ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-06
    Description: Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255705/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255705/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iversen, Lars -- Tu, Hsiung-Lin -- Lin, Wan-Chen -- Christensen, Sune M -- Abel, Steven M -- Iwig, Jeff -- Wu, Hung-Jen -- Gureasko, Jodi -- Rhodes, Christopher -- Petit, Rebecca S -- Hansen, Scott D -- Thill, Peter -- Yu, Cheng-Han -- Stamou, Dimitrios -- Chakraborty, Arup K -- Kuriyan, John -- Groves, Jay T -- P01 AI091580/AI/NIAID NIH HHS/ -- R01 AI104789/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):50-4. doi: 10.1126/science.1250373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemistry, MIT, Cambridge, MA 02139, USA. ; Mechanobiology Institute, National University of Singapore, Singapore. ; Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02139, USA. Department of Biological Engineering, MIT, Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA. Department of Physics, MIT, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA. ; Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Mechanobiology Institute, National University of Singapore, Singapore. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Berkeley Education Alliance for Research in Singapore, 1 Create Way, CREATE tower level 11, University Town, Singapore 138602. jtgroves@lbl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994643" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Kinetics ; Nucleotides/chemistry ; *Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins p21(ras)/*agonists ; Son of Sevenless Protein, Drosophila/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-25
    Description: Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare syndrome, the known genetic etiologies of which impair the production of, or the response to interferon-gamma (IFN-). We report here a patient (P1) with MSMD whose cells display mildly impaired responses to IFN-, at levels, however, similar to those from MSMD patients with autosomal recessive (AR) partial IFN-R2 or STAT1 deficiency. Whole-exome sequencing (WES) and Sanger sequencing revealed only one candidate variation for both MSMD-causing and IFN--related genes. P1 carried a heterozygous frame-shift IFNGR2 mutation inherited from her father. We show that the mutant allele is intrinsically loss-of-function and not dominant-negative, suggesting haploinsufficiency at the IFNGR2 locus. We also show that Epstein-Barr virus transformed B lymphocyte cells from 10 heterozygous relatives of patients with AR complete IFN-R2 deficiency respond poorly to IFN-, in some cases as poorly as the cells of P1. Naive CD4 + T cells and memory IL-4-producing T cells from these individuals also responded poorly to IFN-, whereas monocytes and monocyte-derived macrophages (MDMs) did not. This is consistent with the lower levels of expression of IFN-R2 in lymphoid than in myeloid cells. Overall, MSMD in this patient is probably due to autosomal dominant (AD) IFN-R2 deficiency, resulting from haploinsufficiency, at least in lymphoid cells. The clinical penetrance of AD IFN-R2 deficiency is incomplete, possibly due, at least partly, to the variability of cellular responses to IFN- in these individuals.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-29
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-12
    Description: Author(s): L. Giovanelli, F. C. Bocquet, P. Amsalem, H.-L. Lee, M. Abel, S. Clair, M. Koudia, T. Faury, L. Petaccia, D. Topwal, E. Salomon, T. Angot, A. A. Cafolla, N. Koch, L. Porte, A. Goldoni, and J.-M. Themlin Adsorption of organic molecules on well-oriented single-crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultraviolet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine metal can be assigned as “interface states” having so... [Phys. Rev. B 87, 035413] Published Fri Jan 11, 2013
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...