ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (13,738)
  • Life and Medical Sciences  (2,311)
  • Chemical Engineering  (1,919)
  • Kinetics
  • Wiley-Blackwell  (17,968)
  • American Association for the Advancement of Science (AAAS)  (104)
  • American Association of Petroleum Geologists (AAPG)
  • International Union of Crystallography (IUCr)
  • 2010-2014  (58)
  • 1975-1979  (17,122)
  • 1945-1949  (892)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2014-05-09
    Description: The regenerative power of tissues and organs in biology has no analog in synthetic materials. Although self-healing of microscopic defects has been demonstrated, the regrowth of material lost through catastrophic damage requires a regenerative-like approach. We demonstrate a vascular synthetic system that restores mechanical performance in response to large-scale damage. Gap-filling scaffolds are created through a two-stage polymer chemistry that initially forms a shape-conforming dynamic gel but later polymerizes to a solid structural polymer with robust mechanical properties. Through the control of reaction kinetics and vascular delivery rate, we filled impacted regions that exceed 35 mm in diameter within 20 min and restored mechanical function within 3 hours. After restoration of impact damage, 62% of the total absorbed energy was recovered in comparison with that in initial impact tests.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, S R -- Moore, J S -- Sottos, N R -- Krull, B P -- Santa Cruz, W A -- Gergely, R C R -- New York, N.Y. -- Science. 2014 May 9;344(6184):620-3. doi: 10.1126/science.1251135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812399" target="_blank"〉PubMed〈/a〉
    Keywords: Gels/chemistry ; Kinetics ; Mechanical Processes ; Models, Chemical ; *Polymerization ; Polymers/*chemistry ; *Regeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-16
    Description: The assembly of artificial cells capable of executing synthetic DNA programs has been an important goal for basic research and biotechnology. We assembled two-dimensional DNA compartments fabricated in silicon as artificial cells capable of metabolism, programmable protein synthesis, and communication. Metabolism is maintained by continuous diffusion of nutrients and products through a thin capillary, connecting protein synthesis in the DNA compartment with the environment. We programmed protein expression cycles, autoregulated protein levels, and a signaling expression gradient, equivalent to a morphogen, in an array of interconnected compartments at the scale of an embryo. Gene expression in the DNA compartment reveals a rich, dynamic system that is controlled by geometry, offering a means for studying biological networks outside a living cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karzbrun, Eyal -- Tayar, Alexandra M -- Noireaux, Vincent -- Bar-Ziv, Roy H -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):829-32. doi: 10.1126/science.1255550.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Physics, University of Minnesota, Minneapolis, MN 55455, USA. ; Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel. roy.bar-ziv@weizmann.ac.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124443" target="_blank"〉PubMed〈/a〉
    Keywords: Artificial Cells/*metabolism/ultrastructure ; *DNA/genetics/metabolism ; Diffusion ; *Gene Expression ; Gene Expression Regulation ; Gene Regulatory Networks ; Green Fluorescent Proteins/genetics/metabolism ; Kinetics ; Microfluidic Analytical Techniques ; Oligonucleotide Array Sequence Analysis ; Proteins/*metabolism ; Silicon ; Software ; Synthetic Biology/methods ; Templates, Genetic ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-08
    Description: Although the effects of kinetics on crystal growth are well understood, the role of substrate curvature is not yet established. We studied rigid, two-dimensional colloidal crystals growing on spherical droplets to understand how the elastic stress induced by Gaussian curvature affects the growth pathway. In contrast to crystals grown on flat surfaces or compliant crystals on droplets, these crystals formed branched, ribbon-like domains with large voids and no topological defects. We show that this morphology minimizes the curvature-induced elastic energy. Our results illustrate the effects of curvature on the ubiquitous process of crystallization, with practical implications for nanoscale disorder-order transitions on curved manifolds, including the assembly of viral capsids, phase separation on vesicles, and crystallization of tetrahedra in three dimensions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meng, Guangnan -- Paulose, Jayson -- Nelson, David R -- Manoharan, Vinothan N -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):634-7. doi: 10.1126/science.1244827.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503849" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/chemistry ; Colloids/*chemistry ; Crystallization/*statistics & numerical data ; *Elasticity ; Kinetics ; Normal Distribution ; *Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-04
    Description: Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Felix H -- Ghaderi, Adel -- Fink, Gerald R -- Stephanopoulos, Gregory -- R01 GM035010/GM/NIGMS NIH HHS/ -- R01-GM035010/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):71-5. doi: 10.1126/science.1257859. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. Whitehead Institute for Biomedical Research, Cambridge, MA, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278607" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cation Transport Proteins/genetics ; Cell Culture Techniques ; Cell Membrane/metabolism ; Chemical Engineering ; *Drug Resistance, Fungal/genetics ; Ethanol/*metabolism/pharmacology ; Fermentation ; Genetic Engineering ; Glucose/metabolism ; Hydrogen-Ion Concentration ; Phosphates/*metabolism ; Potassium Compounds/*metabolism ; Proton Pumps/genetics ; Proton-Translocating ATPases/genetics ; Saccharomyces cerevisiae/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Up-Regulation ; Xylose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langer, Robert S -- Gura, Trisha -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1146. doi: 10.1126/science.346.6213.1146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trisha Gura is a freelance writer who lives in Boston. For more on life and careers visit www.sciencecareers.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430772" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology ; *Career Choice ; Chemical Engineering ; *Entrepreneurship ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-06
    Description: Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255705/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255705/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iversen, Lars -- Tu, Hsiung-Lin -- Lin, Wan-Chen -- Christensen, Sune M -- Abel, Steven M -- Iwig, Jeff -- Wu, Hung-Jen -- Gureasko, Jodi -- Rhodes, Christopher -- Petit, Rebecca S -- Hansen, Scott D -- Thill, Peter -- Yu, Cheng-Han -- Stamou, Dimitrios -- Chakraborty, Arup K -- Kuriyan, John -- Groves, Jay T -- P01 AI091580/AI/NIAID NIH HHS/ -- R01 AI104789/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):50-4. doi: 10.1126/science.1250373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemistry, MIT, Cambridge, MA 02139, USA. ; Mechanobiology Institute, National University of Singapore, Singapore. ; Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02139, USA. Department of Biological Engineering, MIT, Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA. Department of Physics, MIT, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA. ; Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Mechanobiology Institute, National University of Singapore, Singapore. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Berkeley Education Alliance for Research in Singapore, 1 Create Way, CREATE tower level 11, University Town, Singapore 138602. jtgroves@lbl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994643" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Kinetics ; Nucleotides/chemistry ; *Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins p21(ras)/*agonists ; Son of Sevenless Protein, Drosophila/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-20
    Description: Variability in gene expression among genetically identical cells has emerged as a central preoccupation in the study of gene regulation; however, a divide exists between the predictions of molecular models of prokaryotic transcriptional regulation and genome-wide experimental studies suggesting that this variability is indifferent to the underlying regulatory architecture. We constructed a set of promoters in Escherichia coli in which promoter strength, transcription factor binding strength, and transcription factor copy numbers are systematically varied, and used messenger RNA (mRNA) fluorescence in situ hybridization to observe how these changes affected variability in gene expression. Our parameter-free models predicted the observed variability; hence, the molecular details of transcription dictate variability in mRNA expression, and transcriptional noise is specifically tunable and thus represents an evolutionarily accessible phenotypic parameter.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388425/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388425/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Daniel L -- Brewster, Robert C -- Phillips, Rob -- 1 U54 CA143869/CA/NCI NIH HHS/ -- DP1 OD000217/OD/NIH HHS/ -- R01 GM085286/GM/NIGMS NIH HHS/ -- U54 CA143869/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1533-6. doi: 10.1126/science.1255301. Epub 2014 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA. ; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA. Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA. ; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA. Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA. phillips@pboc.caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525251" target="_blank"〉PubMed〈/a〉
    Keywords: Cells/*metabolism ; DNA-Directed RNA Polymerases/metabolism ; Escherichia coli/genetics ; Gene Dosage ; *Gene Expression Regulation ; *Genetic Variation ; In Situ Hybridization ; Kinetics ; Lac Repressors/genetics/metabolism ; Models, Genetic ; *Promoter Regions, Genetic ; Protein Binding ; RNA, Messenger/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-07
    Description: In individual cells, transcription is a random process obeying single-molecule kinetics. Often, it occurs in a bursty, intermittent manner. The frequency and size of these bursts affect the magnitude of temporal fluctuations in messenger RNA and protein content within a cell, creating variation or "noise" in gene expression. It is still unclear to what degree transcriptional kinetics are specific to each gene and determined by its promoter sequence. Alternative scenarios have been proposed, in which the kinetics of transcription are governed by cellular constraints and follow universal rules across the genome. Evidence from genome-wide noise studies and from systematic perturbations of promoter sequences suggest that both scenarios-namely gene-specific versus genome-wide regulation of transcription kinetics-may be present to different degrees in bacteria, yeast, and animal cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Alvaro -- Golding, Ido -- R01 GM082837/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1188-93. doi: 10.1126/science.1242975.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Escherichia coli/genetics/metabolism ; Eukaryota/genetics/metabolism ; *Gene Expression Regulation ; Genome ; Kinetics ; Models, Genetic ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; Single-Cell Analysis ; Stochastic Processes ; *Transcription, Genetic ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-03-09
    Description: RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded through multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly through a single structural intermediate. The RNA binding domain of heterogeneous nuclear ribonucleoprotein A1 protein, a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show that RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grohman, Jacob K -- Gorelick, Robert J -- Lickwar, Colin R -- Lieb, Jason D -- Bower, Brian D -- Znosko, Brent M -- Weeks, Kevin M -- GM031819/GM/NIGMS NIH HHS/ -- GM064803/GM/NIGMS NIH HHS/ -- GM072518/GM/NIGMS NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM064803/GM/NIGMS NIH HHS/ -- T32 GM007092/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):190-5. doi: 10.1126/science.1230715. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470731" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Dimerization ; Guanosine/chemistry/*metabolism ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry/metabolism ; Inosine/chemistry/metabolism ; Kinetics ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Moloney murine leukemia virus/genetics/*metabolism ; Nucleic Acid Conformation ; Nucleocapsid Proteins/chemistry/*metabolism ; Protein Binding ; RNA, Viral/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, X Sunney -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1457-9. doi: 10.1126/science.1248859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357307" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Enzymes/*chemistry ; Fluorescence ; Kinetics ; Molecular Imaging ; Optical Imaging
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-10-05
    Description: The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins, but it is unknown how stable most native interactions are. Although live-cell imaging suggests short-lived interactions at tandem gene arrays, current methods cannot measure rapid binding dynamics at single-copy genes. We show, by using a modified ChIP assay with subsecond temporal resolution, that the time dependence of formaldehyde cross-linking can be used to extract in vivo on and off rates for site-specific chromatin interactions varying over a ~100-fold dynamic range. By using the method, we show that a regulatory process can shift weakly bound TATA-binding protein to stable promoter interactions, thereby facilitating transcription complex formation. This assay provides an approach for systematic, quantitative analyses of chromatin binding dynamics in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997053/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997053/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poorey, Kunal -- Viswanathan, Ramya -- Carver, Melissa N -- Karpova, Tatiana S -- Cirimotich, Shana M -- McNally, James G -- Bekiranov, Stefan -- Auble, David T -- GM55763/GM/NIGMS NIH HHS/ -- R01 GM055763/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):369-72. doi: 10.1126/science.1242369. Epub 2013 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091704" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Chromatin/chemistry/*metabolism ; Chromatin Immunoprecipitation/*methods ; Cross-Linking Reagents/chemistry ; DNA-Binding Proteins/chemistry/metabolism ; Formaldehyde/chemistry ; Gene Dosage ; *Gene Expression Regulation ; Kinetics ; Promoter Regions, Genetic ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; TATA-Binding Protein Associated Factors/chemistry/metabolism ; TATA-Box Binding Protein/chemistry/*metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-02-09
    Description: Piperidines are prevalent in natural products and pharmaceutical agents and are important synthetic targets for drug discovery and development. We report on a methodology that provides highly substituted piperidine derivatives with regiochemistry selectively tunable by varying the strength of acid used in the reaction. Readily available starting materials are first converted to dihydropyridines via a cascade reaction initiated by rhodium-catalyzed carbon-hydrogen bond activation. Subsequent divergent regio- and diastereoselective protonation of the dihydropyridines under either kinetic or thermodynamic control provides two distinct iminium ion intermediates that then undergo highly diastereoselective nucleophilic additions. X-ray structural characterization of both the kinetically and thermodynamically favored iminium ions along with density functional theory calculations provide a theoretical underpinning for the high selectivities achieved for the reaction sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duttwyler, Simon -- Chen, Shuming -- Takase, Michael K -- Wiberg, Kenneth B -- Bergman, Robert G -- Ellman, Jonathan A -- GM069559/GM/NIGMS NIH HHS/ -- R01 GM069559/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):678-82. doi: 10.1126/science.1230704.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393259" target="_blank"〉PubMed〈/a〉
    Keywords: Acids ; Catalysis ; Crystallography, X-Ray ; Dihydropyridines/chemistry ; Heterocyclic Compounds/*chemical synthesis/chemistry ; Hydrogen Bonding ; Kinetics ; Molecular Conformation ; Molecular Structure ; Nitrogen/*chemistry ; Piperidines/*chemical synthesis/*chemistry ; *Protons ; Rhodium ; Stereoisomerism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-11-10
    Description: Despite more than 30 years of work on the Wnt signaling pathway, the basic mechanism of how the extracellular Wnt signal increases the intracellular concentration of beta-catenin is still contentious. Circumventing much of the detailed biochemistry, we used basic principles of chemical kinetics coupled with quantitative measurements to define the reactions on beta-catenin directly affected by the Wnt signal. We conclude that the core signal transduction mechanism is relatively simple, with only two regulated phosphorylation steps. Their partial inhibition gives rise to the full dynamics of the response and subsequently maintains a steady state in which the concentration of beta-catenin is increased.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez, Ana R -- Klein, Allon M -- Kirschner, Marc W -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1337-40. doi: 10.1126/science.1228734. Epub 2012 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23138978" target="_blank"〉PubMed〈/a〉
    Keywords: Casein Kinase I/chemistry/metabolism ; Cell Line, Tumor ; Cysteine Proteinase Inhibitors/pharmacology ; Glycogen Synthase Kinase 3/metabolism ; HEK293 Cells ; Humans ; Kinetics ; Leupeptins/pharmacology ; Phosphorylation ; *Signal Transduction ; Wnt Proteins/*metabolism ; Wnt3A Protein/metabolism ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savage, Phillip E -- New York, N.Y. -- Science. 2012 Nov 23;338(6110):1039-40. doi: 10.1126/science.1224310.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA. psavage@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23180853" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cell Culture Techniques ; Chemical Engineering ; Chlorophyta/*chemistry/growth & development ; *Hot Temperature ; *Hydrostatic Pressure ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-03-01
    Description: The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs as the free-energy barrier between two states is crossed. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding, we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Forster resonance energy transfer experiments. Whereas the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by a factor of less than 5, which shows that a fast- and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hoi Sung -- McHale, Kevin -- Louis, John M -- Eaton, William A -- Z99 DK999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):981-4. doi: 10.1126/science.1215768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-0520, USA. chunghoi@niddk.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363011" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Carrier Proteins/*chemistry ; Fluorescence Resonance Energy Transfer ; Kinetics ; Likelihood Functions ; Models, Molecular ; Molecular Sequence Data ; Photons ; Protein Conformation ; *Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-10-23
    Description: Growing RNA chains fold cotranscriptionally as they are synthesized by RNA polymerase. Riboswitches, which regulate gene expression by adopting alternative RNA folds, are sensitive to cotranscriptional events. We developed an optical-trapping assay to follow the cotranscriptional folding of a nascent RNA and used it to monitor individual transcripts of the pbuE adenine riboswitch, visualizing distinct folding transitions. We report a particular folding signature for the riboswitch aptamer whose presence directs the gene-regulatory transcription outcome, and we measured the termination frequency as a function of adenine level and tension applied to the RNA. Our results demonstrate that the outcome is kinetically controlled. These experiments furnish a means to observe conformational switching in real time and enable the precise mapping of events during cotranscriptional folding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frieda, Kirsten L -- Block, Steven M -- R37 GM057035/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):397-400. doi: 10.1126/science.1225722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23087247" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*chemistry/metabolism ; Bacillus subtilis/genetics ; Base Sequence ; Kinetics ; Molecular Sequence Data ; *Optical Tweezers ; *RNA Folding ; Riboswitch/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-09-08
    Description: Spontaneous electrical signals in the retina's photoreceptors impose a limit on visual sensitivity. Their origin is attributed to a thermal, rather than photochemical, activation of the transduction cascade. Although the mechanism of such a process is under debate, the observation of a relationship between the maximum absorption wavelength (lambda(max)) and the thermal activation kinetic constant (k) of different visual pigments (the Barlow correlation) indicates that the thermal and photochemical activations are related. Here we show that a quantum chemical model of the bovine rod pigment provides a molecular-level understanding of the Barlow correlation. The transition state mediating thermal activation has the same electronic structure as the photoreceptor excited state, thus creating a direct link between lambda(max) and k. Such a link appears to be the manifestation of intrinsic chromophore features associated with the existence of a conical intersection between its ground and excited states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gozem, Samer -- Schapiro, Igor -- Ferre, Nicolas -- Olivucci, Massimo -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1225-8. doi: 10.1126/science.1220461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Isomerism ; Kinetics ; Models, Chemical ; Photochemical Processes ; Quantum Theory ; Retinal Rod Photoreceptor Cells/*chemistry/physiology ; Rhodopsin/*chemistry/*physiology ; Rod Opsins/chemistry/physiology ; Schiff Bases ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-06-23
    Description: Transcription factors (TFs) are proteins that regulate the expression of genes by binding sequence-specific sites on the chromosome. It has been proposed that to find these sites fast and accurately, TFs combine one-dimensional (1D) sliding on DNA with 3D diffusion in the cytoplasm. This facilitated diffusion mechanism has been demonstrated in vitro, but it has not been shown experimentally to be exploited in living cells. We have developed a single-molecule assay that allows us to investigate the sliding process in living bacteria. Here we show that the lac repressor slides 45 +/- 10 base pairs on chromosomal DNA and that sliding can be obstructed by other DNA-bound proteins near the operator. Furthermore, the repressor frequently (〉90%) slides over its natural lacO(1) operator several times before binding. This suggests a trade-off between rapid search on nonspecific sequences and fast binding at the specific sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammar, Petter -- Leroy, Prune -- Mahmutovic, Anel -- Marklund, Erik G -- Berg, Otto G -- Elf, Johan -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1595-8. doi: 10.1126/science.1221648.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723426" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromosomes, Bacterial/metabolism ; DNA, Bacterial/*metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins/*metabolism ; Facilitated Diffusion ; Kinetics ; *Lac Operon ; Lac Repressors/*metabolism ; *Operator Regions, Genetic ; Protein Binding ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-04-14
    Description: microRNAs (miRNAs) regulate gene expression through translational repression and/or messenger RNA (mRNA) deadenylation and decay. Because translation, deadenylation, and decay are closely linked processes, it is important to establish their ordering and thus to define the molecular mechanism of silencing. We have investigated the kinetics of these events in miRNA-mediated gene silencing by using a Drosophila S2 cell-based controllable expression system and show that mRNAs with both natural and engineered 3' untranslated regions with miRNA target sites are first subject to translational inhibition, followed by effects on deadenylation and decay. We next used a natural translational elongation stall to show that miRNA-mediated silencing inhibits translation at an early step, potentially translation initiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971879/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971879/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Djuranovic, Sergej -- Nahvi, Ali -- Green, Rachel -- R01 GM059425/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):237-40. doi: 10.1126/science.1215691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499947" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Cell Line ; Drosophila Proteins/genetics ; Drosophila melanogaster/*genetics/metabolism ; *Gene Silencing ; Kinetics ; MicroRNAs/*genetics/metabolism ; Peptide Chain Elongation, Translational ; Peptide Chain Initiation, Translational ; *Protein Biosynthesis ; *RNA Stability ; RNA, Messenger/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-08-04
    Description: The synaptic adhesion molecules neurexin and neuroligin alter the development and function of synapses and are linked to autism in humans. Here, we found that Caenorhabditis elegans neurexin (NRX-1) and neuroligin (NLG-1) mediated a retrograde synaptic signal that inhibited neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on, whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased presynaptic levels of tomosyn, an inhibitor of SV fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Zhitao -- Hom, Sabrina -- Kudze, Tambudzai -- Tong, Xia-Jing -- Choi, Seungwon -- Aramuni, Gayane -- Zhang, Weiqi -- Kaplan, Joshua M -- NS32196/NS/NINDS NIH HHS/ -- R37 NS032196/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):980-4. doi: 10.1126/science.1224896. Epub 2012 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22859820" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Adhesion Molecules, Neuronal/genetics/*metabolism ; Cholinergic Neurons/physiology ; Excitatory Postsynaptic Potentials ; Exocytosis ; Kinetics ; Mice ; MicroRNAs/genetics/metabolism ; Motor Neurons/physiology ; Mutation ; Neural Inhibition ; Neuromuscular Junction/*physiology ; Neurotransmitter Agents/metabolism ; *Synaptic Transmission ; Synaptic Vesicles/physiology ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-04-14
    Description: Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients revealed that Nodals have a shorter range than Lefty proteins. Pulse-labeling analysis indicated that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays revealed that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Patrick -- Rogers, Katherine W -- Jordan, Ben M -- Lee, Joon S -- Robson, Drew -- Ramanathan, Sharad -- Schier, Alexander F -- 5R01GM56211/GM/NIGMS NIH HHS/ -- R01 GM056211/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 11;336(6082):721-4. doi: 10.1126/science.1221920. Epub 2012 Apr 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA. pmueller@fas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499809" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastula/*metabolism ; *Body Patterning ; Diffusion ; Embryonic Development ; Fluorescence Recovery After Photobleaching ; Half-Life ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Kinetics ; Left-Right Determination Factors/genetics/*metabolism ; Models, Biological ; Nodal Signaling Ligands/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Zebrafish/*embryology/metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-01-24
    Description: Tethering a single lysozyme molecule to a carbon nanotube field-effect transistor produced a stable, high-bandwidth transducer for protein motion. Electronic monitoring during 10-minute periods extended well beyond the limitations of fluorescence techniques to uncover dynamic disorder within a single molecule and establish lysozyme as a processive enzyme. On average, 100 chemical bonds are processively hydrolyzed, at 15-hertz rates, before lysozyme returns to its nonproductive, 330-hertz hinge motion. Statistical analysis differentiated single-step hinge closure from enzyme opening, which requires two steps. Seven independent time scales governing lysozyme's activity were observed. The pH dependence of lysozyme activity arises not from changes to its processive kinetics but rather from increasing time spent in either nonproductive rapid motions or an inactive, closed conformation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Yongki -- Moody, Issa S -- Sims, Patrick C -- Hunt, Steven R -- Corso, Brad L -- Perez, Israel -- Weiss, Gregory A -- Collins, Philip G -- R01 CA133592/CA/NCI NIH HHS/ -- R01 CA133592-01/CA/NCI NIH HHS/ -- T32 CA009054/CA/NCI NIH HHS/ -- T32CA009054/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):319-24. doi: 10.1126/science.1214824.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Surface and Interface Science, University of California Irvine, Irvine, CA 92697-2375, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267809" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T4/enzymology ; Biocatalysis ; Electric Conductivity ; Fluorescence Resonance Energy Transfer ; Hydrogen-Ion Concentration ; Kinetics ; Microscopy, Atomic Force ; Muramidase/*chemistry/*metabolism ; Nanotubes, Carbon ; Peptidoglycan/metabolism ; Protein Conformation ; Pyrenes ; Static Electricity ; Thermodynamics ; Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-04-23
    Description: Cellular messenger RNA levels are achieved by the combinatorial complexity of factors controlling transcription, yet the small number of molecules involved in these pathways fluctuates stochastically. It has not yet been experimentally possible to observe the activity of single polymerases on an endogenous gene to elucidate how these events occur in vivo. Here, we describe a method of fluctuation analysis of fluorescently labeled RNA to measure dynamics of nascent RNA--including initiation, elongation, and termination--at an active yeast locus. We find no transcriptional memory between initiation events, and elongation speed can vary by threefold throughout the cell cycle. By measuring the abundance and intranuclear mobility of an upstream transcription factor, we observe that the gene firing rate is directly determined by trans-activating factor search times.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larson, Daniel R -- Zenklusen, Daniel -- Wu, Bin -- Chao, Jeffrey A -- Singer, Robert H -- 57071/PHS HHS/ -- 86217/PHS HHS/ -- R01 GM057071/GM/NIGMS NIH HHS/ -- R01 GM057071-10/GM/NIGMS NIH HHS/ -- R01 GM057071-11/GM/NIGMS NIH HHS/ -- R01 GM057071-12/GM/NIGMS NIH HHS/ -- R01 GM086217/GM/NIGMS NIH HHS/ -- R01 GM086217-01/GM/NIGMS NIH HHS/ -- R01 GM086217-02/GM/NIGMS NIH HHS/ -- R01 GM086217-03/GM/NIGMS NIH HHS/ -- R01 GM086217-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):475-8. doi: 10.1126/science.1202142.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512033" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics ; Cell Cycle ; Cell Nucleus/metabolism ; DNA Polymerase I/genetics ; Facilitated Diffusion ; *Genes, Fungal ; Glutamate Synthase/genetics ; Green Fluorescent Proteins ; Kinetics ; Microscopy, Fluorescence ; Models, Genetic ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; RNA Precursors/genetics/metabolism ; RNA, Fungal/biosynthesis/*genetics ; RNA, Messenger/biosynthesis/*genetics ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Spectrometry, Fluorescence ; Transcription Factors/metabolism ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-07-09
    Description: Both engineering and evolution are constrained by trade-offs between efficiency and robustness, but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we explicitly derive analytic equations for hard trade-offs between robustness and efficiency with oscillations as an inevitable side effect. The model describes how the trade-offs arise from individual parameters, including the interplay of feedback control with autocatalysis of network products necessary to power and catalyze intermediate reactions. We then use control theory to prove that the essential features of these hard trade-off "laws" are universal and fundamental, in that they depend minimally on the details of this system and generalize to the robust efficiency of any autocatalytic network. The theory also suggests worst-case conditions that are consistent with initial experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandra, Fiona A -- Buzi, Gentian -- Doyle, John C -- R01GM078992A/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):187-92. doi: 10.1126/science.1200705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA. fiona@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21737735" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Biocatalysis ; Feedback, Physiological ; Glucose/metabolism ; *Glycolysis ; Kinetics ; Linear Models ; *Models, Biological ; NAD/metabolism ; Nonlinear Dynamics ; Phosphofructokinases/antagonists & inhibitors/metabolism ; Pyruvate Kinase/antagonists & inhibitors/metabolism ; Saccharomyces cerevisiae/*metabolism ; Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nair, Gautham -- Raj, Arjun -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):431-2. doi: 10.1126/science.1205995.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512026" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Directed RNA Polymerases/metabolism ; Fibroblasts ; *Gene Expression ; *Gene Silencing ; Genes, Fungal ; Kinetics ; Mice ; Models, Genetic ; RNA, Messenger/*genetics/metabolism ; Signal Processing, Computer-Assisted ; Stochastic Processes ; *Transcription, Genetic ; *Transcriptional Activation ; Yeasts/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-03-12
    Description: The spliceosome is the complex macromolecular machine responsible for removing introns from precursors to messenger RNAs (pre-mRNAs). We combined yeast genetic engineering, chemical biology, and multiwavelength fluorescence microscopy to follow assembly of single spliceosomes in real time in whole-cell extracts. We find that individual spliceosomal subcomplexes associate with pre-mRNA sequentially via an ordered pathway to yield functional spliceosomes and that association of every subcomplex is reversible. Further, early subcomplex binding events do not fully commit a pre-mRNA to splicing; rather, commitment increases as assembly proceeds. These findings have important implications for the regulation of alternative splicing. This experimental strategy should prove widely useful for mechanistic analysis of other macromolecular machines in environments approaching the complexity of living cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoskins, Aaron A -- Friedman, Larry J -- Gallagher, Sarah S -- Crawford, Daniel J -- Anderson, Eric G -- Wombacher, Richard -- Ramirez, Nicholas -- Cornish, Virginia W -- Gelles, Jeff -- Moore, Melissa J -- F32 GM079971/GM/NIGMS NIH HHS/ -- F32 GM079971-03/GM/NIGMS NIH HHS/ -- GM079971/GM/NIGMS NIH HHS/ -- GM759628/GM/NIGMS NIH HHS/ -- K99 GM086471/GM/NIGMS NIH HHS/ -- K99 GM086471-02/GM/NIGMS NIH HHS/ -- K99/R00 GM086471/GM/NIGMS NIH HHS/ -- R01 GM043369/GM/NIGMS NIH HHS/ -- R01 GM053007/GM/NIGMS NIH HHS/ -- R01 GM053007-15/GM/NIGMS NIH HHS/ -- R01 GM081648/GM/NIGMS NIH HHS/ -- R01 GM081648-04/GM/NIGMS NIH HHS/ -- R01 GM54469/GM/NIGMS NIH HHS/ -- R01 GM81648/GM/NIGMS NIH HHS/ -- R37 GM043369/GM/NIGMS NIH HHS/ -- R37 GM043369-21/GM/NIGMS NIH HHS/ -- RC1 GM091804/GM/NIGMS NIH HHS/ -- RC1 GM091804-02/GM/NIGMS NIH HHS/ -- T32 GM007596/GM/NIGMS NIH HHS/ -- T32 GM007596-30/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1289-95. doi: 10.1126/science.1198830.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393538" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Fluorescent Dyes ; Introns ; Kinetics ; Microscopy, Fluorescence ; Protein Binding ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Fungal/*metabolism ; Ribonucleoprotein, U1 Small Nuclear/metabolism ; Ribonucleoprotein, U2 Small Nuclear/metabolism ; Ribonucleoprotein, U4-U6 Small Nuclear/metabolism ; Ribonucleoprotein, U5 Small Nuclear/metabolism ; Ribonucleoproteins, Small Nuclear/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/*metabolism ; Spliceosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-09-24
    Description: Nonhexameric helicases use adenosine triphosphate (ATP) to unzip base pairs in double-stranded nucleic acids (dsNAs). Studies have suggested that these helicases unzip dsNAs in single-base pair increments, consuming one ATP molecule per base pair, but direct evidence for this mechanism is lacking. We used optical tweezers to follow the unwinding of double-stranded RNA by the hepatitis C virus NS3 helicase. Single-base pair steps by NS3 were observed, along with nascent nucleotide release that was asynchronous with base pair opening. Asynchronous release of nascent nucleotides rationalizes various observations of its dsNA unwinding and may be used to coordinate the translocation speed of NS3 along the RNA during viral replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172460/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172460/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Wei -- Arunajadai, Srikesh G -- Moffitt, Jeffrey R -- Tinoco, Ignacio Jr -- Bustamante, Carlos -- 5R01GM010840/GM/NIGMS NIH HHS/ -- 5R01GM032543/GM/NIGMS NIH HHS/ -- R01 GM010840/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1746-9. doi: 10.1126/science.1206023.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA. chengwe@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940894" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Algorithms ; Base Pairing ; Hepacivirus/*enzymology ; Kinetics ; Models, Biological ; Nucleic Acid Conformation ; Optical Tweezers ; RNA Helicases/*metabolism ; RNA, Double-Stranded/chemistry/*metabolism ; RNA, Viral/chemistry/*metabolism ; Viral Nonstructural Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-03-19
    Description: In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals. We describe how such bursts generate gene-specific temporal patterns of messenger RNA (mRNA) synthesis in mammalian cells. To monitor transcription at high temporal resolution, we established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells. Mathematical modeling identified gene-specific on- and off-switching rates in transcriptional activity and mean numbers of mRNAs produced during the bursts. Transcriptional kinetics were markedly altered by cis-regulatory DNA elements. Our analysis demonstrated that bursting kinetics are highly gene-specific, reflecting refractory periods during which genes stay inactive for a certain time before switching on again.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suter, David M -- Molina, Nacho -- Gatfield, David -- Schneider, Kim -- Schibler, Ueli -- Naef, Felix -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):472-4. doi: 10.1126/science.1198817. Epub 2011 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Sciences III, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415320" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cells, Cultured ; Chromatin/physiology ; Circadian Rhythm/genetics ; Down-Regulation ; *Gene Expression ; Histones/metabolism ; Kinetics ; Luminescent Measurements ; Mice ; Models, Genetic ; NIH 3T3 Cells ; Promoter Regions, Genetic ; Protein Biosynthesis ; RNA, Messenger/genetics/metabolism ; Stochastic Processes ; *Transcription, Genetic ; Transcriptional Activation ; Transgenes ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-29
    Description: An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 mus and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindorff-Larsen, Kresten -- Piana, Stefano -- Dror, Ron O -- Shaw, David E -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. kresten.lindorff-larsen@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034434" target="_blank"〉PubMed〈/a〉
    Keywords: Kinetics ; Molecular Dynamics Simulation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-10-15
    Description: Periodic stripe patterns are ubiquitous in living organisms, yet the underlying developmental processes are complex and difficult to disentangle. We describe a synthetic genetic circuit that couples cell density and motility. This system enabled programmed Escherichia coli cells to form periodic stripes of high and low cell densities sequentially and autonomously. Theoretical and experimental analyses reveal that the spatial structure arises from a recurrent aggregation process at the front of the continuously expanding cell population. The number of stripes formed could be tuned by modulating the basal expression of a single gene. The results establish motility control as a simple route to establishing recurrent structures without requiring an extrinsic pacemaker.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Chenli -- Fu, Xiongfei -- Liu, Lizhong -- Ren, Xiaojing -- Chau, Carlos K L -- Li, Sihong -- Xiang, Lu -- Zeng, Hualing -- Chen, Guanhua -- Tang, Lei-Han -- Lenz, Peter -- Cui, Xiaodong -- Huang, Wei -- Hwa, Terence -- Huang, Jian-Dong -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):238-41. doi: 10.1126/science.1209042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998392" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl-Butyrolactones/metabolism ; Bacterial Load ; Cell Proliferation ; Culture Media ; Diffusion ; Escherichia coli K12/cytology/genetics/*growth & development/*physiology ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Kinetics ; Models, Biological ; Movement ; Quorum Sensing ; Synthetic Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-04-23
    Description: Amination of alkanes has generally required metal catalysts and/or high temperatures. Here we report that simple exposure of a broad range of alkanes to N-triflylimino-lambda(3)-bromane 1 at ambient temperature results in C-H insertion of the nitrogen functionality to afford triflyl-substituted amines in moderate to high yields. Marked selectivity for tertiary over secondary C-H bonds was observed; primary (methyl) C-H bonds were inert. Addition of hexafluoroisopropanol to inhibit decomposition of 1 dramatically improved the C-H amination efficiencies. Second-order kinetics, activation parameters (negative activation entropy), deuterium isotope effects, and theoretical calculations suggest a concerted asynchronous bimolecular transition state for the metal-free C-H amination event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ochiai, Masahito -- Miyamoto, Kazunori -- Kaneaki, Takao -- Hayashi, Satoko -- Nakanishi, Waro -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):448-51. doi: 10.1126/science.1201686.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan. mochiai@ph.tokushima-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512029" target="_blank"〉PubMed〈/a〉
    Keywords: Adamantane/chemistry ; Alkanes/*chemistry ; Amination ; Amines/*chemistry ; Bromobenzenes/*chemistry ; Carbon/chemistry ; Hydrocarbons, Brominated/*chemistry ; Hydrogen/chemistry ; Kinetics ; Physicochemical Processes ; Stereoisomerism ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-04-09
    Description: Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhabha, Gira -- Lee, Jeeyeon -- Ekiert, Damian C -- Gam, Jongsik -- Wilson, Ian A -- Dyson, H Jane -- Benkovic, Stephen J -- Wright, Peter E -- GM080209/GM/NIGMS NIH HHS/ -- GM75995/GM/NIGMS NIH HHS/ -- R01 GM075995/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):234-8. doi: 10.1126/science.1198542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474759" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Folic Acid/chemistry ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; NADP/chemistry ; Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradforth, Stephen -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1398-9. doi: 10.1126/science.1203629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA. stephen.bradforth@usc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415344" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Cyclohexanes/*chemistry ; Free Radicals ; Hydrogen/*chemistry ; Hydrogen Cyanide/*chemistry ; Kinetics ; Solutions ; Solvents/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-09-03
    Description: A deeper mechanistic understanding of the saccharification of cellulosic biomass could enhance the efficiency of biofuels development. We report here the real-time visualization of crystalline cellulose degradation by individual cellulase enzymes through use of an advanced version of high-speed atomic force microscopy. Trichoderma reesei cellobiohydrolase I (TrCel7A) molecules were observed to slide unidirectionally along the crystalline cellulose surface but at one point exhibited collective halting analogous to a traffic jam. Changing the crystalline polymorphic form of cellulose by means of an ammonia treatment increased the apparent number of accessible lanes on the crystalline surface and consequently the number of moving cellulase molecules. Treatment of this bulky crystalline cellulose simultaneously or separately with T. reesei cellobiohydrolase II (TrCel6A) resulted in a remarkable increase in the proportion of mobile enzyme molecules on the surface. Cellulose was completely degraded by the synergistic action between the two enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Igarashi, Kiyohiko -- Uchihashi, Takayuki -- Koivula, Anu -- Wada, Masahisa -- Kimura, Satoshi -- Okamoto, Tetsuaki -- Penttila, Merja -- Ando, Toshio -- Samejima, Masahiro -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1279-82. doi: 10.1126/science.1208386.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan. aquarius@mail.ecc.u-tokyo.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885779" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Biomass ; Cellobiose/metabolism ; Cellulose/chemistry/*metabolism ; Cellulose 1,4-beta-Cellobiosidase/*metabolism ; Crystallization ; Hydrolysis ; Kinetics ; Microscopy, Atomic Force ; Trichoderma/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-06-11
    Description: Aromatic molecules are key constituents of many pharmaceuticals, electronic materials, and commodity plastics. The utility of these molecules directly reflects the identity and pattern of substituents on the aromatic ring. Here, we report a palladium(II) catalyst system, incorporating an unconventional ortho-dimethylaminopyridine ligand, for the conversion of substituted cyclohexanones to the corresponding phenols. The reaction proceeds via successive dehydrogenation of two saturated carbon-carbon bonds of the six-membered ring and uses molecular oxygen as the hydrogen acceptor. This reactivity demonstrates a versatile and efficient strategy for the synthesis of substituted aromatic molecules with fundamentally different selectivity constraints from the numerous known synthetic methods that rely on substitution of a preexisting aromatic ring.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Izawa, Yusuke -- Pun, Doris -- Stahl, Shannon S -- RC1 GM091161/GM/NIGMS NIH HHS/ -- RC1 GM091161-01/GM/NIGMS NIH HHS/ -- RC1 GM091161-02/GM/NIGMS NIH HHS/ -- RC1-GM091161/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):209-13. doi: 10.1126/science.1204183. Epub 2011 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659567" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Catalysis ; Cyclohexanones/*chemistry ; Hydrogen/chemistry ; Kinetics ; Ligands ; Molecular Structure ; Organic Chemistry Processes ; Palladium/*chemistry ; Phenols/*chemical synthesis/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-02-05
    Description: Solvent collisions can often mask initial disposition of energy to the products of solution-phase chemical reactions. Here, we show with transient infrared absorption spectra obtained with picosecond time resolution that the nascent HCN products of reaction of CN radicals with cyclohexane in chlorinated organic solvents exhibit preferential excitation of one quantum of the C-H stretching mode and up to two quanta of the bending mode. On time scales of approximately 100 to 300 picoseconds, the HCN products undergo relaxation to the vibrational ground state by coupling to the solvent bath. Comparison with reactions of CN radicals with alkanes in the gas phase, known to produce HCN with greater C-H stretch and bending mode excitation (up to two and approximately six quanta, respectively), indicates partial damping of the nascent product vibrational motion by the solvent. The transient infrared spectra therefore probe solvent-induced modifications to the reaction free energy surface and chemical dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greaves, Stuart J -- Rose, Rebecca A -- Oliver, Thomas A A -- Glowacki, David R -- Ashfold, Michael N R -- Harvey, Jeremy N -- Clark, Ian P -- Greetham, Gregory M -- Parker, Anthony W -- Towrie, Michael -- Orr-Ewing, Andrew J -- ST/501784/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1423-6. doi: 10.1126/science.1197796. Epub 2011 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292937" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Cyclohexanes/*chemistry ; Free Radicals ; Hydrogen/*chemistry ; Hydrogen Cyanide/*chemistry ; Kinetics ; Models, Chemical ; Physicochemical Processes ; Solutions ; Solvents/chemistry ; Spectrophotometry, Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-10-29
    Description: Direct observation of the detailed conformational fluctuations of a single protein molecule en route to its folded state has so far been realized only in silico. We have used single-molecule force spectroscopy to study the folding transitions of single calmodulin molecules. High-resolution optical tweezers assays in combination with hidden Markov analysis reveal a complex network of on- and off-pathway intermediates. Cooperative and anticooperative interactions across domain boundaries can be observed directly. The folding network involves four intermediates. Two off-pathway intermediates exhibit non-native interdomain interactions and compete with the ultrafast productive folding pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stigler, Johannes -- Ziegler, Fabian -- Gieseke, Anja -- Gebhardt, J Christof M -- Rief, Matthias -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):512-6. doi: 10.1126/science.1207598.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, 85748 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034433" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/chemistry ; Calmodulin/*chemistry ; Kinetics ; Markov Chains ; Optical Tweezers ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-11-15
    Description: Silent information regulator 2 (Sir2) proteins (sirtuins) are nicotinamide adenine dinucleotide-dependent deacetylases that regulate important biological processes. Mammals have seven sirtuins, Sirt1 to Sirt7. Four of them (Sirt4 to Sirt7) have no detectable or very weak deacetylase activity. We found that Sirt5 is an efficient protein lysine desuccinylase and demalonylase in vitro. The preference for succinyl and malonyl groups was explained by the presence of an arginine residue (Arg(105)) and tyrosine residue (Tyr(102)) in the acyl pocket of Sirt5. Several mammalian proteins were identified with mass spectrometry to have succinyl or malonyl lysine modifications. Deletion of Sirt5 in mice appeared to increase the level of succinylation on carbamoyl phosphate synthase 1, which is a known target of Sirt5. Thus, protein lysine succinylation may represent a posttranslational modification that can be reversed by Sirt5 in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Jintang -- Zhou, Yeyun -- Su, Xiaoyang -- Yu, Jiu Jiu -- Khan, Saba -- Jiang, Hong -- Kim, Jungwoo -- Woo, Jimin -- Kim, Jun Huyn -- Choi, Brian Hyun -- He, Bin -- Chen, Wei -- Zhang, Sheng -- Cerione, Richard A -- Auwerx, Johan -- Hao, Quan -- Lin, Hening -- 231138/European Research Council/International -- DK58920/DK/NIDDK NIH HHS/ -- P41 RR001646/RR/NCRR NIH HHS/ -- P41 RR001646-27/RR/NCRR NIH HHS/ -- R01 GM086703/GM/NIGMS NIH HHS/ -- R01 GM086703-03/GM/NIGMS NIH HHS/ -- R01 GM086703-03S1/GM/NIGMS NIH HHS/ -- R01GM086703/GM/NIGMS NIH HHS/ -- RR01646/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):806-9. doi: 10.1126/science.1207861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076378" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Carbamoyl-Phosphate Synthase (Ammonia)/metabolism ; Cattle ; Crystallography, X-Ray ; Histones/metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Lysine/*metabolism ; Male ; Mice ; Mice, Knockout ; Mitochondria, Liver/metabolism ; NAD/metabolism ; Peptides/*metabolism ; Protein Processing, Post-Translational ; Sirtuins/chemistry/genetics/*metabolism ; Succinic Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-12-24
    Description: DNA replication machineries have been studied extensively, but the kinetics of action of their components remains largely unknown. We report a study of DNA synthesis during replication in living Escherichia coli cells. Using single-molecule microscopy, we observed repetitive fluorescence bursts of single polymerase IIIs (Pol IIIs), indicating polymerase exchange at the replication fork. Fluctuations in the amount of DNA-bound single-stranded DNA-binding protein (SSB) reflect different speeds for the leading- and lagging-strand DNA polymerases. Coincidence analyses of Pol III and SSB fluctuations show that they correspond to the lagging-strand synthesis and suggest the use of a new Pol III for each Okazaki fragment. Based on exchanges involving two Pol IIIs, we propose that the third polymerase in the replisome is involved in lagging-strand synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lia, Giuseppe -- Michel, Benedicte -- Allemand, Jean-Francois -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):328-31. doi: 10.1126/science.1210400. Epub 2011 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Centre de Genetique Moleculaire, UPR3404, Gif-sur-Yvette F-91198, France. lia@cgm.cnrs-gif.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194411" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/metabolism ; DNA/*biosynthesis ; DNA Polymerase III/*metabolism ; *DNA Replication ; DNA, Bacterial/*biosynthesis ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/*metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/*metabolism ; Fluorescence ; Kinetics ; Luminescent Proteins/metabolism ; Models, Biological ; Photobleaching ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-05-22
    Description: Cell surface receptors convert extracellular cues into receptor activation, thereby triggering intracellular signaling networks and controlling cellular decisions. A major unresolved issue is the identification of receptor properties that critically determine processing of ligand-encoded information. We show by mathematical modeling of quantitative data and experimental validation that rapid ligand depletion and replenishment of the cell surface receptor are characteristic features of the erythropoietin (Epo) receptor (EpoR). The amount of Epo-EpoR complexes and EpoR activation integrated over time corresponds linearly to ligand input; this process is carried out over a broad range of ligand concentrations. This relation depends solely on EpoR turnover independent of ligand binding, which suggests an essential role of large intracellular receptor pools. These receptor properties enable the system to cope with basal and acute demand in the hematopoietic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Verena -- Schilling, Marcel -- Bachmann, Julie -- Baumann, Ute -- Raue, Andreas -- Maiwald, Thomas -- Timmer, Jens -- Klingmuller, Ursula -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1404-8. doi: 10.1126/science.1184913. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*metabolism ; Computer Simulation ; Endocytosis ; Epoetin Alfa ; Erythropoietin/metabolism/pharmacology ; Kinetics ; Ligands ; Mice ; Models, Biological ; Protein Binding ; Receptors, Erythropoietin/*metabolism ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-09-11
    Description: Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galazka, Jonathan M -- Tian, Chaoguang -- Beeson, William T -- Martinez, Bruno -- Glass, N Louise -- Cate, Jamie H D -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):84-6. doi: 10.1126/science.1192838. Epub 2010 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829451" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Biological Transport ; Biomass ; Cellobiose/metabolism ; Cellulase/metabolism ; Cellulose/*analogs & derivatives/*metabolism ; Dextrins/*metabolism ; Ethanol/metabolism ; Fermentation ; Fungal Proteins/genetics/*metabolism ; Genetic Engineering ; Kinetics ; Membrane Transport Proteins/genetics/*metabolism ; Neurospora crassa/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; beta-Glucosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-07-10
    Description: Self-organization of nanoparticles is an efficient strategy for producing nanostructures with complex, hierarchical architectures. The past decade has witnessed great progress in nanoparticle self-assembly, yet the quantitative prediction of the architecture of nanoparticle ensembles and of the kinetics of their formation remains a challenge. We report on the marked similarity between the self-assembly of metal nanoparticles and reaction-controlled step-growth polymerization. The nanoparticles act as multifunctional monomer units, which form reversible, noncovalent bonds at specific bond angles and organize themselves into a colloidal polymer. We show that the kinetics and statistics of step-growth polymerization enable a quantitative prediction of the architecture of linear, branched, and cyclic self-assembled nanostructures; their aggregation numbers and size distribution; and the formation of structural isomers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Kun -- Nie, Zhihong -- Zhao, Nana -- Li, Wei -- Rubinstein, Michael -- Kumacheva, Eugenia -- 1-R01-HL077546-03A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):197-200. doi: 10.1126/science.1189457.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616274" target="_blank"〉PubMed〈/a〉
    Keywords: Cetrimonium Compounds/chemistry ; Colloids ; Cyclization ; Gold ; Isomerism ; Kinetics ; Metal Nanoparticles/*chemistry ; Microscopy, Electron, Transmission ; Nanotechnology/methods ; Physicochemical Processes ; Polymers ; Polystyrenes/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-12-15
    Description: Alzheimer's disease is hypothesized to be caused by an imbalance between beta-amyloid (Abeta) production and clearance that leads to Abeta accumulation in the central nervous system (CNS). Abeta production and clearance are key targets in the development of disease-modifying therapeutic agents for Alzheimer's disease. However, there has not been direct evidence of altered Abeta production or clearance in Alzheimer's disease. By using metabolic labeling, we measured Abeta42 and Abeta40 production and clearance rates in the CNS of participants with Alzheimer's disease and cognitively normal controls. Clearance rates for both Abeta42 and Abeta40 were impaired in Alzheimer's disease compared with controls. On average, there were no differences in Abeta40 or Abeta42 production rates. Thus, the common late-onset form of Alzheimer's disease is characterized by an overall impairment in Abeta clearance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073454/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073454/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mawuenyega, Kwasi G -- Sigurdson, Wendy -- Ovod, Vitaliy -- Munsell, Ling -- Kasten, Tom -- Morris, John C -- Yarasheski, Kevin E -- Bateman, Randall J -- K08 AG027091/AG/NIA NIH HHS/ -- K08 AG027091-03/AG/NIA NIH HHS/ -- K23 AG030946/AG/NIA NIH HHS/ -- K23 AG030946-04/AG/NIA NIH HHS/ -- P01 AG003991/AG/NIA NIH HHS/ -- P01 AG003991-28/AG/NIA NIH HHS/ -- P01 AG03991/AG/NIA NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- P41 GM103422/GM/NIGMS NIH HHS/ -- P41 RR000954/RR/NCRR NIH HHS/ -- P41 RR000954-34/RR/NCRR NIH HHS/ -- P50 AG005681/AG/NIA NIH HHS/ -- P50 AG005681-28/AG/NIA NIH HHS/ -- P50 AG05681/AG/NIA NIH HHS/ -- P60 DK020579/DK/NIDDK NIH HHS/ -- P60 DK020579-31/DK/NIDDK NIH HHS/ -- R01 NS065667/NS/NINDS NIH HHS/ -- R01 NS065667-03/NS/NINDS NIH HHS/ -- UL1 RR024992/RR/NCRR NIH HHS/ -- UL1 RR024992-05/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1774. doi: 10.1126/science.1197623. Epub 2010 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148344" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/cerebrospinal fluid/*metabolism ; Amyloid beta-Peptides/cerebrospinal fluid/*metabolism ; Brain/*metabolism ; Female ; Humans ; Kinetics ; Male ; Middle Aged ; Peptide Fragments/cerebrospinal fluid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-06-05
    Description: Despite the widespread use of axially chiral, or atropisomeric, biaryl ligands in modern synthesis and the occurrence of numerous natural products exhibiting axial chirality, few catalytic methods have emerged for the direct asymmetric preparation of this compound class. Here, we present a tripeptide-derived small-molecule catalyst for the dynamic kinetic resolution of racemic biaryl substrates. The reaction proceeds via an atropisomer-selective electrophilic aromatic substitution reaction using simple bromination reagents. The result is an enantioselective synthesis that delivers chiral nonracemic biaryl compounds with excellent optical purity and good isolated chemical yields (in most cases a 〉95:5 enantiomer ratio and isolated yields of 65 to 87%). A mechanistic model is advanced that accounts for the basis of selectivity observed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gustafson, Jeffrey L -- Lim, Daniel -- Miller, Scott J -- GM068649/GM/NIGMS NIH HHS/ -- R01 GM068649/GM/NIGMS NIH HHS/ -- R01 GM068649-10/GM/NIGMS NIH HHS/ -- R37 GM068649/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1251-5. doi: 10.1126/science.1188403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, 225 Prospect Street, Post Office Box 208107, New Haven, CT 06520-8107, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522769" target="_blank"〉PubMed〈/a〉
    Keywords: Biphenyl Compounds/*chemical synthesis/chemistry ; Bromine/chemistry ; Catalysis ; *Halogenation ; Kinetics ; Ligands ; Molecular Structure ; Oligopeptides/*chemistry ; Physicochemical Processes ; *Stereoisomerism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-10-16
    Description: Neutrophils are recruited from the blood to sites of sterile inflammation, where they contribute to wound healing but may also cause tissue damage. By using spinning disk confocal intravital microscopy, we examined the kinetics and molecular mechanisms of neutrophil recruitment to sites of focal hepatic necrosis in vivo. Adenosine triphosphate released from necrotic cells activated the Nlrp3 inflammasome to generate an inflammatory microenvironment that alerted circulating neutrophils to adhere within liver sinusoids. Subsequently, generation of an intravascular chemokine gradient directed neutrophil migration through healthy tissue toward foci of damage. Lastly, formyl-peptide signals released from necrotic cells guided neutrophils through nonperfused sinusoids into the injury. Thus, dynamic in vivo imaging revealed a multistep hierarchy of directional cues that guide neutrophil localization to sites of sterile inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, Braedon -- Pittman, Keir -- Menezes, Gustavo B -- Hirota, Simon A -- Slaba, Ingrid -- Waterhouse, Christopher C M -- Beck, Paul L -- Muruve, Daniel A -- Kubes, Paul -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):362-6. doi: 10.1126/science.1195491.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Research Group, University of Calgary, Alberta T2N 4N1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947763" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Carrier Proteins/metabolism ; Cell Adhesion ; Chemokine CXCL2/metabolism ; Chemokines/metabolism ; Chemotaxis, Leukocyte ; Cues ; Endothelium, Vascular/physiology ; Inflammation/*immunology/metabolism/*pathology ; Kinetics ; Liver/blood supply/*immunology/metabolism/*pathology ; Liver Diseases/*immunology/metabolism/*pathology ; Macrophage-1 Antigen/physiology ; Mice ; Microscopy/methods ; Microscopy, Confocal ; Microvessels/physiology ; Necrosis ; *Neutrophil Infiltration ; Neutrophils/physiology ; Peptides/metabolism ; Receptors, Formyl Peptide/metabolism ; Receptors, Interleukin-8B/metabolism ; Receptors, Purinergic P2/metabolism ; Receptors, Purinergic P2X7 ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-07-22
    Description: The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond-forming reactions should be broadly useful in synthetic chemistry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegel, Justin B -- Zanghellini, Alexandre -- Lovick, Helena M -- Kiss, Gert -- Lambert, Abigail R -- St Clair, Jennifer L -- Gallaher, Jasmine L -- Hilvert, Donald -- Gelb, Michael H -- Stoddard, Barry L -- Houk, Kendall N -- Michael, Forrest E -- Baker, David -- R01 GM075962/GM/NIGMS NIH HHS/ -- T32 GM008268/GM/NIGMS NIH HHS/ -- T32 GM008268-24/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):309-13. doi: 10.1126/science.1190239.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647463" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylamides/chemistry ; Algorithms ; Butadienes/chemistry ; Carbon/*chemistry ; Catalysis ; Catalytic Domain ; Computer Simulation ; *Computer-Aided Design ; Crystallography, X-Ray ; Enzymes/*chemistry/genetics ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Mutagenesis ; Physicochemical Processes ; Protein Conformation ; *Protein Engineering ; Proteins/*chemistry/genetics ; Software ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-09-11
    Description: Filopodia are finger-like protrusive structures, containing actin bundles. By incubating frog egg extracts with supported lipid bilayers containing phosphatidylinositol 4,5 bisphosphate, we have reconstituted the assembly of filopodia-like structures (FLSs). The actin assembles into parallel bundles, and known filopodial components localize to the tip and shaft. The filopodia tip complexes self-organize--they are not templated by preexisting membrane microdomains. The F-BAR domain protein toca-1 recruits N-WASP, followed by the Arp2/3 complex and actin. Elongation proteins, Diaphanous-related formin, VASP, and fascin are recruited subsequently. Although the Arp2/3 complex is required for FLS initiation, it is not essential for elongation, which involves formins. We propose that filopodia form via clustering of Arp2/3 complex activators, self-assembly of filopodial tip complexes on the membrane, and outgrowth of actin bundles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Kwonmoo -- Gallop, Jennifer L -- Rambani, Komal -- Kirschner, Marc W -- GM26875/GM/NIGMS NIH HHS/ -- R01 GM026875/GM/NIGMS NIH HHS/ -- R01 GM026875-34/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1341-5. doi: 10.1126/science.1191710.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829485" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/ultrastructure ; Actin-Related Protein 2-3 Complex/metabolism ; Actins/*metabolism ; Animals ; Carrier Proteins/metabolism ; Cell Adhesion Molecules/metabolism ; Cell Membrane/metabolism ; Humans ; Kinetics ; *Lipid Bilayers ; Membrane Microdomains ; Mice ; Microfilament Proteins/metabolism ; Microtubule-Associated Proteins/metabolism ; NADPH Dehydrogenase/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphoproteins/metabolism ; Pseudopodia/*metabolism/*ultrastructure ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism ; Xenopus ; Xenopus Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-05-08
    Description: Proper protein localization is essential for all cells. However, the precise mechanism by which high fidelity is achieved is not well understood for any protein-targeting pathway. To address this fundamental question, we investigated the signal recognition particle (SRP) pathway in Escherichia coli, which delivers proteins to the bacterial inner membrane through recognition of signal sequences on cargo proteins. Fidelity was thought to arise from the inability of SRP to bind strongly to incorrect cargos. Using biophysical assays, we found that incorrect cargos were also rejected through a series of checkpoints during subsequent steps of targeting. Thus, high fidelity of substrate selection is achieved through the cumulative effect of multiple checkpoints; this principle may be generally applicable to other pathways involving selective signal recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760334/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760334/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xin -- Rashid, Rumana -- Wang, Kai -- Shan, Shu-ou -- GM078024/GM/NIGMS NIH HHS/ -- R01 GM078024/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):757-60. doi: 10.1126/science.1186743.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448185" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Fluorescence Resonance Energy Transfer ; Guanosine Triphosphate/metabolism ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Biological ; Protein Binding ; Protein Biosynthesis ; *Protein Sorting Signals ; *Protein Transport ; Ribosomes/metabolism ; Signal Recognition Particle/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-10-16
    Description: Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics--protein folding and conformational change within the folded state--by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein's constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, David E -- Maragakis, Paul -- Lindorff-Larsen, Kresten -- Piana, Stefano -- Dror, Ron O -- Eastwood, Michael P -- Bank, Joseph A -- Jumper, John M -- Salmon, John K -- Shan, Yibing -- Wriggers, Willy -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):341-6. doi: 10.1126/science.1187409.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, 120 West 45th Street, New York, NY 10036, USA. David.Shaw@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Aprotinin/*chemistry ; Computational Biology ; Computers ; Kinetics ; Microfilament Proteins/chemistry ; Models, Molecular ; *Molecular Dynamics Simulation ; Mutant Proteins/chemistry ; *Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; Proteins/*chemistry ; Solvents ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-01-23
    Description: Viruses are thought to spread across susceptible cells through an iterative process of infection, replication, and release, so that the rate of spread is limited by replication kinetics. Here, we show that vaccinia virus spreads across one cell every 75 minutes, fourfold faster than its replication cycle would permit. To explain this phenomenon, we found that newly infected cells express two surface proteins that mark cells as infected and, via exploitation of cellular machinery, induce the repulsion of superinfecting virions away toward uninfected cells. Mechanistically, early expression of proteins A33 and A36 was critical for virion repulsion and rapid spread, and cells expressing these proteins repelled exogenous virions rapidly. Additional spreading mechanisms may exist for other viruses that also spread faster than predicted by replication kinetics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doceul, Virginie -- Hollinshead, Michael -- van der Linden, Lonneke -- Smith, Geoffrey L -- 061484/Wellcome Trust/United Kingdom -- 090315/Wellcome Trust/United Kingdom -- G0501257/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):873-6. doi: 10.1126/science.1183173. Epub 2010 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093437" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Cell Membrane/metabolism ; Genes, Viral ; HeLa Cells ; Humans ; Kinetics ; Membrane Glycoproteins/genetics/*metabolism ; Vaccinia virus/genetics/pathogenicity/*physiology ; Viral Envelope Proteins/genetics/*metabolism ; Viral Plaque Assay ; Viral Structural Proteins/genetics/*metabolism ; Virion/physiology ; Virus Release ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-09-11
    Description: Proteins can sample conformational states that are critical for function but are seldom detected directly because of their low occupancies and short lifetimes. In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, in concert with a chemical shift-based method for structure elucidation, to determine an atomic-resolution structure of an "invisible" folding intermediate of a small protein module: the FF domain. The structure reveals non-native elements preventing formation of the native conformation in the carboxyl-terminal part of the protein. This is consistent with the kinetics of folding in which a well-structured intermediate forms rapidly and then rearranges slowly to the native state. The approach introduces a general strategy for structure determination of low-populated and transiently formed protein states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korzhnev, Dmitry M -- Religa, Tomasz L -- Banachewicz, Wiktor -- Fersht, Alan R -- Kay, Lewis E -- MC_U105484373/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1312-6. doi: 10.1126/science.1191723.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, the University of Toronto, Toronto, Ontario M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829478" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/*chemistry ; Computational Biology ; Kinetics ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Software ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-10-23
    Description: Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)-dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide-binding proteins (G proteins) activate PLC-betas and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-beta3 bound to activated Galpha(q) reveals a conserved module found within PLC-betas and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-beta3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein-dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-beta3 subsequently accelerates guanosine triphosphate hydrolysis by Galpha(q), causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046049/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046049/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waldo, Gary L -- Ricks, Tiffany K -- Hicks, Stephanie N -- Cheever, Matthew L -- Kawano, Takeharu -- Tsuboi, Kazuhito -- Wang, Xiaoyue -- Montell, Craig -- Kozasa, Tohru -- Sondek, John -- Harden, T Kendall -- EY010852/EY/NEI NIH HHS/ -- GM074001/GM/NIGMS NIH HHS/ -- GM38213/GM/NIGMS NIH HHS/ -- GM57391/GM/NIGMS NIH HHS/ -- GM61454/GM/NIGMS NIH HHS/ -- R01 GM057391/GM/NIGMS NIH HHS/ -- R01 GM057391-13/GM/NIGMS NIH HHS/ -- R01 GM062299/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):974-80. doi: 10.1126/science.1193438. Epub 2010 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966218" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Hydrogen Bonding ; Hydrolysis ; Isoenzymes/chemistry/metabolism ; Kinetics ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Phospholipase C beta/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-05-29
    Description: Nucleosome disruption and replacement are crucial activities that maintain epigenomes, but these highly dynamic processes have been difficult to study. Here, we describe a direct method for measuring nucleosome turnover dynamics genome-wide. We found that nucleosome turnover is most rapid over active gene bodies, epigenetic regulatory elements, and replication origins in Drosophila cells. Nucleosomes turn over faster at sites for trithorax-group than polycomb-group protein binding, suggesting that nucleosome turnover differences underlie their opposing activities and challenging models for epigenetic inheritance that rely on stability of histone marks. Our results establish a general strategy for studying nucleosome dynamics and uncover nucleosome turnover differences across the genome that are likely to have functional importance for epigenome maintenance, gene regulation, and control of DNA replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deal, Roger B -- Henikoff, Jorja G -- Henikoff, Steven -- 1F32GM083449/GM/NIGMS NIH HHS/ -- 1R21DA025758/DA/NIDA NIH HHS/ -- F32 GM083449-03/GM/NIGMS NIH HHS/ -- R21 DA025758/DA/NIDA NIH HHS/ -- R21 DA025758-02/DA/NIDA NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 28;328(5982):1161-4. doi: 10.1126/science.1186777.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508129" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/analogs & derivatives/metabolism ; Animals ; Cell Line ; Drosophila Proteins/*metabolism ; Drosophila melanogaster ; *Genome, Insect ; Histones/*metabolism ; Kinetics ; Methionine/metabolism ; *Molecular Probe Techniques ; Nucleosomes/*metabolism ; Oligonucleotide Array Sequence Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-10-16
    Description: No-go decay (NGD) is one of several messenger RNA (mRNA) surveillance systems dedicated to the removal of defective mRNAs from the available pool. Two interacting factors, Dom34 and Hbs1, are genetically implicated in NGD in yeast. Using a reconstituted yeast translation system, we show that Dom34:Hbs1 interacts with the ribosome to promote subunit dissociation and peptidyl-tRNA drop-off. Our data further indicate that these recycling activities are shared by the homologous translation termination factor complex eRF1:eRF3, suggesting a common ancestral function. Because Dom34:Hbs1 activity exhibits no dependence on either peptide length or A-site codon identity, we propose that this quality-control system functions broadly to recycle ribosomes throughout the translation cycle whenever stalls occur.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022135/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022135/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoemaker, Christopher J -- Eyler, Daniel E -- Green, Rachel -- R01 GM059425/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):369-72. doi: 10.1126/science.1192430.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947765" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/genetics/*metabolism ; Codon ; Codon, Terminator ; Endoribonucleases/genetics/*metabolism ; GTP-Binding Proteins/genetics/*metabolism ; Guanosine Triphosphate/metabolism ; HSP70 Heat-Shock Proteins/genetics/*metabolism ; Kinetics ; Peptide Chain Termination, Translational ; Peptide Elongation Factors/genetics/*metabolism ; Peptide Termination Factors/metabolism ; Protein Biosynthesis ; *RNA Stability ; RNA, Fungal/genetics/*metabolism ; RNA, Messenger/genetics/*metabolism ; RNA, Transfer, Amino Acyl/genetics/*metabolism ; Recombinant Proteins/metabolism ; Ribosome Subunits/*metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-03-20
    Description: Self-replicating molecules are likely to have played an important role in the origin of life, and a small number of fully synthetic self-replicators have already been described. Yet it remains an open question which factors most effectively bias the replication toward the far-from-equilibrium distributions characterizing even simple organisms. We report here two self-replicating peptide-derived macrocycles that emerge from a small dynamic combinatorial library and compete for a common feedstock. Replication is driven by nanostructure formation, resulting from the assembly of the peptides into fibers held together by beta sheets. Which of the two replicators becomes dominant is influenced by whether the sample is shaken or stirred. These results establish that mechanical forces can act as a selection pressure in the competition between replicators and can determine the outcome of a covalent synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carnall, Jacqui M A -- Waudby, Christopher A -- Belenguer, Ana M -- Stuart, Marc C A -- Peyralans, Jerome J-P -- Otto, Sijbren -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1502-6. doi: 10.1126/science.1182767.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299594" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Combinatorial Chemistry Techniques ; Cryoelectron Microscopy ; Evolution, Chemical ; Hydrogen-Ion Concentration ; Kinetics ; Leucine/chemistry ; Lysine/chemistry ; Macrocyclic Compounds/*chemistry ; Mechanical Phenomena ; Models, Chemical ; Molecular Conformation ; Origin of Life ; Peptide Library ; Peptides/*chemistry ; Physicochemical Processes ; Spectrum Analysis ; Stress, Mechanical ; Sulfhydryl Compounds/chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-10-30
    Description: Ribosomes are self-assembling macromolecular machines that translate DNA into proteins, and an understanding of ribosome biogenesis is central to cellular physiology. Previous studies on the Escherichia coli 30S subunit suggest that ribosome assembly occurs via multiple parallel pathways rather than through a single rate-limiting step, but little mechanistic information is known about this process. Discovery single-particle profiling (DSP), an application of time-resolved electron microscopy, was used to obtain more than 1 million snapshots of assembling 30S subunits, identify and visualize the structures of 14 assembly intermediates, and monitor the population flux of these intermediates over time. DSP results were integrated with mass spectrometry data to construct the first ribosome-assembly mechanism that incorporates binding dependencies, rate constants, and structural characterization of populated intermediates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulder, Anke M -- Yoshioka, Craig -- Beck, Andrea H -- Bunner, Anne E -- Milligan, Ronald A -- Potter, Clinton S -- Carragher, Bridget -- Williamson, James R -- GM-52468/GM/NIGMS NIH HHS/ -- P41 RR017573/RR/NCRR NIH HHS/ -- P41 RR017573-10/RR/NCRR NIH HHS/ -- R01 GM052468/GM/NIGMS NIH HHS/ -- R01 GM052468-16/GM/NIGMS NIH HHS/ -- R01 RR023093/RR/NCRR NIH HHS/ -- R01 RR023093-09/RR/NCRR NIH HHS/ -- R37 GM053757/GM/NIGMS NIH HHS/ -- R37 GM053757-16/GM/NIGMS NIH HHS/ -- R37-GM-53757/GM/NIGMS NIH HHS/ -- RR023093/RR/NCRR NIH HHS/ -- RR175173/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):673-7. doi: 10.1126/science.1193220.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030658" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Image Processing, Computer-Assisted ; Kinetics ; Mass Spectrometry ; Microscopy, Electron/methods ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; RNA, Bacterial/chemistry ; RNA, Ribosomal/chemistry ; Ribosomal Proteins/chemistry/*metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/*metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-11-13
    Description: Cytochrome P450 enzymes are responsible for the phase I metabolism of approximately 75% of known pharmaceuticals. P450s perform this and other important biological functions through the controlled activation of C-H bonds. Here, we report the spectroscopic and kinetic characterization of the long-sought principal intermediate involved in this process, P450 compound I (P450-I), which we prepared in approximately 75% yield by reacting ferric CYP119 with m-chloroperbenzoic acid. The Mossbauer spectrum of CYP119-I is similar to that of chloroperoxidase compound I, although its electron paramagnetic resonance spectrum reflects an increase in |J|/D, the ratio of the exchange coupling to the zero-field splitting. CYP119-I hydroxylates the unactivated C-H bonds of lauric acid [D(C-H) ~ 100 kilocalories per mole], with an apparent second-order rate constant of k(app) = 1.1 x 10(7) per molar per second at 4 degrees C. Direct measurements put a lower limit of k 〉/= 210 per second on the rate constant for bound substrate oxidation, whereas analyses involving kinetic isotope effects predict a value in excess of 1400 per second.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rittle, Jonathan -- Green, Michael T -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):933-7. doi: 10.1126/science.1193478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071661" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Chlorobenzoates/chemistry ; Cytochrome P-450 Enzyme System/*chemistry/*isolation & purification/*metabolism ; Electron Spin Resonance Spectroscopy ; Fatty Acids/chemistry/metabolism ; Freezing ; Hydroxylation ; Kinetics ; Lauric Acids/chemistry/metabolism ; Ligands ; Oxidation-Reduction ; Oxygen/chemistry/metabolism ; Physicochemical Processes ; Spectroscopy, Mossbauer ; Sulfolobus acidocaldarius/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 35-45 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dielectric measurements have been carried out on partially hydrated collagen in the frequency ranges 100 kHz-5 MHz, 100 MHz-1 GHz, and 8-23 GHz. In the low-frequency range, a dispersion was observed around 100 kHz which results from inhomogeneous conductivity of the samples. A dielectric relaxation was observed aroud 0.3 GHz using time-domain-spectroscopy techniques. This relaxation can be considered to originate from mobile side chains. Microwave measurements indicate that the water relaxation may extend into the 10-GHz region. An apparent discrepancy between the main water relaxation time and the average rotational correlation time of water as measured by nmr line widths was resolved by the assumption that a fraction of the water molecules is bound to the collagen with residence times on the order of 10-6 sec, whereas the remainder of the water is only weakly bound and exhibits rotational rates on the order of 10-10 sec.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 83-100 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A model for the time dependence of DNA conformational state probabilities is formulated in the form of first-order differential equations. This model is applied to investigate the renaturation and denaturation rates for T2 and T7 DNA as reported in the series of experiments by Record and Zimm. Qualitative agreement is found in denaturation and for series of renaturation experiments with the same initial condition. However, partial agreement with series of renaturation experiments having the same final condition is obtained only by including an initial bimolecular step with properly matched pairs of strands. Comparison of all experiments with the calculated rates yields 5 × 104 min-1 as the step rate for melting a single base pair.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conventionally protected oligopeptides of the two homologous series Boc-(L-Ile)n-OMe and Boc-(D-aIle)n-OMe (n = 2-6) were synthesized in a standard stepwise fashion and their uv and CD spectra in 2,2,2-trifluoroethanol, and solid-state ir spectra were investigated. In addition, two oligomeric products derived from the NCAs of L-isoleucine and of D-allo-isoleucine and having a DP of 20 and 12, respectively, were studied in the solid state by x-ray and ir. No substantial differences between the properties of the diastereomeric oligomers in the solid state were noticed, a β-structure being very likely at least for the Boc-protected hexapeptides and the higher oligomers. In contrast, differences were observed between the spectroscopic properties of the diastereomeric oligopeptides, and especially of the hexapeptides, in trifluoroethanol solution. The different properties of the hexapeptides in solution were related to the existence, in the case of Boc-(L-Ile)6-OMe, of soluble molecular aggregates in which the peptide chains assume the β-conformation. These results provide an additional example of the influence of the configuration of asymmetric carbon atoms of the side chains on the conformational properties of peptide molecules in solution.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 285-297 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The 1H-nmr chemical shifts and the spin-spin coupling constants of the common amino acid residues were measured in solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH in D2O and H2O, the influence of X on the nmr parameters of the neighboring residues Gly 2 and Ala 4 was investigated. The titration parameters for the side chains of Asp, Glu, Lys, Tyr, and His were determined. The pKa values obtained in D2O, with the use of pH-meter readings with a combination glass electrode uncorrected for istope effects, were 0.06 pH units higher in the acidic range and 0.10 pH units higher in the basic range than the corresponding pKa values in H2O. This suggests that the present data are suitable “random-coil” 1H-nmr parameters for conformational studies of polypeptide chains in D2O and H2O solutions.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 299-311 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This paper shows that backbone amide proton titration shifts in polypeptide chains are a very sensitive manifestation of intramolecular hydrogen bonding between carboxylate groups and backbone amide protons. The population of specific hydrogen-bonded structures in the ensemble of species that constitutes the conformation of a flexible nonglobular linear peptide can be determined from the extent of the titration shifts. As an illustration, an investigation of the molecular conformation of the linear peptide H-Gly-Gly-L-Glu-L-Ala-OH is described. The proposed use of amide proton titration shifts for investigating polypeptide conformation is based on 360-MHz 1H-nmr studies of selected linear oligopeptides in H2O solutions. It was found that only a very limited number of amide protons in a polypeptide chain show sizable intrinsic intration shifts arising from through-bond interactions with ionizable groups. These are the amide proton of the C-terminal amino acid residue, the amide protons of Asp and the residues following Asp, and possibly the amide proton of the residue next to the N-terminus. Since the intrinsic titration shifts are upfield, the downfield titration shifts arising from conformation-dependent through-space interactions, in particular hydrogen bonding between the amide protons and carboxylate groups, can readily be identified.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 359-372 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We present a method that can reduce conformational energy calculations for an arbitrary peptide consisting of n residues (n-peptide) to the complexity of a computation for (Gly)n. This reduction, and the concomitant savings in computer time, is accomplished by replacing all side chains, as well as the backbone CαHα and CαH2α groups, by “interaction centers.” The backbone CONH group is left intact in order to preserve its directional character. The interaction centers “see” each other, and the atoms of the CONH group via Boltzmann and space-averaged effective center-center and center-atom potentials, respectively. This averaged-interaction method is tested on the repeat tetra-, penta-, and hexapeptides of elastin, Val-Pro-Gly-Gly (VPGG), Val-Pro-Gly-Val-Gly (VPGVP), and Ala-Pro-Gly-Val-Gly-Val (APGVGV), using the stereoalphabet strategy for the energy calculations. The excellent qualitative and quantitative agreement we obtain with both full atom-atom calculations and extensive nmr data, coupled with the order-of-magnitude reduction in computer time, augurs well for the potential usefulness of the method.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 393-409 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Linear response theory in the decorrelation or random-phase approximation is used to calculate the absorption and CD spectra of model helical polymers, including single-stranded polyadenylic acid. The method, which makes use of infinite polymer selection rules for the linear response tensor, has the advantages that (1) only a few three-dimensional matrices need be inverted; (2) spectral band shapes of the polymer arise naturally from those of the monomer, as well as from the geometry-dependent interactions in the helix; and (3) the spectral dependence on geometrical factors of the helix is made transparent. It is found that the structure of the polymer CD spectrum depends critically on monomer bandshape. An asymmetric CD spectrum, similar to some experimental spectra, arises from either a Gaussian or a composite monomer band. Single-stranded polyadenylic acid spectra are sensitive to helix geometry in the region 200-240 nm, in reasonable agreement with experimental spectra. This sensitivity arises from the 207-nm monomer transition, and the results suggest that this region of the spectrum should be more fully exploited as a tool for helix geometry studies.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: C24H34N2O9, orthorhombic, P212121; a = 39.432 (10), b = 14.061 (5), c = 4.850 (2) Å, M = 494 a.m.u., Z = 4, Dm = 1.22 g cm-3, Dx = 1.22 g cm-3, R = 0.13 for 1205 observed reflections after refinement with isotropic thermal factors. The urethane and amide bonds are in the trans configuration, as well as all the ester groups. The ϕ and ψ angles of the L-glutamyl residues fall in the β-structure region of the Ramachandran's plot; the molecule is rather flat with the amide plane almost parallel to the c axis along which two hydrogen bonds hold the molecules together to form long rows in a “parallel pleated-sheet” fashion.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The far-ir absorption spectrum of lysozyme was measured at room and liquid-nitrogen temperatures. Dried layers of single crystals of tetragonal lysozyme chloride with a diameter of 100-300 μm were grown on a silicon plate. Such single-crystalline samples were considered to have the following advantages in obtaining far-ir spectra: (1) surface scattering is reduced, (2) the protein molecules are closely packed, and (3) air-drying of the crystals reduces the number of water molecules without considerably changing the original configuration. The spectrum obtained consisted of a strong background absorption and a number of absorption peaks that were not clearly observed with the sample in the form of lyophilized powder. The peaks were ascribed to various delocalized vibrations of the main and side chains in the molecule. The peaks were also compared with the positions of Raman lines. The uniform background was assigned to the water molecules remaining in the crystals.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 553-569 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The duplex-to-strand transition of the self-complementary sequence dG-dC-dG-dC has been probed at the exchangeable and nonexchangeable protons and backbone phosphates by high-resolution nmr spectroscopy. The Watson-Crick imino and amino hydrogen-bonded protons, as well as the exposed amino protons, could be followed through the duplex-to-strand transition and provide information on base-pair stability at the tetranucleotide duplex level. The magnitudes of the experimental upfield nonexchangeable base-proton chemical shifts on duplex formation are consistent with calculations based on base-pair overlap geometries of the B-DNA type. The variation of the 31P chemical shifts in dG-dC-dG-dC with temperature appear to monitor changes in the ω,ω′ rotation angles about the O—P bonds in the postmelting transition temperature region. The complex formed between the antitumor anthracycline antibiotic daunomycin and the dG-dC-dG-dC duplex was probed at the nucleic acid and the antibiotic resonances as a function of temperature. The experimental complexation shifts of the observable daunomycin resonances have put constraints on possible overlap geometries between the intercalating anthracycline ring and adjacent base pairs.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Conformational analyses of cyclic tetrapeptides consisting of alternating cis and trans peptide units have been made using contact criteria and energy calculations. This study has been restricted to those structures having a symmetry element in the backbone ring, such as a twofold axis (d) or a center of inversion (i). There are five main results. (1) There are two distinct types of conformations, which are stereochemically favorable corresponding to each of twofold and inversion-symmetrical structures, designated as d1, d2 (for twofold symmetrical) and i1, i2 (for inversion-symmetrical). Among these, the i1 type has the lowest energy when glycyl residues occur at all four α-carbon atoms. (2) With the glycyl residue at all four α-carbon atoms, methyl substitution at the cis peptide nitrogen atoms is possible in all the four types, whereas the substitution at trans peptide nitrogen atoms is possible only for the i1 type. Thus only in the i1 type can all the nitrogen atoms be methylated simultaneously. The conformation of the molecule in the crystal structure of cyclotetrasarcosyl belongs to the i1 type. (3) When alanyl residues occur at all four α-carbon atoms, the possible symmetrical type is dependent on the enantiomorphic form and the actual sequence of the alanyl residues. (4) The methyl substitution at peptide nitrogen atoms for cyclic tetrapeptides having alanyl residues causes more stereochemical restriction in the allowed conformations than with glycyl residues. (5) The prolyl residue can be incorporated favorably at the cis-trans junction of both d and i types of structures. The results of the present study are compared with the data on cyclic tetrapeptides available from the crystal structure and nmr studies. The results show an overall agreement both regarding the type of symmetry and the conformational parameters.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Based on equilibrium binding studies, as well as on kinetic investigations, two types of interactions of Cu2+ ions with native DNA at low ionic strength could be characterized, namely, a nondenaturing and a denaturing complex formation. During a fast nondenaturing complex formation at low relative ligand concentrations and at low temperatures, different binding sites at the DNA bases become occupied by the metal ions. This type of interaction includes chelate formation of Cu2+ ions with atoms N(7) of purine bases and the oxygens of the corresponding phosphate groups, chelation between atoms N(7) and O of C(6) of the guanine bases, as well as the formation of specific intestrand crosslink complexes at adjacent G°C pairs of the sequence dGpC. CD spectra of the resulting nondenatured complex (DNA-Cu2+)nat may be interpreted in terms of a conformational change of DNA from the B-form to a C-like form on ligand binding. A slow cooperative denaturing complex formation occurs at increased copper concentrations and/or at increased temperatures. The uv absorption and CD spectra of the resulting complex, (DNA-Cu2+)denat, indicate DNA denaturation during this type of interaction. Such a conclusion is confirmed by microcalorimetric measurements, which show that the reaction consumes nearly the same amount of heat as acid denaturation of DNA.From these and the kinetic results, the following mechanism for the denaturing action of the ligands is suggested: binding of Cu2+ ions to atoms N(3) of the cytosine bases takes place when the cytosines come to the outside of the double helix as a result of statistical fluctuations. After the completion of the binding process, the bases cannot return to their initial positions, and thus local denaturation at the G·C pairs is brought about. The probability of the necessary fluctuations occurring is increased by chelation of Cu2+ ions between atoms N(7) and O of C(6) of the guanine bases during nondenaturing complex formation, which loosens one of the hydrogen bonds within the G·C pairs, as well as by raising the temperature. The implications of the new binding model, which comprises both the sequence-specific interstand crosslinks and the described mechanism of denaturing complex formation, are discussed and some predictions are made. The model is also used to explain the different renaturation properties of the denatured complexes of Cu2+, Cd2+, and Zn2+ ions with DNA.In temperature-jump experiments with the nondenatured complex (DNA-Cu2+)nat, a specific kinetic effect is observed, namely, the appearance of a lag in the response to the perturbation. The resulting sigmoidal shape of the kinetic curves is considered to be a consequence of the necessity of disrupting a certain number of the crosslinks existing in the nondenatured complex before the local unwinding of the binding regions (a main step of denaturing complex formation) may proceed.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 931-938 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new analysis has been made on studies of the influence of imino acid content on the changes of collagen thermal stability (tm). It is shown that, for the interstitial vertebrate collagens, there is a strict regularity in the changes of tm depending on hydroxyproline content. No correlation is observed between tm and proline content. Also, no correlation between tm and hydroxyproline content is observed for invertebrate and basement membrane collagens. On the basis of the reported data, the dependence of tm on hydroxyproline content is considered to be not a correlation between tm and the total content of hydroxyproline, but only as the correlation between tm and the content of hydroxyproline occurring at the third position in the sequence (Gly-R2-R3)n. The results agree with the idea that the influence exerted by proline and hydroxyproline on the stabilization of the triple helix of collagen is different.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformation and conformational transitions of poly(His-Ala-Glu) have been investigated by ir, nmr, and CD measurements. The results obtained - as well as the results of our previous investigations by potentiometric titration and hydrodynamic techniques [Goren et al., Biopolymers (1977) 16, 1541-1555] - indicate that when dissolved in water, the co-polymer assumes a disordered conformation. On changing the pH of the solution, the states of ionization of the side-chain imidazole and carboxyl groups change in the same manner as in low-molecular-weight model compounds. Concomitantly, the overall shape of the macromolecule is altered, while the conformation of the polypeptide backbone changes from one disordered state to another but never assumes a regular form. In water/methanol and water/trifluoroethanol mixtures, transitions from a disordered state to the α-helix conformation were observed on increasing the alcohol content of the system. The conformational transitions followed pathways which differ from one another according to the experimental conditions employed. Conformational landmarks (intermediates) have been identified along these pathways.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 1023-1026 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 1821-1828 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The decrease in the limiting viscosity number [η] with temperature T for hyaluronic acid in nonalkaline solution and chondroitin 4-sulfate in neutral and alkaline solutions may be expressed in terms of the temperature coefficient of the Kratky-Porod persistence length a: d ln a/dT = -0.0040 (±0.0005). The result, while numerically somewhat smaller, resembles qualitatively that of cellulose derivatives. As in the latter case, standard conformational calculations underestimate the coefficient, which may be due to neglect of random occurrence of local conformational features of higher energy. In alkaline solution, large decreases in [η] of hyaluronic acid are accompanied by a positive temperature coefficient of [η]. This temperature effect is interpreted as an endothermal shift from the alkaline, low [η] form of the polymer to the neutral, high [η] form with increasing temperature.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 1809-1820 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have considered whether or not the tertiary structure of a biomolecule is the same in a crystal (or an oriented film) as it is in solution. A methodology has been developed for comparing polarized absorption spectra obtained from a solid-state sample with those obtained from an oriented solute to further resolve this question. An electric dichroism instrument built in our laboratory was used to measure the solution dichroism signal which, along with the ordinary solution uv absorption spectra, yields polarized absorption spectra in the directions parallel and perpendicular to the applied electric field. These were then compared to polarized absorption data from oriented films of nucleic acids to determine whether the two sets of data could be rotated into coincidence. This rotation was accomplished using a computer program based on a nonlinear programming method. Four nucleic acids were studied and the film and solution data for three of these were found to be equivalent, requiring rotation through an angle of 3°-20°, depending on film humidity, to bring them into coincidence. For the fourth sample we were unable, perhaps because of signal-to-noise ratio limitations, to find a correlation. Flow dichroism and electric dichroism data were also found to be quite similar. Thus it is clear that the induced dipole moment is along the helical axis and that the physical, hydrodynamical, and electrical axes of the nucleic acid molecules are equivalent.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of enzyme-inhibitor complex formation on the hydration properties of the macromolecular moiety was investigated on the model system of α-chymotrypsin and its Ser-195 tosyl derivative. The primary (A-shell) hydration of the native and modified enzyme was compared by sorption measurements. The secondary (B-shell) hydration water was investigated by differential scanning calorimetry. Tosylation is known to induce pronounced conformational changes in the chymotrypsin molecule. These structural modifications have the following effects on the hydration of the native enzyme.The water binding capacity of the protein surface is significantly increased, as shown by both the calorimetric and the sorption results. The amount of unfreezable water of primary hydration is increased by 50 mol H2O/mol chymotrypsin.The heats (ΔH) and entropies (ΔS) of the interaction of water with chymotrypsin are strongly reduced in the modified enzyme. This effect is interpretable by a reduction of the H bonding potential of the protein surface. Parallel to this decrease in δH, the heats of fusion of the secondary hydration water (Qfus) are significantly increased by tosylation (Qfus = 256.2 ± 7.8 and 294.2 ± 4.8 J g-1 H2O for the native and the tosylated enzyme, respectively). This increase in Qfus reflects an increase in the extent of H bonding in the B-shell hydration sphere.These changes in the hydration of the native enzyme, associated with the reaction: native chymotrypsin → tosylchymotrypsin, are interpreted by cooperative phase transitions of water molecules in the primary and secondary hydration water. One of these transitions was found to exhibit a significant, linear enthalpy-entropy compensation effect. The compensation temperature \documentclass{article}\pagestyle{empty}\begin{document}$ \hat{\beta} $\end{document} is 290.7 ± 2.8°K. This \documentclass{article}\pagestyle{empty}\begin{document}$ \hat{\beta} $\end{document} value agrees well with compensation temperatures reported in the literature for a series of biochemical reactions in aqueous solution (250-320° K). This agreement in \documentclass{article}\pagestyle{empty}\begin{document}$ \hat{\beta} $\end{document} may point to a common source of both compensation phenomena.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 1829-1830 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 1831-1833 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979) 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 1835-1848 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformations of melanostatin have been studied experimentally using CD spectroscopy and via calculations. In aqueous solution and 2,2,2-trifluoroethanol (TFE) there is no evidence that monomers of the tripeptide exist in an ordered (β-bend) structure. In water and TFE solutions (3-6 × 10-4M) the neutral molecules aggregate very slowly, taking about 3 days to attain equilibrium at room temperature. At equivalent concentrations in TFE, although not in water, the cationic molecules also slowly aggregate, although to a lesser extent. Calculations using rotational isomeric state theory give the most probable unperturbed end-to-end distance of the molecule at 9.3 ± 0.1 Å and indicate that a vast majority of the molecules exist in some extended conformation, end-to-end distance ≥6 Å. Only 0.4% of the molecules are calculated to have O…H separations compatible with a β-bend structure. An intramolecular hydrogen bond must have an energy at least 2 kcal/mol lower than that of an intermolecular hydrogen bond to solvent if a β-bend is to be experimentally observable.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Nps-[Glu(OBzl)]6-NHEt has been prepared by coupling Nps-[Glu(OBzl)]2-OH with HCl,H-[Glu(OBzl)]4-NHEt by means of dicyclohexylcarbodiimide. The ir spectra of its nujol mull show that the hexapeptide has the β-structure of antiparallel chains. When it is dissolved in dioxane or ethylene dichloride, the hexapeptide consists of a mixture of the β-form and the solvated σ-form, but the β-form can exist only above a certain critical concentration. The critical concentration is about 0.4g dl-1 in dioxane and 0.08g dl-1 in ethylene dichloride, and the content of β-form increases with increasing concentration above it. The CD of the dioxane and ethylene dichloride solutions shows concentration dependence in visible and uv regions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2115-2126 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Light scattering from the solutions of Nps-[Glu(OBzl)]6-NHEt in dioxane or ethylene dichloride has been measured at different concentrations, and a critical concentration of intermolecular association is found to exist, which is equal to the critical concentration of β-form formation. The Debye plot of light scattering leads to the molecular weight of aggregates at the critical concentration, which corresponds to an aggregation number 15 in dioxane and 53 in ethylene dichloride. In the latter solvent the aggregates further associate into a larger aggregate consisting of 330 molecules when the concentration is increased beyond the critical concentration. The content of β-form, which is a measure of number of hydrogen bonds, is derived from the ir data previously obtained. The results on the modes of intermolecular association and hydrogen bonding lead to possible structures of aggregates formed by both hydrogen bonds and other nonbonding side-chain interactions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Low shear viscosities have been determined for a 1 mg/ml poly(L-lysine) solution as a function of added salt concentration in the region of the previously reported ordinary-extraordinary phase transition. The measured viscosities indicate that the polyions are far from completely extended at the transition. Estimates of the longest internal relaxation time for an equivalent free-draining Rouse-Zimm chain give τ ≃ 10-5 sec, similar to that of the rapid, angle-independent component previously observed in the dynamic light-scattering correlation function at the transition. An unusual peak and valley are observed in the curve of [η]0 versus [NaBr] in the transition region. Possible interpretations of these features, and their bearing on the nature of the extraordinary phase, are discussed.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The crystal structure of the valinomycin analog, cyclo-[(-D-Val-Hyi-Val-D-Hyi-)3-] (meso-valinomycin, C60H102N6O18) has been determined by direct x-ray diffraction procedures. The crystals are triclinic, space group P1, number of molecules per unit cell Z = 1, and cell parameters a = 11.831, b = 13.815, c = 14.889 Å, α = 109.54°, β = 116.10°, γ = 98.89°. The atomic coordinates for the C,N,O atoms were refined in the anisotropic thermal motion approximation and for the H atoms in the isotropic approximation to R = 0.07.The structure is centrosymmetric and has a threefold axis of pseudosymmetry. The depsipeptide chain is in the form of a bracelet stabilized by six identical intramolecular 4 → 1 hydrogen bonds between the amide C=O and NH groups. The ester carbonyls are oriented towards the symmetry axis, their O atoms forming an ellipsoidal molecular cavity. The isopropyl side chains are located on the molecular periphery. The structure found differs considerably from the conformation of the crystalline naturally occurring antibiotic, valinomycin, but completely resembles that of valinomycin and meso-valinomycin in nonpolar solvents. In the crystal, meso-valinomycin molecules form stacks. The molecular cavities situated in the stacks one above the other along the pseudo-C3 axis form a continuous channel, the internal surface of which is lined by O atoms. The possible conformations of depsipeptides of the valinomycin series and their mode of action in membranes are discussed in the light of the data obtained.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2353-2356 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Large molecular weight bacteriophage G DNA, about five times larger than T2 DNA, was used to test Zimm's theory [(1974) Biophys. Chem. 1, 279-291] for the effect of rotor speed on the sedimentation of large linear monodisperse DNA. Sedimentation profiles from neutral sucrose gradinets at low and high rotor speeds show G DNA sedimenting from 1.8 to 0.7 times as fast as T2 DNA. Experimental measurements indicate that the sedimentation coefficient of G DNA decreases with increasing rotor speed about as fast as predicted by theory.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have examined the NH stretching frequencies of N-acetyl-N′-methyl-L-alanineamide (blocked Ala), N-acetyl-N′-methylglycineamide (block Gly), and N-acetyl-N′-methyl-L-leucineamide (blocked Leu) in chloroform using irspectroscopy. Their spectrum of blocked Leu in carbon tetrachloride was also obtained. A major absorption band at 3450 cm-1 is attributed to the unperturbed NH stretching frequency. Another major band at 3437 cm-1 (for Ala) or 3432 cm-1 (for Leu) is attributed to conformations in which the NH stretching frequency is perturbed by the spatial proximity of the Cβ atom. An absorption band between 3300 and 3370 cm-1, which has in the past been assigned to the intramolecular hydrogen-bonded NH in the C7eq conformation, was found to be concentration dependent and could not be observed below 5 × 10-4M in chloroform; thus we find no evidence for a strongly hydrogen-bonded NH in the C7eq conformation in chloroform. An absorption band at 3416 cm-1 was observed in chloroform solutions of blocked Gly, and a similar absorption appeared as a shoulder on the 3437- and 3432-cm-1 bands of blocked Ala and blocked Leu, respectively, in the same solvent. These bands, occurring near 3416 cm-1, may be assigned to extended (C5) conformations [Avignon et al., Biopolymers 8, 69 (1969)]. In CCl4 the spectrum of blocked Leu remained concentration dependent below 2.8 × 10-4M, with the 3300-3370-cm-1 band progressively weakening and shifting to higher frequencies on dilution from higher concentrations. Analysis of the spectra indicates that there is considerable flexibility in the blocked single residues, in agreement with the results of conformational energy calculations.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2523-2535 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Type I collagen fibrillogenesis in vitro has been studied by laser light scattering, and the results indicate that initiation of aggregation involves at least two steps. Step I of aggregation involves no change in the intensity of scattered light at an angle of 90° and is accompanied by a decrease in the diffusion coefficient. Step II is characterized by an increased intensity of scattered light and decreased diffusion coefficients. Theoretical calculations using the Stokes-Einstein equation for the translational diffusion coefficient and the Perrin equation for the frictional coefficient of a prolate ellipsoid indicate that the step I aggregates are 4D staggered linear dimers and trimers 570 and 845 nm long, whereas step II aggregates are greater than 950 nm in length. These dimensions are similar to those previously reported based on physicochemical measurements and electron microscopy. It is proposed that the rate and extent of fibrillogenesis in vitro is controlled by the concentration of the linear aggregates and that the effects of temperature and collagen concentration on fibrillogenesis previously observed are qualitatively explained in terms of their effects on the concentration of these aggregates.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2537-2547 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The method hitherto used for estimating the electrostatic term in empirical intramolecular calculations of stable conformations of biologically important molecules and macromolecules and intermolecular calculations of molecular associations or packing energy in molecular crystals had been analyzed. It has been shown that the contribution of atomic hybridization moments is omitted in the calculation of electrostatic interactions from net atomic charges localized on nuclei which have been determined by standard quantum-chemical methods. This contribution plays an important part in determining electrostatic interactions, mainly in molecules containing atoms with lone pairs. Simultaneously, a modified method for calculating the electrostatic term comprising the interaction of the lone pairs, which are represented by atomic hybridization moments, has been proposed. The relationship between the atomic hybridization moment and the bond angle has been expressed for some typical configurations occurring in biologically important molecules. Finally, this new approach is illustrated by results of the conformational analysis of some model compounds for biomolecules and compared with the approach used so far for the estimation of the electrostatic interaction in empirical methods of calculation of the intra- and intermolecular energy.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2549-2567 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Intensity fluctuations of laser light scattered from filamentous viruses Pf1 [length L (Å) × diameter d (Å) = 20,000 × 90], M13 (9000 × 90), potato virus X (5150 × 130), and tobacco mosaic virus (3000 × 180) in sucrose density gradients were measured with a photon correlation spectrometer over a range of scattering angles from 15° to 120°. The experimental data can be approximated by two exponential decays, “slow” and “fast.” The slow decay rate constant ts-1 corresponds to the translational diffusion D of the virus, i.e., ts-1 = K2D, where K is the magnitude of the scattering vector. The amplitude of the slow component, i.e., translational diffusion, remains greater than that of the fast component, even at high KL. The fast decay rate constant tf-1 is also proportional to K2 for viruses such as Pf1, M13, and even potato virus X. In the companion paper, we shall attribute the amplitude enhancement of the translational diffusion to the coupling of its anisotropy to the rotational diffusion modes. In order to explain the excessive decay rates in the fast component, we need to consider the bending mode of rodlike viruses, especially in the longer viruses such as M13 and Pf1, in addition to the usually expected rotational diffusion modes.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2569-2588 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have compared four theoretical effects of rodlike macromolecules with the fast components, i.e., components other than translational diffusion, of our experimental data, which are presented as amplitude autocorrelation functions of electric field scattered from dilute solutions of monodisperse rodlike viruses with lengths from 3300 Å for tobacco mosaic virus to 20,000 Å for Pf1. The four effects are (1) the optic anisotropy treated by Aragón and Pecora, (2) coupled translational-rotational diffusion due to anisotropy in translational mobility recently reformulated by Gierke, (3) anisotropic rotational diffusion with respect to the direction of translational displacement first discussed by Berne and Pecora, and (4) the bending mode of a rod by Fujime and Maruyama. We show that both the first and second effects are required to explain the enhancement of amplitude of the translational diffusion at the expense of fast components. The experimental decay rates of the fast component exceed that of the rotational diffusions. In order to explain the excessive decay rate in the fast component, we need to include a minute amount (∼1%) of bending mode of rodlike viruses, especially in longer viruses such as M13 and Pf1.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2607-2623 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The previous report that poly(L-glutamic acid) exhibits doubled resonances in the helix-coil transition region by either proton or carbon-13 nmr resolves the question of whether or not this behavior is limited to uncharged polypeptides in organic solvents, as had been previously thought. In the present work, we show that the underlying principle causing this anomalous double-peak behavior is due to molecular-weight polydispersity of the sample. The molecular-weight range in which this phenomenon is observed is largely dependent on the values of σ, the nucleation or cooperativity factor. The principles developed are shown to encompass all classes of polypeptides in a very natural way and to explain the key experimental data in the literature.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2589-2606 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Empirical conformational energy calculations with the use of ECEPP energy functions have been carried out for linear dipeptides H-X-L-Pro-OH, with X = Gly, L-Ala, D-Ala, L-Leu, D-Leu, L-Phe, and D-Phe, in different states of protonation of the end groups. The results of these calculations are compared with the previously reported experimental equilibrium populations for the cis and trans isomers of the X-Pro bond in the different species. For all the protonation states of the seven dipeptides, the calculated nonbonded interactions and the conformational entropy term lead to a preference of the trans forms over the cis isomers by at least 1 kcal/mol. The electrostatic interactions stabilize the cis conformations in all species except the cationic forms of the D,L-peptides, and it could further be shown that only the carbonyl group of X and the two end groups contribute significantly to the total electrostatic energy. One of the principal results of the experimental studies, i.e., the occurrence of 5-15% cis-proline in all the peptides with an uncharged C-terminus, was corroborated by our investigation of the cationic species. A detailed assessment of the electrostatic contribution to the total energy of the different conformations of H-Gly-L-Pro-OH indicates that the standard ECEPP parameters tend to overestimate the electrostatic interactions in aqueous solutions of the X-Pro dipeptides.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979) 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2625-2643 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The secondary structure of the lac repressor protein proposed by Chou et al. has been modified to include the recent revisions in sequence. In addition to the Chou and Fasman method, five other methods were used; they include those of (1) Lim, (2) Ptitsyn and Finkelstein, (3) Burgess et al., (4) Bunting et al., and (5) Wu and Kabat. Any two individual methods gave results differing sharply from one another. Three or more methods were in agreement for 91, 39, and 126 residues in helix, in β, and in combined coil plus turn conformations, respectively; there were such agreements for a total of 256 of the 360 residues. Agreements in the amino-terminal third of the molecule were found for 68% of the residues, whereas in the remainder of the molecule only 53% of the residues showed such agreements. Only two helix-breaking and two β-breaking tripeptides were inconsistent with the composite predictions by three or more methods. The large number of disagreements among the results for different methods indicates that only very limited information is provided by each method and that the basis on which they operate is not clear. There is no a priori reason for a composite prediction to be more reliable than any individual prediction, and such a procedure does not permit the determination of an unambiguous secondary structure. Since these methods were applied to lac repressor before any three-dimensional crystallographic structure was known, the methods may ultimately be evaluated should such a structure become available.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2645-2657 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformational changes and binding behavior of tetranactin on complexation with sodium, potassium, rubidium, cesium, and ammonium ions were investigated by the measurements of proton magnetic resonance, ir, and Raman spectra. It has been clearly shown that alkali cations coordinate to the oxygen atoms of both the carbonyl group and the tetra-hydrofuran ring, but the ammonium ion coordinates only to the oxygen atom of the tetrahydrofuran. Among the alkali cations the potassium ion most strongly coordinates to the tetrahydrofuran oxygen atoms. The complexation with larger cations induces an expansion of the cavity of the macrocyclic ring of tetranactin and smaller cations contract the cavity. The evidence is revealed by the coupling constants of the methylene protons and the frequency separation between the carbonyl stretching vibrations of the ir- and Raman-active modes. The conformations of the cation complexes in the solid are maintained in solution but that of the cation free form is not.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Intercalation-site geometries are generated for a tetramer duplex extracted from B-DNA. Glycosidic angles and puckers of the deoxyribose sugar groups bonded to base pairs BP1 and BP4, namely, those at either end of the tetramer duplex, are assumed to be those of B-DNA to insure continuity. All possible geometrical conformations for combinations of C(2′)-endo, C(3′)-endo, C(2′)-exo, and C(3′)-exo sugar puckers are determined for the tetranucleotide backbone. Those with minimum energy are selected as candidates for intercalation sites. Calculations reveal two pairs of physically meaningful families of intercalation sites which occur in two distinct regions, I and II, of helical angles which orient BP2 relative to BP3 and with the helical axis disjointed between these base pairs. For each site I and II within BP2 and BP3, there are two distinct backbone conformations, A and B, connecting BP3 to BP4 or BP1 to BP2 which do not disrupt backbone conformations connecting BP2 to BP3. Hence two pairs, IA and IB, and IIA and IIB, of intercalation sites exist in which the sugar puckers along the backbone of the tetramer alternate from C(2′)-endo to C(3′)-endo on the backbone (5′p3′) connecting BP2 to BP3. The glycosidic angles of the C(3′)-endo sugar χ3γ are, coincidentally, 80° ± 2° for both conformations γ = A and B connecting BP3 to BP4 along the phosphate backbone (5′p3′). Consistent with the theoretical results, the experimental unwinding angles can be grouped into two categories with absolute values of 18° and 26°. The theoretical unwinding angles for sites IA and IB of 16° and for sites IIA and IIB of 20° occur for a displacement of -0.8 Å in the helical axes of BP2 and BP3 and for a 100% G·C composition, with a decrease depending on the amount of A·T base pairs present. Ratios of theoretical unwinding angles of sites I and II, which range from 0.75 to 0.84 for the two principal sites, compare well with the experimental value of 0.71. The theoretical results, in agreement with experimental observation, provide a new interpretation of the nature and conformation of the possible binding sites. Conformations obtained from these studies of intercalation sites in a tetramer duplex are used to rationalize the well-known neighbor-exclusion principle. The possibility of violation of this principle is demonstrated by the existence of two families of physically meaningful conformations. Conformations of unconstrained dimer duplexes are also obtained, one of which corresponds to the experimental crystal structure of ethidium-dinucleoside complexes, but these cannot be joined to the B-DNA structure. Backbone conformations of the tetramer duplex can be constructed until the base-pair separation reaches 8.25 Å, which may limit the molecules that can intercalate.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: As a continuation of previous papers [Biopolymers (1976) 15, 879; (1978) 17, 1508], the low-frequency dielectric relaxation of DNA solutions was studied with a four-electrode cell and the simultaneous two-frequency measurement. Below a critical concentration, the dielectric relaxation time agrees with the rotational relaxation time estimated from the reduced viscosity and is almost independent of DNA concentration Cp, and the dielectric increment is proportional to Cp. The critical concentration is approximately 0.02% of DNA for molecular weight Mr 2 × 106 and 0.2% for Mr 4.5 × 105 in 1 mM NaCl. Dielectric relaxations are compared for samples before and after deproteinization, and the protein contamination is found to have a minor effect on the dipole moment of DNA. The effect of a mixed solvent of water and ethanol on the dielectric relaxation of DNA is well interpreted in terms of changes in viscosity and the dielectric constant of the solvent, assuming that the relaxation arises from rotation of the molecule with a quasi-permanent dipole due to counterion fluctuation.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979) 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2911-2911 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Conformational energies of α- and β-D-glucopyranoses were computed by varying all the ring bond angles and torsional angles using semiempirical potential functions. Solvent accessibility calculations were also performed to obtain a measure of solvent interaction.The results indicate that the 4C1 (D) chair is the most favored conformation, both by potential energy and solvent accessibility criteria. The 4C1 (D) chair conformation is also found to be somewhat flexible, being able to accommodate variations up to 10° in the ring torsional angles without appreciable change in energy. Observed solid-state conformations of these sugars and their derivatives lie in the minimum-energy region, suggesting that the substituents and crystal field forces play a minor role in influencing the pyranose ring conformation. Theory also predicts the variations in the ring torsional angles, i.e., CCCC 〈 CCCO 〈 CCOC, in agreement with the experimental results. The boat and twist-boat conformations are found to be at least 5 kcal mol-1 higher in energy compared to the 4C1 (D) chair, suggesting that these forms are unlikely to be present in a polysaccharide chain. The 1C4 (D) chair has energy intermediate between that of the 4C1 (D) chair and that of the twist-boat conformation. The calculated energy barrier between 4C1 (D) and 1C4 (D) conformations is high - about 11 kcal mol-1.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...