ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-08-27
    Description: A defect in Klotho gene expression in mice accelerates the degeneration of multiple age-sensitive traits. Here, we show that overexpression of Klotho in mice extends life span. Klotho protein functions as a circulating hormone that binds to a cell-surface receptor and represses intracellular signals of insulin and insulin-like growth factor 1 (IGF1), an evolutionarily conserved mechanism for extending life span. Alleviation of aging-like phenotypes in Klotho-deficient mice was observed by perturbing insulin and IGF1 signaling, suggesting that Klotho-mediated inhibition of insulin and IGF1 signaling contributes to its anti-aging properties. Klotho protein may function as an anti-aging hormone in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536606/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536606/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurosu, Hiroshi -- Yamamoto, Masaya -- Clark, Jeremy D -- Pastor, Johanne V -- Nandi, Animesh -- Gurnani, Prem -- McGuinness, Owen P -- Chikuda, Hirotaka -- Yamaguchi, Masayuki -- Kawaguchi, Hiroshi -- Shimomura, Iichiro -- Takayama, Yoshiharu -- Herz, Joachim -- Kahn, C Ronald -- Rosenblatt, Kevin P -- Kuro-o, Makoto -- R01 AG019712/AG/NIA NIH HHS/ -- R01 AG019712-05/AG/NIA NIH HHS/ -- R01 AG025326/AG/NIA NIH HHS/ -- R01 AG025326-03/AG/NIA NIH HHS/ -- R01AG19712/AG/NIA NIH HHS/ -- R01AG25326/AG/NIA NIH HHS/ -- R37 HL063762/HL/NHLBI NIH HHS/ -- U24 DK059637/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1829-33. Epub 2005 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Texas (UT) Southwestern Medical Center at Dallas, 5323 Harry Hines Bouleuvard, Dallas, TX 75390-9072, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16123266" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*physiology ; Animals ; Blood Glucose/analysis ; Cell Line ; Cell Line, Tumor ; Eating ; Female ; Glucuronidase ; Insulin/blood/metabolism ; Insulin Resistance ; Insulin-Like Growth Factor I/metabolism/pharmacology ; Ligands ; Longevity/genetics/*physiology ; Male ; Membrane Proteins/chemistry/*genetics/pharmacology/*physiology ; Mice ; Mice, Transgenic ; Myoblasts/metabolism ; Oxygen Consumption ; Peptide Fragments/chemistry/pharmacology ; Phosphorylation ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/metabolism ; Receptors, Cell Surface/metabolism ; Recombinant Proteins/chemistry/isolation & purification/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 57 (2000), S. 731-737 
    ISSN: 1420-9071
    Keywords: Key words. Aging; osteoporosis; osteoprotegerin; klotho; bone.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The mouse homozygous for a disruption of the klotho locus (KL −/− or klotho mouse) exhibited multiple pathological conditions resembling human aging. We observed osteopenia in KL −/− mice with a low bone turnover, in which the decrease in bone formation exceeded the decrease in bone resorption and resulted in net bone loss. This pathophysiology resembles closely that of senile osteoporosis in humans. Osteoblastic cells from KL −/− mice proliferated normally in vitro; however, they showed much lower alkaline phosphatase activity and mineralized matrix formation than those from control mice. Cultured osteoclastic cells from KL −/− mice had normal resorbing activity and survival rate, but the differentiation of osteoclastic cells from their precursors was significantly disturbed: in the co-culture of osteoblastic cells and osteoclast precursor cells, the formation of tartrate-resistant acid phosphatase-positive multinucleated osteoclastic cells was extremely poor only when osteoclast precursor cells orginated from KL −/− mice independently of the origin of the osteoblastic cells. In addition, we found that osteoprotegerin a secreted factor which inhibits osteoclastogenesis, was up-regulated in KL −/− mice. We conclude that a defect in klotho gene expression leads to the independent impairment of osteoblast and osteoclast differentiation, which can be a cause of low-turnover osteoporosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-05-01
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-11
    Description: Notch signaling modulates skeletal formation and pathogenesis of osteoarthritis (OA) through induction of catabolic factors. Here we examined roles of Hes1, a transcription factor and important target of Notch signaling, in these processes. SRY-box containing gene 9 (Sox9)-Cre mice were mated with Hes1fl/fl mice to generate tissue-specific deletion of Hes1...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...