ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Biological  (68)
  • Phosphorylation  (55)
  • Fisheries
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • American Association for the Advancement of Science (AAAS)  (120)
  • Victoria: Seychelles Fishing Authority  (2)
  • Am. Meteor. Soc.
  • WWF Programa Marino para Latinoamérica y el Caribe
  • 2005-2009  (122)
  • 1950-1954
  • 2006  (122)
Collection
Keywords
Publisher
Years
  • 2005-2009  (122)
  • 1950-1954
Year
  • 1
    facet.materialart.
    Unknown
    Victoria: Seychelles Fishing Authority
    Publication Date: 2021-05-19
    Description: Seychelles is composed of over 100 islands with a land area of approximately 455 km², centred close to 4°30'S and 55°30'E. The combined coastline is approximately 600 km long, the oceanic shelf totals about 50 000 km² and the Exclusive Economic Zone (EEZ) is over 1 370 000 km². The total population (1994 census) stands at just under 74 000. in 1994, the population registered a growth rate of 2.2%. The GDP (1994) was SR 2373.8 million, fisheries representing 4.8% of this sum. Licensing agreements for foreign fishing activities provided a yearly revenue of SR8 million. Port Victoria is seen as a prime centre for tuna fishing operations in the Indian Ocean. In the artisanal fishery just under 900 persons are working. The largest contributor to catch by vessel type are the traditional whaler vessels representing 47.8% of the total catch. Over 66.3% of the catch is by the handline method. Carangidae representing 24% and Lutjanidae 19% of total landings. There are six specific objectives to the fisheries sector policy, which aims as resource development and maximisation of potential benefits. Nearshore fishery resources are considered to be heavily exploited, however opportunities exist around the distant islands and in deeper waters off the Mahe plateau shelf. Aquaculture of molluscs and prawns is being developed and carried out. The main constraints to development are seen as the lack of skilled manpower and foreign exchange.
    Description: Published
    Keywords: Country profile ; Fisheries ; Seychelles ; Statistics ; Fisheries ; Fishery statistics
    Repository Name: AquaDocs
    Type: Report , Non-Refereed
    Format: 186058 bytes
    Format: 520444 bytes
    Format: application/pdf
    Format: application/pdf
    Format: 19
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Victoria: Seychelles Fishing Authority | Victoria
    Publication Date: 2021-08-09
    Description: Published
    Description: Industrial tuna fishing
    Keywords: Tuna ; Fisheries ; Fishery economics ; Fishery industry ; Fishery statistics ; Tuna fisheries
    Repository Name: AquaDocs
    Type: Report , Non-Refereed
    Format: 1589602 bytes
    Format: application/pdf
    Format: 28
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steneck, Robert S -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):480-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Marine Sciences, University of Maine, Darling Marine Center, Walpole, ME 04573, USA. steneck@maine.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa ; Caribbean Region ; Computer Simulation ; Conservation of Natural Resources ; *Ecosystem ; Fishes/growth & development/*physiology ; Larva/physiology ; Models, Biological ; Population Dynamics ; *Seawater ; *Swimming ; Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-08-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crowder, L B -- Osherenko, G -- Young, O R -- Airame, S -- Norse, E A -- Baron, N -- Day, J C -- Douvere, F -- Ehler, C N -- Halpern, B S -- Langdon, S J -- McLeod, K L -- Ogden, J C -- Peach, R E -- Rosenberg, A A -- Wilson, J A -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):617-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Marine Conservation, Nicholas School of the Environment and Earth Sciences, Duke University Marine Laboratory, Beaufort, NC 28516, USA. lcrowder@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16888124" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Conservation of Natural Resources ; *Ecosystem ; Environment ; Fisheries ; Fishes ; *Government Regulation ; *Marine Biology ; Oceans and Seas ; Population Dynamics ; Seawater ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-11-18
    Description: During development, cells acquire positional information by reading the concentration of morphogens. In the developing fly wing, a gradient of the transforming growth factor-beta (TGF-beta)-type morphogen decapentaplegic (Dpp) is transduced into a gradient of concentration of the phosphorylated form of the R-Smad transcription factor Mad. The endosomal protein Sara (Smad anchor for receptor activation) recruits R-Smads for phosphorylation by the type I TGF-beta receptor. We found that Sara, Dpp, and its type I receptor Thickveins were targeted to a subpopulation of apical endosomes in the developing wing epithelial cells. During mitosis, the Sara endosomes and the receptors therein associated with the spindle machinery to segregate into the two daughter cells. Daughter cells thereby inherited equal amounts of signaling molecules and thus retained the Dpp signaling levels of the mother cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokel, Christian -- Schwabedissen, Anja -- Entchev, Eugeni -- Renaud, Olivier -- Gonzalez-Gaitan, Marcos -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1135-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Division ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/*metabolism ; Endosomes/*metabolism ; Epithelial Cells/cytology/metabolism ; *Mitosis ; Phosphorylation ; Point Mutation ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction ; Smad Proteins, Receptor-Regulated/metabolism ; Transcription Factors/metabolism ; Transforming Growth Factor beta/*metabolism ; Wings, Animal/cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-13
    Description: The replication of many viruses is associated with specific intracellular compartments called virus factories or virioplasm. These are thought to provide a physical scaffold to concentrate viral components and thereby increase the efficiency of replication. The formation of virus replication sites often results in rearrangement of cellular membranes and reorganization of the cytoskeleton. Similar rearrangements are seen in cells in response to protein aggregation, where aggresomes and autophagosomes are produced to facilitate protein degradation. Here I review the evidence that some viruses induce aggresomes and autophagosomes to generate sites of replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wileman, Thomas -- New York, N.Y. -- Science. 2006 May 12;312(5775):875-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK. t.wileman@uea.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690857" target="_blank"〉PubMed〈/a〉
    Keywords: *Autophagy ; Cell Membrane Structures/ultrastructure/virology ; Cell Nucleus/ultrastructure/virology ; Cell Nucleus Structures/ultrastructure/virology ; Cytoplasmic Vesicles/physiology/ultrastructure/*virology ; DNA Viruses/*physiology ; Models, Biological ; Phagosomes/physiology/*virology ; Proteins/metabolism ; RNA Viruses/*physiology ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-10-21
    Description: Dey and Joshi (Reports, 21 April 2006, p. 434) studied replicate laboratory populations of Drosophila and reported that low migration led to asynchrony among subpopulations. We argue that this unexpected outcome may be due to variation in the initial size of the subpopulations and uncontrolled stochasticity in the experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ranta, Esa -- Kaitala, Veijo -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):420; author reply 420.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Unit, Department of Biological and Environmental Sciences, P.O. Box 65 (Viikinkaari 1), FIN-00014 University of Helsinki, Finland. esa.ranta@helsinki.fi〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053132" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Computer Simulation ; Drosophila melanogaster/*physiology ; Models, Biological ; Population Dynamics ; Population Growth ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-04-22
    Description: Given the considerable challenges to the rapid development of an effective vaccine against influenza, antiviral agents will play an important role as a first-line defense if a new pandemic occurs. The large-scale use of drugs for chemoprophylaxis and treatment will impose strong selection for the evolution of drug-resistant strains. The ensuing transmission of those strains could substantially limit the effectiveness of the drugs as a first-line defense. Summarizing recent data on the rate at which the treatment of influenza infection generates resistance de novo and on the transmission fitness of resistant virus, we discuss possible implications for the epidemiological spread of drug resistance in the context of an established population dynamic model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regoes, Roland R -- Bonhoeffer, Sebastian -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):389-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Integrative Biology, ETH Zurich, ETH Zentrum CHN K12.1, Universitatsstrasse 16, CH 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627735" target="_blank"〉PubMed〈/a〉
    Keywords: Acetamides/pharmacology/therapeutic use ; Amantadine/pharmacology/therapeutic use ; Antiviral Agents/*pharmacology/*therapeutic use ; Computer Simulation ; Disease Outbreaks ; *Drug Resistance, Viral/genetics ; Humans ; Influenza A virus/*drug effects/genetics/pathogenicity ; Influenza, Human/*drug therapy/epidemiology/*prevention & control/virology ; Mathematics ; Models, Biological ; Mutation ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae/*drug effects/genetics/pathogenicity ; Oseltamivir ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brasaemle, Dawn L -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1581-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Nutritional Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ 08901, USA. brasaemle@aesop.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973864" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Caveolae/metabolism ; Caveolin 1/genetics/*physiology ; Cell Cycle ; Cell Membrane/metabolism ; Cell Proliferation ; Fatty Acids/metabolism ; Glucose/administration & dosage ; Hepatocytes/cytology/*metabolism ; Hydrolysis ; *Lipid Metabolism ; *Liver Regeneration ; Mice ; Models, Biological ; Phospholipids/biosynthesis ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-02-25
    Description: The transcription factor NF-kappaB modulates apoptotic responses induced by genotoxic stress. We show that NF-kappaB essential modulator (NEMO), the regulatory subunit of IkappaB kinase (IKK) (which phosphorylates the NF-kappaB inhibitor IkappaB), associates with activated ataxia telangiectasia mutated (ATM) after the induction of DNA double-strand breaks. ATM phosphorylates serine-85 of NEMO to promote its ubiquitin-dependent nuclear export. ATM is also exported in a NEMO-dependent manner to the cytoplasm, where it associates with and causes the activation of IKK in a manner dependent on another IKK regulator, a protein rich in glutamate, leucine, lysine, and serine (ELKS). Thus, regulated nuclear shuttling of NEMO links two signaling kinases, ATM and IKK, to activate NF-kappaB by genotoxic signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Zhao-Hui -- Shi, Yuling -- Tibbetts, Randal S -- Miyamoto, Shigeki -- R01-CA77474/CA/NCI NIH HHS/ -- R01-CA81065/CA/NCI NIH HHS/ -- R01-GM067868/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1141-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Wisconsin-Madison, 301 SMI, 1300 University Avenue, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497931" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing/genetics/metabolism ; Amino Acid Motifs ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/*metabolism ; Humans ; I-kappa B Kinase/*metabolism ; I-kappa B Proteins/genetics/metabolism ; NF-kappa B/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; SUMO-1 Protein/metabolism ; *Signal Transduction ; Tumor Suppressor Proteins/*metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-08-12
    Description: Long-distance dispersal (LDD) of plants poses challenges to research because it involves rare events driven by complex and highly stochastic processes. The current surge of renewed interest in LDD, motivated by growing recognition of its critical importance for natural populations and communities and for humanity, promises an improved, quantitatively derived understanding of LDD. To gain deep insights into the patterns, mechanisms, causes, and consequences of LDD, we must look beyond the standard dispersal vectors and the mean trend of the distribution of dispersal distances. "Nonstandard" mechanisms such as extreme climatic events and generalized LDD vectors seem to hold the greatest explanatory power for the drastic deviations from the mean trend, deviations that make the nearly impossible LDD a reality.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nathan, Ran -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):786-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Movement Ecology Laboratory, Department of Evolution, Systematics and Ecology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel. rnathan@cc.huji.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902126" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Ecosystem ; *Environment ; Humans ; Models, Biological ; *Plants ; Pollen ; Population Dynamics ; Probability ; *Seeds ; Selection, Genetic ; Stochastic Processes ; Water Movements ; *Weather ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2006-03-18
    Description: During development, cells monitor and adjust their rates of accumulation to produce organs of predetermined size. We show here that central nervous system-specific deletion of the essential adherens junction gene, alphaE-catenin, causes abnormal activation of the hedgehog pathway, resulting in shortening of the cell cycle, decreased apoptosis, and cortical hyperplasia. We propose that alphaE-catenin connects cell-density-dependent adherens junctions with the developmental hedgehog pathway and that this connection may provide a negative feedback loop controlling the size of developing cerebral cortex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556178/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556178/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lien, Wen-Hui -- Klezovitch, Olga -- Fernandez, Tania E -- Delrow, Jeff -- Vasioukhin, Valeri -- P41 RR011823/RR/NCRR NIH HHS/ -- P41 RR011823-128171/RR/NCRR NIH HHS/ -- R01 CA098161/CA/NCI NIH HHS/ -- R01 CA098161-01A1/CA/NCI NIH HHS/ -- R01 CA098161-02/CA/NCI NIH HHS/ -- R01 CA098161-03/CA/NCI NIH HHS/ -- R01 CA098161-04/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 17;311(5767):1609-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16543460" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/*physiology/ultrastructure ; Animals ; Apoptosis ; Cell Adhesion ; Cell Count ; Cell Cycle ; Cell Differentiation ; Cell Polarity ; Central Nervous System/embryology ; Cerebral Cortex/cytology/*embryology/pathology/physiology ; Hedgehog Proteins ; Hyperplasia ; Mice ; Mitosis ; Models, Biological ; Mutation ; Neurons/cytology/*physiology/ultrastructure ; Oligonucleotide Array Sequence Analysis ; *Signal Transduction ; Stem Cells/cytology/ultrastructure ; Trans-Activators/*metabolism ; Up-Regulation ; alpha Catenin/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-06-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neels, Jaap G -- Olefsky, Jerrold M -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1756-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA. jolefsky@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794069" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/antagonists & inhibitors/*metabolism ; Adipocytes/metabolism ; Adipose Tissue/*metabolism ; Animals ; Cell Cycle Proteins/*metabolism ; Energy Intake ; Energy Metabolism ; Enzyme Activation ; Fasting ; Fatty Acids/metabolism ; Hepatocytes/metabolism ; Insulin/physiology ; Insulin Resistance ; *Lipid Metabolism ; Lipogenesis ; Liver/metabolism ; Malonyl Coenzyme A/metabolism ; Mice ; Models, Biological ; Nuclear Proteins/*metabolism ; Obesity/therapy ; Oxidation-Reduction ; Phosphorylation ; Proto-Oncogene Proteins c-akt/antagonists & inhibitors/metabolism ; Signal Transduction ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2006-08-19
    Description: Eukaryotic flagella and cilia are built on a 9 + 2 array of microtubules plus 〉250 accessory proteins, forming a biological machine called the axoneme. Here we describe the three-dimensional structure of rapidly frozen axonemes from Chlamydomonas and sea urchin sperm, using cryoelectron tomography and image processing to focus on the motor enzyme dynein. Our images suggest a model for the way dynein generates force to slide microtubules. They also reveal two dynein linkers that may provide "hard-wiring" to coordinate motor enzyme action, both circumferentially and along the axoneme. Periodic densities were also observed inside doublet microtubules; these may contribute to doublet stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicastro, Daniela -- Schwartz, Cindi -- Pierson, Jason -- Gaudette, Richard -- Porter, Mary E -- McIntosh, J Richard -- 2R37-GM55667/GM/NIGMS NIH HHS/ -- RR 000592/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 18;313(5789):944-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, CB 347, University of Colorado, Boulder, CO 80309-0347, USA. nicastro@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16917055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/chemistry/ultrastructure ; Chlamydomonas reinhardtii/ultrastructure ; Cryoelectron Microscopy ; Dyneins/*chemistry/physiology/*ultrastructure ; Flagella/chemistry/physiology/*ultrastructure ; Freezing ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Male ; Microtubule-Associated Proteins ; Microtubules/chemistry/physiology/*ultrastructure ; Models, Biological ; Molecular Motor Proteins/chemistry/ultrastructure ; Protein Structure, Tertiary ; Sea Urchins ; Sperm Tail/chemistry/physiology/*ultrastructure ; Tomography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2006-04-22
    Description: Very few experimental studies have examined how migration rate affects metapopulation dynamics and stability. We studied the dynamics of replicate laboratory metapopulations of Drosophila under different migration rates. Low migration stabilized metapopulation dynamics, while promoting unstable subpopulation dynamics, by inducing asynchrony among neighboring subpopulations. High migration synchronized subpopulation dynamics, thereby destabilizing the metapopulations. Contrary to some theoretical predictions, increased migration did not affect average population size. Simulations based on a simple non-species-specific population growth model captured most features of the data, which suggests that our results are generalizable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dey, Sutirth -- Joshi, Amitabh -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):434-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Evolutionary Biology Laboratory, Evolutionary & Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627743" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Computer Simulation ; Drosophila melanogaster/*physiology ; Models, Biological ; Population Density ; Population Dynamics ; Population Growth
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2006-02-25
    Description: Sibly et al. (Reports, 22 July 2005, p. 607) recently estimated the relationship between population size and growth rate for 1780 time series of various species. I explain why some aspects of their analysis are questionable and, therefore, why their results and estimation procedure should be used with care.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ross, Joshua V -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1100; author reply 1100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Mathematics, University of Queensland, St. Lucia, QLD 4072, Australia. jvr@maths.uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497916" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Birds ; Conservation of Natural Resources ; Ecosystem ; *Fishes ; *Insects ; Logistic Models ; *Mammals ; Mathematics ; Models, Biological ; Population Density ; Population Dynamics ; Population Growth ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Linden, Joel -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1689-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA. jlinden@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170280" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/*metabolism ; Animals ; Apyrase/pharmacology ; *Autocrine Communication ; Blood Platelets/metabolism ; Cell Membrane/metabolism ; *Chemotaxis, Leukocyte/drug effects ; Endothelial Cells/metabolism ; Mice ; Models, Biological ; N-Formylmethionine Leucyl-Phenylalanine ; Neutrophils/drug effects/*metabolism/physiology ; Receptor, Adenosine A3/metabolism ; Receptors, Purinergic/*metabolism ; Receptors, Purinergic P2/metabolism ; Receptors, Purinergic P2Y2 ; Respiratory Burst/drug effects ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2006-12-13
    Description: Mounting evidence has revealed pathological interactions between HIV and malaria in dually infected patients, but the public health implications of the interplay have remained unclear. A transient almost one-log elevation in HIV viral load occurs during febrile malaria episodes; in addition, susceptibility to malaria is enhanced in HIV-infected patients. A mathematical model applied to a setting in Kenya with an adult population of roughly 200,000 estimated that, since 1980, the disease interaction may have been responsible for 8,500 excess HIV infections and 980,000 excess malaria episodes. Co-infection might also have facilitated the geographic expansion of malaria in areas where HIV prevalence is high. Hence, transient and repeated increases in HIV viral load resulting from recurrent co-infection with malaria may be an important factor in promoting the spread of HIV in sub-Saharan Africa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abu-Raddad, Laith J -- Patnaik, Padmaja -- Kublin, James G -- P30 AI 27757/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1603-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. laith@scharp.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158329" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Africa South of the Sahara/epidemiology ; Antimalarials/therapeutic use ; Disease Susceptibility ; Endemic Diseases ; Female ; HIV Infections/*complications/*epidemiology/transmission/virology ; HIV-1/physiology ; Humans ; Kenya/epidemiology ; Malaria, Falciparum/*complications/drug therapy/*epidemiology/transmission ; Male ; Mathematics ; Models, Biological ; Prevalence ; Recurrence ; Sexual Behavior ; Viral Load ; Viremia ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2006-03-11
    Description: A biosynthetic approach was developed to control and probe cooperativity in multiunit biomotor assemblies by linking molecular motors to artificial protein scaffolds. This approach provides precise control over spatial and elastic coupling between motors. Cooperative interactions between monomeric kinesin-1 motors attached to protein scaffolds enhance hydrolysis activity and microtubule gliding velocity. However, these interactions are not influenced by changes in the elastic properties of the scaffold, distinguishing multimotor transport from that powered by unorganized monomeric motors. These results highlight the role of supramolecular architecture in determining mechanisms of collective transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diehl, Michael R -- Zhang, Kechun -- Lee, Heun Jin -- Tirrell, David A -- New York, N.Y. -- Science. 2006 Mar 10;311(5766):1468-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. diehl@rice.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16527982" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry ; Amino Acid Sequence ; Elasticity ; Elastin/chemistry ; Hydrolysis ; Kinesin/chemistry ; Microtubules/physiology ; Models, Biological ; Molecular Motor Proteins/*physiology ; Molecular Sequence Data ; Protein Engineering ; Protein Structure, Tertiary ; Proteins/chemistry/*physiology ; Recombinant Proteins/chemistry ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-25
    Description: Bacteria use diverse small molecules for extra- and intracellular signaling. They scan small-molecule mixtures to access information about both their extracellular environment and their intracellular physiological status, and based on this information, they continuously interpret their circumstances and react rapidly to changes. Bacteria must integrate extra- and intracellular signaling information to mount appropriate responses to changes in their environment. We review recent research into two fundamental bacterial small-molecule signaling pathways: extracellular quorum-sensing signaling and intracellular cyclic dinucleotide signaling. We suggest how these two pathways may converge to control complex processes including multicellularity, biofilm formation, and virulence. We also outline new questions that have arisen from recent studies in these fields.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776824/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776824/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Camilli, Andrew -- Bassler, Bonnie L -- R01 AI045746/AI/NIAID NIH HHS/ -- R01 AI045746-04/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, 136 Harrison Avenue, Boston, MA 02111-1817, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497924" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/*analogs & derivatives/metabolism ; *Bacterial Physiological Phenomena ; Bacterial Proteins/metabolism ; Biofilms/growth & development ; Cyclic GMP/*analogs & derivatives/metabolism ; Escherichia coli Proteins ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Homoserine/*analogs & derivatives/metabolism ; Lactones/*metabolism ; Models, Biological ; Oligopeptides/metabolism ; Phosphoric Diester Hydrolases/metabolism ; Phosphorus-Oxygen Lyases/metabolism ; Purine Nucleotides/metabolism ; Quinolones/metabolism ; Second Messenger Systems ; *Signal Transduction ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2006-06-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haince, Jean-Francois -- Rouleau, Michele -- Poirier, Guy G -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1752-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Health and Environment Unit, Faculty of Medicine, Laval University Medical Research Center, 2705 Boulevard Laurier, Quebec City, QC, G1V 4G2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794066" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/chemistry/metabolism ; DNA/*metabolism ; DNA Repair ; DNA Topoisomerases, Type II/*metabolism ; DNA-Activated Protein Kinase/metabolism ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; Enzyme Activation ; Gene Expression ; Histones/metabolism ; Humans ; Models, Genetic ; Nucleosomes/metabolism ; Phosphorylation ; Poly Adenosine Diphosphate Ribose/metabolism ; Poly(ADP-ribose) Polymerases/*metabolism ; Response Elements ; Topoisomerase II Inhibitors ; Transcription Factors/metabolism ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2006-08-26
    Description: The ataxia telangiectasia mutated (ATM) protein kinase is a critical component of a DNA-damage response network configured to maintain genomic integrity. The abundance of an essential downstream effecter of this pathway, the tumor suppressor protein p53, is tightly regulated by controlled degradation through COP1 and other E3 ubiquitin ligases, such as MDM2 and Pirh2; however, the signal transduction pathway that regulates the COP1-p53 axis following DNA damage remains enigmatic. We observed that in response to DNA damage, ATM phosphorylated COP1 on Ser(387) and stimulated a rapid autodegradation mechanism. Ionizing radiation triggered an ATM-dependent movement of COP1 from the nucleus to the cytoplasm, and ATM-dependent phosphorylation of COP1 on Ser(387) was both necessary and sufficient to disrupt the COP1-p53 complex and subsequently to abrogate the ubiquitination and degradation of p53. Furthermore, phosphorylation of COP1 on Ser(387) was required to permit p53 to become stabilized and to exert its tumor suppressor properties in response to DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornan, David -- Shimizu, Harumi -- Mah, Angie -- Dudhela, Tanay -- Eby, Michael -- O'rourke, Karen -- Seshagiri, Somasekar -- Dixit, Vishva M -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931761" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/genetics/*metabolism ; Escherichia coli/genetics/metabolism ; Etoposide/pharmacology ; Humans ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA, Small Interfering ; Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics/metabolism ; Tumor Suppressor Proteins/genetics/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2006-10-21
    Description: The tumor suppressor programmed cell death protein 4 (PDCD4) inhibits the translation initiation factor eIF4A, an RNA helicase that catalyzes the unwinding of secondary structure at the 5' untranslated region (5'UTR) of messenger RNAs (mRNAs). In response to mitogens, PDCD4 was rapidly phosphorylated on Ser67 by the protein kinase S6K1 and subsequently degraded via the ubiquitin ligase SCF(betaTRCP). Expression in cultured cells of a stable PDCD4 mutant that is unable to bind betaTRCP inhibited translation of an mRNA with a structured 5'UTR, resulted in smaller cell size, and slowed down cell cycle progression. We propose that regulated degradation of PDCD4 in response to mitogens allows efficient protein synthesis and consequently cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorrello, N Valerio -- Peschiaroli, Angelo -- Guardavaccaro, Daniele -- Colburn, Nancy H -- Sherman, Nicholas E -- Pagano, Michele -- R01-CA76584/CA/NCI NIH HHS/ -- R01-GM57587/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):467-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053147" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Amino Acid Motifs ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cell Size ; Eukaryotic Initiation Factor-4A/antagonists & inhibitors/metabolism ; Eukaryotic Initiation Factor-4F/metabolism ; Eukaryotic Initiation Factor-4G/metabolism ; Eukaryotic Initiation Factors/metabolism ; Humans ; Mitogens/pharmacology ; Phosphorylation ; *Protein Biosynthesis ; RNA, Small Interfering ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Ribosomal Protein S6 Kinases/metabolism ; SKP Cullin F-Box Protein Ligases/*metabolism ; Serine/metabolism ; Serum ; Signal Transduction ; beta-Transducin Repeat-Containing Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2006-09-23
    Description: Vandermeer and Perfecto (Reports, 17 February 2006, p. 1000) reported a general power law pattern in the distribution of a common agricultural pest. However, there is an exact analytical solution for the expected cluster distribution under the proposed null model of density-independent growth in a patchy landscape. Reanalysis of the data shows that the system is not in a critical state but confirms the importance of a mutualism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, David -- Pascual, Mercedes -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1739; author reply 1739.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA. dalonso@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*physiology ; *Coffea ; *Ecosystem ; Hemiptera/*physiology ; Mathematics ; Models, Biological ; Population Density ; Population Growth ; Probability ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szathmary, Eors -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):306-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, Eotvos University Budapest, and Collegium Budapest (Institute for Advanced Study), 2 Szentharomsag utca, H-1014 Budapest, Hungary. szathmary@colbud.hu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857926" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Chemical Phenomena ; Chemistry ; Computational Biology ; Cooperative Behavior ; Cultural Evolution ; Exobiology ; Humans ; Language ; Models, Biological ; Models, Theoretical ; Molecular Biology ; Origin of Life ; *Research ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2006-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Demian D F -- Pikitch, Ellen K -- Babcock, Elizabeth A -- New York, N.Y. -- Science. 2006 Apr 28;312(5773):526-8; author reply 526-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa ; Biomass ; Caribbean Region ; *Conservation of Natural Resources ; *Ecosystem ; Fisheries ; *Fishes ; Predatory Behavior ; *Sharks
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Irene A -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1558-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Health Sciences and Technology at Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA. ichen@post.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158315" target="_blank"〉PubMed〈/a〉
    Keywords: Awards and Prizes ; *Biological Evolution ; *Cells ; Hydrogen-Ion Concentration ; Lipid Bilayers ; *Liposomes/chemistry ; Models, Biological ; *Origin of Life ; Osmotic Pressure ; *Rna ; RNA, Catalytic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2006-01-10
    Description: The cell lineages that form the transporting tissues (xylem and phloem) and the intervening pluripotent procambial tissue originate from stem cells near the root tip. We demonstrate that in Arabidopsis, cytokinin phytohormones negatively regulate protoxylem specification. AHP6, an inhibitory pseudophosphotransfer protein, counteracts cytokinin signaling, allowing protoxylem formation. Conversely, cytokinin signaling negatively regulates the spatial domain of AHP6 expression. Thus, by controlling the identity of cell lineages, the reciprocal interaction of cytokinin signaling and its spatially specific modulator regulates proliferation and differentiation of cell lineages during vascular development, demonstrating a previously unrecognized regulatory circuit underlying meristem organization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahonen, Ari Pekka -- Bishopp, Anthony -- Higuchi, Masayuki -- Nieminen, Kaisa M -- Kinoshita, Kaori -- Tormakangas, Kirsi -- Ikeda, Yoshihisa -- Oka, Atsuhiro -- Kakimoto, Tatsuo -- Helariutta, Yka -- New York, N.Y. -- Science. 2006 Jan 6;311(5757):94-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Molecular Biology Laboratory, Institute of Biotechnology, POB 56, FI-00014, University of Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16400151" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Alleles ; Arabidopsis/*cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism/physiology ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cloning, Molecular ; Cytokinins/*metabolism ; Genes, Plant ; Kinetin/metabolism/pharmacology ; Meristem/cytology/growth & development/metabolism ; Morphogenesis ; Phenotype ; Phosphorylation ; Plant Growth Regulators/*metabolism ; Plant Roots/*cytology/growth & development/metabolism ; Plant Shoots/metabolism ; Plants, Genetically Modified ; *Signal Transduction ; Suppression, Genetic ; Zeatin/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2006-08-12
    Description: Transient infection of eukaryotic cells with commensal and extraintestinal pathogenic Escherichia coli of phylogenetic group B2 blocks mitosis and induces megalocytosis. This trait is linked to a widely spread genomic island that encodes giant modular nonribosomal peptide and polyketide synthases. Contact with E. coli expressing this gene cluster causes DNA double-strand breaks and activation of the DNA damage checkpoint pathway, leading to cell cycle arrest and eventually to cell death. Discovery of hybrid peptide-polyketide genotoxins in E. coli will change our view on pathogenesis and commensalism and open new biotechnological applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nougayrede, Jean-Philippe -- Homburg, Stefan -- Taieb, Frederic -- Boury, Michele -- Brzuszkiewicz, Elzbieta -- Gottschalk, Gerhard -- Buchrieser, Carmen -- Hacker, Jorg -- Dobrindt, Ulrich -- Oswald, Eric -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):848-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INRA, UMR1225, Ecole Nationale Veterinaire de Toulouse, Toulouse F-31076, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cell Death ; Cell Line ; Cell Nucleus/chemistry ; Cytotoxins/*metabolism ; DNA/analysis ; *DNA Damage ; DNA-Binding Proteins/metabolism ; Escherichia coli/genetics/*pathogenicity/*physiology ; G2 Phase ; *Genomic Islands ; HeLa Cells ; Histones/metabolism ; Humans ; Intestinal Mucosa/cytology/microbiology ; Molecular Sequence Data ; Mutagenesis ; Mutagens/*metabolism ; Peptides/*metabolism ; Phosphorylation ; Polyketide Synthases/genetics ; Protein-Serine-Threonine Kinases/metabolism ; Rats ; Signal Transduction ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2006-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Anthony W -- Gunderson, Carla A -- Post, Wilfred M -- Weston, David J -- Wullschleger, Stan D -- New York, N.Y. -- Science. 2006 Apr 28;312(5773):536-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. kingaw@ornl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645083" target="_blank"〉PubMed〈/a〉
    Keywords: *Acclimatization ; Atmosphere ; Carbon/*metabolism ; Carbon Dioxide/metabolism ; *Climate ; Computer Simulation ; Ecosystem ; Mathematics ; Models, Biological ; *Oxygen Consumption ; Plant Leaves/*metabolism ; Soil/analysis ; *Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2006-02-04
    Description: Latimer et al. (Reports, 9 September 2005, p. 1722) used an approximate likelihood function to estimate parameters of Hubbell's neutral model of biodiversity. Reanalysis with the exact likelihood not only yields different estimates but also shows that two similar likelihood maxima for very different parameter combinations can occur. This reveals a limitation of using species abundance data to gain insight into speciation and dispersal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Etienne, Rampal S -- Latimer, Andrew M -- Silander, John A Jr -- Cowling, Richard M -- New York, N.Y. -- Science. 2006 Feb 3;311(5761):610.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Community and Conservation Ecology Group, University of Groningen, Box 14, 9750 AA Haren, The Netherlands. r.s.etienne@rug.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16456064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; *Biodiversity ; *Ecology ; Ecosystem ; *Genetic Speciation ; Likelihood Functions ; Models, Biological ; *Plants/classification/genetics ; South Africa
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):779-82.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902122" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Behavior, Animal ; Computer Simulation ; *Ecology ; Flight, Animal ; Humans ; Models, Biological ; *Movement ; Plant Physiological Phenomena ; Population Dynamics ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):777.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902121" target="_blank"〉PubMed〈/a〉
    Keywords: *Acoustics ; *Animal Identification Systems ; Animals ; *Ecosystem ; Environment ; Fisheries ; *Fishes ; International Cooperation ; Movement ; Oceans and Seas ; Seawater ; Telemetry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bartek, Jiri -- Lukas, Jiri -- New York, N.Y. -- Science. 2006 Oct 13;314(5797):261-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark. jb@cancer.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BRCA2 Protein/metabolism ; Cell Cycle ; Cell Nucleus/metabolism ; Cell Survival ; Cyclin-Dependent Kinase 2/antagonists & inhibitors/*metabolism ; *DNA Damage ; DNA Repair ; DNA Replication ; Forkhead Transcription Factors/*metabolism ; Gene Expression Regulation ; Humans ; Mice ; Models, Biological ; Phosphorylation ; RNA, Small Interfering ; Transcription, Genetic ; cdc25 Phosphatases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2006-07-11
    Description: The spindle checkpoint delays cell cycle progression until microtubules attach each pair of sister chromosomes to opposite poles of the mitotic spindle. Following sister chromatid separation, however, the checkpoint ignores chromosomes whose kinetochores are attached to only one spindle pole, a state that activates the checkpoint prior to metaphase. We demonstrate that, in budding yeast, mutual inhibition between the anaphase-promoting complex (APC) and Mps1, an essential component of the checkpoint, leads to sustained inactivation of the spindle checkpoint. Mps1 protein abundance decreases in anaphase, and Mps1 is a target of the APC. Furthermore, expression of Mps1 in anaphase, or repression of the APC in anaphase, reactivates the spindle checkpoint. This APC-Mps1 feedback circuit allows cells to irreversibly inactivate the checkpoint during anaphase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palframan, William J -- Meehl, Janet B -- Jaspersen, Sue L -- Winey, Mark -- Murray, Andrew W -- GM43987/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- R37 GM043987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):680-4. Epub 2006 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825537" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase/*physiology ; Anaphase-Promoting Complex-Cyclosome ; Cdc20 Proteins ; Cell Cycle Proteins/metabolism ; Chromosomes, Fungal/physiology ; Feedback, Physiological ; GTP-Binding Proteins/metabolism ; Kinetochores/physiology ; Mad2 Proteins ; Mitosis ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*cytology/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Securin ; Spindle Apparatus/*physiology ; Ubiquitin-Protein Ligase Complexes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2006-09-16
    Description: Liver regeneration is an orchestrated cellular response that coordinates cell activation, lipid metabolism, and cell division. We found that caveolin-1 gene-disrupted mice (cav1-/- mice) exhibited impaired liver regeneration and low survival after a partial hepatectomy. Hepatocytes showed dramatically reduced lipid droplet accumulation and did not advance through the cell division cycle. Treatment of cav1-/- mice with glucose (which is a predominant energy substrate when compared to lipids) drastically increased survival and reestablished progression of the cell cycle. Thus, caveolin-1 plays a crucial role in the mechanisms that coordinate lipid metabolism with the proliferative response occurring in the liver after cellular injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Manuel A -- Albor, Cecilia -- Ingelmo-Torres, Mercedes -- Nixon, Susan J -- Ferguson, Charles -- Kurzchalia, Teymuras -- Tebar, Francesc -- Enrich, Carlos -- Parton, Robert G -- Pol, Albert -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1628-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Cellular, Facultat de Medicina, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caveolae/metabolism ; Caveolin 1/genetics/*physiology ; Cell Cycle ; Cell Division ; Fatty Acids/blood/metabolism ; Glucose/administration & dosage ; Hepatectomy ; Hepatocyte Growth Factor/metabolism ; Hepatocytes/cytology/*metabolism ; *Lipid Metabolism ; Lipids/blood ; Liver/metabolism/ultrastructure ; *Liver Regeneration ; Male ; Mice ; Phosphorylation ; RNA, Small Interfering ; STAT3 Transcription Factor/metabolism ; Signal Transduction ; Triglycerides/blood/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2006-10-14
    Description: The function of cyclin-dependent kinase 2 (CDK2) is often abolished after DNA damage. The inhibition of CDK2 plays a central role in DNA damage-induced cell cycle arrest and DNA repair. However, whether CDK2 also influences the survival of cells under genotoxic stress is unknown. Forkhead box O (FOXO) transcription factors are emerging as key regulators of cell survival. CDK2 specifically phosphorylated FOXO1 at serine-249 (Ser249) in vitro and in vivo. Phosphorylation of Ser249 resulted in cytoplasmic localization and inhibition of FOXO1. This phosphorylation was abrogated upon DNA damage through the cell cycle checkpoint pathway that is dependent on the protein kinases Chk1 and Chk2. Moreover, silencing of FOXO1 by small interfering RNA diminished DNA damage-induced death in both p53-deficient and p53-proficient cells. This effect was reversed by restored expression of FOXO1 in a manner depending on phosphorylation of Ser249. Functional interaction between CDK2 and FOXO1 provides a mechanism that regulates apoptotic cell death after DNA strand breakage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Haojie -- Regan, Kevin M -- Lou, Zhenkun -- Chen, Junjie -- Tindall, Donald J -- CA91956/CA/NCI NIH HHS/ -- DK60920/DK/NIDDK NIH HHS/ -- DK65236/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 13;314(5797):294-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038621" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Camptothecin/pharmacology ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Checkpoint Kinase 2 ; Cyclin-Dependent Kinase 2/antagonists & inhibitors/genetics/*metabolism ; Cytoplasm/metabolism ; *DNA Damage ; Forkhead Transcription Factors/antagonists & inhibitors/*metabolism ; Humans ; Mice ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription, Genetic ; Transfection ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2006-12-13
    Description: The PhoP/PhoQ two-component system is a master regulator of Salmonella pathogenicity. Here we report that induction of the PhoP/PhoQ system results in an initial surge of PhoP phosphorylation; the occupancy of target promoters by the PhoP protein; and the transcription of PhoP-activated genes, which then subsides to reach new steady-state levels. This surge in PhoP activity is due to PhoP positively activating its own transcription, because a strain constitutively expressing the PhoP protein attained steady-state levels of activation asymptotically, without the surge. The strain constitutively expressing the PhoP protein was attenuated for virulence in mice, demonstrating that the surge conferred by PhoP's positive feedback loop is necessary to jump-start Salmonella's virulence program.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, Dongwoo -- Lee, Eun-Jin -- Huang, Henry -- Groisman, Eduardo A -- AI49561/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1607-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/*genetics/*metabolism ; *Feedback, Physiological ; Gene Expression Regulation, Bacterial ; Magnesium/metabolism ; Mice ; Phosphorylation ; Promoter Regions, Genetic ; RNA, Bacterial/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Salmonella Infections, Animal/microbiology ; Salmonella typhimurium/*genetics/metabolism/*pathogenicity ; *Transcription, Genetic ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2006-02-18
    Description: In the mammalian nervous system, neuronal activity regulates the strength and number of synapses formed. The genetic program that coordinates this process is poorly understood. We show that myocyte enhancer factor 2 (MEF2) transcription factors suppressed excitatory synapse number in a neuronal activity- and calcineurin-dependent manner as hippocampal neurons formed synapses. In response to increased neuronal activity, calcium influx into neurons induced the activation of the calcium/calmodulin-regulated phosphatase calcineurin, which dephosphorylated and activated MEF2. When activated, MEF2 promoted the transcription of a set of genes, including arc and synGAP, that restrict synapse number. These findings define an activity-dependent transcriptional program that may control synapse number during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavell, Steven W -- Cowan, Christopher W -- Kim, Tae-Kyung -- Greer, Paul L -- Lin, Yingxi -- Paradis, Suzanne -- Griffith, Eric C -- Hu, Linda S -- Chen, Chinfei -- Greenberg, Michael E -- AG05870/AG/NIA NIH HHS/ -- HD18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- R01 EY013613/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1008-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Program, Children's Hospital, and Departments of Neurology and Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcium/metabolism ; Cells, Cultured ; Cytoskeletal Proteins/genetics ; Dendrites/physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; GTPase-Activating Proteins/genetics ; Gene Expression Regulation ; Glutamic Acid/metabolism ; Hippocampus/cytology/*physiology ; MEF2 Transcription Factors ; Mutation ; Myogenic Regulatory Factors/genetics/*physiology ; Nerve Tissue Proteins/genetics ; Neurons/*physiology ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; RNA Interference ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Synapses/*physiology ; Synaptic Transmission ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2006-11-04
    Description: Guanosine triphosphatases of the Rab family are key regulators of membrane trafficking, with Rab11 playing a specific role in membrane recycling. We identified a mammalian protein, protrudin, that promoted neurite formation through interaction with the guanosine diphosphate (GDP)-bound form of Rab11. Phosphorylation of protrudin by extracellular signal-regulated kinase (ERK) in response to nerve growth factor promoted protrudin association with Rab11-GDP. Down-regulation of protrudin by RNA interference induced membrane extension in all directions and inhibited neurite formation. Thus, protrudin regulates Rab11-dependent membrane recycling to promote the directional membrane trafficking required for neurite formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirane, Michiko -- Nakayama, Keiichi I -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082457" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Adhesion Molecules/metabolism ; Cell Line ; Cell Membrane/*metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Guanosine Diphosphate/metabolism ; HeLa Cells ; Humans ; MAP Kinase Kinase 1/metabolism ; Membrane Proteins ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Nerve Growth Factor/pharmacology/physiology ; Neurites/*physiology ; PC12 Cells ; Phosphorylation ; RNA Interference ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Vesicular Transport Proteins ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2006-06-24
    Description: Organisms ranging from bacteria to humans synchronize their internal clocks to daily cycles of light and dark. Photic entrainment of the Drosophila clock is mediated by proteasomal degradation of the clock protein TIMELESS (TIM). We have identified mutations in jetlag-a gene coding for an F-box protein with leucine-rich repeats-that result in reduced light sensitivity of the circadian clock. Mutant flies show rhythmic behavior in constant light, reduced phase shifts in response to light pulses, and reduced light-dependent degradation of TIM. Expression of JET along with the circadian photoreceptor cryptochrome (CRY) in cultured S2R cells confers light-dependent degradation onto TIM, thereby reconstituting the acute response + of the circadian clock to light in a cell culture system. Our results suggest that JET is essential for resetting the clock by transmitting light signals from CRY to TIM.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767177/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767177/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koh, Kyunghee -- Zheng, Xiangzhong -- Sehgal, Amita -- NS048471/NS/NINDS NIH HHS/ -- R01 NS048471/NS/NINDS NIH HHS/ -- R01 NS048471-02/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1809-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794082" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; *Circadian Rhythm ; Cryptochromes ; Drosophila/chemistry/genetics/physiology ; Drosophila Proteins/chemistry/*genetics/*metabolism/*physiology ; Drosophila melanogaster/chemistry/*genetics/*physiology ; Eye Proteins/metabolism ; F-Box Proteins/chemistry/*genetics/*physiology ; Female ; *Light ; Male ; Models, Biological ; Molecular Sequence Data ; Mutation ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/metabolism ; Transgenes ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sieberer, Tobias -- Leyser, Ottoline -- BBS/B/09392/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 May 12;312(5775):858-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of York, York YO10 4YW, UK. ts20@york.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690849" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/metabolism ; Arabidopsis/cytology/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport ; Cell Membrane/metabolism ; Indoleacetic Acids/*metabolism ; Membrane Proteins/genetics/metabolism ; Models, Biological ; Phthalimides/metabolism ; Plant Proteins/genetics/*metabolism ; Plant Roots/metabolism ; Tobacco/cytology/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2006-02-25
    Description: Sibly et al. (Reports, 22 July 2005, p. 607) concluded that density dependence acts far below the carrying capacity in most animal populations. We argue that the authors confused discrete and continuous models, that their best-fit models cannot explain observed oscillations, and that their estimation procedures appear biased. They also neglected trophic and migratory processes, which we demonstrate could underlie their empirical findings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Getz, Wayne M -- Lloyd-Smith, James O -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1100; author reply 1100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Sciences, Policy, and Management, University of California at Berkeley, CA 94720-3114, USA. getz@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497915" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Birds ; Conservation of Natural Resources ; Databases, Factual ; Ecosystem ; *Fishes ; *Insects ; Logistic Models ; *Mammals ; Mathematics ; Models, Biological ; Population Density ; Population Dynamics ; Population Growth ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2006-08-05
    Description: Almost every vertebrate cell has a specialized cell surface projection called a primary cilium. Although these structures were first described more than a century ago, the full scope of their functions remains poorly understood. Here, we review emerging evidence that in addition to their well-established roles in sight, smell, and mechanosensation, primary cilia are key participants in intercellular signaling. This new appreciation of primary cilia as cellular antennae that sense a wide variety of signals could help explain why ciliary defects underlie such a wide range of human disorders, including retinal degeneration, polycystic kidney disease, Bardet-Biedl syndrome, and neural tube defects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singla, Veena -- Reiter, Jeremy F -- R21 DK069423/DK/NIDDK NIH HHS/ -- R21DK69423/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):629-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental and Stem Cell Biology, and Diabetes Center, University of California, San Francisco, CA 94143-0525, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16888132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bardet-Biedl Syndrome/pathology/physiopathology ; Biological Evolution ; Cell Polarity ; Cilia/*physiology ; Hedgehog Proteins ; Humans ; Mechanoreceptors/physiology ; Models, Biological ; Neural Tube Defects/pathology/physiopathology ; Polycystic Kidney Diseases/pathology/physiopathology ; Retinal Degeneration/pathology/physiopathology ; *Signal Transduction ; Smell/physiology ; Trans-Activators/metabolism ; Vision, Ocular/physiology ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2006-07-01
    Description: The clock gene period-4 (prd-4) in Neurospora was identified by a single allele displaying shortened circadian period and altered temperature compensation. Positional cloning followed by functional tests show that PRD-4 is an ortholog of mammalian checkpoint kinase 2 (Chk2). Expression of prd-4 is regulated by the circadian clock and, reciprocally, PRD-4 physically interacts with the clock component FRQ, promoting its phosphorylation. DNA-damaging agents can reset the clock in a manner that depends on time of day, and this resetting is dependent on PRD-4. Thus, prd-4, the Neurospora Chk2, identifies a molecular link that feeds back conditionally from circadian output to input and the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pregueiro, Antonio M -- Liu, Qiuyun -- Baker, Christopher L -- Dunlap, Jay C -- Loros, Jennifer J -- MH44651/MH/NIMH NIH HHS/ -- P01 GM068087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R37GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):644-9. Epub 2006 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle ; Checkpoint Kinase 2 ; *Circadian Rhythm ; Cloning, Molecular ; DNA Damage ; Feedback, Physiological ; Fungal Proteins/chemistry/genetics/metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutation ; Neurospora/*enzymology/genetics ; Neurospora crassa/cytology/*enzymology/*physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2006 Sep 1;313(5791):1230-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16946049" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/chemistry/*metabolism ; Bacteria/metabolism ; Bacterial Physiological Phenomena ; Computer Simulation ; F-Box Proteins/chemistry/*metabolism ; Gene Expression Regulation, Plant ; Indoleacetic Acids/*metabolism ; MicroRNAs/metabolism ; Models, Biological ; *Plant Development ; Plant Growth Regulators/*metabolism ; Plant Proteins/*metabolism ; Plants/genetics/metabolism/microbiology ; RNA Interference ; RNA, Plant/metabolism ; Receptors, Cell Surface/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2006-11-04
    Description: Nuclear pore complexes permit rapid passage of cargoes bound to nuclear transport receptors, but otherwise suppress nucleocytoplasmic fluxes of inert macromolecules 〉/=30 kilodaltons. To explain this selectivity, a sieve structure of the permeability barrier has been proposed that is created through reversible cross-linking between Phe and Gly (FG)-rich nucleoporin repeats. According to this model, nuclear transport receptors overcome the size limit of the sieve and catalyze their own nuclear pore-passage by a competitive disruption of adjacent inter-repeat contacts, which transiently opens adjoining meshes. Here, we found that phenylalanine-mediated inter-repeat interactions indeed cross-link FG-repeat domains into elastic and reversible hydrogels. Furthermore, we obtained evidence that such hydrogel formation is required for viability in yeast.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frey, Steffen -- Richter, Ralf P -- Gorlich, Dirk -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):815-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), INF 282, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082456" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Motifs ; Amino Acid Sequence ; Biopolymers ; Calcium-Binding Proteins/*chemistry/genetics/*metabolism ; Fluorescence Recovery After Photobleaching ; HeLa Cells ; Humans ; Hydrogels ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nuclear Pore/chemistry/*metabolism ; Nuclear Pore Complex Proteins/*chemistry/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Nucleocytoplasmic Transport Proteins/*metabolism ; Permeability ; Phenylalanine/chemistry ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Saccharomyces cerevisiae/chemistry/physiology ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2006-06-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bosch, Xavier -- Vogel, Gretchen -- New York, N.Y. -- Science. 2006 Jun 2;312(5778):1295.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16741086" target="_blank"〉PubMed〈/a〉
    Keywords: *Academies and Institutes ; Models, Biological ; Spain ; *Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2006-10-07
    Description: The evolutionary dynamics underlying the latitudinal gradient in biodiversity have been controversial for over a century. Using a spatially explicit approach that incorporates not only origination and extinction but immigration, a global analysis of genera and subgenera of marine bivalves over the past 11 million years supports an "out of the tropics" model, in which taxa preferentially originate in the tropics and expand toward the poles without losing their tropical presence. The tropics are thus both a cradle and a museum of biodiversity, contrary to the conceptual dichotomy dominant since 1974; a tropical diversity crisis would thus have profound evolutionary effects at all latitudes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jablonski, David -- Roy, Kaustuv -- Valentine, James W -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):102-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA. djablons@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Biological Evolution ; *Bivalvia/classification ; *Fossils ; Geography ; Models, Biological ; Phylogeny ; Population Dynamics ; *Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonenberg, Nahum -- Pause, Arnim -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):428-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6. nahum.sonenberg@mcgill.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053135" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis Regulatory Proteins/*metabolism ; *Cell Proliferation ; Eukaryotic Initiation Factor-4A/antagonists & inhibitors/metabolism ; Eukaryotic Initiation Factor-4F/metabolism ; Humans ; Neoplasms/pathology/*physiopathology ; Phosphorylation ; *Protein Biosynthesis ; Protein Kinases/metabolism ; RNA Caps/metabolism ; RNA-Binding Proteins/*metabolism ; Repressor Proteins/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; SKP Cullin F-Box Protein Ligases/metabolism ; *Signal Transduction ; TOR Serine-Threonine Kinases ; Ubiquitin-Protein Ligases/metabolism ; beta-Transducin Repeat-Containing Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2006-05-13
    Description: The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cota, Daniela -- Proulx, Karine -- Smith, Kathi A Blake -- Kozma, Sara C -- Thomas, George -- Woods, Stephen C -- Seeley, Randy J -- DK 17844/DK/NIDDK NIH HHS/ -- DK 54080/DK/NIDDK NIH HHS/ -- DK 54890/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 May 12;312(5775):927-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of Cincinnati, Genome Research Institute, 2170 East Galbraith Road, Cincinnati, OH 45237, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690869" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arcuate Nucleus of Hypothalamus/cytology/enzymology/metabolism ; *Eating ; *Energy Intake ; *Energy Metabolism ; Fasting ; Hypothalamus/enzymology/*metabolism ; Injections, Intraventricular ; Leptin/pharmacology ; Leucine/*administration & dosage/pharmacology ; Neurons/enzymology/*metabolism ; Neuropeptide Y/genetics/metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Rats ; Rats, Long-Evans ; Ribosomal Protein S6/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; STAT3 Transcription Factor/metabolism ; *Signal Transduction ; Sirolimus/administration & dosage/pharmacology ; TOR Serine-Threonine Kinases ; Valine/administration & dosage/pharmacology ; Weight Loss
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujita, Takashi -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):935-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606- 8507, Japan. tfujita@virus.kyoto-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095686" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cytoplasm/metabolism/virology ; DEAD-box RNA Helicases/chemistry/*metabolism ; Humans ; Immunity, Innate ; Interferons/biosynthesis ; Nucleic Acid Conformation ; Phosphates/metabolism ; Phosphorylation ; RNA Caps/metabolism ; RNA, Double-Stranded/chemistry/metabolism ; RNA, Viral/chemistry/*metabolism ; Signal Transduction ; Toll-Like Receptors/metabolism ; Viral Nonstructural Proteins/metabolism ; Virus Diseases/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2006-08-26
    Description: Years of intensive investigation have yielded a sophisticated understanding of long-term potentiation (LTP) induced in hippocampal area CA1 by high-frequency stimulation (HFS). These efforts have been motivated by the belief that similar synaptic modifications occur during memory formation, but it has never been shown that learning actually induces LTP in CA1. We found that one-trial inhibitory avoidance learning in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS and caused a spatially restricted increase in the amplitude of evoked synaptic transmission in CA1 in vivo. Because the learning-induced synaptic potentiation occluded HFS-induced LTP, we conclude that inhibitory avoidance training induces LTP in CA1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitlock, Jonathan R -- Heynen, Arnold J -- Shuler, Marshall G -- Bear, Mark F -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1093-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning/*physiology ; Conditioning (Psychology) ; Electric Stimulation ; Electrodes, Implanted ; Excitatory Postsynaptic Potentials ; Hippocampus/*physiology ; Long-Term Potentiation/*physiology ; Male ; Memory/*physiology ; Phosphorylation ; Phosphoserine/metabolism ; Rats ; Rats, Long-Evans ; Receptors, AMPA/metabolism ; Synapses/metabolism/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2006-05-27
    Description: Yersinia species use a variety of type III effector proteins to target eukaryotic signaling systems. The effector YopJ inhibits mitogen-activated protein kinase (MAPK) and the nuclear factor kappaB (NFkappaB) signaling pathways used in innate immune response by preventing activation of the family of MAPK kinases (MAPKK). We show that YopJ acted as an acetyltransferase, using acetyl-coenzyme A (CoA) to modify the critical serine and threonine residues in the activation loop of MAPKK6 and thereby blocking phosphorylation. The acetylation on MAPKK6 directly competed with phosphorylation, preventing activation of the modified protein. This covalent modification may be used as a general regulatory mechanism in biological signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukherjee, Sohini -- Keitany, Gladys -- Li, Yan -- Wang, Yong -- Ball, Haydn L -- Goldsmith, Elizabeth J -- Orth, Kim -- R01-AI056404/AI/NIAID NIH HHS/ -- R21-DK072134/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 May 26;312(5777):1211-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728640" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Acetylation ; Acetyltransferases/metabolism ; Bacterial Proteins/*metabolism ; Catalytic Domain ; Cell Line ; Cell-Free System ; Electrophoresis, Polyacrylamide Gel ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Humans ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase 6/chemistry/*metabolism ; MAP Kinase Signaling System ; NF-kappa B/metabolism ; Phosphorylation ; Recombinant Proteins/metabolism ; Serine/metabolism ; Signal Transduction ; Threonine/metabolism ; Yersinia/*metabolism/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2006-05-13
    Description: The interface between an infectious agent and its host represents the ultimate battleground for survival: The microbe must secure a niche for replication, whereas the host must limit the pathogen's advance. Among the host's arsenal of antimicrobial factors, the type 1 interferons (IFNs) induce potent defense mechanisms against viruses and are key in the host-virus standoff. Viruses have evolved multiple tricks to avoid the immediate antiviral effects of IFNs and, in turn, hosts have adapted use of this innate cytokine system to galvanize multiple additional layers of immune defense. The plasticity that exists in these interactions provides us with a lesson in detente.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia-Sastre, Adolfo -- Biron, Christine A -- P01AI52106/AI/NIAID NIH HHS/ -- P01AI58113/AI/NIAID NIH HHS/ -- R01AI46954/AI/NIAID NIH HHS/ -- R01AI55677/AI/NIAID NIH HHS/ -- R01CA41268/CA/NCI NIH HHS/ -- U19AI62623/AI/NIAID NIH HHS/ -- U54AI57158/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 May 12;312(5775):879-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690858" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/physiology ; *Immunity, Innate ; Interferon Regulatory Factors/physiology ; Interferon Type I/biosynthesis/genetics/*physiology ; Models, Biological ; RNA Helicases/metabolism ; Signal Transduction ; Toll-Like Receptors/physiology ; Viral Proteins/metabolism ; *Virus Physiological Phenomena ; Viruses/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2006-07-22
    Description: Brassinosteroids, the steroid hormones of plants, are perceived at the plasma membrane by a leucine-rich repeat receptor serine/threonine kinase called BRI1. We report a BRI1-interacting protein, BKI1, which is a negative regulator of brassinosteroid signaling. Brassinosteroids cause the rapid dissociation of BKI1-yellow fluorescent protein from the plasma membrane in a process that is dependent on BRI1-kinase. BKI1 is a substrate of BRI1 kinase and limits the interaction of BRI1 with its proposed coreceptor, BAK1, suggesting that BKI1 prevents the activation of BRI1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xuelu -- Chory, Joanne -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1118-22. Epub 2006 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857903" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Brassinosteroids ; Cell Membrane/*metabolism ; Cholestanols/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; Meristem/metabolism ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Phosphorylation ; Plants, Genetically Modified ; Protein Binding ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Steroids, Heterocyclic/*metabolism/pharmacology ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2006-06-24
    Description: During fasting, increased concentrations of circulating catecholamines promote the mobilization of lipid stores from adipose tissue in part by phosphorylating and inactivating acetyl-coenzyme A carboxylase (ACC), the rate-limiting enzyme in fatty acid synthesis. Here, we describe a parallel pathway, in which the pseudokinase Tribbles 3 (TRB3), whose abundance is increased during fasting, stimulates lipolysis by triggering the degradation of ACC in adipose tissue. TRB3 promoted ACC ubiquitination through an association with the E3 ubiquitin ligase constitutive photomorphogenic protein 1 (COP1). Indeed, adipocytes deficient in TRB3 accumulated larger amounts of ACC protein than did wild-type cells. Because transgenic mice expressing TRB3 in adipose tissue are protected from diet-induced obesity due to enhanced fatty acid oxidation, these results demonstrate how phosphorylation and ubiquitination pathways converge on a key regulator of lipid metabolism to maintain energy homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qi, Ling -- Heredia, Jose E -- Altarejos, Judith Y -- Screaton, Robert -- Goebel, Naomi -- Niessen, Sherry -- Macleod, Ian X -- Liew, Chong Wee -- Kulkarni, Rohit N -- Bain, James -- Newgard, Christopher -- Nelson, Michael -- Evans, Ronald M -- Yates, John -- Montminy, Marc -- DK064142/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1763-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Peptide Biology Laboratories and Gene Expression Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794074" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Acetyl-CoA Carboxylase/antagonists & inhibitors/*metabolism ; Adipocytes/metabolism ; Adipose Tissue/cytology/*metabolism ; Adipose Tissue, Brown/cytology/metabolism ; Animals ; Cell Cycle Proteins/*metabolism ; Cell Line ; Dietary Fats/administration & dosage ; Energy Metabolism ; Fasting ; Fatty Acids/metabolism ; Gene Expression ; Humans ; *Lipid Metabolism ; Lipolysis ; Mice ; Mice, Transgenic ; Nuclear Proteins/*metabolism ; Obesity/prevention & control ; Oxidation-Reduction ; Phosphorylation ; Thinness ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Weight Gain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2006-03-04
    Description: The restoration of catalytic activity to mutant enzymes by small molecules is well established for in vitro systems. Here, we show that the protein tyrosine kinase Src arginine-388--〉alanine (R388A) mutant can be rescued in live cells with the use of the small molecule imidazole. Cellular rescue of a viral Src homolog was rapid and reversible and conferred predicted oncogenic properties. Using chemical rescue in combination with mass spectrometry, we confirmed six known Src kinase substrates and identified several new protein targets. Chemical rescue data suggest that cellular Src is active under basal conditions. Rescue of R388A cellular Src provided insights into the mitogen-activated protein kinase pathway. This chemical rescue approach will likely have many applications in cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiao, Yingfeng -- Molina, Henrik -- Pandey, Akhilesh -- Zhang, Jin -- Cole, Philip A -- New York, N.Y. -- Science. 2006 Mar 3;311(5765):1293-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16513984" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Cell Line ; Cell Transformation, Neoplastic ; Fluorescence Resonance Energy Transfer ; Gene Expression Profiling ; Gene Expression Regulation ; Growth Substances/metabolism/pharmacology ; Humans ; Imidazoles/*metabolism/pharmacology ; Kinetics ; Mice ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Nuclear Proteins/metabolism ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Phosphorylation ; Phosphotyrosine/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins pp60(c-src)/*genetics/*metabolism ; Recombinant Proteins/metabolism ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2006-07-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kress, Tracy L -- Guthrie, Christine -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1886-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809518" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*metabolism ; Dimerization ; Dinucleoside Phosphates/metabolism ; *Introns ; Models, Genetic ; Nuclear Proteins/metabolism ; Oncogene Proteins/*metabolism ; Phosphorylation ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Ribonucleoprotein, U2 Small Nuclear/metabolism ; Ribonucleoproteins/metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2006-10-14
    Description: Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pichlmair, Andreas -- Schulz, Oliver -- Tan, Choon Ping -- Naslund, Tanja I -- Liljestrom, Peter -- Weber, Friedemann -- Reis e Sousa, Caetano -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):997-1001. Epub 2006 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Cytoplasm/metabolism/virology ; DEAD-box RNA Helicases/genetics/*metabolism ; Dendritic Cells/virology ; Encephalomyocarditis virus/genetics/immunology/metabolism ; Genome, Viral ; Humans ; *Immunity, Innate ; Influenza A virus/*genetics/*immunology/metabolism/physiology ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Mice ; Mice, Inbred C57BL ; Phosphates/metabolism ; Phosphorylation ; RNA Caps/metabolism ; RNA, Double-Stranded/metabolism ; RNA, Viral/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Vesicular stomatitis Indiana virus/genetics/immunology/metabolism ; Viral Nonstructural Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2006-07-01
    Description: Mathematical models predict that the future of the multidrug-resistant tuberculosis epidemic will depend on the fitness cost of drug resistance. We show that in laboratory-derived mutants of Mycobacterium tuberculosis, rifampin resistance is universally associated with a competitive fitness cost and that this cost is determined by the specific resistance mutation and strain genetic background. In contrast, we demonstrate that prolonged patient treatment can result in multidrug-resistant strains with no fitness defect and that strains with low- or no-cost resistance mutations are also the most frequent among clinical isolates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagneux, Sebastien -- Long, Clara Davis -- Small, Peter M -- Van, Tran -- Schoolnik, Gary K -- Bohannan, Brendan J M -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1944-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA. sgagneux@systemsbiology.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809538" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antibiotics, Antitubercular/*pharmacology/therapeutic use ; Bacterial Proteins/genetics ; DNA-Directed RNA Polymerases/genetics ; *Drug Resistance, Multiple, Bacterial ; Humans ; Models, Biological ; Mutation ; Mutation, Missense ; Mycobacterium tuberculosis/*drug effects/genetics/*growth & development ; Rifampin/*pharmacology/therapeutic use ; Tuberculosis, Multidrug-Resistant/drug therapy/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2006-01-18
    Description: In contrast to current models, fluorescence resonance energy transfer measurements using a single-cell imaging assay with fluorescent forms of PER and TIM showed that these proteins bind rapidly and persist in the cytoplasm while gradually accumulating in discrete foci. After approximately 6 hours, complexes abruptly dissociated, as PER and TIM independently moved to the nucleus in a narrow time frame. The per(L) mutation delayed nuclear accumulation in vivo and in our cultured cell system, but without affecting rates of PER/TIM assembly or dissociation. This finding points to a previously unrecognized form of temporal regulation that underlies the periodicity of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Pablo -- Saez, Lino -- Young, Michael W -- GM54339/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Jan 13;311(5758):226-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16410523" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Line ; Cell Nucleus/metabolism ; Circadian Rhythm/*physiology ; Cytoplasm/metabolism ; Drosophila Proteins/*metabolism ; Drosophila melanogaster ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Nuclear Proteins/*metabolism ; Period Circadian Proteins ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2006-05-20
    Description: The endemic species richness on Madagascar, relative to landmass area, is unparalleled in the world. Many organisms on the island have restricted geographical ranges. A comprehensive hypothesis explaining the evolution of this microendemism has yet to be developed. Using an analysis of watersheds in the context of Quaternary climatic shifts, we provide a new mechanistic model to explain the process of explosive speciation on the island. River catchments with sources at relatively low elevations were zones of isolation and hence led to the speciation of locally endemic taxa, whereas those at higher elevations were zones of retreat and dispersion and hence contain proportionately lower levels of microendemism. These results provide a framework for biogeographic and phylogeographic studies, as well as a basis for prioritizing conservation actions of the remaining natural forest habitats on the island.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilme, Lucienne -- Goodman, Steven M -- Ganzhorn, Jorg U -- New York, N.Y. -- Science. 2006 May 19;312(5776):1063-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Missouri Botanical Garden, Boite Postale 3391, Antananarivo (101), Madagascar.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16709785" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Biological Evolution ; Climate ; Genetic Speciation ; Geography ; Madagascar ; Models, Biological ; Rivers ; Trees ; Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2006-01-21
    Description: Scaffold proteins organize signaling proteins into pathways and are often viewed as passive assembly platforms. We found that the Ste5 scaffold has a more active role in the yeast mating pathway: A fragment of Ste5 allosterically activated autophosphorylation of the mitogen-activated protein kinase Fus3. The resulting form of Fus3 is partially active-it is phosphorylated on only one of two key residues in the activation loop. Unexpectedly, at a systems level, autoactivated Fus3 appears to have a negative regulatory role, promoting Ste5 phosphorylation and a decrease in pathway transcriptional output. Thus, scaffolds not only direct basic pathway connectivity but can precisely tune quantitative pathway input-output properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharyya, Roby P -- Remenyi, Attila -- Good, Matthew C -- Bashor, Caleb J -- Falick, Arnold M -- Lim, Wendell A -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):822-6. Epub 2006 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424299" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*chemistry/genetics/*metabolism ; Allosteric Regulation ; Amino Acid Motifs ; Binding Sites ; Crystallography, X-Ray ; Down-Regulation ; Enzyme Activation ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Mutation ; Pheromones/*physiology ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2006-12-02
    Description: Signaling by cell surface receptors and heterotrimeric guanine nucleotide-binding proteins (G proteins) is one of the most exhaustively studied processes in the cell but remains a major focus of molecular pharmacology research. The pheromone-response system in yeast (see the Connections Map at Science's Signal Transduction Knowledge Environment) has provided numerous major advances in our understanding of G protein signaling and regulation. However, the basic features of this prototypical pathway have remained largely unchanged since the mid-1990s. New tools available in yeast are beginning to uncover new pathway components and interactions and have revealed signaling in unexpected locations within the cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slessareva, Janna E -- Dohlman, Henrik G -- P01-GM065533/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1412-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138892" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/*metabolism ; Endosomal Sorting Complexes Required for Transport ; Endosomes/*metabolism ; GTP-Binding Protein alpha Subunits/metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; GTP-Binding Protein beta Subunits/metabolism ; GTP-Binding Protein gamma Subunits/metabolism ; GTPase-Activating Proteins ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Intracellular Membranes/metabolism ; Models, Biological ; Phosphatidylinositol 3-Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; RGS Proteins/metabolism ; Receptors, Mating Factor/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; *Signal Transduction ; Vacuolar Sorting Protein VPS15
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-22
    Description: The threat of pandemic human influenza looms as we survey the ongoing avian influenza pandemic and wonder if and when it will jump species. What are the risks and how can we plan? The nub of the problem lies in the inherent variability of the virus, which makes prediction difficult. However, it is not impossible; mathematical models can help determine and quantify critical parameters and thresholds in the relationships of those parameters, even if the relationships are nonlinear and obscure to simple reasoning. Mathematical models can derive estimates for the levels of drug stockpiles needed to buy time, how and when to modify vaccines, whom to target with vaccines and drugs, and when to enforce quarantine measures. Regardless, the models used for pandemic planning must be tested, and for this we must continue to gather data, not just for exceptional scenarios but also for seasonal influenza.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Derek J -- DP1-OD000490-01/OD/NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):392-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. dsmith@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627736" target="_blank"〉PubMed〈/a〉
    Keywords: Antigenic Variation ; Antiviral Agents/administration & dosage/*therapeutic use ; Disease Outbreaks/*prevention & control ; Evolution, Molecular ; Forecasting ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Humans ; Immunization Programs ; Influenza A Virus, H3N2 Subtype/genetics/immunology ; Influenza A Virus, H5N1 Subtype/genetics/immunology/pathogenicity ; Influenza A virus/immunology ; *Influenza Vaccines ; Influenza, Human/epidemiology/*prevention & control/transmission/virology ; Mathematics ; Models, Biological ; Mutation ; Quarantine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garber, Ken -- New York, N.Y. -- Science. 2006 May 26;312(5777):1158-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728625" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Citrate (pro-S)-Lyase/antagonists & inhibitors/metabolism ; Adenosine Triphosphate/metabolism ; Antineoplastic Agents/pharmacology/therapeutic use ; Cell Respiration ; Cell Transformation, Neoplastic ; *Energy Metabolism ; Enzyme Inhibitors/pharmacology/therapeutic use ; Glucose/metabolism ; *Glycolysis ; Hexokinase/antagonists & inhibitors/metabolism ; Humans ; Hypoxia-Inducible Factor 1/metabolism ; Models, Biological ; Neoplasms/drug therapy/genetics/*metabolism/pathology ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins c-akt/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1536-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158303" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/pathology/physiopathology ; Brain-Derived Neurotrophic Factor/genetics/metabolism ; Corticotropin-Releasing Hormone/genetics/physiology ; Female ; Gene Silencing ; Humans ; Mental Disorders/genetics ; Methyl-CpG-Binding Protein 2/*genetics/metabolism/*physiology ; Mice ; Mutation ; Neurons/pathology/physiology ; Phosphorylation ; Rett Syndrome/*genetics/pathology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2006-12-02
    Description: Women with mutations in the breast cancer susceptibility gene BRCA1 are predisposed to breast and ovarian cancers. Why the BRCA1 protein suppresses tumor development specifically in ovarian hormone-sensitive tissues remains unclear. We demonstrate that mammary glands of nulliparous Brca1/p53-deficient mice accumulate lateral branches and undergo extensive alveologenesis, a phenotype that occurs only during pregnancy in wild-type mice. Progesterone receptors, but not estrogen receptors, are overexpressed in the mutant mammary epithelial cells because of a defect in their degradation by the proteasome pathway. Treatment of Brca1/p53-deficient mice with the progesterone antagonist mifepristone (RU 486) prevented mammary tumorigenesis. These findings reveal a tissue-specific function for the BRCA1 protein and raise the possibility that antiprogesterone treatment may be useful for breast cancer prevention in individuals with BRCA1 mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poole, Aleksandra Jovanovic -- Li, Ying -- Kim, Yoon -- Lin, Suh-Chin J -- Lee, Wen-Hwa -- Lee, Eva Y-H P -- CA049649/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1467-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Irvine, CA 92697-4037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/metabolism ; Cell Line, Tumor ; Cell Proliferation ; Epithelial Cells/cytology/metabolism ; Estradiol/pharmacology ; Estrous Cycle ; Female ; *Genes, BRCA1 ; Genes, p53 ; Hormone Antagonists/*pharmacology/therapeutic use ; Humans ; Mammary Glands, Animal/cytology/metabolism ; Mammary Neoplasms, Animal/genetics/*prevention & control ; Mice ; Mifepristone/*pharmacology/therapeutic use ; Mutation ; Phosphorylation ; Progesterone/*antagonists & inhibitors/pharmacology ; Proteasome Endopeptidase Complex/metabolism ; RNA, Small Interfering ; Receptors, Estrogen/metabolism ; Receptors, Progesterone/genetics/*metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2006-07-01
    Description: Discrimination between splice sites and similar, nonsplice sequences is essential for correct intron removal and messenger RNA formation in eukaryotes. The 65- and 35-kD subunits of the splicing factor U2AF, U2AF65 and U2AF35, recognize, respectively, the pyrimidine-rich tract and the conserved terminal AG present at metazoan 3' splice sites. We report that DEK, a chromatin- and RNA-associated protein mutated or overexpressed in certain cancers, enforces 3' splice site discrimination by U2AF. DEK phosphorylated at serines 19 and 32 associates with U2AF35, facilitates the U2AF35-AG interaction and prevents binding of U2AF65 to pyrimidine tracts not followed by AG. DEK and its phosphorylation are required for intron removal, but not for splicing complex assembly, which indicates that proofreading of early 3' splice site recognition influences catalytic activation of the spliceosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soares, Luis Miguel Mendes -- Zanier, Katia -- Mackereth, Cameron -- Sattler, Michael -- Valcarcel, Juan -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1961-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Regulacio Genomica, Passeig Maritim 37-49, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Dimerization ; Dinucleoside Phosphates/metabolism ; HeLa Cells ; Humans ; *Introns ; Mutation ; Nuclear Proteins/*metabolism ; Oncogene Proteins/genetics/*metabolism ; Phosphorylation ; Pyrimidines/metabolism ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Ribonucleoprotein, U2 Small Nuclear ; Ribonucleoproteins/*metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-08-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bliss, Tim V P -- Collingridge, Graham L -- Laroche, Serge -- MC_U117512674/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1058-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. tbliss@nimr.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931746" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning/physiology ; Dentate Gyrus/physiology ; Electric Stimulation ; Heat-Shock Proteins/pharmacology ; Hippocampus/*physiology ; *Long-Term Potentiation/drug effects ; Long-Term Synaptic Depression/physiology ; Memory/*physiology ; Models, Neurological ; Neurons/physiology ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/metabolism ; Rats ; Receptors, AMPA/metabolism ; Synapses/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2006-09-23
    Description: Vandermeer and Perfecto (Reports, 17 February 2006, p. 1000) maintain that a mutualist ant disrupts the power law distribution of scale insect abundances. However, reanalysis of the data reveals that ants cause an increase in the range of the power law and modify its exponent. We present a tentative, but more realistic, model that is suitable for quantitative predictions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pueyo, Salvador -- Jovani, Roger -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1739; author reply 1739.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament d'Ecologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Catalonia, Spain. spueyo@ub.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*physiology ; *Coffea ; *Ecosystem ; Hemiptera/parasitology/*physiology ; Mathematics ; Models, Biological ; Population Density ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2006-10-07
    Description: Mammalian target of rapamycin (mTOR) is implicated in synaptic plasticity and local translation in dendrites. We found that the mTOR inhibitor, rapamycin, increased the Kv1.1 voltage-gated potassium channel protein in hippocampal neurons and promoted Kv1.1 surface expression on dendrites without altering its axonal expression. Moreover, endogenous Kv1.1 mRNA was detected in dendrites. Using Kv1.1 fused to the photoconvertible fluorescence protein Kaede as a reporter for local synthesis, we observed Kv1.1 synthesis in dendrites upon inhibition of mTOR or the N-methyl-d-aspartate (NMDA) glutamate receptor. Thus, synaptic excitation may cause local suppression of dendritic Kv1 channels by reducing their local synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raab-Graham, Kimberly F -- Haddick, Patrick C G -- Jan, Yuh Nung -- Jan, Lily Yeh -- MH13010/MH/NIMH NIH HHS/ -- MH65334/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):144-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023663" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Cells, Cultured ; Dendrites/drug effects/*metabolism ; Excitatory Postsynaptic Potentials ; Hippocampus/drug effects/*metabolism ; In Vitro Techniques ; Kv1.1 Potassium Channel/*biosynthesis/*genetics ; Neuronal Plasticity ; Neurons/metabolism/virology ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; Protein Biosynthesis ; Protein Kinase Inhibitors/pharmacology ; Protein Kinases/*physiology ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Recombinant Fusion Proteins/metabolism ; Sindbis Virus/physiology ; Sirolimus/pharmacology ; Synapses/physiology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rhee, Sue Goo -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1882-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Life Science and Technology, Ewha Women's University, Seoul 120-750, South Korea. rheesg@ewha.ac.kr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809515" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Cysteine/metabolism ; Cytosol/metabolism ; Humans ; Hydrogen Peroxide/*metabolism ; NADP/metabolism ; Organelles/metabolism ; Oxidation-Reduction ; Peroxidases/metabolism ; Peroxiredoxins ; Phosphorylation ; Protein Tyrosine Phosphatases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/metabolism ; Reactive Oxygen Species/metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breitkreutz, Ashton -- Tyers, Mike -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):789-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Campbell Family Institute for Breast Cancer Research, Toronto Medical Discovery Tower, Toronto, Canada M5G 1L7. abreitkr@uhnres.utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469909" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/genetics/*metabolism ; Binding Sites ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases ; Mitogen-Activated Protein Kinases/chemistry/*metabolism ; Models, Biological ; Mutation ; Pheromones/physiology ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Kinases/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2006-01-10
    Description: Since the mass mortality of the urchin Diadema antillarum in 1983, parrotfishes have become the dominant grazer on Caribbean reefs. The grazing capacity of these fishes could be impaired if marine reserves achieve their long-term goal of restoring large consumers, several of which prey on parrotfishes. Here we compare the negative impacts of enhanced predation with the positive impacts of reduced fishing mortality on parrotfishes inside reserves. Because large-bodied parrotfishes escape the risk of predation from a large piscivore (the Nassau grouper), the predation effect reduced grazing by only 4 to 8%. This impact was overwhelmed by the increase in density of large parrotfishes, resulting in a net doubling of grazing. Increased grazing caused a fourfold reduction in the cover of macroalgae, which, because they are the principal competitors of corals, highlights the potential importance of reserves for coral reef resilience.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mumby, Peter J -- Dahlgren, Craig P -- Harborne, Alastair R -- Kappel, Carrie V -- Micheli, Fiorenza -- Brumbaugh, Daniel R -- Holmes, Katherine E -- Mendes, Judith M -- Broad, Kenneth -- Sanchirico, James N -- Buch, Kevin -- Box, Steve -- Stoffle, Richard W -- Gill, Andrew B -- New York, N.Y. -- Science. 2006 Jan 6;311(5757):98-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Spatial Ecology Lab, School of BioSciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16400152" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa/growth & development ; Bahamas ; Biomass ; Body Size ; *Conservation of Natural Resources ; *Ecosystem ; Fisheries ; *Fishes ; *Perciformes/anatomy & histology ; Population Density ; Population Dynamics ; Predatory Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worby, Carolyn A -- Dixon, Jack E -- New York, N.Y. -- Science. 2006 May 26;312(5777):1150-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16731519" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/metabolism ; Bacterial Proteins/*metabolism ; Enzyme Activation ; Humans ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase 1/metabolism ; MAP Kinase Kinase 6/*metabolism ; MAP Kinase Kinase Kinases/metabolism ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Models, Biological ; NF-kappa B/metabolism ; Phosphorylation ; SUMO-1 Protein/metabolism ; Serine/metabolism ; Signal Transduction ; Threonine/metabolism ; Yersinia/*metabolism/pathogenicity ; Yersinia pestis/metabolism/pathogenicity ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2006-08-19
    Description: Gans et al. (Reports, 26 August 2005, p. 1387) provided an estimate of soil bacterial species richness two orders of magnitude greater than previously reported values. Using a re-derived mathematical model, we reanalyzed the data and found that the statistical error exceeds the estimate by a factor of 26. We also note two potential sources of error in the experimental data collection and measurement procedures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bunge, John -- Epstein, Slava S -- Peterson, Daniel G -- New York, N.Y. -- Science. 2006 Aug 18;313(5789):918; author reply 918.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA. jab18@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16917045" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/genetics/*growth & development ; *Biodiversity ; DNA, Bacterial/*analysis ; Kinetics ; Mathematics ; Metals, Heavy/analysis/*toxicity ; Models, Biological ; Nucleic Acid Renaturation ; *Soil Microbiology ; Soil Pollutants/analysis/*toxicity ; Statistics as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2006-01-21
    Description: Plants and some animals have a profound capacity to regenerate organs from adult tissues. Molecular mechanisms for regeneration have, however, been largely unexplored. Here we investigate a local regeneration response in Arabidopsis roots. Laser-induced wounding disrupts the flow of auxin-a cell-fate-instructive plant hormone-in root tips, and we demonstrate that resulting cell-fate changes require the PLETHORA, SHORTROOT, and SCARECROW transcription factors. These transcription factors regulate the expression and polar position of PIN auxin efflux-facilitating membrane proteins to reconstitute auxin transport in renewed root tips. Thus, a regeneration mechanism using embryonic root stem-cell patterning factors first responds to and subsequently stabilizes a new hormone distribution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Jian -- Hofhuis, Hugo -- Heidstra, Renze -- Sauer, Michael -- Friml, Jiri -- Scheres, Ben -- New York, N.Y. -- Science. 2006 Jan 20;311(5759):385-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424342" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/metabolism/*physiology ; Arabidopsis Proteins/genetics/metabolism ; Biological Transport ; Cell Nucleus/metabolism ; Genes, Plant ; Indoleacetic Acids/*metabolism/pharmacology ; Membrane Transport Proteins/*metabolism ; Models, Biological ; Plant Growth Regulators/*metabolism ; Plant Roots/cytology/*physiology ; Recombinant Fusion Proteins/metabolism ; *Regeneration ; Stem Cells/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2006-10-07
    Description: Ubiquitin-positive, tau- and alpha-synuclein-negative inclusions are hallmarks of frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Although the identity of the ubiquitinated protein specific to either disorder was unknown, we showed that TDP-43 is the major disease protein in both disorders. Pathologic TDP-43 was hyper-phosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments and was recovered only from affected central nervous system regions, including hippocampus, neocortex, and spinal cord. TDP-43 represents the common pathologic substrate linking these neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neumann, Manuela -- Sampathu, Deepak M -- Kwong, Linda K -- Truax, Adam C -- Micsenyi, Matthew C -- Chou, Thomas T -- Bruce, Jennifer -- Schuck, Theresa -- Grossman, Murray -- Clark, Christopher M -- McCluskey, Leo F -- Miller, Bruce L -- Masliah, Eliezer -- Mackenzie, Ian R -- Feldman, Howard -- Feiden, Wolfgang -- Kretzschmar, Hans A -- Trojanowski, John Q -- Lee, Virginia M-Y -- AG10124/AG/NIA NIH HHS/ -- AG17586/AG/NIA NIH HHS/ -- T32 AG00255/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):130-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023659" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amyotrophic Lateral Sclerosis/*metabolism/pathology ; Antibodies, Monoclonal ; *Brain Chemistry ; Cerebral Cortex/chemistry/pathology ; DNA-Binding Proteins/*analysis/chemistry/genetics/immunology ; Dementia/genetics/*metabolism/pathology ; Fluorescent Antibody Technique ; Hippocampus/chemistry/pathology ; Humans ; Immunoblotting ; Molecular Sequence Data ; Motor Neurons/chemistry/pathology ; Neurons/chemistry/pathology ; Peptide Fragments/chemistry ; Phosphorylation ; Spinal Cord/*chemistry/pathology ; Ubiquitin/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2006-04-08
    Description: We observe that protein kinase C (PKC) is phosphorylated on the activation loop at threonine 538 (Thr-538) before T cell activation. Our results are inconsistent with the conclusions of Lee et al. (Reports, 1 April 2005, p. 114) that the Thr-538 phosphorylation of PKC is regulated by T cell receptor activation. Other mechanisms, such as autophosphorylation of Thr-219, might orchestrate the cellular function of PKC in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gruber, Thomas -- Freeley, Michael -- Thuille, Nikolaus -- Heit, Isabelle -- Shaw, Stephen -- Long, Aideen -- Baier, Gottfried -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):55; author reply 55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601177" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Animals ; Antibodies/immunology ; Antigens, CD28/immunology ; Antigens, CD3/immunology ; Cells, Cultured ; Humans ; Isoenzymes/*metabolism ; Jurkat Cells ; Lymphocyte Activation ; Mice ; NF-kappa B/*metabolism ; Phosphorylation ; Protein Kinase C/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; T-Lymphocytes/enzymology/immunology/*metabolism ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ron, David -- New York, N.Y. -- Science. 2006 Jul 7;313(5783):52-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA. ron@saturn.med.nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825557" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cytosol/metabolism ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/chemistry/genetics/*metabolism ; Evolution, Molecular ; Gene Expression Regulation ; Membrane Proteins/chemistry/genetics/*metabolism ; Models, Biological ; Protein Biosynthesis ; *Protein Folding ; Protein Sorting Signals/physiology ; Protein Structure, Tertiary ; *RNA Stability ; RNA, Messenger/genetics/*metabolism ; Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-03-04
    Description: Glutamate, the major excitatory neurotransmitter in the brain, acts primarily on two types of ionotropic receptors: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and N-methyl-d-aspartate (NMDA) receptors. Work over the past decade indicates that regulated changes in the number of synaptic AMPA receptors may serve as a mechanism for information storage. Recent studies demonstrate that a family of small transmembrane AMPA receptor regulatory proteins (TARPs) controls both AMPA receptor trafficking and channel gating. TARPs provide the first example of auxiliary subunits of ionotropic receptors. Here we review the pivotal role that TARPs play in the life cycle of AMPA receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicoll, Roger A -- Tomita, Susumu -- Bredt, David S -- New York, N.Y. -- Science. 2006 Mar 3;311(5765):1253-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143, USA. nicoll@cmp.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16513974" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Calcium Channels/*metabolism ; Hippocampus/metabolism ; Ion Channel Gating ; Mice ; Models, Biological ; Neuronal Plasticity ; Neurons/metabolism ; Phosphorylation ; Protein Binding ; Protein Transport ; Receptors, AMPA/*metabolism ; Synapses/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2006-12-23
    Description: Many species express endogenous cycles in physiology and behavior that allow anticipation of the seasons. The anatomical and cellular bases of these circannual rhythms have not been defined. Here, we provide strong evidence using an in vivo Soay sheep model that the circannual regulation of prolactin secretion, and its associated biology, derive from a pituitary-based timing mechanism. Circannual rhythm generation is seen as the product of the interaction between melatonin-regulated timer cells and adjacent prolactin-secreting cells, which together function as an intrapituitary "pacemaker-slave" timer system. These new insights open the way for a molecular analysis of long-term timing mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lincoln, Gerald A -- Clarke, Iain J -- Hut, Roelof A -- Hazlerigg, David G -- G0600678/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1941-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Reproductive Biology, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, Scotland. g.lincoln@hrsu.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185605" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Circadian Rhythm ; Cues ; Denervation ; Lactotrophs/physiology ; Male ; Melatonin/blood/*physiology ; Models, Biological ; Motor Activity ; Photoperiod ; Pineal Gland/innervation/physiology ; Pituitary Gland, Anterior/*physiology/secretion ; Prolactin/*secretion ; Seasons ; Sheep/blood/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2006-01-28
    Description: Cardio-facio-cutaneous (CFC) syndrome is a sporadic developmental disorder involving characteristic craniofacial features, cardiac defects, ectodermal abnormalities, and developmental delay. We demonstrate that heterogeneous de novo missense mutations in three genes within the mitogen-activated protein kinase (MAPK) pathway cause CFC syndrome. The majority of cases (18 out of 23) are caused by mutations in BRAF, a gene frequently mutated in cancer. Of the 11 mutations identified, two result in amino acid substitutions that occur in tumors, but most are unique and suggest previously unknown mechanisms of B-Raf activation. Furthermore, three of five individuals without BRAF mutations had missense mutations in either MEK1 or MEK2, downstream effectors of B-Raf. Our findings highlight the involvement of the MAPK pathway in human development and will provide a molecular diagnosis of CFC syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez-Viciana, Pablo -- Tetsu, Osamu -- Tidyman, William E -- Estep, Anne L -- Conger, Brenda A -- Cruz, Molly Santa -- McCormick, Frank -- Rauen, Katherine A -- HD048502/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 3;311(5765):1287-90. Epub 2006 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Comprehensive Cancer Center and Cancer Research Institute, University of California, San Francisco, CA 94115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439621" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/*genetics ; Adolescent ; Adult ; Amino Acid Substitution ; Child ; Child, Preschool ; Craniofacial Abnormalities/genetics ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Female ; *Germ-Line Mutation ; Growth Disorders/genetics ; Heart Defects, Congenital/genetics ; Humans ; Infant ; MAP Kinase Kinase 1/genetics ; MAP Kinase Kinase 2/genetics ; MAP Kinase Kinase Kinases/metabolism ; MAP Kinase Signaling System ; Male ; Mitogen-Activated Protein Kinases/genetics/*metabolism ; Mutation, Missense ; Phosphorylation ; Proto-Oncogene Proteins B-raf/genetics ; Skin Abnormalities/genetics ; Syndrome ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Jerry -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1860.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185573" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; *Conservation of Natural Resources ; *Dolphins ; Environment ; Extinction, Biological ; Fisheries ; *Fresh Water ; Population Density ; *Porpoises ; *Rivers ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yildiz, Ahmet -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):792-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94107, USA. yildiz@cmp.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469911" target="_blank"〉PubMed〈/a〉
    Keywords: Awards and Prizes ; Binding Sites ; Calmodulin/metabolism ; Carbocyanines ; *Fluorescent Dyes ; Humans ; Kinesin/*physiology ; Models, Biological ; Molecular Motor Proteins/*physiology ; Movement ; Myosin Heavy Chains/*physiology ; Myosin Type V/*physiology ; Nanotechnology ; Rhodamines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2006-10-07
    Description: TFII-I is a transcription factor and a target of phosphorylation by Bruton's tyrosine kinase. In humans, deletions spanning the TFII-I locus are associated with a cognitive defect, the Williams-Beuren cognitive profile. We report an unanticipated role of TFII-I outside the nucleus as a negative regulator of agonist-induced calcium entry (ACE) that suppresses surface accumulation of TRPC3 (transient receptor potential C3) channels. Inhibition of ACE by TFII-I requires phosphotyrosine residues that engage the SH2 (Src-homology 2) domains of phospholipase C-g (PLC-g) and an interrupted, pleckstrin homology (PH)-like domain that binds the split PH domain of PLC-g. Our observations suggest a model in which TFII-I suppresses ACE by competing with TRPC3 for binding to PLC-g.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caraveo, Gabriela -- van Rossum, Damian B -- Patterson, Randen L -- Snyder, Solomon H -- Desiderio, Stephen -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):122-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023658" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bradykinin/pharmacology ; Calcium/*metabolism ; Calcium Channels/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Humans ; Models, Biological ; Molecular Sequence Data ; PC12 Cells ; Phospholipase C gamma/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Rats ; TRPC Cation Channels/*metabolism ; Transcription Factors, TFII/chemistry/*metabolism ; Uridine Triphosphate/pharmacology ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2006-02-18
    Description: Lithium is commonly used to treat bipolar disorder, which is associated with altered circadian rhythm. Lithium is a potent inhibitor of glycogen synthase kinase 3 (GSK3), which regulates circadian rhythm in several organisms. In experiments with cultured cells, we show here that GSK3beta phosphorylates and stabilizes the orphan nuclear receptor Rev-erbalpha, a negative component of the circadian clock. Lithium treatment of cells leads to rapid proteasomal degradation of Rev-erbalpha and activation of clock gene Bmal1. A form of Rev-erbalpha that is insensitive to lithium interferes with the expression of circadian genes. Control of Rev-erbalpha protein stability is thus a critical component of the peripheral clock and a biological target of lithium therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Lei -- Wang, Jing -- Klein, Peter S -- Lazar, Mitchell A -- DK 19525/DK/NIDDK NIH HHS/ -- DK45586/DK/NIDDK NIH HHS/ -- MH058324/MH/NIMH NIH HHS/ -- R01 MH058324/MH/NIMH NIH HHS/ -- R01 MH058324-07/MH/NIMH NIH HHS/ -- R01 MH058324-08/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1002-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, and University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484495" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Biological Clocks/*physiology ; Cell Line ; Cell Line, Tumor ; Circadian Rhythm/*physiology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Down-Regulation ; Gene Expression Regulation ; Glycogen Synthase Kinase 3/antagonists & inhibitors/metabolism ; Humans ; Lithium Chloride/*pharmacology ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Nuclear Receptor Subfamily 1, Group D, Member 1 ; Phosphorylation ; Promoter Regions, Genetic ; Proteasome Endopeptidase Complex/metabolism ; Proteasome Inhibitors ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adrain, Colin -- Martin, Seamus J -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):785-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland. martinsj@tcd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469906" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein/metabolism ; Caspase 3 ; Caspase 7 ; Caspases/genetics/*metabolism ; Cytochromes c/metabolism/*physiology ; Enzyme Activation ; Feedback, Physiological ; Fibroblasts/cytology/metabolism ; Mice ; Mice, Knockout ; Mitochondria/*metabolism ; Mitochondrial Membranes/physiology ; Models, Biological ; Permeability ; bcl-2-Associated X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2006-07-29
    Description: Although signals controlled by single molecules are expected to be inherently variable, rod photoreceptors generate reproducible responses to single absorbed photons. We show that this unexpected reproducibility-the consistency of amplitude and duration of rhodopsin activity-varies in a graded and systematic manner with the number but not the identity of phosphorylation sites on rhodopsin's C terminus. These results indicate that each phosphorylation site provides an independent step in rhodopsin deactivation and that collectively these steps tightly control rhodopsin's active lifetime. Other G protein cascades may exploit a similar mechanism to encode accurately the timing and number of receptor activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doan, Thuy -- Mendez, Ana -- Detwiler, Peter B -- Chen, Jeannie -- Rieke, Fred -- EY-02048/EY/NEI NIH HHS/ -- EY-11850/EY/NEI NIH HHS/ -- EY-12155/EY/NEI NIH HHS/ -- T32EY-07031/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 28;313(5786):530-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16873665" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/metabolism ; Electrophysiology ; Mice ; Mice, Transgenic ; Models, Biological ; Mutation ; Patch-Clamp Techniques ; Phosphorylation ; *Photons ; Retinal Rod Photoreceptor Cells/*metabolism ; Rhodopsin/genetics/*metabolism ; Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2006-05-06
    Description: Signal sequences of secretory and membrane proteins are recognized by the signal recognition particle (SRP) as they emerge from the ribosome. This results in their targeting to the membrane by docking with the SRP receptor, which facilitates transfer of the ribosome to the translocon. Here, we present the 8 angstrom cryo-electron microscopy structure of a "docking complex" consisting of a SRP-bound 80S ribosome and the SRP receptor. Interaction of the SRP receptor with both SRP and the ribosome rearranged the S domain of SRP such that a ribosomal binding site for the translocon, the L23e/L35 site, became exposed, whereas Alu domain-mediated elongation arrest persisted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halic, Mario -- Gartmann, Marco -- Schlenker, Oliver -- Mielke, Thorsten -- Pool, Martin R -- Sinning, Irmgard -- Beckmann, Roland -- New York, N.Y. -- Science. 2006 May 5;312(5774):745-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Charite, University Medical School Berlin, Monbijoustrasse 2, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675701" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cryoelectron Microscopy ; Dogs ; Guanosine Triphosphate/metabolism ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Receptors, Cytoplasmic and Nuclear/*chemistry/*metabolism ; Receptors, Peptide/*chemistry/*metabolism ; Ribosomes/*chemistry/*metabolism ; Signal Recognition Particle/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2006-09-23
    Description: To resolve the controversy about messengers regulating KCNQ ion channels during phospholipase C-mediated suppression of current, we designed translocatable enzymes that quickly alter the phosphoinositide composition of the plasma membrane after application of a chemical cue. The KCNQ current falls rapidly to zero when phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PI(4,5)P2] is depleted without changing Ca2+, diacylglycerol, or inositol 1,4,5-trisphosphate. Current rises by 30% when PI(4,5)P2 is overproduced and does not change when phosphatidylinositol 3,4,5-trisphosphate is raised. Hence, the depletion of PI(4,5)P2 suffices to suppress current fully, and other second messengers are not needed. Our approach is ideally suited to study biological signaling networks involving membrane phosphoinositides.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suh, Byung-Chang -- Inoue, Takanari -- Meyer, Tobias -- Hille, Bertil -- AR17803/AR/NIAMS NIH HHS/ -- GM63702/GM/NIGMS NIH HHS/ -- MH64801/MH/NIMH NIH HHS/ -- NS08174/NS/NINDS NIH HHS/ -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM030179-24A1/GM/NIGMS NIH HHS/ -- R01 GM030179-25/GM/NIGMS NIH HHS/ -- R01 GM063702/GM/NIGMS NIH HHS/ -- R01 MH064801/MH/NIMH NIH HHS/ -- R01 NS008174/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1454-7. Epub 2006 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cell Line ; Cell Membrane/*metabolism ; Diglycerides/metabolism ; Dimerization ; Humans ; *Ion Channel Gating ; KCNQ Potassium Channels/*metabolism ; KCNQ2 Potassium Channel/metabolism ; KCNQ3 Potassium Channel/metabolism ; Mice ; NIH 3T3 Cells ; Oxotremorine/analogs & derivatives/pharmacology ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphoric Monoester Hydrolases/metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Sirolimus/analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2006-06-10
    Description: The links between the cell cycle machinery and the cytoskeletal proteins controlling cytokinesis are poorly understood. The small guanine nucleotide triphosphate (GTP)-binding protein RhoA stimulates type II myosin contractility and formin-dependent assembly of the cytokinetic actin contractile ring. We found that budding yeast Polo-like kinase Cdc5 controls the targeting and activation of Rho1 (RhoA) at the division site via Rho1 guanine nucleotide exchange factors. This role of Cdc5 (Polo-like kinase) in regulating Rho1 is likely to be relevant to cytokinesis and asymmetric cell division in other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida, Satoshi -- Kono, Keiko -- Lowery, Drew M -- Bartolini, Sara -- Yaffe, Michael B -- Ohya, Yoshikazu -- Pellman, David -- New York, N.Y. -- Science. 2006 Jul 7;313(5783):108-11. Epub 2006 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16763112" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Motifs ; Anaphase ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; *Cytokinesis ; Guanine Nucleotide Exchange Factors/chemistry/genetics/metabolism ; Guanosine Triphosphate/metabolism ; Microfilament Proteins/metabolism ; Mitosis ; Mutation ; Phosphorylation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*cytology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Temperature ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2006-06-17
    Description: Negative-strand RNA viruses condense their genome into a helical nucleoprotein-RNA complex, the nucleocapsid, which is packed into virions and serves as a template for the RNA-dependent RNA polymerase complex. The crystal structure of a recombinant rabies virus nucleoprotein-RNA complex, organized in an undecameric ring, has been determined at 3.5 angstrom resolution. Polymerization of the nucleoprotein is achieved by domain exchange between protomers, with flexible hinges allowing nucleocapsid formation. The two core domains of the nucleoprotein clamp around the RNA at their interface and shield it from the environment. RNA sequestering by nucleoproteins is likely a common mechanism used by negative-strand RNA viruses to protect their genomes from the innate immune response directed against viral RNA in human host cells at certain stages of an infectious cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Albertini, Aurelie A V -- Wernimont, Amy K -- Muziol, Tadeusz -- Ravelli, Raimond B G -- Clapier, Cedric R -- Schoehn, Guy -- Weissenhorn, Winfried -- Ruigrok, Rob W H -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):360-3. Epub 2006 Jun 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Virologie Moleculaire et Structurale, FRE 2854 Universite Joseph Fourier-CNRS, Boite Postale 181, 38042 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16778023" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/metabolism ; Genome, Viral ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleocapsid Proteins/*chemistry/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry/genetics/metabolism ; Rabies virus/*chemistry/genetics ; Recombinant Proteins/chemistry ; Ribonucleoproteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2006-02-25
    Description: Stochasticity in time series explains concave responses of per capita growth rate to population size. The gradients with the natural log of population size have more biological importance because they measure strength of density compensation. Its weakening with increasing body size across taxa (Sibly et al., Reports, 22 July 2005, p. 607) is consistent with slower responses in ascent than descent toward carrying capacity. Time series therefore suggest that populations of large-bodied animals underfill their environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doncaster, C Patrick -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1100; author reply 1100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. cpd@soton.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Birds ; Conservation of Natural Resources ; Ecosystem ; *Fishes ; *Insects ; Logistic Models ; *Mammals ; Mathematics ; Models, Biological ; Population Density ; Population Dynamics ; Population Growth ; Regression Analysis ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2006-09-23
    Description: Ribozymes are thought to have played a pivotal role in the early evolution of life, but relatively few have been identified in modern organisms. We performed an in vitro selection aimed at isolating self-cleaving RNAs from the human genome. The selection yielded several ribozymes, one of which is a conserved mammalian sequence that resides in an intron of the CPEB3 gene, which belongs to a family of genes regulating messenger RNA polyadenylation. The CPEB3 ribozyme is structurally and biochemically related to the human hepatitis delta virus (HDV) ribozymes. The occurrence of this ribozyme exclusively in mammals suggests that it may have evolved as recently as 200 million years ago. We postulate that HDV arose from the human transcriptome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salehi-Ashtiani, Kourosh -- Luptak, Andrej -- Litovchick, Alexander -- Szostak, Jack W -- GM53936/GM/NIGMS NIH HHS/ -- HL66678/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1788-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology (CCIB), 7215 Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990549" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Cations, Divalent/metabolism ; Conserved Sequence ; *Evolution, Molecular ; Expressed Sequence Tags ; *Genome, Human ; Genomic Library ; Hepatitis Delta Virus/genetics ; Humans ; Hydrogen-Ion Concentration ; *Introns ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Phosphorylation ; RNA, Catalytic/chemistry/genetics/*isolation & purification/*metabolism ; RNA-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2006-09-16
    Description: Mycobacterium tuberculosis uses the ESX-1/Snm system [early secreted antigen 6 kilodaltons (ESAT-6) system 1/secretion in mycobacteria] to deliver virulence factors into host macrophages during infection. Despite its essential role in virulence, the mechanism of ESX-1 secretion is unclear. We found that the unstructured C terminus of the CFP-10 substrate was recognized by Rv3871, a cytosolic component of the ESX-1 system that itself interacts with the membrane protein Rv3870. Point mutations in the signal that abolished binding of CFP-10 to Rv3871 prevented secretion of the CFP-10 (culture filtrate protein, 10 kilodaltons)/ESAT-6 virulence factor complex. Attachment of the signal to yeast ubiquitin was sufficient for secretion from M. tuberculosis cells, demonstrating that this ESX-1 signal is portable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Champion, Patricia A Digiuseppe -- Stanley, Sarah A -- Champion, Matthew M -- Brown, Eric J -- Cox, Jeffery S -- A105155/PHS HHS/ -- AI51667/AI/NIAID NIH HHS/ -- AI63302/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1632-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Campus Box 2200, San Francisco, CA 94143-2200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, Bacterial/chemistry/*metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Dimerization ; Membrane Proteins/metabolism ; Models, Biological ; Molecular Sequence Data ; Mutation ; Mycobacterium tuberculosis/genetics/*metabolism/pathogenicity ; Protein Binding ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Two-Hybrid System Techniques ; Ubiquitin/metabolism ; Virulence Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-02
    Description: Members of the Notch family of receptors act as membrane-tethered transcription factors that are tightly associated with binary cell fate decisions. Notch signaling acts as a molecular gate that allows cells to adopt or forfeit a particular fate. Interaction of Notch with ligands triggers a sequence of proteolytic cleavages that release the intracellular domain to the nucleus; this mechanism is a target of therapies for leukemias associated with Notch activation. Although the molecular mechanism of Notch activation is well characterized, further analysis in an appropriate cellular context will provide new insight into Notch signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehebauer, Matthias -- Hayward, Penelope -- Arias, Alfonso Martinez -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1414-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138893" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; *Cell Lineage ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Humans ; Ligands ; Models, Biological ; Neoplasms/metabolism/pathology ; Protein Structure, Tertiary ; Receptors, Notch/chemistry/*metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2006-06-24
    Description: The formation of the neuromuscular synapse requires muscle-specific receptor kinase (MuSK) to orchestrate postsynaptic differentiation, including the clustering of receptors for the neurotransmitter acetylcholine. Upon innervation, neural agrin activates MuSK to establish the postsynaptic apparatus, although agrin-independent formation of neuromuscular synapses can also occur experimentally in the absence of neurotransmission. Dok-7, a MuSK-interacting cytoplasmic protein, is essential for MuSK activation in cultured myotubes; in particular, the Dok-7 phosphotyrosine-binding domain and its target in MuSK are indispensable. Mice lacking Dok-7 formed neither acetylcholine receptor clusters nor neuromuscular synapses. Thus, Dok-7 is essential for neuromuscular synaptogenesis through its interaction with MuSK.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Kumiko -- Inoue, Akane -- Okada, Momoko -- Murata, Yoji -- Kakuta, Shigeru -- Jigami, Takafumi -- Kubo, Sachiko -- Shiraishi, Hirokazu -- Eguchi, Katsumi -- Motomura, Masakatsu -- Akiyama, Tetsu -- Iwakura, Yoichiro -- Higuchi, Osamu -- Yamanashi, Yuji -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1802-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794080" target="_blank"〉PubMed〈/a〉
    Keywords: Agrin/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Differentiation ; Cell Line ; Down-Regulation ; Enzyme Activation ; Humans ; In Situ Hybridization ; Mice ; Molecular Sequence Data ; Motor Endplate/embryology/metabolism ; Muscle Denervation ; Muscle Fibers, Skeletal/cytology/metabolism ; Muscle Proteins/chemistry/genetics/*metabolism ; Muscle, Skeletal/embryology/*innervation/metabolism ; Mutation ; Neuromuscular Junction/*physiology ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Receptor Aggregation ; Receptor Protein-Tyrosine Kinases/genetics/*metabolism ; Receptors, Cholinergic/genetics/*metabolism ; Synapses/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...