ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: The microinjection of messenger RNA encoding the eukaryotic translation initiation factor 4E (eIF-4E) into early embryos of Xenopus laevis leads to the induction of mesoderm in ectodermal explants. This induction occurs without a stimulation of overall protein synthesis and is blocked by the co-expression of a dominant negative mutant of the proto-oncogene ras or a truncated activin type II receptor. Although other translation factors have been studied in vertebrate and invertebrate embryos, none have been shown to play a direct role in development. The results here suggest a mechanism for relaying and amplifying signals for mesoderm induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, P S -- Melton, D A -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):803-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047887" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Eukaryotic Initiation Factor-1/physiology ; Eukaryotic Initiation Factor-4E ; Gene Expression Regulation/physiology ; Mesoderm/metabolism/*physiology ; Molecular Sequence Data ; Peptide Initiation Factors/genetics/*physiology ; RNA, Messenger ; Xenopus laevis/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-18
    Description: Lithium is commonly used to treat bipolar disorder, which is associated with altered circadian rhythm. Lithium is a potent inhibitor of glycogen synthase kinase 3 (GSK3), which regulates circadian rhythm in several organisms. In experiments with cultured cells, we show here that GSK3beta phosphorylates and stabilizes the orphan nuclear receptor Rev-erbalpha, a negative component of the circadian clock. Lithium treatment of cells leads to rapid proteasomal degradation of Rev-erbalpha and activation of clock gene Bmal1. A form of Rev-erbalpha that is insensitive to lithium interferes with the expression of circadian genes. Control of Rev-erbalpha protein stability is thus a critical component of the peripheral clock and a biological target of lithium therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Lei -- Wang, Jing -- Klein, Peter S -- Lazar, Mitchell A -- DK 19525/DK/NIDDK NIH HHS/ -- DK45586/DK/NIDDK NIH HHS/ -- MH058324/MH/NIMH NIH HHS/ -- R01 MH058324/MH/NIMH NIH HHS/ -- R01 MH058324-07/MH/NIMH NIH HHS/ -- R01 MH058324-08/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1002-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, and University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484495" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Biological Clocks/*physiology ; Cell Line ; Cell Line, Tumor ; Circadian Rhythm/*physiology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Down-Regulation ; Gene Expression Regulation ; Glycogen Synthase Kinase 3/antagonists & inhibitors/metabolism ; Humans ; Lithium Chloride/*pharmacology ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Nuclear Receptor Subfamily 1, Group D, Member 1 ; Phosphorylation ; Promoter Regions, Genetic ; Proteasome Endopeptidase Complex/metabolism ; Proteasome Inhibitors ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-09-16
    Description: During the early stages of its developmental program, Dictyostelium discoideum expresses cell surface cyclic adenosine monophosphate (cyclic AMP) receptors. It has been suggested that these receptors coordinate the aggregation of individual cells into a multicellular organism and regulate the expression of a large number of developmentally regulated genes. The complementary DNA (cDNA) for the cyclic AMP receptor has now been cloned from lambda gt-11 libraries by screening with specific antiserum. The 2-kilobase messenger RNA (mRNA) that encodes the receptor is undetectable in growing cells, rises to a maximum at 3 to 4 hours of development, and then declines. In vitro transcribed complementary RNA, when hybridized to cellular mRNA, specifically arrests in vitro translation of the receptor polypeptide. When the cDNA is expressed in Dictyostelium cells, the undifferentiated cells specifically bind cyclic AMP. Cell lines transformed with a vector that expresses complementary mRNA (antisense) do not express the cyclic AMP receptor protein. These cells fail to enter the aggregation stage of development during starvation, whereas control and wild-type cells aggregate and complete the developmental program within 24 hours. The phenotype of the antisense transformants suggests that the cyclic AMP receptor is essential for development. The deduced amino acid sequence of the receptor reveals a high percentage of hydrophobic residues grouped in seven domains, similar to the rhodopsins and other receptors believed to interact with G proteins. It shares amino acid sequence identity and is immunologically cross-reactive with bovine rhodopsin. A model is proposed in which the cyclic AMP receptor crosses the bilayer seven times with a serine-rich cytoplasmic carboxyl terminus, the proposed site of ligand-induced receptor phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, P S -- Sun, T J -- Saxe, C L 3rd -- Kimmel, A R -- Johnson, R L -- Devreotes, P N -- GM 34933/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1467-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3047871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Dictyostelium/*growth & development/physiology ; Membrane Proteins/physiology ; Molecular Sequence Data ; Protein Conformation ; Receptors, Cyclic AMP/*physiology ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-03-27
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-08-06
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...