Sergei Y -- Wu, Dianqing -- AR051476/AR/NIAMS NIH HHS/ -- CA132317/CA/NCI NIH HHS/ -- DA018343/DA/NIDA NIH HHS/ -- HL080706/HL/NHLBI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- P30 DA018343/DA/NIDA NIH HHS/ -- R01 AR051476/AR/NIAMS NIH HHS/ -- R01 AR051476-01A1/AR/NIAMS NIH HHS/ -- R01 AR051476-02/AR/NIAMS NIH HHS/ -- R01 AR051476-03/AR/NIAMS NIH HHS/ -- R01 CA132317/CA/NCI NIH HHS/ -- R01 CA132317-01A2/CA/NCI NIH HHS/ -- R01 CA139395/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1350-3. doi: 10.1126/science.1160741.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772438" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Axin Protein ; Cell Line ; Frizzled Receptors/metabolism ; Humans ; LDL-Receptor Related Proteins/*metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Models, Biological ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; Repressor Proteins/metabolism ; Serine/metabolism ; Signal Transduction ; Threonine/metabolism ; Wnt Proteins/*metabolism ; Wnt3 Protein ; Wnt3A Protein ; Xenopus/embryology ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eliopoulos, Aristides G -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):648-9. doi: 10.1126/science.1162212.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Crete Medical School and Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece. eliopag@med.uoc.gr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669850" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD40/*metabolism ; B-Lymphocytes/immunology/*metabolism ; Cytoplasm/metabolism ; I-kappa B Kinase/metabolism ; Inhibitor of Apoptosis Proteins/metabolism ; JNK Mitogen-Activated Protein Kinases/metabolism ; MAP Kinase Kinase Kinase 1/metabolism ; *MAP Kinase Signaling System ; Mice ; Phosphorylation ; Proteasome Endopeptidase Complex/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 2/metabolism ; TNF Receptor-Associated Factor 3/metabolism ; TNF Receptor-Associated Factor 6/metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitination ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2008-06-21
    Description: The control of innate immune responses through activation of the nuclear transcription factor NF-kappaB is essential for the elimination of invading microbial pathogens. We showed that the bacterial N-(3-oxo-dodecanoyl) homoserine lactone (C12) selectively impairs the regulation of NF-kappaB functions in activated mammalian cells. The consequence is specific repression of stimulus-mediated induction of NF-kappaB-responsive genes encoding inflammatory cytokines and other immune regulators. These findings uncover a strategy by which C12-producing opportunistic pathogens, such as Pseudomonas aeruginosa, attenuate the innate immune system to establish and maintain local persistent infection in humans, for example, in cystic fibrosis patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kravchenko, Vladimir V -- Kaufmann, Gunnar F -- Mathison, John C -- Scott, David A -- Katz, Alexander Z -- Grauer, David C -- Lehmann, Mandy -- Meijler, Michael M -- Janda, Kim D -- Ulevitch, Richard J -- New York, N.Y. -- Science. 2008 Jul 11;321(5886):259-63. doi: 10.1126/science.1156499. Epub 2008 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Sciences, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18566250" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/*analogs & derivatives/physiology ; Adult ; Animals ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cystic Fibrosis/microbiology ; Female ; *Gene Expression Regulation ; Homoserine/*analogs & derivatives/physiology ; Humans ; I-kappa B Kinase/metabolism ; I-kappa B Proteins/metabolism ; Immunity, Innate ; Interferon-gamma/immunology ; Lipopolysaccharides/immunology ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Middle Aged ; NF-kappa B/*metabolism ; Phosphorylation ; Pseudomonas Infections/immunology/microbiology ; Pseudomonas aeruginosa/immunology/*pathogenicity/physiology ; *Signal Transduction ; Toll-Like Receptors/metabolism ; Transcription Factor RelA/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2008-05-10
    Description: As obligate intracellular parasites, viruses expertly modify cellular processes to facilitate their replication and spread, often by encoding genes that mimic the functions of cellular proteins while lacking regulatory features that modify their activity. We show that the human cytomegalovirus UL97 protein has activities similar to cellular cyclin-cyclin-dependent kinase (CDK) complexes. UL97 phosphorylated and inactivated the retinoblastoma tumor suppressor, stimulated cell cycle progression in mammalian cells, and rescued proliferation of Saccharomyces cerevisiae lacking CDK activity. UL97 is not inhibited by the CDK inhibitor p21 and lacks amino acid residues conserved in the CDKs that permit the attenuation of kinase activity. Thus, UL97 represents a functional ortholog of cellular CDKs that is immune from normal CDK control mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hume, Adam J -- Finkel, Jonathan S -- Kamil, Jeremy P -- Coen, Donald M -- Culbertson, Michael R -- Kalejta, Robert F -- AI26077/AI/NIAID NIH HHS/ -- GM65172/GM/NIGMS NIH HHS/ -- R56-AI064703/AI/NIAID NIH HHS/ -- T32 AI07245/AI/NIAID NIH HHS/ -- T32 CA009135-31/CA/NCI NIH HHS/ -- T32 GM007215/GM/NIGMS NIH HHS/ -- T32 GM077078-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 May 9;320(5877):797-9. doi: 10.1126/science.1152095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18467589" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Cell Line ; Cyclin-Dependent Kinases/antagonists & inhibitors/*metabolism ; Cytomegalovirus/enzymology/*physiology ; Humans ; Molecular Mimicry ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/*metabolism ; Protein Kinase Inhibitors/pharmacology ; Retinoblastoma Protein/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2008-10-18
    Description: Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have succeeded in providing parts lists of the essential components of signaling networks, they typically do not provide much insight into the hierarchical and functional relations that exist among these components. We describe a high-throughput screen in which we used RNA interference to systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of Drosophila JUN NH(2)-terminal kinase (JNK). Using both genetic and phosphoproteomics data, we then implemented an integrative network algorithm to construct a JNK phosphorylation network, which provides structural and mechanistic insights into the systems architecture of JNK signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakal, Chris -- Linding, Rune -- Llense, Flora -- Heffern, Elleard -- Martin-Blanco, Enrique -- Pawson, Tony -- Perrimon, Norbert -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):453-6. doi: 10.1126/science.1158739.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02215, USA. cbakal@receptor.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927396" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cell Line ; Computational Biology ; Drosophila/*enzymology/genetics ; Drosophila Proteins/genetics/*metabolism ; Fluorescence Resonance Energy Transfer ; *Genes, Insect ; JNK Mitogen-Activated Protein Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Metabolic Networks and Pathways ; Phosphorylation ; Proteomics ; RNA Interference ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2008-07-19
    Description: The atypical cadherin Fat acts as a receptor for a signaling pathway that regulates growth, gene expression, and planar cell polarity. Genetic studies in Drosophila identified the four-jointed gene as a regulator of Fat signaling. We show that four-jointed encodes a protein kinase that phosphorylates serine or threonine residues within extracellular cadherin domains of Fat and its transmembrane ligand, Dachsous. Four-jointed functions in the Golgi and is the first molecularly defined kinase that phosphorylates protein domains destined to be extracellular. An acidic sequence motif (Asp-Asn-Glu) within Four-jointed was essential for its kinase activity in vitro and for its biological activity in vivo. Our results indicate that Four-jointed regulates Fat signaling by phosphorylating cadherin domains of Fat and Dachsous as they transit through the Golgi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562711/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562711/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishikawa, Hiroyuki O -- Takeuchi, Hideyuki -- Haltiwanger, Robert S -- Irvine, Kenneth D -- CA123071/CA/NCI NIH HHS/ -- GM061126/GM/NIGMS NIH HHS/ -- GM078620/GM/NIGMS NIH HHS/ -- R01 CA123071/CA/NCI NIH HHS/ -- R01 CA123071-02/CA/NCI NIH HHS/ -- R01 GM061126/GM/NIGMS NIH HHS/ -- R01 GM061126-08/GM/NIGMS NIH HHS/ -- R01 GM078620/GM/NIGMS NIH HHS/ -- R01 GM078620-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):401-4. doi: 10.1126/science.1158159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cadherins/chemistry/*metabolism ; Cell Adhesion Molecules/chemistry/*metabolism ; Cell Line ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster ; Electrophoretic Mobility Shift Assay ; Glycosylation ; Golgi Apparatus/enzymology/*metabolism ; Kinetics ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Serine/metabolism ; Signal Transduction ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-01
    Description: An endogenous circadian system in cyanobacteria exerts pervasive control over cellular processes, including global gene expression. Indeed, the entire chromosome undergoes daily cycles of topological changes and compaction. The biochemical machinery underlying a circadian oscillator can be reconstituted in vitro with just three cyanobacterial proteins, KaiA, KaiB, and KaiC. These proteins interact to promote conformational changes and phosphorylation events that determine the phase of the in vitro oscillation. The high-resolution structures of these proteins suggest a ratcheting mechanism by which the KaiABC oscillator ticks unidirectionally. This posttranslational oscillator may interact with transcriptional and translational feedback loops to generate the emergent circadian behavior in vivo. The conjunction of structural, biophysical, and biochemical approaches to this system reveals molecular mechanisms of biological timekeeping.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2588432/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2588432/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Carl Hirschie -- Egli, Martin -- Stewart, Phoebe L -- F32 GM71276/GM/NIGMS NIH HHS/ -- GM067152/GM/NIGMS NIH HHS/ -- GM073845/GM/NIGMS NIH HHS/ -- R01 GM067152/GM/NIGMS NIH HHS/ -- R01 GM067152-06/GM/NIGMS NIH HHS/ -- R01 GM073845/GM/NIGMS NIH HHS/ -- R01 GM073845-03/GM/NIGMS NIH HHS/ -- R01 MH043836/MH/NIMH NIH HHS/ -- R01 MH043836-17/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 31;322(5902):697-701. doi: 10.1126/science.1150451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Box 35-1634, Vanderbilt University, Nashville, TN 37235-1634, USA. carl.h.johnson@vanderbilt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18974343" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; *Biological Clocks ; Cell Division ; Chromosomes, Bacterial/physiology ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins ; Dimerization ; Models, Molecular ; Phosphorylation ; Promoter Regions, Genetic ; Protein Biosynthesis ; Protein Conformation ; Synechococcus/chemistry/genetics/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birnbaum, Morris J -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1348-9. doi: 10.1126/science.1155915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA. birnbaum@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323441" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/*metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Diabetes Mellitus/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Glucose/*metabolism ; Glucose-6-Phosphatase/genetics/metabolism ; Glycosylation ; Humans ; Insulin/metabolism ; Insulin Resistance ; Liver/*metabolism ; Mice ; Phosphorylation ; *Signal Transduction ; Trans-Activators/*metabolism ; Transcription Factors ; Transcription, Genetic ; Uridine Diphosphate N-Acetylglucosamine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2009-01-10
    Description: Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3(-/-) cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the protein's function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wegrzyn, Joanna -- Potla, Ramesh -- Chwae, Yong-Joon -- Sepuri, Naresh B V -- Zhang, Qifang -- Koeck, Thomas -- Derecka, Marta -- Szczepanek, Karol -- Szelag, Magdalena -- Gornicka, Agnieszka -- Moh, Akira -- Moghaddas, Shadi -- Chen, Qun -- Bobbili, Santha -- Cichy, Joanna -- Dulak, Jozef -- Baker, Darren P -- Wolfman, Alan -- Stuehr, Dennis -- Hassan, Medhat O -- Fu, Xin-Yuan -- Avadhani, Narayan -- Drake, Jennifer I -- Fawcett, Paul -- Lesnefsky, Edward J -- Larner, Andrew C -- CA098924/CA/NCI NIH HHS/ -- P01AG15885/AG/NIA NIH HHS/ -- R01 AI059710/AI/NIAID NIH HHS/ -- R01 AI059710-03/AI/NIAID NIH HHS/ -- R01 AI059710-04/AI/NIAID NIH HHS/ -- R01 CA098924/CA/NCI NIH HHS/ -- R01 CA098924-03/CA/NCI NIH HHS/ -- R01 CA098924-04/CA/NCI NIH HHS/ -- R01 CA098924-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 6;323(5915):793-7. doi: 10.1126/science.1164551. Epub 2009 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131594" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Respiration ; Cells, Cultured ; Electron Transport Complex I/metabolism ; Electron Transport Complex II/metabolism ; Homeostasis ; Mice ; Mitochondria/*metabolism ; Mitochondria, Heart/metabolism ; Mitochondria, Liver/metabolism ; Mitochondrial Membranes/metabolism ; NADH, NADPH Oxidoreductases/metabolism ; Oxidative Phosphorylation ; Phosphorylation ; Precursor Cells, B-Lymphoid/metabolism ; STAT3 Transcription Factor/chemistry/*metabolism ; Serine/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2009-04-11
    Description: The nuclear factor kappaB (NF-kappaB) transcription factor regulates cellular stress responses and the immune response to infection. NF-kappaB activation results in oscillations in nuclear NF-kappaB abundance. To define the function of these oscillations, we treated cells with repeated short pulses of tumor necrosis factor-alpha at various intervals to mimic pulsatile inflammatory signals. At all pulse intervals that were analyzed, we observed synchronous cycles of NF-kappaB nuclear translocation. Lower frequency stimulations gave repeated full-amplitude translocations, whereas higher frequency pulses gave reduced translocation, indicating a failure to reset. Deterministic and stochastic mathematical models predicted how negative feedback loops regulate both the resetting of the system and cellular heterogeneity. Altering the stimulation intervals gave different patterns of NF-kappaB-dependent gene expression, which supports the idea that oscillation frequency has a functional role.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashall, Louise -- Horton, Caroline A -- Nelson, David E -- Paszek, Pawel -- Harper, Claire V -- Sillitoe, Kate -- Ryan, Sheila -- Spiller, David G -- Unitt, John F -- Broomhead, David S -- Kell, Douglas B -- Rand, David A -- See, Violaine -- White, Michael R H -- BB/C007158/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C008219/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C520471/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D010748/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E004210/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E012965/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F005938/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0071581/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0082191/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC5204711/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBD0107481/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBF0059381/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0500346/Medical Research Council/United Kingdom -- G0500346(73596)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):242-6. doi: 10.1126/science.1164860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359585" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Feedback, Physiological ; *Gene Expression ; Humans ; I-kappa B Proteins/metabolism ; Mice ; Models, Biological ; Models, Statistical ; NF-kappa B/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Stochastic Processes ; Transcription Factor RelA/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2009-09-26
    Description: To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in vivo. Comparisons of these substrates with orthologs throughout the ascomycete lineage revealed that the position of most phosphorylation sites is not conserved in evolution; instead, clusters of sites shift position in rapidly evolving disordered regions. We propose that the regulation of protein function by phosphorylation often depends on simple nonspecific mechanisms that disrupt or enhance protein-protein interactions. The gain or loss of phosphorylation sites in rapidly evolving regions could facilitate the evolution of kinase-signaling circuits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813701/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813701/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holt, Liam J -- Tuch, Brian B -- Villen, Judit -- Johnson, Alexander D -- Gygi, Steven P -- Morgan, David O -- GM037049/GM/NIGMS NIH HHS/ -- GM50684/GM/NIGMS NIH HHS/ -- HG3456/HG/NHGRI NIH HHS/ -- R01 GM069901/GM/NIGMS NIH HHS/ -- R01 GM069901-06/GM/NIGMS NIH HHS/ -- R01 HG003456/HG/NHGRI NIH HHS/ -- R01 HG003456-06/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 25;325(5948):1682-6. doi: 10.1126/science.1172867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779198" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Ascomycota/chemistry/genetics/metabolism ; *Biological Evolution ; CDC2 Protein Kinase/antagonists & inhibitors/*metabolism ; *Cell Cycle ; Cell Physiological Processes ; Computational Biology ; *Evolution, Molecular ; Molecular Sequence Data ; Phosphopeptides/chemistry/*metabolism ; Phosphorylation ; Phylogeny ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; *Signal Transduction ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2008-11-29
    Description: The Vibrio parahaemolyticus type III effector VopS is implicated in cell rounding and the collapse of the actin cytoskeleton by inhibiting Rho guanosine triphosphatases (GTPases). We found that VopS could act to covalently modify a conserved threonine residue on Rho, Rac, and Cdc42 with adenosine 5'-monophosphate (AMP). The resulting AMPylation prevented the interaction of Rho GTPases with downstream effectors, thereby inhibiting actin assembly in the infected cell. Eukaryotic proteins were also directly modified with AMP, potentially expanding the repertoire of posttranslational modifications for molecular signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarbrough, Melanie L -- Li, Yan -- Kinch, Lisa N -- Grishin, Nick V -- Ball, Haydn L -- Orth, Kim -- R01-AI056404/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jan 9;323(5911):269-72. doi: 10.1126/science.1166382. Epub 2008 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19039103" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cell Shape ; HeLa Cells ; Humans ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Threonine/chemistry/metabolism ; Vibrio parahaemolyticus/*metabolism/pathogenicity ; cdc42 GTP-Binding Protein/antagonists & inhibitors/chemistry/*metabolism ; rac GTP-Binding Proteins/antagonists & inhibitors/chemistry/*metabolism ; rho GTP-Binding Proteins/antagonists & inhibitors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2009-11-07
    Description: The LKB1 tumor suppressor is a protein kinase that controls the activity of adenosine monophosphate-activated protein kinase (AMPK). LKB1 activity is regulated by the pseudokinase STRADalpha and the scaffolding protein MO25alpha through an unknown, phosphorylation-independent, mechanism. We describe the structure of the core heterotrimeric LKB1-STRADalpha-MO25alpha complex, revealing an unusual allosteric mechanism of LKB1 activation. STRADalpha adopts a closed conformation typical of active protein kinases and binds LKB1 as a pseudosubstrate. STRADalpha and MO25alpha promote the active conformation of LKB1, which is stabilized by MO25alpha interacting with the LKB1 activation loop. This previously undescribed mechanism of kinase activation may be relevant to understanding the evolution of other pseudokinases. The structure also reveals how mutations found in Peutz-Jeghers syndrome and in various sporadic cancers impair LKB1 function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeqiraj, Elton -- Filippi, Beatrice Maria -- Deak, Maria -- Alessi, Dario R -- van Aalten, Daan M F -- 087590/Wellcome Trust/United Kingdom -- C33794/A10969/Cancer Research UK/United Kingdom -- G0900138/Medical Research Council/United Kingdom -- MC_U127070193/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1707-11. doi: 10.1126/science.1178377. Epub 2009 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892943" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/metabolism ; Adaptor Proteins, Vesicular Transport/*chemistry/metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Binding Sites ; Calcium-Binding Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Mutant Proteins/chemistry/metabolism ; Mutation ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2009-04-04
    Description: Dysregulation of the fear system is at the core of many psychiatric disorders. Much progress has been made in uncovering the neural basis of fear learning through studies in which associative emotional memories are formed by pairing an initially neutral stimulus (conditioned stimulus, CS; e.g., a tone) to an unconditioned stimulus (US; e.g., a shock). Despite recent advances, the question of how to persistently weaken aversive CS-US associations, or dampen traumatic memories in pathological cases, remains a major dilemma. Two paradigms (blockade of reconsolidation and extinction) have been used in the laboratory to reduce acquired fear. Unfortunately, their clinical efficacy is limited: Reconsolidation blockade typically requires potentially toxic drugs, and extinction is not permanent. Here, we describe a behavioral design in which a fear memory in rats is destabilized and reinterpreted as safe by presenting an isolated retrieval trial before an extinction session. This procedure permanently attenuates the fear memory without the use of drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625935/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625935/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monfils, Marie-H -- Cowansage, Kiriana K -- Klann, Eric -- LeDoux, Joseph E -- F31 MH083472/MH/NIMH NIH HHS/ -- F31 MH083472-01A1/MH/NIMH NIH HHS/ -- F31MH083472/MH/NIMH NIH HHS/ -- K05 MH067048/MH/NIMH NIH HHS/ -- NS034007/NS/NINDS NIH HHS/ -- NS047384/NS/NINDS NIH HHS/ -- P50 MH058911/MH/NIMH NIH HHS/ -- R01 MH046516/MH/NIMH NIH HHS/ -- R37 MH038774/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):951-5. doi: 10.1126/science.1167975. Epub 2009 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Science, New York University, New York, NY 10003, USA. monfils@mail.utexas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342552" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/physiology ; Animals ; Conditioning, Classical ; Extinction, Psychological/*physiology ; *Fear ; Male ; Memory/*physiology ; Mental Recall/*physiology ; Phosphorylation ; Rats ; Receptors, AMPA/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2009-04-25
    Description: Determining proper responsiveness to incoming signals is fundamental to all biological systems. We demonstrate that intracellular signaling nodes can tune a signaling network's response threshold away from the basal median effective concentration established by ligand-receptor interactions. Focusing on the bistable kinase network that governs progesterone-induced meiotic entry in Xenopus oocytes, we characterized glycogen synthase kinase-3beta (GSK-3beta) as a dampener of progesterone responsiveness. GSK-3beta engages the meiotic kinase network through a double-negative feedback loop; this specific feedback architecture raises the progesterone threshold in correspondence with the strength of double-negative signaling. We also identified a marker of nutritional status, l-leucine, which lowers the progesterone threshold, indicating that oocytes integrate additional signals into their cell-fate decisions by modulating progesterone responsiveness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Justman, Quincey A -- Serber, Zach -- Ferrell, James E Jr -- El-Samad, Hana -- Shokat, Kevan M -- AI49006/AI/NIAID NIH HHS/ -- GM46383/GM/NIGMS NIH HHS/ -- R01 AI044009/AI/NIAID NIH HHS/ -- R01 AI044009-10/AI/NIAID NIH HHS/ -- R01 GM046383/GM/NIGMS NIH HHS/ -- R01 GM046383-19/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Apr 24;324(5926):509-12. doi: 10.1126/science.1169498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19390045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Activation ; Feedback, Physiological ; Glycogen Synthase Kinase 3/*metabolism ; Leucine/metabolism ; *MAP Kinase Signaling System/physiology ; Meiosis/physiology ; Mitogen-Activated Protein Kinases/metabolism ; Models, Biological ; Oocytes/*cytology/*metabolism ; Oogenesis/*physiology ; Phosphorylation ; Progesterone/*physiology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-10-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaeberlein, Matt -- Kapahi, Pankaj -- R01 AG031108/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):55-6. doi: 10.1126/science.1181034.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, WA 98195, USA. kaeber@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797648" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/metabolism ; Aging/*physiology ; Animals ; Caloric Restriction ; Enzyme Activation ; Female ; Gene Expression ; Longevity/*physiology ; Male ; Mice ; Mice, Knockout ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; Protein Biosynthesis ; Protein Kinases/metabolism ; Protein Subunits ; Ribosomal Protein S6/*metabolism ; Ribosomal Protein S6 Kinases, 90-kDa/genetics/*metabolism ; *Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2009-12-08
    Description: Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate that Torso, a receptor tyrosine kinase that regulates embryonic terminal cell fate in Drosophila, is the PTTH receptor. Trunk, the embryonic Torso ligand, is related to PTTH, and ectopic expression of PTTH in the embryo partially rescues trunk mutants. In larvae, torso is expressed specifically in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation of the Torso/ERK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rewitz, Kim F -- Yamanaka, Naoki -- Gilbert, Lawrence I -- O'Connor, Michael B -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1403-5. doi: 10.1126/science.1176450.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bombyx/*genetics/metabolism ; Cell Line ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/genetics/*growth & development/metabolism ; Embryo, Nonmammalian/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Insect Hormones/chemistry/*metabolism ; Larva/growth & development ; Ligands ; *Metamorphosis, Biological ; Molecular Sequence Data ; Neurons/metabolism ; Phosphorylation ; Pupa/growth & development ; RNA Interference ; Receptor Protein-Tyrosine Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2009-01-31
    Description: The cytoskeleton, integrin-mediated adhesion, and substrate stiffness control a common set of cell functions required for development and homeostasis that are often deranged in cancer. The connection between these mechanical elements and chemical signaling processes is not known. Here, we show that alpha(5)beta(1) integrin switches between relaxed and tensioned states in response to myosin II-generated cytoskeletal force. Force combines with extracellular matrix stiffness to generate tension that triggers the integrin switch. This switch directly controls the alpha(5)beta(1)-fibronectin bond strength through engaging the synergy site in fibronectin and is required to generate signals through phosphorylation of focal adhesion kinase. In the context of tissues, this integrin switch connects cytoskeleton and extracellular matrix mechanics to adhesion-dependent motility and signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedland, Julie C -- Lee, Mark H -- Boettiger, David -- GM57388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 30;323(5914):642-4. doi: 10.1126/science.1168441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19179533" target="_blank"〉PubMed〈/a〉
    Keywords: Actins ; Biophysical Phenomena ; Cell Adhesion ; Cell Line, Tumor ; Cytoskeleton/*physiology ; Fibronectins/chemistry/*metabolism ; Focal Adhesion Protein-Tyrosine Kinases/metabolism ; Humans ; Integrin alpha5beta1/*chemistry/*metabolism ; Ligands ; Models, Molecular ; Myosin Type II/antagonists & inhibitors/metabolism ; Phosphorylation ; Protein Binding ; Protein Conformation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2009-01-20
    Description: Successful cell division requires that chromosomes attach to opposite poles of the mitotic spindle (bi-orientation). Aurora B kinase regulates chromosome-spindle attachments by phosphorylating kinetochore substrates that bind microtubules. Centromere tension stabilizes bi-oriented attachments, but how physical forces are translated into signaling at individual centromeres is unknown. Using fluorescence resonance energy transfer-based biosensors to measure localized phosphorylation dynamics in living cells, we found that phosphorylation of an Aurora B substrate at the kinetochore depended on its distance from the kinase at the inner centromere. Furthermore, repositioning Aurora B closer to the kinetochore prevented stabilization of bi-oriented attachments and activated the spindle checkpoint. Thus, centromere tension can be sensed by increased spatial separation of Aurora B from kinetochore substrates, which reduces phosphorylation and stabilizes kinetochore microtubules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Dan -- Vader, Gerben -- Vromans, Martijn J M -- Lampson, Michael A -- Lens, Susanne M A -- GM083988/GM/NIGMS NIH HHS/ -- R01 GM083988/GM/NIGMS NIH HHS/ -- R01 GM083988-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Mar 6;323(5919):1350-3. doi: 10.1126/science.1167000. Epub 2009 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150808" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinase B ; Aurora Kinases ; Autoantigens/metabolism ; Biosensing Techniques ; Cell Line, Tumor ; Centromere/enzymology/*metabolism ; Chromatids/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes, Human/*metabolism ; Fluorescence Resonance Energy Transfer ; HeLa Cells ; Humans ; Kinetochores/*metabolism ; Microtubules/*metabolism ; Mitosis ; Models, Biological ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Fusion Proteins/metabolism ; Spindle Apparatus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2009-07-11
    Description: John Nash showed that within a complex system, individuals are best off if they make the best decision that they can, taking into account the decisions of the other individuals. Here, we investigate whether similar principles influence the evolution of signaling networks in multicellular animals. Specifically, by analyzing a set of metazoan species we observed a striking negative correlation of genomically encoded tyrosine content with biological complexity (as measured by the number of cell types in each organism). We discuss how this observed tyrosine loss correlates with the expansion of tyrosine kinases in the evolution of the metazoan lineage and how it may relate to the optimization of signaling systems in multicellular animals. We propose that this phenomenon illustrates genome-wide adaptive evolution to accommodate beneficial genetic perturbation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Chris Soon Heng -- Pasculescu, Adrian -- Lim, Wendell A -- Pawson, Tony -- Bader, Gary D -- Linding, Rune -- R01 GM055040/GM/NIGMS NIH HHS/ -- R01 GM055040-11/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 25;325(5948):1686-8. doi: 10.1126/science.1174301. Epub 2009 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19589966" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; *Evolution, Molecular ; Fungal Proteins/chemistry/metabolism ; Glycosylation ; Humans ; Methylation ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/*metabolism ; Proteins/*chemistry/*metabolism ; *Selection, Genetic ; *Signal Transduction ; Substrate Specificity ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2009-01-24
    Description: We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun kinase phosphatase Puckered, thereby inducing tumor necrosis factor (TNF)/Eiger-dependent apoptosis. In humans, we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinomas (RCCs), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jiang -- Ghanim, Murad -- Xue, Lei -- Brown, Christopher D -- Iossifov, Ivan -- Angeletti, Cesar -- Hua, Sujun -- Negre, Nicolas -- Ludwig, Michael -- Stricker, Thomas -- Al-Ahmadie, Hikmat A -- Tretiakova, Maria -- Camp, Robert L -- Perera-Alberto, Montse -- Rimm, David L -- Xu, Tian -- Rzhetsky, Andrey -- White, Kevin P -- P50 GM081892/GM/NIGMS NIH HHS/ -- P50 GM081892-01A1/GM/NIGMS NIH HHS/ -- R01 HG003012/HG/NHGRI NIH HHS/ -- R01 HG003012-04/HG/NHGRI NIH HHS/ -- UL1 RR024999/RR/NCRR NIH HHS/ -- UL1 RR024999-02/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1218-22. doi: 10.1126/science.1157669. Epub 2009 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164706" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Carcinoma, Renal Cell/*genetics/metabolism ; Cell Line ; Compound Eye, Arthropod/embryology/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Embryo, Nonmammalian/metabolism ; Fushi Tarazu Transcription Factors/genetics/metabolism ; Gene Expression Profiling ; Gene Regulatory Networks ; Homeodomain Proteins/genetics/metabolism ; Humans ; Janus Kinases/*metabolism ; Kidney/metabolism ; Kidney Neoplasms/*genetics/metabolism ; Molecular Sequence Data ; Nervous System/embryology ; Nuclear Proteins/*genetics/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Repressor Proteins/*genetics/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2009-01-31
    Description: Schwann cells develop from multipotent neural crest cells and form myelin sheaths around axons that allow rapid transmission of action potentials. Neuregulin signaling through the ErbB receptor regulates Schwann cell development; however, the downstream pathways are not fully defined. We find that mice lacking calcineurin B1 in the neural crest have defects in Schwann cell differentiation and myelination. Neuregulin addition to Schwann cell precursors initiates an increase in cytoplasmic Ca2+, which activates calcineurin and the downstream transcription factors NFATc3 and c4. Purification of NFAT protein complexes shows that Sox10 is an NFAT nuclear partner and synergizes with NFATc4 to activate Krox20, which regulates genes necessary for myelination. Our studies demonstrate that calcineurin and NFAT are essential for neuregulin and ErbB signaling, neural crest diversification, and differentiation of Schwann cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790385/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790385/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kao, Shih-Chu -- Wu, Hai -- Xie, Jianming -- Chang, Ching-Pin -- Ranish, Jeffrey A -- Graef, Isabella A -- Crabtree, Gerald R -- AI60037/AI/NIAID NIH HHS/ -- HD55391/HD/NICHD NIH HHS/ -- NS046789/NS/NINDS NIH HHS/ -- R01 AI060037/AI/NIAID NIH HHS/ -- R01 AI060037-01/AI/NIAID NIH HHS/ -- R01 AI060037-02/AI/NIAID NIH HHS/ -- R01 AI060037-03/AI/NIAID NIH HHS/ -- R01 AI060037-04/AI/NIAID NIH HHS/ -- R01 AI060037-05/AI/NIAID NIH HHS/ -- R01 HD055391/HD/NICHD NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01 NS046789-01/NS/NINDS NIH HHS/ -- R01 NS046789-02/NS/NINDS NIH HHS/ -- R01 NS046789-03/NS/NINDS NIH HHS/ -- R01 NS046789-04/NS/NINDS NIH HHS/ -- R01 NS046789-05/NS/NINDS NIH HHS/ -- R21 NS061702/NS/NINDS NIH HHS/ -- R21 NS061702-01/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jan 30;323(5914):651-4. doi: 10.1126/science.1166562.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19179536" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcium/metabolism ; Cell Differentiation ; Cell Line ; Coculture Techniques ; Early Growth Response Protein 2/metabolism ; Ganglia, Spinal/cytology ; Mice ; Myelin Sheath/physiology ; NFATC Transcription Factors/*metabolism ; Neural Crest/cytology/metabolism ; Neuregulins/*metabolism ; Phosphorylation ; Receptor, ErbB-2/metabolism ; Receptor, ErbB-3 ; SOXE Transcription Factors/metabolism ; Schwann Cells/*cytology/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Mark O -- New York, N.Y. -- Science. 2009 Sep 25;325(5948):1635-6. doi: 10.1126/science.1180331.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Proteomic Mass Spectrometry Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. moc@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Biological Evolution ; CDC2 Protein Kinase/antagonists & inhibitors/metabolism ; *Evolution, Molecular ; Fungi/metabolism ; Phosphorylation ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/*chemistry/*metabolism ; Serine/metabolism ; *Signal Transduction ; Threonine/metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2009-08-22
    Description: The paradigmatic feature of long-term memory (LTM) is its persistence. However, little is known about the mechanisms that make some LTMs last longer than others. In rats, a long-lasting fear LTM vanished rapidly when the D1 dopamine receptor antagonist SCH23390 was injected into the dorsal hippocampus 12 hours, but not immediately or 9 hours, after the fearful experience. Conversely, intrahippocampal application of the D1 agonist SK38393 at the same critical post-training time converted a rapidly decaying fear LTM into a persistent one. This effect was mediated by brain-derived neurotrophic factor and regulated by the ventral tegmental area (VTA). Thus, the persistence of LTM depends on activation of VTA/hippocampus dopaminergic connections and can be specifically modulated by manipulating this system at definite post-learning time points.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rossato, Janine I -- Bevilaqua, Lia R M -- Izquierdo, Ivan -- Medina, Jorge H -- Cammarota, Martin -- New York, N.Y. -- Science. 2009 Aug 21;325(5943):1017-20. doi: 10.1126/science.1172545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Memoria, Instituto do Cerebro, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19696353" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Benzazepines/pharmacology ; Brain-Derived Neurotrophic Factor/metabolism ; Dopamine/*physiology ; Dopamine Agonists/pharmacology ; Dopamine Antagonists/pharmacology ; Fear ; Hippocampus/drug effects/*physiology ; Male ; Memory/drug effects/*physiology ; Phosphorylation ; Rats ; Rats, Wistar ; Receptors, Dopamine D1/agonists/antagonists & inhibitors/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Time Factors ; Tyrosine 3-Monooxygenase ; Ventral Tegmental Area/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2005-02-19
    Description: Deregulation of Akt/protein kinase B (PKB) is implicated in the pathogenesis of cancer and diabetes. Akt/PKB activation requires the phosphorylation of Thr308 in the activation loop by the phosphoinositide-dependent kinase 1 (PDK1) and Ser473 within the carboxyl-terminal hydrophobic motif by an unknown kinase. We show that in Drosophila and human cells the target of rapamycin (TOR) kinase and its associated protein rictor are necessary for Ser473 phosphorylation and that a reduction in rictor or mammalian TOR (mTOR) expression inhibited an Akt/PKB effector. The rictor-mTOR complex directly phosphorylated Akt/PKB on Ser473 in vitro and facilitated Thr308 phosphorylation by PDK1. Rictor-mTOR may serve as a drug target in tumors that have lost the expression of PTEN, a tumor suppressor that opposes Akt/PKB activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarbassov, D D -- Guertin, David A -- Ali, Siraj M -- Sabatini, David M -- R01 AI47389/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1098-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15718470" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Adaptor Proteins, Signal Transducing ; Animals ; Carrier Proteins/*metabolism ; Cell Line ; Cell Line, Tumor ; Drosophila Proteins/*metabolism ; Drosophila melanogaster ; Enzyme Activation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoprecipitation ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; RNA Interference ; Serine/metabolism ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2005-02-12
    Description: Most protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyce, Michael -- Bryant, Kevin F -- Jousse, Celine -- Long, Kai -- Harding, Heather P -- Scheuner, Donalyn -- Kaufman, Randal J -- Ma, Dawei -- Coen, Donald M -- Ron, David -- Yuan, Junying -- AI19838/AI/NIAID NIH HHS/ -- AI26077/AI/NIAID NIH HHS/ -- DDK42394/DK/NIDDK NIH HHS/ -- DK47119/DK/NIDDK NIH HHS/ -- ES08681/ES/NIEHS NIH HHS/ -- GM64703/GM/NIGMS NIH HHS/ -- NS35138/NS/NINDS NIH HHS/ -- R37-AG012859/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):935-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Differentiation ; Apoptosis/*drug effects ; Cell Cycle Proteins ; Cell Line ; Cinnamates/*pharmacology/toxicity ; *Cytoprotection ; Dose-Response Relationship, Drug ; Endoplasmic Reticulum/*metabolism ; Enzyme Inhibitors/pharmacology ; Eukaryotic Initiation Factor-2/*metabolism ; Genes, Reporter ; Herpesvirus 1, Human/drug effects/physiology ; Keratitis, Herpetic/drug therapy/virology ; Male ; Mice ; Oxazoles/pharmacology/toxicity ; PC12 Cells ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Protein Folding ; Protein Kinases/metabolism ; Protein Phosphatase 1 ; Proteins/metabolism ; Rats ; Thiourea/*analogs & derivatives/*pharmacology/toxicity ; Tunicamycin/pharmacology ; Viral Proteins/metabolism ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2005-04-09
    Description: The Wnt-Wingless (Wg) pathway is one of a core set of evolutionarily conserved signaling pathways that regulates many aspects of metazoan development. Aberrant Wnt signaling has been linked to human disease. In the present study, we used a genomewide RNA interference (RNAi) screen in Drosophila cells to screen for regulators of the Wnt pathway. We identified 238 potential regulators, which include known pathway components, genes with functions not previously linked to this pathway, and genes with no previously assigned functions. Reciprocal-Best-Blast analyses reveal that 50% of the genes identified in the screen have human orthologs, of which approximately 18% are associated with human disease. Functional assays of selected genes from the cell-based screen in Drosophila, mammalian cells, and zebrafish embryos demonstrated that these genes have evolutionarily conserved functions in Wnt signaling. High-throughput RNAi screens in cultured cells, followed by functional analyses in model organisms, prove to be a rapid means of identifying regulators of signaling pathways implicated in development and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DasGupta, Ramanuj -- Kaykas, Ajamete -- Moon, Randall T -- Perrimon, Norbert -- New York, N.Y. -- Science. 2005 May 6;308(5723):826-33. Epub 2005 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Howard Hughes Medical Institute (HHMI), Harvard Medical School, New Research Building, No. 339, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. rdasgupt@genetics.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15817814" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Cloning, Molecular ; Computational Biology ; Cytoskeletal Proteins/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/*genetics/metabolism ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Epistasis, Genetic ; *Gene Expression Regulation ; Genes, Insect ; Genes, Reporter ; *Genomics ; Mutation ; Phenotype ; Phosphorylation ; Protein Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; *RNA Interference ; *Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; Transfection ; Wnt Proteins ; Wnt1 Protein ; Wnt3 Protein ; Zebrafish ; Zebrafish Proteins ; beta Catenin ; rab5 GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2005-08-20
    Description: The molecular machinery that governs circadian rhythmicity is based on clock proteins organized in regulatory feedback loops. Although posttranslational modification of clock proteins is likely to finely control their circadian functions, only limited information is available to date. Here, we show that BMAL1, an essential transcription factor component of the clock mechanism, is SUMOylated on a highly conserved lysine residue (Lys259) in vivo. BMAL1 shows a circadian pattern of SUMOylation that parallels its activation in the mouse liver. SUMOylation of BMAL1 requires and is induced by CLOCK, the heterodimerization partner of BMAL1. Ectopic expression of a SUMO-deficient BMAL1 demonstrates that SUMOylation plays an important role in BMAL1 circadian expression and clock rhythmicity. This reveals an additional level of regulation within the core mechanism of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardone, Luca -- Hirayama, Jun -- Giordano, Francesca -- Tamaru, Teruya -- Palvimo, Jorma J -- Sassone-Corsi, Paolo -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1390-4. Epub 2005 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16109848" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; CLOCK Proteins ; COS Cells ; Cell Cycle Proteins ; Cell Line ; *Circadian Rhythm ; Dimerization ; Ethylmaleimide/pharmacology ; Gene Expression Regulation ; Liver/metabolism ; Lysine/metabolism ; Mice ; Mutation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; SUMO-1 Protein/*metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2005-04-02
    Description: Activation of the transcription factor NF-kappaB after engagement of the T cell receptor (TCR) is important for T cell proliferation and activation during the adaptive immune response. Recent reports have elucidated a signaling pathway that involves the protein kinase C (PKC), the scaffold protein CARD11 (also called CARMA-1), the caspase recruitment domain (CARD)-containing protein Bcl10, and the paracaspase (protease related to caspases) MALT1 as critical intermediates linking the TCR to the IkappaB kinase (IKK) complex. However, the events proximal to the TCR that initiate the activation of this signaling pathway remain poorly defined. We demonstrate that 3-phosphoinositide-dependent kinase 1 (PDK1) has an essential role in this pathway by regulating the activation of PKC and through signal-dependent recruiting of both PKC and CARD11 to lipid rafts. PDK1-associated PKC recruits the IKK complex, whereas PDK1-associated CARD11 recruits the Bcl10-MALT1 complex, thereby allowing activation of the IKK complex through Bcl10-MALT1-dependent ubiquitination of the IKK complex subunit known as NEMO (NF-kappaB essential modifier). Hence, PDK1 plays a critical role by nucleating the TCR-induced NF-kappaB activation pathway in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ki-Young -- D'Acquisto, Fulvio -- Hayden, Matthew S -- Shim, Jae-Hyuck -- Ghosh, Sankar -- R37 AI033443/AI/NIAID NIH HHS/ -- R37-AI33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):114-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802604" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Adaptor Proteins, Signal Transducing/metabolism ; Apoptosis Regulatory Proteins ; CARD Signaling Adaptor Proteins ; Carrier Proteins/metabolism ; Caspases ; Cell Line ; Cell Line, Tumor ; Enzyme Activation ; Guanylate Cyclase/metabolism ; Humans ; I-kappa B Kinase ; Isoenzymes/genetics/*metabolism ; Jurkat Cells ; Lymphocyte Activation ; Lymphoma, B-Cell, Marginal Zone/metabolism ; Membrane Microdomains/metabolism ; Membrane Proteins/metabolism ; Models, Biological ; NF-kappa B/*metabolism ; Neoplasm Proteins/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Protein Kinase C/genetics/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA Interference ; Receptors, Antigen, T-Cell/immunology/*metabolism ; *Signal Transduction ; T-Lymphocytes/enzymology/immunology/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2005-03-19
    Description: Recognizing a deficiency of indispensable amino acids (IAAs) for protein synthesis is vital for dietary selection in metazoans, including humans. Cells in the brain's anterior piriform cortex (APC) are sensitive to IAA deficiency, signaling diet rejection and foraging for complementary IAA sources, but the mechanism is unknown. Here we report that the mechanism for recognizing IAA-deficient foods follows the conserved general control (GC) system, wherein uncharged transfer RNA induces phosphorylation of eukaryotic initiation factor 2 (eIF2) via the GC nonderepressing 2 (GCN2) kinase. Thus, a basic mechanism of nutritional stress management functions in mammalian brain to guide food selection for survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hao, Shuzhen -- Sharp, James W -- Ross-Inta, Catherine M -- McDaniel, Brent J -- Anthony, Tracy G -- Wek, Ronald C -- Cavener, Douglas R -- McGrath, Barbara C -- Rudell, John B -- Koehnle, Thomas J -- Gietzen, Dorothy W -- GM49164/GM/NIGMS NIH HHS/ -- NS043231/NS/NINDS NIH HHS/ -- NS33347/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1776-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774759" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acids, Essential/*administration & dosage/analysis/*deficiency ; Animals ; Diet ; Eating ; Eukaryotic Initiation Factor-2/*metabolism ; *Food ; Food Preferences ; Leucine/administration & dosage/*analogs & derivatives/pharmacology ; Mice ; Mice, Inbred C57BL ; Olfactory Pathways/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases ; RNA, Transfer/*metabolism ; Rats ; Stereoisomerism ; Threonine/administration & dosage ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2005-02-01
    Description: Neuronal gene transcription is repressed in non-neuronal cells by the repressor element 1 (RE-1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) complex. To understand how this silencing is achieved, we examined a family of class-C RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD) phosphatases [small CTD phosphatases (SCPs) 1 to 3], whose expression is restricted to non-neuronal tissues. We show that REST/NRSF recruits SCPs to neuronal genes that contain RE-1 elements, leading to neuronal gene silencing in non-neuronal cells. Phosphatase-inactive forms of SCP interfere with REST/NRSF function and promote neuronal differentiation of P19 stem cells. Likewise, small interfering RNA directed to the single Drosophila SCP unmasks neuronal gene expression in S2 cells. Thus, SCP activity is an evolutionarily conserved transcriptional regulator that acts globally to silence neuronal genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeo, Michele -- Lee, Soo-Kyung -- Lee, Bora -- Ruiz, Esmeralda C -- Pfaff, Samuel L -- Gill, Gordon N -- DK13149/DK/NIDDK NIH HHS/ -- NS37116/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):596-600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681389" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Differentiation ; Cell Line ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/metabolism ; Down-Regulation ; Drosophila/genetics/metabolism ; Drosophila Proteins/genetics/metabolism ; Gene Expression Profiling ; Gene Expression Regulation ; *Gene Silencing ; Humans ; In Situ Hybridization ; Mice ; Nerve Tissue Proteins/metabolism ; Neurons/cytology/*physiology ; Nuclear Proteins ; Phosphoprotein Phosphatases/genetics/*metabolism ; Phosphorylation ; RNA Interference ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/*metabolism ; TCF Transcription Factors ; Transcription Factor 7-Like 1 Protein ; Transcription Factors/*metabolism ; Tretinoin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2005-01-18
    Description: Upon cytokine treatment, members of the signal transducers and activators of transcription (STAT) family of proteins are phosphorylated on tyrosine and serine sites within the carboxyl-terminal region in cells. We show that in response to cytokine treatment, Stat3 is also acetylated on a single lysine residue, Lys685. Histone acetyltransferase p300-mediated Stat3 acetylation on Lys685 was reversible by type I histone deacetylase (HDAC). Use of a prostate cancer cell line (PC3) that lacks Stat3 and PC3 cells expressing wild-type Stat3 or a Stat3 mutant containing a Lys685-to-Arg substitution revealed that Lys685 acetylation was critical for Stat3 to form stable dimers required for cytokine-stimulated DNA binding and transcriptional regulation, to enhance transcription of cell growth-related genes, and to promote cell cycle progression in response to treatment with oncostatin M.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Zheng-Long -- Guan, Ying-Jie -- Chatterjee, Devasis -- Chin, Y Eugene -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):269-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Brown University Medical School-Rhode Island Hospital, Providence, RI 02903, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653507" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/metabolism ; Arginine/chemistry/metabolism ; Cell Cycle ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cyclin D1/metabolism ; Cytokines/pharmacology/*physiology ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dimerization ; HeLa Cells ; Histone Acetyltransferases ; Histone Deacetylases/metabolism ; Humans ; Interferon-alpha/pharmacology ; Lysine/*metabolism ; Mutation ; Nuclear Proteins/metabolism ; Oncostatin M ; Peptides/pharmacology ; Phosphorylation ; Protein Structure, Secondary ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Proto-Oncogene Proteins c-myc/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/chemistry/genetics/*metabolism ; Transcriptional Activation ; bcl-X Protein ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sablowski, Robert -- Harberd, Nicholas P -- BBS/E/J/00000594/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1569-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK. robert.sablowski@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15761142" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/antagonists & inhibitors/genetics/*metabolism ; Cytochrome P-450 Enzyme System/genetics ; *Gene Expression Regulation, Plant ; Genes, Plant ; Models, Biological ; Nuclear Proteins/*metabolism ; Phosphorylation ; Plant Growth Regulators/biosynthesis/*metabolism ; Protein Binding ; Protein Kinases/metabolism ; *Signal Transduction ; Steroid Hydroxylases/genetics ; Steroids/biosynthesis/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2005-01-22
    Description: Cell lineage specification depends on both gene activation and gene silencing, and in the differentiation of T helper progenitors to Th1 or Th2 effector cells, this requires the action of two opposing transcription factors, T-bet and GATA-3. T-bet is essential for the development of Th1 cells, and GATA-3 performs an equivalent role in Th2 development. We report that T-bet represses Th2 lineage commitment through tyrosine kinase-mediated interaction between the two transcription factors that interferes with the binding of GATA-3 to its target DNA. These results provide a novel function for tyrosine phosphorylation of a transcription factor in specifying alternate fates of a common progenitor cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Eun Sook -- Szabo, Susanne J -- Schwartzberg, Pamela L -- Glimcher, Laurie H -- AI48126/AI/NIAID NIH HHS/ -- AI56296/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):430-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cytokines/pharmacology/physiology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; GATA3 Transcription Factor ; Interleukin-5/genetics ; Mice ; Mice, Inbred BALB C ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; T-Box Domain Proteins ; T-Lymphocytes, Helper-Inducer/cytology/*physiology ; Th1 Cells/cytology/physiology ; Th2 Cells/cytology/*physiology ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2005-07-16
    Description: Neurofibrillary tangles (NFTs) are the most common intraneuronal inclusion in the brains of patients with neurodegenerative diseases and have been implicated in mediating neuronal death and cognitive deficits. Here, we found that mice expressing a repressible human tau variant developed progressive age-related NFTs, neuronal loss, and behavioral impairments. After the suppression of transgenic tau, memory function recovered, and neuron numbers stabilized, but to our surprise, NFTs continued to accumulate. Thus, NFTs are not sufficient to cause cognitive decline or neuronal death in this model of tauopathy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574647/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574647/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santacruz, K -- Lewis, J -- Spires, T -- Paulson, J -- Kotilinek, L -- Ingelsson, M -- Guimaraes, A -- DeTure, M -- Ramsden, M -- McGowan, E -- Forster, C -- Yue, M -- Orne, J -- Janus, C -- Mariash, A -- Kuskowski, M -- Hyman, B -- Hutton, M -- Ashe, K H -- P01 AG015453/AG/NIA NIH HHS/ -- P01-AG15453/AG/NIA NIH HHS/ -- R01 AG008487/AG/NIA NIH HHS/ -- R01 AG026249/AG/NIA NIH HHS/ -- R01 AG026252/AG/NIA NIH HHS/ -- R01 NS033249/NS/NINDS NIH HHS/ -- R01 NS046355/NS/NINDS NIH HHS/ -- R01-026252/PHS HHS/ -- R01-AG08487/AG/NIA NIH HHS/ -- R01-AG26249/AG/NIA NIH HHS/ -- R01-NS46355/NS/NINDS NIH HHS/ -- T31-AG00277/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):476-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020737" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Atrophy ; Brain/*metabolism/pathology ; Cognition ; Disease Progression ; Doxycycline/pharmacology ; Hippocampus/metabolism/pathology ; Humans ; Maze Learning ; *Memory ; Mice ; Mice, Transgenic ; Neurodegenerative Diseases/metabolism/*pathology/*physiopathology ; Neurofibrillary Tangles/metabolism/*pathology ; Neuronal Plasticity ; Neurons/metabolism/pathology ; Organ Size ; Phosphorylation ; RNA, Messenger/genetics/metabolism ; Solubility ; tau Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2005-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, John J -- Kanno, Yuka -- Chen, Xiaomin -- Levy, David E -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):217-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653493" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/metabolism ; Active Transport, Cell Nucleus ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytokines/*physiology ; Cytoplasm/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dimerization ; Histone Acetyltransferases ; Histone Deacetylases/metabolism ; Lysine/*metabolism ; Mutation ; NF-kappa B/metabolism ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/chemistry/genetics/*metabolism ; Transcriptional Activation ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2005-06-04
    Description: Closely related signals often lead to very different cellular outcomes. We found that the differentiation of human mesenchymal stem cells into bone-forming cells is stimulated by epidermal growth factor (EGF) but not platelet-derived growth factor (PDGF). We used mass spectrometry-based proteomics to comprehensively compare proteins that were tyrosine phosphorylated in response to EGF and PDGF and their associated partners. More than 90% of these signaling proteins were used by both ligands, whereas the phosphatidylinositol 3-kinase (PI3K) pathway was exclusively activated by PDGF, implicating it as a possible control point. Indeed, chemical inhibition of PI3K in PDGF-stimulated cells removed the differential effect of the two growth factors, bestowing full differentiation effect onto PDGF. Thus, quantitative proteomics can directly compare entire signaling networks and discover critical differences capable of changing cell fate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kratchmarova, Irina -- Blagoev, Blagoy -- Haack-Sorensen, Mandana -- Kassem, Moustapha -- Mann, Matthias -- New York, N.Y. -- Science. 2005 Jun 3;308(5727):1472-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Experimental BioInformatics (CEBI), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15933201" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Differentiation ; Cell Line ; Epidermal Growth Factor/*physiology ; Fibroblast Growth Factors/physiology ; Humans ; MAP Kinase Signaling System ; Mesoderm/*cytology ; Nerve Growth Factor/physiology ; Osteoblasts/cytology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/*physiology ; Proteins/metabolism ; Proteomics ; Signal Transduction ; Stem Cells/*cytology ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2005-08-27
    Description: A defect in Klotho gene expression in mice accelerates the degeneration of multiple age-sensitive traits. Here, we show that overexpression of Klotho in mice extends life span. Klotho protein functions as a circulating hormone that binds to a cell-surface receptor and represses intracellular signals of insulin and insulin-like growth factor 1 (IGF1), an evolutionarily conserved mechanism for extending life span. Alleviation of aging-like phenotypes in Klotho-deficient mice was observed by perturbing insulin and IGF1 signaling, suggesting that Klotho-mediated inhibition of insulin and IGF1 signaling contributes to its anti-aging properties. Klotho protein may function as an anti-aging hormone in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536606/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536606/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurosu, Hiroshi -- Yamamoto, Masaya -- Clark, Jeremy D -- Pastor, Johanne V -- Nandi, Animesh -- Gurnani, Prem -- McGuinness, Owen P -- Chikuda, Hirotaka -- Yamaguchi, Masayuki -- Kawaguchi, Hiroshi -- Shimomura, Iichiro -- Takayama, Yoshiharu -- Herz, Joachim -- Kahn, C Ronald -- Rosenblatt, Kevin P -- Kuro-o, Makoto -- R01 AG019712/AG/NIA NIH HHS/ -- R01 AG019712-05/AG/NIA NIH HHS/ -- R01 AG025326/AG/NIA NIH HHS/ -- R01 AG025326-03/AG/NIA NIH HHS/ -- R01AG19712/AG/NIA NIH HHS/ -- R01AG25326/AG/NIA NIH HHS/ -- R37 HL063762/HL/NHLBI NIH HHS/ -- U24 DK059637/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1829-33. Epub 2005 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Texas (UT) Southwestern Medical Center at Dallas, 5323 Harry Hines Bouleuvard, Dallas, TX 75390-9072, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16123266" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*physiology ; Animals ; Blood Glucose/analysis ; Cell Line ; Cell Line, Tumor ; Eating ; Female ; Glucuronidase ; Insulin/blood/metabolism ; Insulin Resistance ; Insulin-Like Growth Factor I/metabolism/pharmacology ; Ligands ; Longevity/genetics/*physiology ; Male ; Membrane Proteins/chemistry/*genetics/pharmacology/*physiology ; Mice ; Mice, Transgenic ; Myoblasts/metabolism ; Oxygen Consumption ; Peptide Fragments/chemistry/pharmacology ; Phosphorylation ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/metabolism ; Receptors, Cell Surface/metabolism ; Recombinant Proteins/chemistry/isolation & purification/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2005-03-05
    Description: Oxysterol-binding protein (OSBP) is the founding member of a family of sterol-binding proteins implicated in vesicle transport, lipid metabolism, and signal transduction. Here, OSBP was found to function as a cholesterol-binding scaffolding protein coordinating the activity of two phosphatases to control the extracellular signal-regulated kinase (ERK) signaling pathway. Cytosolic OSBP formed a approximately 440-kilodalton oligomer with a member of the PTPPBS family of tyrosine phosphatases, the serine/threonine phosphatase PP2A, and cholesterol. This oligomer had dual specific phosphatase activity for phosphorylated ERK (pERK). When cell cholesterol was lowered, the oligomer disassembled and the level of pERK rose. The oligomer also disassembled when exposed to oxysterols. Increasing the amount of OSBP oligomer rendered cells resistant to the effects of cholesterol depletion and decreased the basal level of pERK. Thus, cholesterol functions through its interaction with OSBP outside of membranes to regulate the assembly of an oligomeric phosphatase that controls a key signaling pathway in the cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Ping-Yuan -- Weng, Jian -- Anderson, Richard G W -- GM 52016/GM/NIGMS NIH HHS/ -- HL 20948/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 4;307(5714):1472-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15746430" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cholesterol/*metabolism ; Cytosol/metabolism ; Enzyme Activation ; HeLa Cells ; Humans ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase 3/*metabolism ; Multiprotein Complexes/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Protein Conformation ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/metabolism ; RNA Interference ; Receptors, Steroid/chemistry/genetics/*metabolism ; Transfection ; beta-Cyclodextrins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2005-10-15
    Description: Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27 trimethylation and derepression of silenced genes. Our results imply that Akt regulates the methylation activity, through phosphorylation of EZH2, which may contribute to oncogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cha, Tai-Lung -- Zhou, Binhua P -- Xia, Weiya -- Wu, Yadi -- Yang, Cheng-Chieh -- Chen, Chun-Te -- Ping, Bo -- Otte, Arie P -- Hung, Mien-Chie -- P01 099031/PHS HHS/ -- R01 109311/PHS HHS/ -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):306-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224021" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; COS Cells ; Cell Line ; Cell Transformation, Neoplastic ; Cercopithecus aethiops ; Chromones/pharmacology ; DNA-Binding Proteins ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation ; HeLa Cells ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/*metabolism ; Homeodomain Proteins/genetics ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Morpholines/pharmacology ; Phosphorylation ; Polycomb Repressive Complex 2 ; Protein Binding ; Protein Methyltransferases ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-akt ; Serine/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-02-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elion, Elaine A -- Qi, Maosong -- Chen, Weidong -- New York, N.Y. -- Science. 2005 Feb 4;307(5710):687-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. elaine_elion@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692041" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/metabolism ; Cyclin-Dependent Kinase Inhibitor Proteins ; DNA-Binding Proteins/genetics/metabolism ; Down-Regulation ; F-Box Proteins/metabolism ; Genes, Fungal ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/*metabolism ; Mutation ; Peptides/pharmacology ; Pheromones/pharmacology ; Phosphorylation ; Repressor Proteins/metabolism ; SKP Cullin F-Box Protein Ligases/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Transcription Factors/genetics/metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winslow, Monte M -- Crabtree, Gerald R -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):56-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Stanford University, Stanford, CA 94305, USA〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637261" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channels/metabolism ; Calcium Channels, L-Type/genetics/*metabolism ; *Calcium Signaling ; Cation Transport Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Lymphocyte Activation ; Membrane Potentials ; Mice ; Models, Biological ; Mutation ; NFATC Transcription Factors ; Nuclear Proteins/metabolism ; Phosphorylation ; Potassium/metabolism ; Potassium Channels/metabolism ; Protein Subunits/metabolism ; Receptors, Antigen, T-Cell/metabolism ; T-Lymphocytes/*immunology/metabolism ; TRPM Cation Channels ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2005-01-08
    Description: Calcium is known to play vital roles in diverse physiological processes, and it is known that voltage-gated calcium channels (Cav) mediate calcium influx in excitable cells. However, no consensus exists on the molecular identity of the calcium channels present in nonexcitable cells such as T lymphocytes. Here, we demonstrate that T lymphocytes express both regulatory beta4 and poreforming Cav1 alpha1 subunits of Cav channels. Cav beta4-mutant T lymphocytes fail to acquire normal functions and display impairment in the calcium response, activation of the transcription factor NFAT, and cytokine production. Although Cav1 channels of lymphocytes retain their voltage dependency, T cell receptor stimulation dramatically increases channel opening, providing a new mechanism for calcium entry in lymphocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badou, Abdallah -- Basavappa, Srisaila -- Desai, Rooma -- Peng, You-Qing -- Matza, Didi -- Mehal, Wajahat Z -- Kaczmarek, Leonard K -- Boulpaep, Emile L -- Flavell, Richard A -- New York, N.Y. -- Science. 2005 Jan 7;307(5706):117-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15637280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology/*metabolism ; Calcium/*metabolism ; Calcium Channels, L-Type/*metabolism ; *Calcium Signaling ; Cytokines/biosynthesis ; DNA-Binding Proteins/metabolism ; Ion Channel Gating ; Lymphocyte Activation ; Membrane Potentials ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mutation ; NFATC Transcription Factors ; Nuclear Proteins/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Subunits/metabolism ; Receptors, Antigen, T-Cell/metabolism ; T-Lymphocytes/immunology/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2005-01-22
    Description: In contrast to most genomic DNA in mitotic cells, the promoter regions of some genes, such as the stress-inducible hsp70i gene that codes for a heat shock protein, remain uncompacted, a phenomenon called bookmarking. Here we show that hsp70i bookmarking is mediated by a transcription factor called HSF2, which binds this promoter in mitotic cells, recruits protein phosphatase 2A, and interacts with the CAP-G subunit of the condensin enzyme to promote efficient dephosphorylation and inactivation of condensin complexes in the vicinity, thereby preventing compaction at this site. Blocking HSF2-mediated bookmarking by HSF2 RNA interference decreases hsp70i induction and survival of stressed cells in the G1 phase, which demonstrates the biological importance of gene bookmarking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xing, Hongyan -- Wilkerson, Donald C -- Mayhew, Christopher N -- Lubert, Eric J -- Skaggs, Hollie S -- Goodson, Michael L -- Hong, Yiling -- Park-Sarge, Ok-Kyong -- Sarge, Kevin D -- GM61053/GM/NIGMS NIH HHS/ -- GM64606/GM/NIGMS NIH HHS/ -- HD36879/HD/NICHD NIH HHS/ -- HD41609/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):421-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biochemistry, Chandler Medical Center, University of Kentucky, Lexington, KY 40536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662014" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Cell Line, Tumor ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/metabolism ; *Gene Expression Regulation ; HSP70 Heat-Shock Proteins/*genetics ; HeLa Cells ; Heat-Shock Proteins/genetics/*metabolism ; Hot Temperature ; Humans ; Immunoprecipitation ; Interphase ; *Mitosis ; Multiprotein Complexes ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; *Promoter Regions, Genetic ; Protein Binding ; Protein Phosphatase 2 ; Protein Subunits/metabolism ; RNA Interference ; RNA, Small Interfering/pharmacology ; Transcription Factors/genetics/*metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2005-03-12
    Description: Signaling pathways transmit information through protein interaction networks that are dynamically regulated by complex extracellular cues. We developed LUMIER (for luminescence-based mammalian interactome mapping), an automated high-throughput technology, to map protein-protein interaction networks systematically in mammalian cells and applied it to the transforming growth factor-beta (TGFbeta) pathway. Analysis using self-organizing maps and k-means clustering identified links of the TGFbeta pathway to the p21-activated kinase (PAK) network, to the polarity complex, and to Occludin, a structural component of tight junctions. We show that Occludin regulates TGFbeta type I receptor localization for efficient TGFbeta-dependent dissolution of tight junctions during epithelial-to-mesenchymal transitions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrios-Rodiles, Miriam -- Brown, Kevin R -- Ozdamar, Barish -- Bose, Rohit -- Liu, Zhong -- Donovan, Robert S -- Shinjo, Fukiko -- Liu, Yongmei -- Dembowy, Joanna -- Taylor, Ian W -- Luga, Valbona -- Przulj, Natasa -- Robinson, Mark -- Suzuki, Harukazu -- Hayashizaki, Yoshihide -- Jurisica, Igor -- Wrana, Jeffrey L -- P50 GM-62413/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1621-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15761153" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors, Type I/metabolism ; Animals ; Cell Line ; Cell Polarity ; DNA-Binding Proteins/metabolism ; Epithelial Cells/cytology/physiology ; Humans ; Immunoprecipitation ; Luciferases ; Membrane Proteins/metabolism ; Mesoderm/cytology ; Mice ; Occludin ; Phosphorylation ; *Protein Interaction Mapping ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Transforming Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Smad2 Protein ; Smad4 Protein ; Tight Junctions/ultrastructure ; Trans-Activators/metabolism ; Transforming Growth Factor beta/*metabolism ; p21-Activated Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fearon, Eric R -- Cadigan, Ken M -- New York, N.Y. -- Science. 2005 May 6;308(5723):801-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA. fearon@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15879199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cytoskeletal Proteins/metabolism ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/*genetics/metabolism ; *Gene Expression Regulation ; Genes, Insect ; Genes, Reporter ; *Genomics ; Intercellular Signaling Peptides and Proteins/metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Proto-Oncogene Proteins/*metabolism ; *RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; *Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors/genetics/metabolism ; Wings, Animal/metabolism ; Wnt Proteins ; Wnt1 Protein ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2005-04-23
    Description: Machine learning was applied for the automated derivation of causal influences in cellular signaling networks. This derivation relied on the simultaneous measurement of multiple phosphorylated protein and phospholipid components in thousands of individual primary human immune system cells. Perturbing these cells with molecular interventions drove the ordering of connections between pathway components, wherein Bayesian network computational methods automatically elucidated most of the traditionally reported signaling relationships and predicted novel interpathway network causalities, which we verified experimentally. Reconstruction of network models from physiologically relevant primary single cells might be applied to understanding native-state tissue signaling biology, complex drug actions, and dysfunctional signaling in diseased cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sachs, Karen -- Perez, Omar -- Pe'er, Dana -- Lauffenburger, Douglas A -- Nolan, Garry P -- AI35304/AI/NIAID NIH HHS/ -- P01-AI39646/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):523-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biological Engineering Division, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845847" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Artificial Intelligence ; *Bayes Theorem ; CD4-Positive T-Lymphocytes/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Flow Cytometry ; Humans ; Intracellular Signaling Peptides and Proteins/*metabolism ; Mathematics ; *Models, Biological ; Phospholipids/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Kinase C/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; RNA, Small Interfering ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1259.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311305" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Animals ; Blood Glucose/analysis ; Diabetes Mellitus, Type 2/*enzymology ; Genes, Tumor Suppressor ; Glucose/biosynthesis/*metabolism ; Hypoglycemic Agents/pharmacology ; Liver/metabolism ; Metformin/pharmacology ; Mice ; Multienzyme Complexes/metabolism ; Muscle, Skeletal/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Trans-Activators/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Travis, John -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):731.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051787" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*drug therapy ; *Alzheimer Vaccines/therapeutic use ; Amyloid Precursor Protein Secretases ; Amyloid beta-Peptides/metabolism ; Aspartic Acid Endopeptidases/metabolism ; Biomarkers ; Biotechnology ; Cholinesterase Inhibitors/*therapeutic use ; Clinical Trials as Topic ; Drug Design ; Drug Evaluation, Preclinical ; *Drug Industry ; Endopeptidases ; Humans ; Models, Animal ; Nerve Tissue Proteins/genetics/metabolism ; Nootropic Agents/*therapeutic use ; Phosphorylation ; Protease Inhibitors/therapeutic use ; tau Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2005-02-05
    Description: Cytokine production plays a critical role in diseases caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Here we show that a latent KSHV gene product, kaposin B, increases the expression of cytokines by blocking the degradation of their messenger RNAs (mRNAs). Cytokine transcripts are normally unstable because they contain AU-rich elements (AREs) in their 3' noncoding regions that target them for degradation. Kaposin B reverses this instability by binding to and activating the kinase MK2, a target of the p38 mitogen-activated protein kinase signaling pathway and a known inhibitor of ARE-mRNA decay. These findings define an important mechanism linking latent KSHV infection to cytokine production, and also illustrate a distinctive mode by which viruses can selectively modulate mRNA turnover.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCormick, Craig -- Ganem, Don -- New York, N.Y. -- Science. 2005 Feb 4;307(5710):739-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Microbiology and Immunology, and Department of Medicine, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692053" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytokines/*genetics/*metabolism ; Cytosol/metabolism ; Enzyme Activation ; HeLa Cells ; Herpesvirus 8, Human/*physiology ; Humans ; Intracellular Signaling Peptides and Proteins ; *MAP Kinase Signaling System ; Models, Biological ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; *RNA Stability ; RNA, Messenger/*metabolism ; Repetitive Sequences, Nucleic Acid ; Transcription, Genetic ; Transfection ; Two-Hybrid System Techniques ; Viral Proteins/*metabolism ; Virus Latency ; p38 Mitogen-Activated Protein Kinases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2005-11-26
    Description: The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)-activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element-binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1alpha expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, Reuben J -- Lamia, Katja A -- Vasquez, Debbie -- Koo, Seung-Hoi -- Bardeesy, Nabeel -- Depinho, Ronald A -- Montminy, Marc -- Cantley, Lewis C -- CA84313/CA/NCI NIH HHS/ -- GM056203/GM/NIGMS NIH HHS/ -- GM37828/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 GM056203-09/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1642-6. Epub 2005 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. shaw@salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16308421" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Animals ; Blood Glucose/analysis ; Diabetes Mellitus, Type 2/drug therapy/metabolism ; Enzyme Activation ; Female ; Gene Expression Regulation ; Gluconeogenesis/genetics ; Glucose/*metabolism ; HeLa Cells ; Homeostasis ; Humans ; Hyperglycemia/drug therapy/metabolism ; Hypoglycemic Agents/*pharmacology/therapeutic use ; Lipogenesis/genetics ; Liver/enzymology/*metabolism ; Male ; Metformin/*pharmacology/therapeutic use ; Mice ; Mice, Obese ; Multienzyme Complexes/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction ; Trans-Activators/genetics/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2005-03-26
    Description: The ataxia-telangiectasia mutated (ATM) kinase signals the presence of DNA double-strand breaks in mammalian cells by phosphorylating proteins that initiate cell-cycle arrest, apoptosis, and DNA repair. We show that the Mre11-Rad50-Nbs1 (MRN) complex acts as a double-strand break sensor for ATM and recruits ATM to broken DNA molecules. Inactive ATM dimers were activated in vitro with DNA in the presence of MRN, leading to phosphorylation of the downstream cellular targets p53 and Chk2. ATM autophosphorylation was not required for monomerization of ATM by MRN. The unwinding of DNA ends by MRN was essential for ATM stimulation, which is consistent with the central role of single-stranded DNA as an evolutionarily conserved signal for DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ji-Hoon -- Paull, Tanya T -- CA094008/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):551-4. Epub 2005 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790808" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Cell Line ; DNA/chemistry/*metabolism ; *DNA Damage ; DNA Repair ; DNA Repair Enzymes/genetics/*metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dimerization ; Enzyme Activation ; Humans ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Nucleic Acid Conformation ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Recombinant Proteins/metabolism ; Serine ; Signal Transduction ; Transfection ; Tumor Suppressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2005-07-05
    Description: Cell signaling that culminates in posttranslational modifications directs protein activity. Here we report how multiple Ca2+-dependent phosphorylation sites within the transcription activator Ets-1 act additively to produce graded DNA binding affinity. Nuclear magnetic resonance spectroscopic analyses show that phosphorylation shifts Ets-1 from a dynamic conformation poised to bind DNA to a well-folded inhibited state. These phosphates lie in an unstructured flexible region that functions as the allosteric effector of autoinhibition. Variable phosphorylation thus serves as a "rheostat" for cell signaling to fine-tune transcription at the level of DNA binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pufall, Miles A -- Lee, Gregory M -- Nelson, Mary L -- Kang, Hyun-Seo -- Velyvis, Algirdas -- Kay, Lewis E -- McIntosh, Lawrence P -- Graves, Barbara J -- GM08537/GM/NIGMS NIH HHS/ -- P01-CA24014/CA/NCI NIH HHS/ -- R01 GM38663/GM/NIGMS NIH HHS/ -- T32-CA93247/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):142-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994560" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; DNA/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Protein c-ets-1 ; Proto-Oncogene Proteins/*chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-ets ; Signal Transduction ; Transcription Factors/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2005-04-16
    Description: Kai proteins globally regulate circadian gene expression of cyanobacteria. The KaiC phosphorylation cycle, which persists even without transcription or translation, is assumed to be a basic timing process of the circadian clock. We have reconstituted the self-sustainable oscillation of KaiC phosphorylation in vitro by incubating KaiC with KaiA, KaiB, and adenosine triphosphate. The period of the in vitro oscillation was stable despite temperature change (temperature compensation), and the circadian periods observed in vivo in KaiC mutant strains were consistent with those measured in vitro. The enigma of the circadian clock can now be studied in vitro by examining the interactions between three Kai proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakajima, Masato -- Imai, Keiko -- Ito, Hiroshi -- Nishiwaki, Taeko -- Murayama, Yoriko -- Iwasaki, Hideo -- Oyama, Tokitaka -- Kondo, Takao -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):414-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15831759" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Bacterial Proteins/chemistry/genetics/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins ; Genes, Bacterial ; Luminescence ; Mutation ; Phosphorylation ; Recombinant Proteins/chemistry/metabolism ; Synechococcus/genetics/*metabolism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2005-07-05
    Description: Technologies to assess the molecular targets of biomolecules in living cells are lacking. We have developed a technology called magnetism-based interaction capture (MAGIC) that identifies molecular targets on the basis of induced movement of superparamagnetic nanoparticles inside living cells. Efficient intracellular uptake of superparamagnetic nanoparticles (coated with a small molecule of interest) was mediated by a transducible fusogenic peptide. These nanoprobes captured the small molecule's labeled target protein and were translocated in a direction specified by the magnetic field. Use of MAGIC in genome-wide expression screening identified multiple protein targets of a drug. MAGIC was also used to monitor signal-dependent modification and multiple interactions of proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Won, Jaejoon -- Kim, Mina -- Yi, Yong-Weon -- Kim, Young Ho -- Jung, Neoncheol -- Kim, Tae Kook -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994554" target="_blank"〉PubMed〈/a〉
    Keywords: Caspase 3 ; Caspases/metabolism ; Cell Line ; *Cell Physiological Phenomena ; Cell Survival ; Endocytosis ; Fluorescein-5-isothiocyanate ; Fluorescent Dyes ; HeLa Cells ; Humans ; I-kappa B Proteins/metabolism ; *Magnetics ; Microscopy, Confocal ; *Molecular Probe Techniques ; *Molecular Probes ; NF-kappa B/metabolism ; *Nanostructures ; Oligopeptides/metabolism ; Phosphorylation ; Protein Binding ; Proteins/*metabolism ; Quantum Dots ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Streptavidin ; Tacrolimus/metabolism ; Transcription Factor RelA ; Tumor Necrosis Factor-alpha/pharmacology ; beta-Transducin Repeat-Containing Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2005-03-05
    Description: Caspase-8, a proapoptotic protease, has an essential role in lymphocyte activation and protective immunity. We show that caspase-8 deficiency (CED) in humans and mice specifically abolishes activation of the transcription factor nuclear factor kappaB (NF-kappaB) after stimulation through antigen receptors, Fc receptors, or Toll-like receptor 4 in T, B, and natural killer cells. Caspase-8 also causes the alphabeta complex of the inhibitor of NF-kappaB kinase (IKK) to associate with the upstream Bcl10-MALT1 (mucosa-associated lymphatic tissue) adapter complex. Recruitment of the IKKalpha, beta complex, its activation, and the nuclear translocation of NF-kappaB require enzyme activity of full-length caspase-8. These findings thus explain the paradoxical association of defective apoptosis and combined immunodeficiency in human CED.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Helen -- Bidere, Nicolas -- Zheng, Lixin -- Cubre, Alan -- Sakai, Keiko -- Dale, Janet -- Salmena, Leonardo -- Hakem, Razqallah -- Straus, Stephen -- Lenardo, Michael -- New York, N.Y. -- Science. 2005 Mar 4;307(5714):1465-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15746428" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Chloromethyl Ketones/pharmacology ; Animals ; Apoptosis ; B-Lymphocytes/immunology/metabolism ; Caspase 8 ; Caspases/genetics/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Humans ; I-kappa B Kinase ; Immunity, Innate ; Immunologic Deficiency Syndromes/immunology/metabolism ; Isoenzymes/metabolism ; Killer Cells, Natural/immunology/metabolism ; Lipopolysaccharides/immunology ; Lymphocyte Activation ; Membrane Glycoproteins/metabolism ; Mice ; Mutation ; NF-kappa B/*metabolism ; Phosphorylation ; Protein Kinase C/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Antigen, T-Cell/*immunology ; Receptors, Cell Surface/metabolism ; Receptors, IgG/immunology ; Signal Transduction ; T-Lymphocytes/immunology/metabolism ; Toll-Like Receptor 4 ; Toll-Like Receptors ; Transcription Factor RelA ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2005-02-05
    Description: The 2.0-angstrom structure of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) catalytic subunit bound to a deletion mutant of a regulatory subunit (RIalpha) defines a previously unidentified extended interface. The complex provides a molecular mechanism for inhibition of PKA and suggests how cAMP binding leads to activation. The interface defines the large lobe of the catalytic subunit as a stable scaffold where Tyr247 in the G helix and Trp196 in the phosphorylated activation loop serve as anchor points for binding RIalpha. These residues compete with cAMP for the phosphate binding cassette in RIalpha. In contrast to the catalytic subunit, RIalpha undergoes major conformational changes when the complex is compared with cAMP-bound RIalpha. The inhibitor sequence docks to the active site, whereas the linker, also disordered in free RIalpha, folds across the extended interface. The beta barrel of cAMP binding domain A, which is the docking site for cAMP, remains largely intact in the complex, whereas the helical subdomain undergoes major reorganization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Choel -- Xuong, Nguyen-Huu -- Taylor, Susan S -- DK07233/DK/NIDDK NIH HHS/ -- GM19301/GM/NIGMS NIH HHS/ -- GM34921/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 4;307(5710):690-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692043" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase RIalpha Subunit ; Cyclic AMP-Dependent Protein Kinases/antagonists & ; inhibitors/*chemistry/*metabolism ; Enzyme Activation ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Tryptophan/chemistry ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2005-08-06
    Description: Mammalian epidermis is maintained by self-renewal of stem cells, but the underlying mechanisms are unknown. Deletion of Rac1, a Rho guanosine triphosphatase, in adult mouse epidermis stimulated stem cells to divide and undergo terminal differentiation, leading to failure to maintain the interfollicular epidermis, hair follicles, and sebaceous glands. Rac1 exerts its effects in the epidermis by negatively regulating c-Myc through p21-activated kinase 2 (PAK2) phosphorylation. We conclude that a pleiotropic regulator of cell adhesion and the cytoskeleton plays a critical role in controlling exit from the stem cell niche and propose that Rac and Myc represent a global stem cell regulatory axis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benitah, Salvador Aznar -- Frye, Michaela -- Glogauer, Michael -- Watt, Fiona M -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):933-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16081735" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Differentiation/metabolism ; Apoptosis ; Carcinoma, Squamous Cell/metabolism ; Cell Differentiation/*physiology ; Cells, Cultured ; Epidermis/*cytology ; Gene Deletion ; Humans ; Keratinocytes ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neuropeptides/genetics/*physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins c-myc/metabolism ; Skin Neoplasms/metabolism ; Stem Cells/*cytology ; Tamoxifen/*analogs & derivatives ; p21-Activated Kinases ; rac GTP-Binding Proteins/genetics/*physiology ; rac1 GTP-Binding Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2005-06-25
    Description: Signaling by heterotrimeric GTP-binding proteins (G proteins) drives numerous cellular processes. The number of G protein molecules activated by a single membrane receptor is a determinant of signal amplification, although in most cases this parameter remains unknown. In retinal rod photoreceptors, a long-lived photoisomerized rhodopsin molecule activates many G protein molecules (transducins), yielding substantial amplification and a large elementary (single-photon) response, before rhodopsin activity is terminated. Here we report that the elementary response in olfactory transduction is extremely small. A ligand-bound odorant receptor has a low probability of activating even one G protein molecule because the odorant dwell-time is very brief. Thus, signal amplification in olfactory transduction appears fundamentally different from that of phototransduction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957801/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957801/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhandawat, Vikas -- Reisert, Johannes -- Yau, King-Wai -- DC06904/DC/NIDCD NIH HHS/ -- R01 DC006904/DC/NIDCD NIH HHS/ -- R01 DC006904-01/DC/NIDCD NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY006837-16A1/EY/NEI NIH HHS/ -- R01 EY006837-17/EY/NEI NIH HHS/ -- R01 EY006837-18/EY/NEI NIH HHS/ -- R01 EY014596/EY/NEI NIH HHS/ -- R01 EY014596-01/EY/NEI NIH HHS/ -- R01 EY014596-02/EY/NEI NIH HHS/ -- R01 EY014596-03/EY/NEI NIH HHS/ -- R37 EY006837/EY/NEI NIH HHS/ -- R37 EY006837-15/EY/NEI NIH HHS/ -- R37 EY006837-15S1/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 24;308(5730):1931-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. vbhanda@mail.jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15976304" target="_blank"〉PubMed〈/a〉
    Keywords: Acetophenones/*metabolism/pharmacology ; Action Potentials ; Adenylyl Cyclases/metabolism ; Animals ; Calcium/metabolism/pharmacology ; Cell Separation ; Cyclohexanols/*metabolism/pharmacology ; Dose-Response Relationship, Drug ; Heterotrimeric GTP-Binding Proteins/metabolism ; In Vitro Techniques ; Kinetics ; Ligands ; Monoterpenes/*metabolism/pharmacology ; *Odors ; Olfactory Receptor Neurons/cytology/*physiology ; Phosphorylation ; Rana pipiens ; Receptors, Odorant/*metabolism ; Signal Transduction ; Smell/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2005-05-28
    Description: The active sites of 491 human protein kinase domains are highly conserved, which makes the design of selective inhibitors a formidable challenge. We used a structural bioinformatics approach to identify two selectivity filters, a threonine and a cysteine, at defined positions in the active site of p90 ribosomal protein S6 kinase (RSK). A fluoromethylketone inhibitor, designed to exploit both selectivity filters, potently and selectively inactivated RSK1 and RSK2 in mammalian cells. Kinases with only one selectivity filter were resistant to the inhibitor, yet they became sensitized after genetic introduction of the second selectivity filter. Thus, two amino acids that distinguish RSK from other protein kinases are sufficient to confer inhibitor sensitivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641834/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641834/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Michael S -- Zhang, Chao -- Shokat, Kevan M -- Taunton, Jack -- R01 GM071434-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 May 27;308(5726):1318-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Chemistry and Chemical Biology, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2280, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15919995" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; COS Cells ; *Computational Biology ; Cysteine/chemistry/metabolism ; Cytidine Deaminase/antagonists & inhibitors/chemistry/metabolism ; Enzyme Inhibitors/*chemistry/metabolism/*pharmacology ; Epidermal Growth Factor/pharmacology ; Heterocyclic Compounds, 2-Ring/chemistry/metabolism/*pharmacology ; Histones/metabolism ; Hydrophobic and Hydrophilic Interactions ; Molecular Structure ; Mutation ; Phosphorylation ; Protein Structure, Tertiary ; Ribosomal Protein S6 Kinases, 90-kDa/*antagonists & ; inhibitors/*chemistry/metabolism ; Sequence Alignment ; Serine/metabolism ; Structure-Activity Relationship ; Threonine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2005-02-12
    Description: Electrical activity in neurons is generally initiated in dendritic processes then propagated along axons to synapses, where it is passed to other neurons. Major structural features of neurons-their dendrites and axons-are thus related to their fundamental functions: the receipt and transmission of information. The acquisition of these distinct properties by dendrites and axons, called polarization, is a critical step in neuronal differentiation. We show here that SAD-A and SAD-B, mammalian orthologs of a kinase needed for presynaptic differentiation in Caenorhabditis elegans, are required for neuronal polarization. These kinases will provide entry points for unraveling signaling mechanisms that polarize neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kishi, Masashi -- Pan, Y Albert -- Crump, Justin Gage -- Sanes, Joshua R -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):929-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Axons/physiology/ultrastructure ; Brain/*cytology/embryology/metabolism ; Brain Chemistry ; Cell Differentiation ; Cell Line ; *Cell Polarity ; Cell Shape ; Cells, Cultured ; Cerebral Cortex/cytology/embryology/metabolism ; Dendrites/physiology/ultrastructure ; Hippocampus/cytology ; Mice ; Microtubule-Associated Proteins/metabolism ; Mutation ; Neurons/*cytology/*physiology/ultrastructure ; Phosphorylation ; Prosencephalon/cytology/embryology/metabolism ; Protein-Serine-Threonine Kinases/genetics/*physiology ; Spinal Cord/chemistry/embryology ; tau Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2005-03-12
    Description: The transition of cells from an epithelial to a mesenchymal phenotype is a critical event during morphogenesis in multicellular organisms and underlies the pathology of many diseases, including the invasive phenotype associated with metastatic carcinomas. Transforming growth factor beta (TGFbeta) is a key regulator of epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms that control the dissolution of tight junctions, an early event in EMT, remain elusive. We demonstrate that Par6, a regulator of epithelial cell polarity and tight-junction assembly, interacts with TGFbeta receptors and is a substrate of the type II receptor, TbetaRII. Phosphorylation of Par6 is required for TGFbeta-dependent EMT in mammary gland epithelial cells and controls the interaction of Par6 with the E3 ubiquitin ligase Smurf1. Smurf1, in turn, targets the guanosine triphosphatase RhoA for degradation, thereby leading to a loss of tight junctions. These studies define how an extracellular cue signals to the polarity machinery to control epithelial cell morphology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozdamar, Barish -- Bose, Rohit -- Barrios-Rodiles, Miriam -- Wang, Hong-Rui -- Zhang, Yue -- Wrana, Jeffrey L -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1603-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15761148" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors, Type I/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Polarity ; DNA-Binding Proteins/metabolism ; Epithelial Cells/*cytology/*physiology ; Humans ; Mesoderm/cytology ; Mice ; Models, Biological ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Binding ; Protein Kinase C/metabolism ; Protein Kinase C-epsilon ; Protein-Serine-Threonine Kinases ; Proteins/genetics/*metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Smad2 Protein ; Tight Junctions/metabolism/ultrastructure ; Trans-Activators/metabolism ; Transforming Growth Factor beta/metabolism/pharmacology ; Ubiquitin-Protein Ligases/metabolism ; rhoA GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-04-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Oers, Nicolai S C -- Chen, Zhijian J -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):65-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and the Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802594" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Apoptosis Regulatory Proteins ; CARD Signaling Adaptor Proteins ; Caspase 8 ; Caspases/metabolism ; Drosophila Proteins/metabolism ; Enzyme Activation ; Guanylate Cyclase/metabolism ; Humans ; I-kappa B Kinase ; Isoenzymes/genetics/*metabolism ; Ligands ; Lymphoma, B-Cell, Marginal Zone/metabolism ; Membrane Microdomains/metabolism ; Membrane Proteins/metabolism ; NF-kappa B/*metabolism ; Neoplasm Proteins/metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphorylation ; Protein Kinase C/genetics/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Receptors, Antigen, T-Cell/immunology/metabolism ; *Signal Transduction ; T-Lymphocytes/enzymology/immunology/*metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2005-10-08
    Description: Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koprivica, Vuk -- Cho, Kin-Sang -- Park, Jong Bae -- Yiu, Glenn -- Atwal, Jasvinder -- Gore, Bryan -- Kim, Jieun A -- Lin, Estelle -- Tessier-Lavigne, Marc -- Chen, Dong Feng -- He, Zhigang -- New York, N.Y. -- Science. 2005 Oct 7;310(5745):106-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16210539" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/drug effects/*physiology ; Calcium/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/*metabolism ; Enzyme Inhibitors/pharmacology ; Erlotinib Hydrochloride ; GPI-Linked Proteins ; Humans ; Mice ; Myelin Proteins/*metabolism/pharmacology ; Nerve Crush ; *Nerve Regeneration/drug effects ; Neurites/drug effects/physiology ; Optic Nerve/drug effects/physiology ; Optic Nerve Injuries/drug therapy ; Phosphorylation ; Quinazolines/pharmacology ; Receptor, Epidermal Growth Factor/*antagonists & inhibitors/*metabolism ; Receptors, Cell Surface/metabolism ; Retinal Ganglion Cells/drug effects/physiology ; Signal Transduction/drug effects ; Tyrphostins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abraham, Robert T -- Tibbetts, Randal S -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):510-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Signal Transduction Program, The Burnham Institute, La Jolla, CA 92037, USA. abraham@burnham.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845843" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Chloroquine/pharmacology ; DNA/*metabolism ; *DNA Damage ; DNA Repair ; DNA Repair Enzymes/*metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dimerization ; Enzyme Activation ; Histone Deacetylase Inhibitors ; Humans ; Models, Biological ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Recombinant Proteins/metabolism ; Serine/metabolism ; Signal Transduction ; Tumor Suppressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2005-02-05
    Description: To analyze the dynamics of protein complexes during the yeast cell cycle, we integrated data on protein interactions and gene expression. The resulting time-dependent interaction network places both periodically and constitutively expressed proteins in a temporal cell cycle context, thereby revealing previously unknown components and modules. We discovered that most complexes consist of both periodically and constitutively expressed subunits, which suggests that the former control complex activity by a mechanism of just-in-time assembly. Consistent with this, we show that additional regulation through targeted degradation and phosphorylation by Cdc28p (Cdk1) specifically affects the periodically expressed proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Lichtenberg, Ulrik -- Jensen, Lars Juhl -- Brunak, Soren -- Bork, Peer -- New York, N.Y. -- Science. 2005 Feb 4;307(5710):724-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692050" target="_blank"〉PubMed〈/a〉
    Keywords: CDC28 Protein Kinase, S cerevisiae/metabolism ; *Cell Cycle ; Cell Cycle Proteins/genetics/*metabolism ; Cyclins/metabolism ; Cytoskeleton/metabolism ; DNA Repair ; DNA Replication ; Gene Expression Regulation, Fungal ; Genes, Fungal ; *Mitosis ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; Protein Interaction Mapping ; Protein Subunits/metabolism ; Saccharomyces cerevisiae/*cytology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1854-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790818" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Phosphorylation ; *Protein Array Analysis ; *Protein Interaction Mapping ; Protein Kinases/*metabolism ; *Proteomics ; Saccharomyces cerevisiae/*enzymology ; Saccharomyces cerevisiae Proteins/*metabolism ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...