ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cells, Cultured  (94)
  • American Association for the Advancement of Science (AAAS)  (94)
  • American Meteorological Society
  • PANGAEA
  • 1995-1999  (59)
  • 1990-1994  (35)
  • 1999  (59)
  • 1994  (35)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (94)
  • American Meteorological Society
  • PANGAEA
Years
  • 1995-1999  (59)
  • 1990-1994  (35)
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, D -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):1975-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9874644" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Husbandry/*methods ; Animals ; Blastocyst ; Cattle/embryology/*genetics ; Cell Differentiation ; Cells, Cultured ; *Cloning, Organism ; Embryo Transfer/veterinary ; Fallopian Tubes/cytology ; Female ; Japan ; *Nuclear Transfer Techniques ; Oocytes ; Ovarian Follicle/cytology ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, R F -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):578-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10328734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Electric Stimulation ; Electrodes ; Electrodes, Implanted ; *Electronics ; Electrophysiology ; Humans ; Nerve Net/*physiology ; Nervous System Diseases/*therapy ; Neurons/*physiology ; Rats ; Silicon ; *Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):14-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9917254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Cells, Cultured ; Dimerization ; Drug Design ; Humans ; Neurons/*metabolism ; Potassium Channels/metabolism ; Rats ; Receptors, GABA-B/*chemistry/*metabolism ; Signal Transduction ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-06-12
    Description: To monitor changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor distribution in living neurons, the AMPA receptor subunit GluR1 was tagged with green fluorescent protein (GFP). This protein (GluR1-GFP) was functional and was transiently expressed in hippocampal CA1 neurons. In dendrites visualized with two-photon laser scanning microscopy or electron microscopy, most of the GluR1-GFP was intracellular, mimicking endogenous GluR1 distribution. Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites. These postsynaptic trafficking events required synaptic N-methyl-D-aspartate (NMDA) receptor activation and may contribute to the enhanced AMPA receptor-mediatedtransmission observed during long-term potentiation and activity-dependent synaptic maturation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, S H -- Hayashi, Y -- Petralia, R S -- Zaman, S H -- Wenthold, R J -- Svoboda, K -- Malinow, R -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1811-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendrites/*metabolism/ultrastructure ; Electric Stimulation ; Hippocampus/cytology/physiology ; Humans ; Long-Term Potentiation ; *Neuronal Plasticity ; Neurons/*physiology ; Organ Culture Techniques ; Rats ; Receptor Aggregation ; Receptors, AMPA/*metabolism ; Receptors, N-Methyl-D-Aspartate/*physiology ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism/*physiology ; Synaptic Transmission ; Tetany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-11-05
    Description: Glutamatergic neurotransmission is controlled by presynaptic metabotropic glutamate receptors (mGluRs). A subdomain in the intracellular carboxyl-terminal tail of group III mGluRs binds calmodulin and heterotrimeric guanosine triphosphate-binding protein (G protein) betagamma subunits in a mutually exclusive manner. Mutations interfering with calmodulin binding and calmodulin antagonists inhibit G protein-mediated modulation of ionic currents by mGluR 7. Calmodulin antagonists also prevent inhibition of excitatory neurotransmission via presynaptic mGluRs. These results reveal a novel mechanism of presynaptic modulation in which Ca(2+)-calmodulin is required to release G protein betagamma subunits from the C-tail of group III mGluRs in order to mediate glutamatergic autoinhibition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connor, V -- El Far, O -- Bofill-Cardona, E -- Nanoff, C -- Freissmuth, M -- Karschin, A -- Airas, J M -- Betz, H -- Boehm, S -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1180-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550060" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Calmodulin/antagonists & inhibitors/*metabolism ; Cells, Cultured ; Dimerization ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; GTP-Binding Proteins/*metabolism ; Glutamic Acid/*metabolism ; Hippocampus/cytology/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Presynaptic Terminals/metabolism ; Propionates/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/antagonists & inhibitors/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sesterterpenes ; Signal Transduction ; Swine ; *Synaptic Transmission ; Terpenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-24
    Description: Retroviral DNA integration is catalyzed by the viral protein integrase. Here, it is shown that DNA-dependent protein kinase (DNA-PK), a host cell protein, also participates in the reaction. DNA-PK-deficient murine scid cells infected with three different retroviruses showed a substantial reduction in retroviral DNA integration and died by apoptosis. Scid cell killing was not observed after infection with an integrase-defective virus, suggesting that abortive integration is the trigger for death in these DNA repair-deficient cells. These results suggest that the initial events in retroviral integration are detected as DNA damage by the host cell and that completion of the integration process requires the DNA-PK-mediated repair pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daniel, R -- Katz, R A -- Skalka, A M -- AI40721/AI/NIAID NIH HHS/ -- AI40835/AI/NIAID NIH HHS/ -- CA71515/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):644-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213687" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; CHO Cells ; Cell Survival ; Cells, Cultured ; Cricetinae ; DNA Damage ; *DNA Repair ; DNA, Viral/*genetics/metabolism ; DNA-Activated Protein Kinase ; *DNA-Binding Proteins ; Genetic Vectors ; HIV-1/genetics ; Integrases/genetics/metabolism ; Mice ; Mutation ; Protein-Serine-Threonine Kinases/*metabolism ; Retroviridae/*genetics/physiology ; *Virus Integration ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-05
    Description: Costimulation of both the CD3 and CD28 receptors is essential for T cell activation. Induction of adenosine 3',5'-monophosphate (cAMP)-specific phosphodiesterase-7 (PDE7) was found to be a consequence of such costimulation. Increased PDE7 in T cells correlated with decreased cAMP, increased interleukin-2 expression, and increased proliferation. Selectively reducing PDE7 expression with a PDE7 antisense oligonucleotide inhibited T cell proliferation; inhibition was reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase (PKA). Thus, PDE7 induction and consequent suppression of PKA activity is required for T cell activation, and inhibition of PDE7 could be an approach to treating T cell-dependent disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, L -- Yee, C -- Beavo, J A -- DK21723/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 5;283(5403):848-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Molecular and Cellular Biology Program, Box 357280, University of Washington School of Medicine, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9933169" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/*biosynthesis/genetics/metabolism ; Antibodies ; Antigens, CD28/immunology/*physiology ; Antigens, CD3/immunology/*physiology ; CD4-Positive T-Lymphocytes/enzymology/immunology ; Cells, Cultured ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 7 ; Enzyme Induction ; Humans ; Interleukin-2/biosynthesis ; Isoenzymes/*biosynthesis/genetics/metabolism ; *Lymphocyte Activation ; Oligonucleotides, Antisense/pharmacology ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; T-Lymphocytes/*enzymology/*immunology/metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-12
    Description: A central question in immunology is the origin of long-lived T cell memory that confers protection against recurrent infection. The differentiation of naive T cell receptor transgenic CD8+ cells into effector cytotoxic T lymphocytes (CTLs) and memory CD8+ cells was studied. Memory CD8+ cells that were generated after strong antigenic stimulation were the progeny of cytotoxic effectors and retained antigen-specific cytolytic activity 10 weeks after adoptive transfer to antigen-free recipient mice. Thus, potential vaccines based on CTL memory will require the differentiation of naive cells into post-effector memory T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Opferman, J T -- Ober, B T -- Ashton-Rickardt, P G -- 5T32 AI07090/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Mar 12;283(5408):1745-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Committee on Immunology, Department of Pathology, Committee on Developmental Biology, The University of Chicago, Gwen Knapp Center for Lupus and Immunology Research, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10073942" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Apoptosis ; CD8-Positive T-Lymphocytes/*cytology/*immunology ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cells, Cultured ; Cytotoxicity, Immunologic ; Dose-Response Relationship, Immunologic ; H-Y Antigen/immunology ; *Immunologic Memory ; Lymphocyte Activation ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Transgenic ; Perforin ; Pore Forming Cytotoxic Proteins ; T-Lymphocyte Subsets/cytology/*immunology ; T-Lymphocytes, Cytotoxic/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-06-12
    Description: Interferons (IFNs) are the most important cytokines in antiviral immune responses. "Natural IFN-producing cells" (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegal, F P -- Kadowaki, N -- Shodell, M -- Fitzgerald-Bocarsly, P A -- Shah, K -- Ho, S -- Antonenko, S -- Liu, Y J -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1835-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Saint Vincents Hospital and Medical Center, New York, NY 10011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364556" target="_blank"〉PubMed〈/a〉
    Keywords: CD40 Ligand ; Cell Lineage ; Cell Separation ; Cells, Cultured ; Dendritic Cells/cytology/*immunology/ultrastructure ; Humans ; Interferon Type I/*biosynthesis ; Interferon-alpha/*biosynthesis/genetics ; Interferon-beta/biosynthesis/genetics ; Interleukin-3/pharmacology ; Leukocytes, Mononuclear/immunology ; Membrane Glycoproteins/pharmacology ; Organelles/ultrastructure ; RNA, Messenger/genetics/metabolism ; Simplexvirus/immunology ; Stem Cells/cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-07-10
    Description: In the absence of disease, the vasculature of the mammalian eye is quiescent, in part because of the action of angiogenic inhibitors that prevent vessels from invading the cornea and vitreous. Here, an inhibitor responsible for the avascularity of these ocular compartments is identified as pigment epithelium-derived factor (PEDF), a protein previously shown to have neurotrophic activity. The amount of inhibitory PEDF produced by retinal cells was positively correlated with oxygen concentrations, suggesting that its loss plays a permissive role in ischemia-driven retinal neovascularization. These results suggest that PEDF may be of therapeutic use, especially in retinopathies where pathological neovascularization compromises vision and leads to blindness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, D W -- Volpert, O V -- Gillis, P -- Crawford, S E -- Xu, H -- Benedict, W -- Bouck, N P -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology-Immunology, Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398599" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Antibodies/immunology ; Cattle ; Cells, Cultured ; Chemotaxis/drug effects ; Culture Media, Conditioned ; Endothelial Growth Factors/metabolism ; Endothelium, Vascular/cytology/drug effects/physiology ; Eye/blood supply ; *Eye Proteins ; Humans ; Lymphokines/metabolism ; Mice ; Neovascularization, Pathologic/*drug therapy/metabolism/pathology ; Neovascularization, Physiologic/*drug effects ; *Nerve Growth Factors ; Oxygen/physiology ; Proteins/genetics/immunology/*pharmacology/*physiology ; RNA, Messenger/genetics/metabolism ; Rats ; Retina/*metabolism/pathology ; Retinal Neovascularization/*drug therapy ; Retinal Vessels/growth & development ; Serpins/genetics/immunology/*pharmacology/*physiology ; Tumor Cells, Cultured ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1999-11-13
    Description: The p42 and p44 mitogen-activated protein kinases (MAPKs), also called Erk2 and Erk1, respectively, have been implicated in proliferation as well as in differentiation programs. The specific role of the p44 MAPK isoform in the whole animal was evaluated by generation of p44 MAPK-deficient mice by homologous recombination in embryonic stem cells. The p44 MAPK-/- mice were viable, fertile, and of normal size. Thus, p44 MAPK is apparently dispensable and p42 MAPK (Erk2) may compensate for its loss. However, in p44 MAPK-/- mice, thymocyte maturation beyond the CD4+CD8+ stage was reduced by half, with a similar diminution in the thymocyte subpopulation expressing high levels of T cell receptor (CD3high). In p44 MAPK-/- thymocytes, proliferation in response to activation with a monoclonal antibody to the T cell receptor in the presence of phorbol myristate acetate was severely reduced even though activation of p42 MAPK was more sustained in these cells. The p44 MAPK apparently has a specific role in thymocyte development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pages, G -- Guerin, S -- Grall, D -- Bonino, F -- Smith, A -- Anjuere, F -- Auberger, P -- Pouyssegur, J -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1374-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France. gpages@unice.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antigens, CD/analysis ; Antigens, CD3/immunology ; Cell Differentiation ; Cell Division ; Cells, Cultured ; DNA/biosynthesis ; Enzyme Activation ; Gene Targeting ; Isoenzymes/genetics/metabolism ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/deficiency/genetics/*metabolism ; Phosphorylation ; Polymorphism, Restriction Fragment Length ; Receptors, Antigen, T-Cell, alpha-beta/analysis/physiology ; T-Lymphocyte Subsets/*cytology/enzymology/immunology ; Tetradecanoylphorbol Acetate/pharmacology ; Thymus Gland/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1999-04-09
    Description: The oligomeric IkappaB kinase (IKK) is composed of three polypeptides: IKKalpha and IKKbeta, the catalytic subunits, and IKKgamma, a regulatory subunit. IKKalpha and IKKbeta are similar in structure and thought to have similar function-phosphorylation of the IkappaB inhibitors in response to proinflammatory stimuli. Such phosphorylation leads to degradation of IkappaB and activation of nuclear factor kappaB transcription factors. The physiological function of these protein kinases was explored by analysis of IKKalpha-deficient mice. IKKalpha was not required for activation of IKK and degradation of IkappaB by proinflammatory stimuli. Instead, loss of IKKalpha interfered with multiple morphogenetic events, including limb and skeletal patterning and proliferation and differentiation of epidermal keratinocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Y -- Baud, V -- Delhase, M -- Zhang, P -- Deerinck, T -- Ellisman, M -- Johnson, R -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- RR04050/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):316-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Cancer Center, University of California San Diego, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195896" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/enzymology/genetics ; Animals ; Apoptosis ; Body Patterning ; Bone and Bones/abnormalities/embryology ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA-Binding Proteins/metabolism ; Dimerization ; *Embryonic and Fetal Development ; Enzyme Activation ; Epidermis/cytology/embryology ; Female ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Keratinocytes ; Limb Deformities, Congenital/enzymology ; Male ; Mice ; *Morphogenesis ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Skin/embryology ; Skin Abnormalities/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-09
    Description: Neuronal death induced by activating N-methyl-D-aspartate (NMDA) receptors has been linked to Ca2+ and Na+ influx through associated channels. Whole-cell recording from cultured mouse cortical neurons revealed a NMDA-evoked outward current, INMDA-K, carried by K+ efflux at membrane potentials positive to -86 millivolts. Cortical neurons exposed to NMDA in medium containing reduced Na+ and Ca2+ (as found in ischemic brain tissue) lost substantial intracellular K+ and underwent apoptosis. Both K+ loss and apoptosis were attenuated by increasing extracellular K+, even when voltage-gated Ca2+ channels were blocked. Thus NMDA receptor-mediated K+ efflux may contribute to neuronal apoptosis after brain ischemia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, S P -- Yeh, C -- Strasser, U -- Tian, M -- Choi, D W -- NS 30337/NS/NINDS NIH HHS/ -- NS 32636/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):336-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Calcium/metabolism/pharmacology ; Calcium Channels/metabolism ; Cells, Cultured ; Cerebral Cortex/*cytology/metabolism ; Culture Techniques ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Membrane Potentials ; Mice ; N-Methylaspartate/pharmacology ; Neocortex/cytology/embryology/metabolism ; Neurons/*cytology/metabolism ; Patch-Clamp Techniques ; Potassium/*metabolism ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Sodium/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1999-05-13
    Description: Interleukin-12 (IL-12) and type 2 NO synthase (NOS2) are crucial for defense against bacterial and parasitic pathogens, but their relationship in innate immunity is unknown. In the absence of NOS2 activity, IL-12 was unable to prevent spreading of Leishmania parasites, did not stimulate natural killer (NK) cells for cytotoxicity or interferon-gamma (IFN-gamma) release, and failed to activate Tyk2 kinase and to tyrosine phosphorylate Stat4 (the central signal transducer of IL-12) in NK cells. Activation of Tyk2 in NK cells by IFN-alpha/beta also required NOS2. Thus, NOS2-derived NO is a prerequisite for cytokine signaling and function in innate immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diefenbach, A -- Schindler, H -- Rollinghoff, M -- Yokoyama, W M -- Bogdan, C -- New York, N.Y. -- Science. 1999 May 7;284(5416):951-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Klinische Mikrobiologie, Immunologie und Hygiene, Universitat Erlangen, Wasserturmstrasse 3, D-91054 Erlangen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cyclic GMP/metabolism ; Cytotoxicity, Immunologic ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Immunity, Innate ; Interferon-gamma/biosynthesis/genetics ; Interferons/pharmacology ; Interleukin-12/pharmacology/*physiology ; Janus Kinase 2 ; Killer Cells, Natural/*immunology/metabolism ; *Leishmania major ; Leishmaniasis, Cutaneous/*immunology/metabolism ; Lysine/analogs & derivatives/pharmacology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nitric Oxide/metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/*metabolism ; Nitric Oxide Synthase Type II ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; STAT4 Transcription Factor ; *Signal Transduction ; TYK2 Kinase ; Trans-Activators/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1999-11-13
    Description: A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Brunet, A -- West, A E -- Datta, S R -- Takasu, M A -- Greenberg, M E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 HD 24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain-Derived Neurotrophic Factor/pharmacology ; Carrier Proteins/genetics/metabolism ; *Cell Survival ; Cells, Cultured ; Cerebellum/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Kinase 1 ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Mutation ; Neurons/*cytology/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; *Protein-Serine-Threonine Kinases ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; bcl-Associated Death Protein ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-18
    Description: Neurotrophins have been implicated in activity-dependent synaptic plasticity, but the underlying intracellular mechanisms remain largely unknown. Synaptic potentiation induced by brain-derived neurotrophic factor (BDNF), but not neurotrophin 3, was prevented by blockers of adenosine 3',5'-monophosphate (cAMP) signaling. Activators of cAMP signaling alone were ineffective in modifying synaptic efficacy but greatly enhanced the potentiation effect of BDNF. Blocking cAMP signaling abolished the facilitation of BDNF-induced potentiation by presynaptic activity. Thus synaptic actions of BDNF are gated by cAMP. Activity and other coincident signals that modulate cAMP concentrations may specify the action of secreted neurotrophins on developing nerve terminals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boulanger, L -- Poo, M M -- NS 37831/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1982-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California at San Diego, La Jolla, CA 92093-0357, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373115" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*pharmacology ; *Carbazoles ; Cells, Cultured ; Cyclic AMP/analogs & derivatives/pharmacology/*physiology ; Cycloleucine/analogs & derivatives/pharmacology ; *Excitatory Postsynaptic Potentials/drug effects ; Indoles/pharmacology ; Nerve Growth Factors/pharmacology ; Neuronal Plasticity ; Neurons/cytology/physiology ; Neurotrophin 3 ; Okadaic Acid/pharmacology ; Patch-Clamp Techniques ; Pyrroles/pharmacology ; Signal Transduction ; Synapses/drug effects/*physiology ; *Synaptic Transmission/drug effects ; Thionucleotides/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferber, D -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1651, 1653.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523177" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*adverse effects ; Apoptosis/*drug effects ; Benzothiazoles ; Cell Division/drug effects/radiation effects ; Cells, Cultured ; Drug Evaluation, Preclinical ; Gamma Rays/*adverse effects ; Humans ; Mice ; Neoplasms/drug therapy/radiotherapy/*therapy ; Radiation Dosage ; Radiation Tolerance/*drug effects ; Thiazoles/*pharmacology ; Toluene/*analogs & derivatives/pharmacology ; Tumor Suppressor Protein p53/*antagonists & inhibitors/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-03-19
    Description: The role of localized instability of the actin network in specifying axonal fate was examined with the use of rat hippocampal neurons in culture. During normal neuronal development, actin dynamics and instability polarized to a single growth cone before axon formation. Consistently, global application of actin-depolymerizing drugs and of the Rho-signaling inactivator toxin B to nonpolarized cells produced neurons with multiple axons. Moreover, disruption of the actin network in one individual growth cone induced its neurite to become the axon. Thus, local instability of the actin network restricted to a single growth cone is a physiological signal specifying neuronal polarization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradke, F -- Dotti, C G -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1931-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Cell Biology Programme, Meyerhofstrasse 1, 69012 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10082468" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism/*physiology ; Animals ; Axons/*physiology/ultrastructure ; *Bacterial Proteins ; Bacterial Toxins/pharmacology ; Bicyclo Compounds, Heterocyclic/pharmacology ; Cell Polarity ; Cells, Cultured ; Cytochalasin D/pharmacology ; GTP Phosphohydrolases/antagonists & inhibitors/metabolism ; Growth Cones/drug effects/*physiology/ultrastructure ; Hippocampus ; Microtubules/physiology/ultrastructure ; Neurites/*physiology/ultrastructure ; Phenotype ; Pseudopodia/drug effects/ultrastructure ; Rats ; Signal Transduction ; Thiazoles/pharmacology ; Thiazolidines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1999-04-02
    Description: The ability of p53 to promote apoptosis in response to mitogenic oncogenes appears to be critical for its tumor suppressor function. Caspase-9 and its cofactor Apaf-1 were found to be essential downstream components of p53 in Myc-induced apoptosis. Like p53 null cells, mouse embryo fibroblast cells deficient in Apaf-1 and caspase-9, and expressing c-Myc, were resistant to apoptotic stimuli that mimic conditions in developing tumors. Inactivation of Apaf-1 or caspase-9 substituted for p53 loss in promoting the oncogenic transformation of Myc-expressing cells. These results imply a role for Apaf-1 and caspase-9 in controlling tumor development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soengas, M S -- Alarcon, R M -- Yoshida, H -- Giaccia, A J -- Hakem, R -- Mak, T W -- Lowe, S W -- CA13106/CA/NCI NIH HHS/ -- CA64489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):156-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102818" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 9 ; Caspases/genetics/*physiology ; Cell Division ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cytochrome c Group/metabolism ; Genes, myc ; *Genes, p53 ; Genes, ras ; Mice ; Mice, Nude ; Mitochondria/metabolism ; Mutation ; Neoplasms, Experimental/genetics/metabolism/*pathology ; Proteins/genetics/*physiology ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solter, D -- Gearhart, J -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1468-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Max Planck Institute of Immunology, Freiburg, Germany. solter@immunbio.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206877" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bioethics ; Blastocyst/*cytology ; *Cell Differentiation ; Cell Line ; Cells, Cultured ; Cloning, Organism ; Cytoplasm/physiology ; Embryo, Mammalian/cytology ; Humans ; Mice ; Nuclear Transfer Techniques ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-05
    Description: Whether a single major histocompatibility complex (MHC)-bound peptide can drive the positive selection of large numbers of T cells has been a controversial issue. A diverse population of self peptides was shown to be essential for the in vivo development of CD4 T cells. Mice in which all but 5 percent of MHC class II molecules were bound by a single peptide had wild-type numbers of CD4 T cells. However, when the diversity within this 5 percent was lost, CD4 T cell development was impaired. Blocking the major peptide-MHC complex in thymus organ culture had no effect on T cell development, indicating that positive selection occurred on the diverse peptides present at low levels. This requirement for peptide diversity indicates that the interaction between self peptides and T cell receptors during positive selection is highly specific.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barton, G M -- Rudensky, A Y -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):67-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; CD4-Positive T-Lymphocytes/cytology/*immunology/metabolism ; CD8-Positive T-Lymphocytes/cytology/immunology/metabolism ; Cells, Cultured ; Histocompatibility Antigens Class II/*immunology/metabolism ; Lymphocyte Activation ; Lymphocyte Culture Test, Mixed ; Mice ; Mice, Knockout ; Mice, Transgenic ; Peptides/*immunology/metabolism ; Receptors, Antigen, T-Cell/*immunology ; Recombinant Fusion Proteins/metabolism ; Spleen/immunology ; Thymus Gland/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Oct 8;286(5438):225-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577188" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Cells, Cultured ; Chromosomes, Human, Pair 19/genetics ; Cytoskeletal Proteins ; Humans ; Intercellular Junctions/metabolism/ultrastructure ; Kidney Glomerulus/blood supply/chemistry/*metabolism/*ultrastructure ; Membrane Proteins ; Mice ; Mice, Knockout ; Microscopy, Electron ; Mutation ; Nephrotic Syndrome/congenital/genetics/pathology ; Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1999-10-26
    Description: The exuberant growth of neurites during development becomes markedly reduced as cortical neurons mature. In vitro studies of neurons from mouse cerebral cortex revealed that contact-mediated Notch signaling regulates the capacity of neurons to extend and elaborate neurites. Up-regulation of Notch activity was concomitant with an increase in the number of interneuronal contacts and cessation of neurite growth. In neurons with low Notch activity, which readily extend neurites, up-regulation of Notch activity either inhibited extension or caused retraction of neurites. Conversely, in more mature neurons that had ceased their growth after establishing numerous connections and displayed high Notch activity, inhibition of Notch signaling promoted neurite extension. Thus, the formation of neuronal contacts results in activation of Notch receptors, leading to restriction of neuronal growth and a subsequent arrest in maturity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sestan, N -- Artavanis-Tsakonas, S -- Rakic, P -- NS14841/NS/NINDS NIH HHS/ -- NS26084/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):741-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531053" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Communication ; Cell Count ; Cell Differentiation ; Cell Movement ; Cell Nucleus/metabolism ; Cell Size ; Cells, Cultured ; Cerebral Cortex/*cytology/embryology ; Contact Inhibition ; Humans ; Ligands ; Membrane Proteins/*metabolism ; Mice ; Mitosis ; Neurites/chemistry/*physiology ; Neurons/*cytology/metabolism ; Protein Structure, Tertiary ; Receptor, Notch1 ; Receptor, Notch2 ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; *Transcription Factors ; Transcriptional Activation ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1999-04-02
    Description: Calcium-calmodulin-dependent protein kinase II (CaMKII) is thought to increase synaptic strength by phosphorylating postsynaptic density (PSD) ion channels and signaling proteins. It is shown that N-methyl-D-aspartate (NMDA) receptor stimulation reversibly translocates green fluorescent protein-tagged CaMKII from an F-actin-bound to a PSD-bound state. The translocation time was controlled by the ratio of expressed beta-CaMKII to alpha-CaMKII isoforms. Although F-actin dissociation into the cytosol required autophosphorylation of or calcium-calmodulin binding to beta-CaMKII, PSD translocation required binding of calcium-calmodulin to either the alpha- or beta-CaMKII subunits. Autophosphorylation of CaMKII indirectly prolongs its PSD localization by increasing the calmodulin-binding affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, K -- Meyer, T -- GM-48113/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Department of Pharmacology and Cancer Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102820" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Calcium/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cells, Cultured ; Cytosol/metabolism ; Dendrites/*enzymology ; Electric Stimulation ; Glutamic Acid/pharmacology ; Green Fluorescent Proteins ; Hippocampus/cytology/*enzymology ; Isoenzymes/metabolism ; Luminescent Proteins ; Microscopy, Fluorescence ; Nerve Tissue Proteins/analysis ; Neurons/*enzymology ; Phosphorylation ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Synapses/*enzymology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1999-12-03
    Description: Familial hemophagocytic lymphohistiocytosis (FHL) is a rare, rapidly fatal, autosomal recessive immune disorder characterized by uncontrolled activation of T cells and macrophages and overproduction of inflammatory cytokines. Linkage analyses indicate that FHL is genetically heterogeneous and linked to 9q21.3-22, 10q21-22, or another as yet undefined locus. Sequencing of the coding regions of the perforin gene of eight unrelated 10q21-22-linked FHL patients revealed homozygous nonsense mutations in four patients and missense mutations in the other four patients. Cultured lymphocytes from patients had defective cytotoxic activity, and immunostaining revealed little or no perforin in the granules. Thus, defects in perforin are responsible for 10q21-22-linked FHL. Perforin-based effector systems are, therefore, involved not only in the lysis of abnormal cells but also in the down-regulation of cellular immune activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stepp, S E -- Dufourcq-Lagelouse, R -- Le Deist, F -- Bhawan, S -- Certain, S -- Mathew, P A -- Henter, J I -- Bennett, M -- Fischer, A -- de Saint Basile, G -- Kumar, V -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1957-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and the Graduate Program in Immunology, University of Texas Southwestern Medical School, Dallas, TX 75235, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583959" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Presenting Cells/immunology ; Cell Death ; Cell Line ; Cells, Cultured ; Chromosome Mapping ; Chromosomes, Human, Pair 10/*genetics ; Codon, Terminator ; Cytoplasmic Granules/chemistry ; Cytotoxicity, Immunologic ; Frameshift Mutation ; Genetic Linkage ; Granzymes ; Heterozygote ; Histiocytosis, Non-Langerhans-Cell/*genetics/immunology ; Humans ; Lymphocyte Activation ; Membrane Glycoproteins/analysis/*genetics/physiology ; Mutation, Missense ; Perforin ; Point Mutation ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/analysis ; T-Lymphocytes, Cytotoxic/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1466-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10498525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism ; Cells, Cultured ; Drug Carriers ; *Drug Delivery Systems ; Gene Products, tat/chemistry/*metabolism ; Humans ; Mice ; Protein Denaturation ; Protein Folding ; Recombinant Fusion Proteins/administration & dosage/chemistry/*metabolism ; beta-Galactosidase/administration & dosage/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1999-11-24
    Description: Cystic fibrosis (CF) patients develop chronic airway infections with Pseudomonas aeruginosa (PA). Pseudomonas aeruginosa synthesized lipopolysaccharide (LPS) with a variety of penta- and hexa-acylated lipid A structures under different environmental conditions. CF patient PA synthesized LPS with specific lipid A structures indicating unique recognition of the CF airway environment. CF-specific lipid A forms containing palmitate and aminoarabinose were associated with resistance to cationic antimicrobial peptides and increased inflammatory responses, indicating that they are likely to be involved in airway disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, R K -- Yi, E C -- Guo, L -- Lim, K B -- Burns, J L -- Hackett, M -- Miller, S I -- R21 R13400/PHS HHS/ -- R55 HL 48888/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1561-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567263" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Arabinose/analogs & derivatives/analysis/metabolism ; Bacterial Proteins/genetics/physiology ; Cells, Cultured ; Cystic Fibrosis/complications/*microbiology ; Drug Resistance, Microbial ; Humans ; Infant ; Interleukin-8/biosynthesis ; Lipid A/*biosynthesis/*chemistry ; Lipopolysaccharides/chemistry/immunology ; Magnesium/pharmacology ; Mutation ; Palmitates/analysis/metabolism ; Peptides/pharmacology ; Polymyxins/pharmacology ; Pseudomonas Infections/*microbiology ; Pseudomonas aeruginosa/drug effects/genetics/*metabolism/pathogenicity ; Respiratory System/*microbiology ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1999-11-24
    Description: Contraction and relaxation of smooth muscle are regulated by myosin light-chain kinase and myosin phosphatase through phosphorylation and dephosphorylation of myosin light chains. Cyclic guanosine monophosphate (cGMP)-dependent protein kinase Ialpha (cGKIalpha) mediates physiologic relaxation of vascular smooth muscle in response to nitric oxide and cGMP. It is shown here that cGKIalpha is targeted to the smooth muscle cell contractile apparatus by a leucine zipper interaction with the myosin-binding subunit (MBS) of myosin phosphatase. Uncoupling of the cGKIalpha-MBS interaction prevents cGMP-dependent dephosphorylation of myosin light chain, demonstrating that this interaction is essential to the regulation of vascular smooth muscle cell tone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Surks, H K -- Mochizuki, N -- Kasai, Y -- Georgescu, S P -- Tang, K M -- Ito, M -- Lincoln, T M -- Mendelsohn, M E -- HL09330/HL/NHLBI NIH HHS/ -- HL55309/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1583-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cardiology Research Institute and Cardiology Division, Department of Medicine, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Histones/metabolism ; Humans ; Isoenzymes/chemistry/metabolism ; Leucine Zippers ; Muscle Contraction ; Muscle Relaxation ; Muscle, Smooth, Vascular/*enzymology/physiology ; Mutagenesis, Site-Directed ; Myosin Light Chains/*metabolism ; Myosin-Light-Chain Phosphatase ; Phosphoprotein Phosphatases/chemistry/*metabolism ; Phosphorylation ; Precipitin Tests ; Rats ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1999-12-22
    Description: Alzheimer's disease (AD) has a substantial inflammatory component, and activated microglia may play a central role in neuronal degeneration. CD40 expression was increased on cultured microglia treated with freshly solublized amyloid-beta (Abeta, 500 nanomolar) and on microglia from a transgenic murine model of AD (Tg APPsw). Increased tumor necrosis factor alpha production and induction of neuronal injury occurred when Abeta-stimulated microglia were treated with CD40 ligand (CD40L). Microglia from Tg APPsw mice deficient for CD40L demonstrated reduction in activation, suggesting that the CD40-CD40L interaction is necessary for Abeta-induced microglial activation. Finally, abnormal tau phosphorylation was reduced in Tg APPsw animals deficient for CD40L, suggesting that the CD40-CD40L interaction is an early event in AD pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, J -- Town, T -- Paris, D -- Mori, T -- Suo, Z -- Crawford, F -- Mattson, M P -- Flavell, R A -- Mullan, M -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Roskamp Institute, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL 33613, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600748" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Antigens, CD40/biosynthesis/*metabolism ; CD40 Ligand ; Cell Death ; Cells, Cultured ; Interferon-gamma/pharmacology ; Interleukins/pharmacology ; Ligands ; Membrane Glycoproteins/*metabolism/pharmacology ; Mice ; Mice, Transgenic ; Microglia/cytology/immunology/*metabolism ; Neurons/cytology ; Peptide Fragments/pharmacology ; Phosphorylation ; Signal Transduction ; Tumor Necrosis Factor-alpha/biosynthesis/pharmacology ; tau Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1999-11-27
    Description: Apoptosis can be triggered by members of the Bcl-2 protein family, such as Bim, that share only the BH3 domain with this family. Gene targeting in mice revealed important physiological roles for Bim. Lymphoid and myeloid cells accumulated, T cell development was perturbed, and most older mice accumulated plasma cells and succumbed to autoimmune kidney disease. Lymphocytes were refractory to apoptotic stimuli such as cytokine deprivation, calcium ion flux, and microtubule perturbation but not to others. Thus, Bim is required for hematopoietic homeostasis and as a barrier to autoimmunity. Moreover, particular death stimuli appear to activate apoptosis through distinct BH3-only proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bouillet, P -- Metcalf, D -- Huang, D C -- Tarlinton, D M -- Kay, T W -- Kontgen, F -- Adams, J M -- Strasser, A -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1735-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576740" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Autoimmune Diseases/etiology ; *Autoimmunity ; B-Lymphocytes/physiology ; Carrier Proteins/*physiology ; Cells, Cultured ; Crosses, Genetic ; Female ; Gene Targeting ; Glomerulonephritis/etiology ; Hematopoietic Stem Cells/physiology ; Homeostasis ; Leukocyte Count ; Leukocytes/*physiology ; Male ; *Membrane Proteins ; Mice ; Mice, Transgenic ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/physiology ; Signal Transduction ; T-Lymphocyte Subsets/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1755-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10391789" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/physiology ; Cells, Cultured ; Dendrites/physiology/ultrastructure ; Glutamic Acid/*physiology ; Long-Term Potentiation/*physiology ; Mice ; Neurons/physiology ; Rats ; Receptors, AMPA/*physiology ; Receptors, N-Methyl-D-Aspartate/*physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1999-09-08
    Description: Studies on pluripotent hematopoietic stem cells (HSCs) have been hindered by lack of a positive marker, comparable to the CD34 marker of hematopoietic progenitor cells (HPCs). In human postnatal hematopoietic tissues, 0.1 to 0.5% of CD34(+) cells expressed vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR). Pluripotent HSCs were restricted to the CD34+KDR+ cell fraction. Conversely, lineage-committed HPCs were in the CD34+KDR- subset. On the basis of limiting dilution analysis, the HSC frequency in the CD34+KDR+ fraction was 20 percent in bone marrow (BM) by mouse xenograft assay and 25 to 42 percent in BM, peripheral blood, and cord blood by 12-week long-term culture (LTC) assay. The latter values rose to 53 to 63 percent in LTC supplemented with VEGF and to greater than 95 percent for the cell subfraction resistant to growth factor starvation. Thus, KDR is a positive functional marker defining stem cells and distinguishing them from progenitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziegler, B L -- Valtieri, M -- Porada, G A -- De Maria, R -- Muller, R -- Masella, B -- Gabbianelli, M -- Casella, I -- Pelosi, E -- Bock, T -- Zanjani, E D -- Peschle, C -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1553-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Hematology and Oncology, University of Tubingen, Otfried-Muller-Strasse 10, D-72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/*analysis ; Bone Marrow Cells/cytology ; Cell Lineage ; Cell Separation ; Cells, Cultured ; Endothelial Growth Factors/pharmacology ; Female ; Fetal Blood/cytology ; Fetus ; Flow Cytometry ; *Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/chemistry/*cytology/drug effects/physiology ; Humans ; Lymphokines/pharmacology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Phenotype ; Pregnancy ; Receptor Protein-Tyrosine Kinases/*analysis/physiology ; Receptors, Growth Factor/*analysis/physiology ; Receptors, Vascular Endothelial Growth Factor ; Sheep ; Transplantation, Heterologous ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1999-02-19
    Description: It is not known whether subsets of dendritic cells provide different cytokine microenvironments that determine the differentiation of either type-1 T helper (TH1) or TH2 cells. Human monocyte (pDC1)-derived dendritic cells (DC1) were found to induce TH1 differentiation, whereas dendritic cells (DC2) derived from CD4+CD3-CD11c- plasmacytoid cells (pDC2) induced TH2 differentiation by use of a mechanism unaffected by interleukin-4 (IL-4) or IL-12. The TH2 cytokine IL-4 enhanced DC1 maturation and killed pDC2, an effect potentiated by IL-10 but blocked by CD40 ligand and interferon-gamma. Thus, a negative feedback loop from the mature T helper cells may selectively inhibit prolonged TH1 or TH2 responses by regulating survival of the appropriate dendritic cell subset.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rissoan, M C -- Soumelis, V -- Kadowaki, N -- Grouard, G -- Briere, F -- de Waal Malefyt, R -- Liu, Y J -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1183-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Schering-Plough, Laboratory for Immunological Research, 27 chemin des Peupliers, Boite Postale 11, 69571, Dardilly, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10024247" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD40 ; Apoptosis ; CD40 Ligand ; Cell Differentiation ; Cell Lineage ; Cell Survival ; Cells, Cultured ; Coculture Techniques ; Dendritic Cells/*cytology/immunology ; Feedback ; Humans ; Interferon-gamma/biosynthesis/pharmacology ; Interleukin-12/biosynthesis/pharmacology/physiology ; Interleukin-4/biosynthesis/pharmacology/*physiology ; Interleukins/biosynthesis/pharmacology ; Lymphocyte Activation ; Membrane Glycoproteins/pharmacology ; Stem Cells/cytology ; Th1 Cells/*cytology/immunology ; Th2 Cells/*cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1999 Mar 5;283(5407):1432-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10206866" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Lineage ; Cells, Cultured ; Embryo, Mammalian/cytology ; Endoderm/cytology ; Hematopoietic Stem Cells/cytology ; Humans ; Mesoderm/cytology ; Neurons/cytology ; Stem Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-26
    Description: Cryptochrome (CRY), a photoreceptor for the circadian clock in Drosophila, binds to the clock component TIM in a light-dependent fashion and blocks its function. In mammals, genetic evidence suggests a role for CRYs within the clock, distinct from hypothetical photoreceptor functions. Mammalian CRY1 and CRY2 are here shown to act as light-independent inhibitors of CLOCK-BMAL1, the activator driving Per1 transcription. CRY1 or CRY2 (or both) showed light-independent interactions with CLOCK and BMAL1, as well as with PER1, PER2, and TIM. Thus, mammalian CRYs act as light-independent components of the circadian clock and probably regulate Per1 transcriptional cycling by contacting both the activator and its feedback inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffin, E A Jr -- Staknis, D -- Weitz, C J -- MH-59943/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):768-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531061" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; *Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins ; Cells, Cultured ; *Circadian Rhythm ; Cryptochromes ; Dimerization ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/metabolism/*physiology ; *Gene Expression Regulation ; Genes, Reporter ; Helix-Loop-Helix Motifs ; Humans ; Intracellular Signaling Peptides and Proteins ; *Light ; Mice ; Nuclear Proteins/antagonists & inhibitors/*genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Trans-Activators/antagonists & inhibitors/metabolism ; Transcription Factors/antagonists & inhibitors/metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1999-12-11
    Description: Human corneal equivalents comprising the three main layers of the cornea (epithelium, stroma, and endothelium) were constructed. Each cellular layer was fabricated from immortalized human corneal cells that were screened for use on the basis of morphological, biochemical, and electrophysiological similarity to their natural counterparts. The resulting corneal equivalents mimicked human corneas in key physical and physiological functions, including morphology, biochemical marker expression, transparency, ion and fluid transport, and gene expression. Morphological and functional equivalents to human corneas that can be produced in vitro have immediate applications in toxicity and drug efficacy testing, and form the basis for future development of implantable tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffith, M -- Osborne, R -- Munger, R -- Xiong, X -- Doillon, C J -- Laycock, N L -- Hakim, M -- Song, Y -- Watsky, M A -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2169-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Ottawa Eye Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa Hospital-General Campus, Ottawa, Ontario K1H 8L6, Canada. mgriffith@ogh.on.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591651" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Testing Alternatives ; *Biomedical Engineering ; Cell Line ; Cells, Cultured ; Chondroitin Sulfates ; Collagen ; *Cornea/cytology/growth & development/physiology ; Corneal Opacity/chemically induced ; Corneal Stroma/cytology/growth & development/physiology ; Corneal Transplantation ; Cross-Linking Reagents ; *Culture Techniques ; Electrophysiology ; Endothelium, Corneal/cytology/growth & development ; Epithelium, Corneal/cytology/growth & development ; Gene Expression ; Glutaral ; Humans ; Ion Channels ; Ouabain/pharmacology ; Patch-Clamp Techniques ; Sodium Dodecyl Sulfate/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-11
    Description: Electrical activity plays a critical role in shaping the structure and function of synaptic connections in the nervous system. In Xenopus nerve-muscle cultures, a brief burst of action potentials in the presynaptic neuron induced a persistent potentiation of neuromuscular synapses that exhibit immature synaptic functions. Induction of potentiation required an elevation of postsynaptic Ca2+ and expression of potentiation appeared to involve an increased probability of transmitter secretion from the presynaptic nerve terminal. Thus, activity-dependent persistent synaptic enhancement may reflect properties characteristic of immature synaptic connections, and bursting activity in developing spinal neurons may promote functional maturation of the neuromuscular synapse.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wan, J -- Poo, M -- NS22764/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1725-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California at San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481007" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Bungarotoxins/pharmacology ; Calcineurin/physiology ; Calcineurin Inhibitors ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Cells, Cultured ; Chelating Agents/pharmacology ; Egtazic Acid/analogs & derivatives/pharmacology ; Electric Stimulation ; *Excitatory Postsynaptic Potentials/drug effects ; Long-Term Potentiation ; Motor Neurons/*physiology ; Neuromuscular Junction/drug effects/*physiology ; *Neuronal Plasticity/drug effects ; Patch-Clamp Techniques ; Receptors, Cholinergic/physiology ; Spinal Cord ; *Synaptic Transmission ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1999-01-08
    Description: Immunoglobulin G (IgG) responses require major histocompatibility complex (MHC)-restricted recognition of peptide fragments by conventional CD4(+) helper T cells. Immunoglobulin G responses to glycosylphosphatidylinositol (GPI)- anchored protein antigens, however, were found to be regulated in part through CD1d-restricted recognition of the GPI moiety by thymus-dependent, interleukin-4-producing CD4(+), natural killer cell antigen 1.1 [(NK1.1)+] helper T cells. The CD1-NKT cell pathway regulated immunogobulin G responses to the GPI-anchored surface antigens of Plasmodium and Trypanosoma and may be a general mechanism for rapid, MHC-unrestricted antibody responses to diverse pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schofield, L -- McConville, M J -- Hansen, D -- Campbell, A S -- Fraser-Reid, B -- Grusby, M J -- Tachado, S D -- AI-40171/AI/NIAID NIH HHS/ -- GM 41071/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):225-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Victoria 3050, Australia. schofield@wehi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigen-Presenting Cells/immunology ; Antigens/analysis ; Antigens, CD1/*immunology ; Antigens, Ly ; Antigens, Protozoan/*immunology ; Antigens, Surface ; Cells, Cultured ; Glycosylphosphatidylinositols/*immunology ; Immunoglobulin G/*biosynthesis ; Interleukin-4/biosynthesis ; Lectins, C-Type ; Leishmania mexicana/immunology ; Major Histocompatibility Complex ; Mice ; Mice, Inbred Strains ; NK Cell Lectin-Like Receptor Subfamily B ; Plasmodium/immunology ; Proteins/analysis ; Protozoan Proteins/immunology ; T-Lymphocyte Subsets/*immunology ; T-Lymphocytes, Helper-Inducer/*immunology ; Trypanosoma brucei brucei/immunology ; Variant Surface Glycoproteins, Trypanosoma/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1999-07-10
    Description: Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Bloom, O -- Zhang, M -- Vishnubhakat, J M -- Ombrellino, M -- Che, J -- Frazier, A -- Yang, H -- Ivanova, S -- Borovikova, L -- Manogue, K R -- Faist, E -- Abraham, E -- Andersson, J -- Andersson, U -- Molina, P E -- Abumrad, N N -- Sama, A -- Tracey, K J -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Emergency Medicine and Department of Surgery, North Shore University Hospital-New York University School of Medicine, Manhasset, NY 11030, USA. hwang@picower.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteremia/*blood ; Carrier Proteins/genetics/immunology/*metabolism/toxicity ; Cell Line ; Cells, Cultured ; Endotoxemia/*blood ; Endotoxins/blood/*toxicity ; HMGB1 Protein ; High Mobility Group Proteins/genetics/immunology/*metabolism/toxicity ; Humans ; Immune Sera/immunology ; Immunization, Passive ; Interferon-gamma/pharmacology ; Interleukin-1/pharmacology ; Lethal Dose 50 ; Leukocytes, Mononuclear/metabolism ; Lipopolysaccharides/toxicity ; Macrophages/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; RNA, Messenger/genetics/metabolism ; Time Factors ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1999-04-09
    Description: The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H G -- Pathan, N -- Ethell, I M -- Krajewski, S -- Yamaguchi, Y -- Shibasaki, F -- McKeon, F -- Bobo, T -- Franke, T F -- Reed, J C -- AG-1593/AG/NIA NIH HHS/ -- CA-69381/CA/NCI NIH HHS/ -- HD25938/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195903" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Animals ; *Apoptosis ; Calcineurin/genetics/*metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism/pharmacology ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cells, Cultured ; Dimerization ; Enzyme Inhibitors/pharmacology ; Glutamic Acid/pharmacology ; Hippocampus/cytology ; Humans ; Mitochondria/metabolism ; Neurons/cytology/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Transfection ; *Tyrosine 3-Monooxygenase ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1999-09-11
    Description: The cyclic expression of the period (PER) and timeless (TIM) proteins is critical for the molecular circadian feedback loop in Drosophila. The entrainment by light of the circadian clock is mediated by a reduction in TIM levels. To elucidate the mechanism of this process, the sensitivity of TIM regulation by light was tested in an in vitro assay with inhibitors of candidate proteolytic pathways. The data suggested that TIM is degraded through a ubiquitin-proteasome mechanism. In addition, in cultures from third-instar larvae, TIM degradation was blocked specifically by inhibitors of proteasome activity. Degradation appeared to be preceded by tyrosine phosphorylation. Finally, TIM was ubiquitinated in response to light in cultured cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naidoo, N -- Song, W -- Hunter-Ensor, M -- Sehgal, A -- New York, N.Y. -- Science. 1999 Sep 10;285(5434):1737-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10481010" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/analogs & derivatives/pharmacology ; Animals ; *Biological Clocks ; Cells, Cultured ; *Circadian Rhythm ; Cysteine Endopeptidases/*physiology ; Cysteine Proteinase Inhibitors/pharmacology ; Darkness ; Drosophila ; *Drosophila Proteins ; Feedback ; Insect Proteins/*metabolism ; Leucine/analogs & derivatives/pharmacology ; Leupeptins/pharmacology ; *Light ; Multienzyme Complexes/*physiology ; Neurons/*metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protease Inhibitors/pharmacology ; Proteasome Endopeptidase Complex ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1999-04-16
    Description: The cytokines LIF (leukemia inhibitory factor) and BMP2 (bone morphogenetic protein-2) signal through different receptors and transcription factors, namely STATs (signal transducers and activators of transcription) and Smads. LIF and BMP2 were found to act in synergy on primary fetal neural progenitor cells to induce astrocytes. The transcriptional coactivator p300 interacts physically with STAT3 at its amino terminus in a cytokine stimulation-independent manner, and with Smad1 at its carboxyl terminus in a cytokine stimulation-dependent manner. The formation of a complex between STAT3 and Smad1, bridged by p300, is involved in the cooperative signaling of LIF and BMP2 and the subsequent induction of astrocytes from neural progenitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakashima, K -- Yanagisawa, M -- Arakawa, H -- Kimura, N -- Hisatsune, T -- Kawabata, M -- Miyazono, K -- Taga, T -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):479-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cell Biology, Cell Fate Modulation Research Unit, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/cytology ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/metabolism/pharmacology ; COS Cells ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytokines/*pharmacology ; DNA-Binding Proteins/*metabolism ; E1A-Associated p300 Protein ; Glial Fibrillary Acidic Protein/genetics ; Growth Inhibitors/metabolism/pharmacology ; *Interleukin-6 ; Leukemia Inhibitory Factor ; Leukemia Inhibitory Factor Receptor alpha Subunit ; Lymphokines/metabolism/pharmacology ; Mice ; Nuclear Proteins/*metabolism ; Promoter Regions, Genetic ; Receptors, Cell Surface/metabolism ; Receptors, Cytokine/metabolism ; *Receptors, Growth Factor ; Receptors, OSM-LIF ; STAT3 Transcription Factor ; Sequence Deletion ; *Signal Transduction ; Smad Proteins ; Smad1 Protein ; Stem Cells/cytology/metabolism ; Telencephalon/embryology/metabolism ; Trans-Activators/*metabolism ; *Transcriptional Activation ; *Transforming Growth Factor beta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1999-08-24
    Description: The epoxyeicosatrienoic acids (EETs) are products of cytochrome P450 epoxygenases that have vasodilatory properties similar to that of endothelium-derived hyperpolarizing factor. The cytochrome P450 isoform CYP2J2 was cloned and identified as a potential source of EETs in human endothelial cells. Physiological concentrations of EETs or overexpression of CYP2J2 decreased cytokine-induced endothelial cell adhesion molecule expression, and EETs prevented leukocyte adhesion to the vascular wall by a mechanism involving inhibition of transcription factor NF-kappaB and IkappaB kinase. The inhibitory effects of EETs were independent of their membrane-hyperpolarizing effects, suggesting that these molecules play an important nonvasodilatory role in vascular inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Node, K -- Huo, Y -- Ruan, X -- Yang, B -- Spiecker, M -- Ley, K -- Zeldin, D C -- Liao, J K -- HL-52233/HL/NHLBI NIH HHS/ -- HL-58108/HL/NHLBI NIH HHS/ -- P01 HL048743/HL/NHLBI NIH HHS/ -- P01 HL048743-080008/HL/NHLBI NIH HHS/ -- P01 HL048743-090008/HL/NHLBI NIH HHS/ -- R01 HL052233/HL/NHLBI NIH HHS/ -- R01 HL052233-05/HL/NHLBI NIH HHS/ -- R01 HL052233-06/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 20;285(5431):1276-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vascular Medicine and Atherosclerosis Unit, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, LMRC-322, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10455056" target="_blank"〉PubMed〈/a〉
    Keywords: 8,11,14-Eicosatrienoic Acid/analogs & derivatives/*metabolism/*pharmacology ; Animals ; *Anti-Inflammatory Agents, Non-Steroidal/metabolism/pharmacology ; Carotid Arteries/cytology ; Cattle ; Cell Adhesion/drug effects ; Cell Adhesion Molecules/biosynthesis ; Cells, Cultured ; Coronary Vessels/enzymology ; Cytochrome P-450 Enzyme System/genetics/*metabolism ; DNA-Binding Proteins/metabolism ; Endothelium, Vascular/enzymology/*metabolism ; Humans ; Hydroxyeicosatetraenoic Acids/pharmacology ; I-kappa B Kinase ; *I-kappa B Proteins ; Mice ; Mice, Inbred C57BL ; NF-kappa B/antagonists & inhibitors/metabolism ; Oxygenases/genetics/*metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Tumor Necrosis Factor-alpha/antagonists & inhibitors/pharmacology ; Vascular Cell Adhesion Molecule-1/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1999-10-26
    Description: During mammalian development, electrical activity promotes the calcium-dependent survival of neurons that have made appropriate synaptic connections. However, the mechanisms by which calcium mediates neuronal survival during development are not well characterized. A transcription-dependent mechanism was identified by which calcium influx into neurons promoted cell survival. The transcription factor MEF2 was selectively expressed in newly generated postmitotic neurons and was required for the survival of these neurons. Calcium influx into cerebellar granule neurons led to activation of p38 mitogen-activated protein kinase-dependent phosphorylation and activation of MEF2. Once activated, MEF2 regulated neuronal survival by stimulating MEF2-dependent gene transcription. These findings demonstrate that MEF2 is a calcium-regulated transcription factor and define a function for MEF2 during nervous system development that is distinct from previously well-characterized functions of MEF2 during muscle differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mao, Z -- Bonni, A -- Xia, F -- Nadal-Vicens, M -- Greenberg, M E -- 5T32NS07112/NS/NINDS NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):785-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Department of Neurology, Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Calcium/metabolism ; Calcium Channels, L-Type/metabolism ; Cell Differentiation ; Cell Survival ; Cells, Cultured ; Cerebellum/cytology/metabolism ; Cerebral Cortex/cytology/embryology/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Dimerization ; Immunohistochemistry ; MEF2 Transcription Factors ; Mitogen-Activated Protein Kinases/metabolism ; Mitosis ; Mutation ; Myogenic Regulatory Factors ; Neurons/*cytology/*metabolism ; Phosphorylation ; Rats ; Signal Transduction ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1999-04-02
    Description: Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pittenger, M F -- Mackay, A M -- Beck, S C -- Jaiswal, R K -- Douglas, R -- Mosca, J D -- Moorman, M A -- Simonetti, D W -- Craig, S -- Marshak, D R -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):143-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Osiris Therapeutics, 2001 Aliceanna Street, Baltimore, MD 21231-3043, USA. mpittenger@osiristx.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102814" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; Adult ; Apoptosis ; Bone Marrow Cells/cytology ; Cell Differentiation ; Cell Division ; *Cell Lineage ; Cell Separation ; Cells, Cultured ; Chondrocytes/*cytology ; Fibroblasts/cytology ; Flow Cytometry ; Humans ; Mesoderm/*cytology ; Middle Aged ; Osteocytes/*cytology ; Phenotype ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1999-01-05
    Description: Signaling by the Notch surface receptor controls cell fate determination in a broad spectrum of tissues. This signaling is triggered by the interaction of the Notch protein with what, so far, have been thought to be transmembrane ligands expressed on adjacent cells. Here biochemical and genetic analyses show that the ligand Delta is cleaved on the surface, releasing an extracellular fragment capable of binding to Notch and acting as an agonist of Notch activity. The ADAM disintegrin metalloprotease Kuzbanian is required for this processing event. These observations raise the possibility that Notch signaling in vivo is modulated by soluble forms of the Notch ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qi, H -- Rand, M D -- Wu, X -- Sestan, N -- Wang, W -- Rakic, P -- Xu, T -- Artavanis-Tsakonas, S -- NS14841/NS/NINDS NIH HHS/ -- NS26084/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):91-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536-0812, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872749" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cells, Cultured ; Disintegrins/genetics/*metabolism ; Drosophila/embryology/genetics/metabolism ; *Drosophila Proteins ; Female ; Intracellular Signaling Peptides and Proteins ; Ligands ; Male ; Membrane Proteins/genetics/*metabolism ; Metalloendopeptidases/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Neurons/cytology ; Protein Processing, Post-Translational ; Receptors, Notch ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferber, D -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):154-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9925469" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Aging ; *Cell Division ; Cell Line ; *Cell Transformation, Neoplastic ; Cells, Cultured ; Humans ; Mutation ; Neoplasms/pathology ; Telomerase/genetics/*metabolism ; Telomere/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1999-02-26
    Description: Although broken chromosomes can induce apoptosis, natural chromosome ends (telomeres) do not trigger this response. It is shown that this suppression of apoptosis involves the telomeric-repeat binding factor 2 (TRF2). Inhibition of TRF2 resulted in apoptosis in a subset of mammalian cell types. The response was mediated by p53 and the ATM (ataxia telangiectasia mutated) kinase, consistent with activation of a DNA damage checkpoint. Apoptosis was not due to rupture of dicentric chromosomes formed by end-to-end fusion, indicating that telomeres lacking TRF2 directly signal apoptosis, possibly because they resemble damaged DNA. Thus, in some cells, telomere shortening may signal cell death rather than senescence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlseder, J -- Broccoli, D -- Dai, Y -- Hardy, S -- de Lange, T -- GM49046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA. Cell Genesys, Foster City, CA 94405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Animals ; *Apoptosis ; Ataxia Telangiectasia/pathology ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/cytology ; Cell Cycle Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; DNA Damage ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Genetic Vectors ; Humans ; In Situ Nick-End Labeling ; Mice ; Mitosis ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; T-Lymphocytes/cytology ; Telomere/*physiology ; Telomeric Repeat Binding Protein 2 ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1999-04-24
    Description: Human recombinant tissue plasminogen activator (tPA) may benefit ischemic stroke patients by dissolving clots. However, independent of thrombolysis, tPA may also have deleterious effects on neurons by promoting excitotoxicity. Zinc neurotoxicity has been shown to be an additional key mechanism in brain injuries. Hence, if tPA affects zinc neurotoxicity, this may provide additional insights into its effect on neuronal death. Independent of its proteolytic action, tPA markedly attenuated zinc-induced cell death in cortical culture, and, when injected into cerebrospinal fluid, also reduced kainate seizure-induced hippocampal neuronal death in adult rats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Y H -- Park, J H -- Hong, S H -- Koh, J Y -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):647-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Creative Research Initiative Center for the Study of Central Nervous System Zinc and Department of Neurology, University of Ulsan College of Medicine, 388-1 Poongnap-Dong Songpa-Gu, Seoul 138-736, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death/drug effects ; Cells, Cultured ; Cerebral Cortex/cytology ; *Cytoprotection ; Fibrinolysin/pharmacology ; Hippocampus/pathology ; Humans ; Kainic Acid/pharmacology ; Male ; Mice ; N-Methylaspartate/pharmacology ; Neurons/*cytology/drug effects ; Neuroprotective Agents/*pharmacology ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins/cerebrospinal fluid/pharmacology ; Seizures/chemically induced/pathology ; Tissue Plasminogen Activator/cerebrospinal fluid/*pharmacology ; Zinc/metabolism/*toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chenn, A -- Walsh, C A -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):689-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA. shoogasmax@netzero.net〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577225" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Communication ; Cell Count ; Cell Differentiation ; Cell Nucleus/metabolism ; Cells, Cultured ; Cerebral Cortex/cytology/metabolism ; Humans ; Ligands ; Membrane Proteins/*metabolism ; Neurites/*physiology ; Neurons/*cytology/metabolism ; Receptor, Notch1 ; Receptor, Notch2 ; Receptors, Cell Surface/*metabolism ; *Signal Transduction ; Stem Cells/cytology/metabolism ; *Transcription Factors ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1999-08-07
    Description: During the immediate-early response of mammalian cells to mitogens, histone H3 is rapidly and transiently phosphorylated by one or more unidentified kinases. Rsk-2, a member of the pp90rsk family of kinases implicated in growth control, was required for epidermal growth factor (EGF)-stimulated phosphorylation of H3. RSK-2 mutations in humans are linked to Coffin-Lowry syndrome (CLS). Fibroblasts derived from a CLS patient failed to exhibit EGF-stimulated phosphorylation of H3, although H3 was phosphorylated during mitosis. Introduction of the wild-type RSK-2 gene restored EGF-stimulated phosphorylation of H3 in CLS cells. In addition, disruption of the RSK-2 gene by homologous recombination in murine embryonic stem cells abolished EGF-stimulated phosphorylation of H3. H3 appears to be a direct or indirect target of Rsk-2, suggesting that chromatin remodeling might contribute to mitogen-activated protein kinase-regulated gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sassone-Corsi, P -- Mizzen, C A -- Cheung, P -- Crosio, C -- Monaco, L -- Jacquot, S -- Hanauer, A -- Allis, C D -- GM40922/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):886-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, INSERM, ULP, B. P. 163, 67404 Illkirch-Strasbourg, France. paolosc@igbmc.u-strasbg.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436156" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Abnormalities, Multiple/genetics/metabolism ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Cells, Cultured ; Epidermal Growth Factor/*pharmacology ; Gene Expression Regulation ; Gene Targeting ; Histones/*metabolism ; Humans ; Mice ; Mitosis ; Mutation ; Phosphorylation ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; Signal Transduction ; Stem Cells/cytology/metabolism ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1999-06-12
    Description: The efficiency with which N-methyl-D-aspartate receptors (NMDARs) trigger intracellular signaling pathways governs neuronal plasticity, development, senescence, and disease. In cultured cortical neurons, suppressing the expression of the NMDAR scaffolding protein PSD-95 (postsynaptic density-95) selectively attenuated excitotoxicity triggered via NMDARs, but not by other glutamate or calcium ion (Ca2+) channels. NMDAR function was unaffected, because receptor expression, NMDA currents, and 45Ca2+ loading were unchanged. Suppressing PSD-95 blocked Ca2+-activated nitric oxide production by NMDARs selectively, without affecting neuronal nitric oxide synthase expression or function. Thus, PSD-95 is required for efficient coupling of NMDAR activity to nitric oxide toxicity, and imparts specificity to excitotoxic Ca2+ signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sattler, R -- Xiong, Z -- Lu, W Y -- Hafner, M -- MacDonald, J F -- Tymianski, M -- NS 39060/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1845-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Toronto Western Hospital, University of Toronto, Lab 11-416, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channels/metabolism ; Cell Survival ; Cells, Cultured ; Enzyme Activation ; Guanylate Kinase ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins ; Mice ; N-Methylaspartate/toxicity ; Nerve Tissue Proteins/genetics/*metabolism ; Neurons/cytology/*metabolism ; Nitric Oxide/*metabolism ; Nitric Oxide Synthase/metabolism ; Nitric Oxide Synthase Type I ; Nucleoside-Phosphate Kinase/metabolism ; Oligodeoxyribonucleotides, Antisense ; Patch-Clamp Techniques ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Second Messenger Systems ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niklason, L E -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1493-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA. nikla001@mc.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10610551" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Arteries ; *Biomedical Engineering ; *Blood Vessel Prosthesis ; Blood Vessel Prosthesis Implantation ; Cells, Cultured ; Collagen ; Endothelium, Vascular/cytology/physiology ; Humans ; Muscle, Smooth, Vascular/cytology/physiology ; Pressure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2042.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10523192" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Calcineurin/metabolism ; *Calcineurin Inhibitors ; Cells, Cultured ; DNA-Binding Proteins/*antagonists & inhibitors/metabolism ; Gene Expression Regulation ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; NFATC Transcription Factors ; *Nuclear Proteins ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1999-01-23
    Description: Stem cells are found in various organs where they participate in tissue homeostasis by replacing differentiated cells lost to physiological turnover or injury. An investigation was performed to determine whether stem cells are restricted to produce specific cell types, namely, those from the tissue in which they reside. After transplantation into irradiated hosts, genetically labeled neural stem cells were found to produce a variety of blood cell types including myeloid and lymphoid cells as well as early hematopoietic cells. Thus, neural stem cells appear to have a wider differentiation potential than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bjornson, C R -- Rietze, R L -- Reynolds, B A -- Magli, M C -- Vescovi, A L -- A.116/Telethon/Italy -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):534-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NeuroSpheres Limited, 3330 Hospital Drive Northwest, Calgary, AB, Canada T2N 4N1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915700" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Cells/*cytology/immunology ; Bone Marrow Cells/immunology ; Cell Differentiation ; Cells, Cultured ; Colony-Forming Units Assay ; Female ; H-2 Antigens/analysis ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology ; Lac Operon ; Lymphocytes/cytology/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Prosencephalon/*cytology/embryology ; Spleen/cytology ; Stem Cell Transplantation ; Stem Cells/*cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-30
    Description: Langerhans' cells migrating from contact-sensitized skin were found to up-regulate expression of macrophage-derived chemokine (MDC) during maturation into lymph node dendritic cells (DCs). Naive T cells did not migrate toward MDC, but antigen-specific T cells rapidly acquired MDC responsiveness in vivo after a subcutaneous injection of antigen. In chemotaxis assays, maturing DCs attracted activated T cells more strongly than naive T cells. These studies identified chemokine up-regulation as part of the Langerhans' cell maturation program to immunogenic T cell-zone DC. Preferential recruitment of activated T cells may be a mechanism used by maturing DCs to promote encounters with antigen-specific T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, H L -- Cyster, J G -- AI-40098/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 30;284(5415):819-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10221917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Chemokine CCL19 ; Chemokine CCL22 ; Chemokines, CC/*biosynthesis/physiology ; *Chemotaxis, Leukocyte ; Dendritic Cells/cytology/*immunology ; Dermatitis, Contact/immunology ; Fluorescein-5-isothiocyanate ; Langerhans Cells/cytology/immunology ; Lymph Nodes/immunology ; *Lymphocyte Activation ; Mice ; T-Lymphocytes/*immunology/physiology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):650-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10577210" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*drug therapy/enzymology ; Amyloid Precursor Protein Secretases ; Amyloid beta-Peptides/*biosynthesis ; Amyloid beta-Protein Precursor/*metabolism ; Aspartic Acid Endopeptidases/chemistry/genetics/*isolation & ; purification/*metabolism ; Cells, Cultured ; Endopeptidases ; Humans ; Protease Inhibitors/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1999-12-22
    Description: Nerve growth factor (NGF) and other neurotrophins support survival of neurons through processes that are incompletely understood. The transcription factor CREB is a critical mediator of NGF-dependent gene expression, but whether CREB family transcription factors regulate expression of genes that contribute to NGF-dependent survival of sympathetic neurons is unknown. CREB-mediated gene expression was both necessary for NGF-dependent survival and sufficient on its own to promote survival of sympathetic neurons. Moreover, expression of Bcl-2 was activated by NGF and other neurotrophins by a CREB-dependent transcriptional mechanism. Overexpression of Bcl-2 reduced the death-promoting effects of CREB inhibition. Together, these data support a model in which neurotrophins promote survival of neurons, in part through a mechanism involving CREB family transcription factor-dependent expression of genes encoding prosurvival factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riccio, A -- Ahn, S -- Davenport, C M -- Blendy, J A -- Ginty, D D -- NS34814-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2358-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600750" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Axons/drug effects/metabolism ; Brain-Derived Neurotrophic Factor/pharmacology ; Cell Nucleus/metabolism ; Cell Survival ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors/*metabolism ; *Gene Expression Regulation ; Genes, bcl-2 ; Genetic Vectors ; Nerve Growth Factor/*pharmacology ; Neurons/*cytology/drug effects/metabolism ; PC12 Cells ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-bcl-2/genetics/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Sympathetic Nervous System/*cytology/drug effects/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1999-07-10
    Description: The tumor necrosis factor (TNF) superfamily of cytokines includes both soluble and membrane-bound proteins that regulate immune responses. A member of the human TNF family, BLyS (B lymphocyte stimulator), was identified that induced B cell proliferation and immunoglobulin secretion. BLyS expression on human monocytes could be up-regulated by interferon-gamma. Soluble BLyS functioned as a potent B cell growth factor in costimulation assays. Administration of soluble recombinant BLyS to mice disrupted splenic B and T cell zones and resulted in elevated serum immunoglobulin concentrations. The B cell tropism of BLyS is consistent with its receptor expression on B-lineage cells. The biological profile of BLyS suggests it is involved in monocyte-driven B cell activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, P A -- Belvedere, O -- Orr, A -- Pieri, K -- LaFleur, D W -- Feng, P -- Soppet, D -- Charters, M -- Gentz, R -- Parmelee, D -- Li, Y -- Galperina, O -- Giri, J -- Roschke, V -- Nardelli, B -- Carrell, J -- Sosnovtseva, S -- Greenfield, W -- Ruben, S M -- Olsen, H S -- Fikes, J -- Hilbert, D M -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sciences, 9410 Key West Avenue, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398604" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Lymphocyte Subsets/immunology ; B-Lymphocytes/*immunology ; Cell Line ; Cells, Cultured ; Humans ; Immunoglobulins/blood ; Interferon-gamma/pharmacology ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/pharmacology/*physiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Monocytes/*immunology ; Receptors, Cytokine/metabolism ; Receptors, Tumor Necrosis Factor/metabolism ; Recombinant Proteins/pharmacology ; Sequence Alignment ; Species Specificity ; Tumor Necrosis Factor-alpha/chemistry/genetics/pharmacology/*physiology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1994-08-19
    Description: The Xlsirts are a family of transcribed repeat sequence genes that do not code for protein. Xlsirt RNAs become localized to the vegetal cortex of Xenopus oocytes early in oogenesis, before the localization of the messenger RNA Vg1, which encodes a transforming growth factor-beta-like molecule involved in mesoderm formation, and coincident with the localization of Xcat2 transcripts, which encode a nanos-like molecule. Destruction of the localized Xlsirts by injection of antisense oligodeoxynucleotides into stage 4 oocytes resulted in the release of Vg1 transcripts but not Xcat2 transcripts from the vegetal cortex. Xlsirt RNAs, which may be a structural component of the vegetal cortex, are a crucial part of a genetic pathway necessary for the proper localization of Vg1 that leads to subsequent normal pattern formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kloc, M -- Etkin, L D -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1101-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7520603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Glycoproteins/*genetics ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Oogenesis ; RNA/*genetics ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/genetics ; Repetitive Sequences, Nucleic Acid ; Transforming Growth Factor beta/genetics ; Xenopus ; *Xenopus Proteins ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1994-03-11
    Description: The gamma chain of the interleukin-2 (IL-2) receptor is shared with the functional IL-4 receptor and is causatively related to X-linked severe combined immunodeficiency (XSCID), which is ascribed to a profound T cell defect. Studies with monoclonal antibodies specific for the IL-2 receptor gamma chain showed that the gamma chain participates in the functional high-affinity receptor complexes for IL-7 that are involved in the differentiation of T and B cells. Participation of the gamma subunit in more than one receptor may enable the elucidation of the mechanisms of XSCID development and lymphocyte differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, M -- Takeshita, T -- Higuchi, M -- Nakamura, M -- Sudo, T -- Nishikawa, S -- Sugamura, K -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1453-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Tohoku University School of Medicine, Sendai, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; B-Lymphocytes/*immunology ; Cell Line ; Cells, Cultured ; Female ; Genetic Linkage ; Interleukin-7/*metabolism/pharmacology ; Mice ; Mice, Inbred C57BL ; Receptors, Interleukin/*metabolism ; Receptors, Interleukin-2/genetics/immunology/*metabolism ; Receptors, Interleukin-7 ; Severe Combined Immunodeficiency/genetics/immunology ; T-Lymphocytes/*immunology ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1994-11-11
    Description: For survival, embryonic motoneurons in vertebrates depend on as yet undefined neurotrophic factors present in the limb bud. Members of the neurotrophin family are currently the best candidates for such neurotrophic factors, but inactivation of their receptor genes leads to only partial loss of motoneurons, which suggests that other factors are involved. Glial cell line-derived neurotrophic factor (GDNF), originally identified as a trophic factor specific for dopaminergic neurons, was found to be 75-fold more potent than the neurotrophins in supporting the survival of purified embryonic rat motoneurons in culture. GDNF messenger RNA was found in the immediate vicinity of motoneurons during the period of cell death in development. In vivo, GDNF rescues and prevents the atrophy of facial motoneurons that have been deprived of target-derived survival factors by axotomy. GDNF may therefore be a physiological trophic factor for spinal motoneurons. Its potency and specificity in vitro and in vivo also make it a good candidate for treatment of motoneuron disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henderson, C E -- Phillips, H S -- Pollock, R A -- Davies, A M -- Lemeulle, C -- Armanini, M -- Simmons, L -- Moffet, B -- Vandlen, R A -- Simpson LC corrected to Simmons, L -- Koliatsos, V E -- Rosenthal, A -- NS 10580/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1062-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U.382, IBDM, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973664" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor ; Cell Death ; Cell Survival/drug effects ; Cells, Cultured ; Ciliary Neurotrophic Factor ; Face/innervation ; Glial Cell Line-Derived Neurotrophic Factor ; Growth Inhibitors/pharmacology ; *Interleukin-6 ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Molecular Sequence Data ; Motor Neurons/*cytology/drug effects ; Muscle Fibers, Skeletal/*metabolism ; Nerve Growth Factors/analysis/biosynthesis/genetics/*pharmacology ; Nerve Tissue Proteins/*analysis/biosynthesis/genetics/*pharmacology ; Neurons, Afferent/cytology/drug effects ; Peripheral Nerves/*metabolism ; RNA, Messenger/analysis/genetics ; Rats ; Schwann Cells/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1994-07-15
    Description: A subset of patients who have undergone coronary angioplasty develop restenosis, a vessel renarrowing characterized by excessive proliferation of smooth muscle cells (SMCs). Of 60 human restenosis lesions examined, 23 (38 percent) were found to have accumulated high amounts of the tumor suppressor protein p53, and this correlated with the presence of human cytomegalovirus (HCMV) in the lesions. SMCs grown from the lesions expressed HCMV protein IE84 and high amounts of p53. HCMV infection of cultured SMCs enhanced p53 accumulation, which correlated temporally with IE84 expression. IE84 also bound to p53 and abolished its ability to transcriptionally activate a reporter gene. Thus, HCMV, and IE84-mediated inhibition of p53 function, may contribute to the development of restenosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Speir, E -- Modali, R -- Huang, E S -- Leon, M B -- Shawl, F -- Finkel, T -- Epstein, S E -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):391-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiology Branch, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023160" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; *Angioplasty, Balloon ; Antigens, Viral/*metabolism ; Atherectomy, Coronary ; Base Sequence ; Cells, Cultured ; Coronary Disease/*etiology/pathology/therapy ; Coronary Vessels/cytology/metabolism/microbiology ; Cytomegalovirus/*physiology ; Genes, p53 ; Humans ; Immediate-Early Proteins/*metabolism ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth, Vascular/cytology/metabolism/microbiology ; Recurrence ; Transcriptional Activation ; Transfection ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):754-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303290" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caenorhabditis elegans/genetics ; Caspase 1 ; Cells, Cultured ; Free Radicals/metabolism ; Metalloendopeptidases/*genetics/metabolism ; Mice ; Mice, Knockout ; Neurons/cytology ; Oxygen/metabolism ; Proto-Oncogene Proteins/genetics/physiology ; Proto-Oncogene Proteins c-bcl-2 ; Rats ; bcl-2-Associated X Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1994-11-11
    Description: The decay of excitatory postsynaptic currents in central neurons mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors is likely to be shaped either by receptor desensitization or by offset after removal of glutamate from the synaptic cleft. Native AMPA receptors show desensitization time constants of 1 to about 10 milliseconds, but the underlying molecular determinants of these large differences are unknown. Cloned AMPA receptors carrying the "flop" splice variants of glutamate receptor subtype C (GluR-C) and GluR-D are shown to have desensitization time constants of around 1 millisecond, whereas those with the "flip" variants are about four times slower. Cerebellar granule cells switch their expression of GluR-D splice variants from mostly flip forms in early stages to predominantly flop forms in the adult rat brain. These findings suggest that rapid desensitization of AMPA receptors can be regulated by the expression and alternative splicing of GluR-D gene transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mosbacher, J -- Schoepfer, R -- Monyer, H -- Burnashev, N -- Seeburg, P H -- Ruppersberg, J P -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1059-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur medizinische Forschung, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973663" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Cells, Cultured ; Cerebellum/cytology/metabolism ; Cloning, Molecular ; Glutamic Acid/*pharmacology ; In Situ Hybridization ; Oocytes ; Patch-Clamp Techniques ; Rats ; Receptors, AMPA/drug effects/genetics/*physiology ; Recombinant Proteins ; Synaptic Transmission ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1994-02-04
    Description: Poly(adenosine 5'-diphosphoribose) synthetase (PARS) is a nuclear enzyme which, when activated by DNA strand breaks, adds up to 100 adenosine 5'-diphosphoribose (ADP-ribose) units to nuclear proteins such as histones and PARS itself. This activation can lead to cell death through depletion of beta-nicotinamide adenine dinucleotide (the source of ADP-ribose) and adenosine triphosphate. Nitric oxide (NO) stimulated ADP-ribosylation of PARS in rat brain. Benzamide and other derivatives, which inhibit PARS, blocked N-methyl-D-aspartate- and NO-mediated neurotoxicity with relative potencies paralleling their ability to inhibit PARS. Thus, NO appeared to elicit neurotoxicity by activating PARS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, J -- Dawson, V L -- Dawson, T M -- Snyder, S H -- DA-00074/DA/NIDA NIH HHS/ -- DA-00266/DA/NIDA NIH HHS/ -- DA-271-90-7408/DA/NIDA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Feb 4;263(5147):687-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8080500" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzamides/pharmacology ; Brain/cytology/drug effects/enzymology ; Cell Death/drug effects ; Cell Line ; Cells, Cultured ; Cerebral Cortex/cytology/drug effects/enzymology ; DNA Damage ; Enzyme Activation ; Humans ; N-Methylaspartate/*toxicity ; Neurons/cytology/*drug effects/enzymology ; Nitric Oxide/*toxicity ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1994-01-28
    Description: As changes in synaptic strength are thought to be critical for learning and memory, it would be useful to monitor the activity of individual identified synapses on mammalian central neurons. Calcium imaging of cortical neurons grown in primary culture was used to visualize the activation of individual postsynaptic elements by miniature excitatory synaptic currents elicited by spontaneous quantal release. This approach revealed that the probability of spontaneous activity differed among synapses on the same dendrite. Furthermore, synapses that undergo changes in activity induced by glutamate or phorbol ester treatment were identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, T H -- Baraban, J M -- Wier, W G -- Blatter, L A -- New York, N.Y. -- Science. 1994 Jan 28;263(5146):529-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7904774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Cells, Cultured ; Cerebral Cortex ; Dendrites/*metabolism ; Glutamates/pharmacology ; Glutamic Acid ; Kinetics ; Microelectrodes ; Neuronal Plasticity ; Neurons/*physiology ; Phorbol Esters/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/physiology ; Synapses/*physiology ; *Synaptic Transmission ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-25
    Description: Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nedergaard, M -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1768-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134839" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/drug effects/*metabolism ; Calcium/*metabolism ; Cell Communication ; Cells, Cultured ; Electric Stimulation ; Excitatory Amino Acid Antagonists ; Gap Junctions/physiology ; Kynurenic Acid/pharmacology ; Neurons/drug effects/*metabolism ; Nifedipine/pharmacology ; Octanols/pharmacology ; Prosencephalon/*cytology/embryology ; Rats ; *Signal Transduction ; Synapses/metabolism ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1994-07-22
    Description: Two molecular mechanisms of T cell-mediated cytotoxicity, one perforin-based, the other Fas-based, have been demonstrated. To determine the extent of their contribution to T cell-mediated cytotoxicity, a range of effector cells from normal control or perforin-deficient mice were tested against a panel of target cells with various levels of Fas expression. All cytotoxicity observed was due to either of these mechanisms, and no third mechanism was detected. Thus, the perforin- and Fas-based mechanisms may account for all T cell-mediated cytotoxicity in short-term in vitro assays.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kagi, D -- Vignaux, F -- Ledermann, B -- Burki, K -- Depraetere, V -- Nagata, S -- Hengartner, H -- Golstein, P -- New York, N.Y. -- Science. 1994 Jul 22;265(5171):528-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7518614" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD95 ; Antigens, Surface/*immunology ; Cells, Cultured ; Concanavalin A/pharmacology ; *Cytotoxicity, Immunologic ; Ionomycin/pharmacology ; Leukemia L1210 ; Lymphocyte Culture Test, Mixed ; Lymphocytic choriomeningitis virus/immunology ; Membrane Glycoproteins/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Molecular Sequence Data ; Perforin ; Pore Forming Cytotoxic Proteins ; T-Lymphocytes, Cytotoxic/*immunology ; Tetradecanoylphorbol Acetate/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-18
    Description: The role played in immune surveillance by gamma delta T cells residing in various epithelia has not been clear. It is shown here that activated gamma delta T cells obtained from skin and intestine express the epithelial cell mitogen keratinocyte growth factor (KGF). In contrast, intraepithelial alpha beta T cells, as well as all lymphoid alpha beta and gamma delta T cell populations tested, did not produce KGF or promote the growth of cultured epithelial cells. These results suggest that intraepithelial gamma delta T cells function in surveillance and in repair of damaged epithelial tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boismenu, R -- Havran, W L -- AI32751/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 18;266(5188):1253-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Division ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; Dendritic Cells/*physiology ; Epithelial Cells ; Fibroblast Growth Factor 10 ; Fibroblast Growth Factor 7 ; *Fibroblast Growth Factors ; Growth Substances/*biosynthesis/genetics ; Keratinocytes/*cytology ; Lymphocyte Activation ; Mice ; Molecular Sequence Data ; *Receptors, Antigen, T-Cell, gamma-delta ; T-Lymphocyte Subsets/immunology/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1994-03-11
    Description: The participation of (6R) 5,6,7,8-tetrahydrobiopterin (6-BH4) in regulating the tyrosine supply for melanin biosynthesis was investigated by the examination of human keratinocytes, melanocytes, and epidermal suction blisters from normal human skin and from patients with the depigmentation disorder vitiligo. Cells, as well as total epidermis, contained high phenylalanine hydroxylase activities and also displayed the capacity to synthesize and recycle 6-BH4, the essential cofactor for this enzyme. In vitiligo, 4a-hydroxy-BH4 dehydratase activity was extremely low or absent, yielding an accumulation of the nonenzymatic by-product 7-tetrahydrobiopterin (7-BH4) at concentrations up to 8 x 10(-6) M in the epidermis. This by-product is a potent competitive inhibitor in the phenylalanine hydroxylase reaction with an inhibition constant of 10(-6) M. Thus, 6-BH4 seems to control melanin biosynthesis in the human epidermis, whereas 7-BH4 may initiate depigmentation in patients with vitiligo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schallreuter, K U -- Wood, J M -- Pittelkow, M R -- Gutlich, M -- Lemke, K R -- Rodl, W -- Swanson, N N -- Hitzemann, K -- Ziegler, I -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1444-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, University of Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128228" target="_blank"〉PubMed〈/a〉
    Keywords: Biopterin/*analogs & derivatives/biosynthesis/metabolism/pharmacology ; Cell Differentiation ; Cells, Cultured ; Epidermis/*metabolism ; GTP Cyclohydrolase/metabolism ; Humans ; Keratinocytes/metabolism ; Melanins/*biosynthesis ; Melanocytes/metabolism ; Phenylalanine Hydroxylase/antagonists & inhibitors/metabolism ; Tyrosine/biosynthesis ; Vitiligo/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1994-09-30
    Description: Nucleotide sequence information derived from DNA segments of the human and other genomes is accumulating rapidly. However, it frequently proves difficult to use such short DNA segments to identify clones in genomic libraries or fragments in blots of the whole genome or for in situ analysis of chromosomes. Oligonucleotide probes, consisting of two target-complementary segments, connected by a linker sequence, were designed. Upon recognition of the specific nucleic acid molecule the ends of the probes were joined through the action of a ligase, creating circular DNA molecules catenated to the target sequence. These probes thus provide highly specific detection with minimal background.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nilsson, M -- Malmgren, H -- Samiotaki, M -- Kwiatkowski, M -- Chowdhary, B P -- Landegren, U -- New York, N.Y. -- Science. 1994 Sep 30;265(5181):2085-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beijer Laboratory, Department of Medical Genetics, Biomedical Center, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7522346" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cells, Cultured ; Chromosomes, Human, Pair 12 ; Cystic Fibrosis Transmembrane Conductance Regulator ; DNA/*analysis ; DNA, Circular/*analysis ; Genetic Vectors ; Humans ; In Situ Hybridization ; Lymphocytes ; Membrane Proteins/genetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Oligonucleotide Probes/chemistry ; Repetitive Sequences, Nucleic Acid ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1994-05-13
    Description: A cytokine was identified that stimulated the proliferation of T lymphocytes, and a complementary DNA clone encoding this new T cell growth factor was isolated. The cytokine, designated interleukin-15 (IL-15), is produced by a wide variety of cells and tissues and shares many biological properties with IL-2. Monoclonal antibodies to the beta chain of the IL-2 receptor inhibited the biological activity of IL-15, and IL-15 competed for binding with IL-2, indicating that IL-15 uses components of the IL-2 receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grabstein, K H -- Eisenman, J -- Shanebeck, K -- Rauch, C -- Srinivasan, S -- Fung, V -- Beers, C -- Richardson, J -- Schoenborn, M A -- Ahdieh, M -- New York, N.Y. -- Science. 1994 May 13;264(5161):965-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Research and Development Corporation, Seattle, WA 98101.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cells, Cultured ; *Cloning, Molecular ; Haplorhini ; Humans ; Interleukin-15 ; Interleukin-2/immunology/metabolism/pharmacology ; Interleukins/chemistry/*genetics/metabolism/pharmacology ; Killer Cells, Lymphokine-Activated/immunology ; Leukocytes, Mononuclear/immunology/metabolism ; Lymphocyte Activation ; Lymphocyte Culture Test, Mixed ; Molecular Sequence Data ; Protein Structure, Secondary ; Receptors, Interleukin-2/immunology/*metabolism ; T-Lymphocytes/*immunology ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, B -- Kaye, J -- Lo, D -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):464-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939690" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; *Clonal Anergy ; *Lymphocyte Activation ; Mice ; Mice, Transgenic ; T-Lymphocytes, Regulatory/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-10
    Description: When the sympathetic nerves that innervate rat sweat glands reach their targets, they are induced to switch from using norepinephrine as their neurotransmitter to acetylcholine. Catecholamines (such as norepinephrine) released by nerves growing to the sweat gland induce this phenotypic conversion by stimulating production of a cholinergic differentiation factor [sweat gland factor (SGF)] by gland cells. Here, culture of gland cells with sympathetic, but not sensory, neurons induced SGF production. Blockage of alpha 1- or beta-adrenergic receptors prevented acquisition of the cholinergic phenotype in sympathetic neurons co-cultured with sweat glands, and sweat glands from sympathectomized animals lacked SGF. Thus, reciprocal instructive interactions, mediated in part by small molecule neurotransmitters, direct the development of this synapse.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Habecker, B A -- Landis, S C -- NS-023678/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1602-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4975.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8202714" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Base Sequence ; Cell Differentiation ; Cells, Cultured ; Culture Media, Conditioned ; Glycoproteins/*biosynthesis ; Molecular Sequence Data ; Neuregulins ; Neurons/cytology/physiology ; Neurons, Afferent/cytology/physiology ; Parasympathetic Nervous System/cytology/*physiology ; Phenotype ; Rats ; Receptors, Adrenergic/*physiology ; Sweat Glands/cytology/*innervation/metabolism ; Sympathectomy ; Sympathetic Nervous System/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Travis, J -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):970-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973679" target="_blank"〉PubMed〈/a〉
    Keywords: Astrocytes/physiology ; Brain/*cytology/physiology ; Calcium/metabolism ; Cell Communication ; Cells, Cultured ; Humans ; Nerve Growth Factors/biosynthesis ; Neuroglia/*physiology ; Neurons/physiology ; Neurotransmitter Agents/metabolism ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kingman, S -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):748.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303287" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics ; Advisory Committees ; Cells, Cultured ; *Containment of Biohazards ; *Genetic Engineering ; *Government Regulation ; Great Britain ; Humans ; *Oncogenes ; Simian virus 40/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-13
    Description: Learning and memory arise through activity-dependent modifications of neural circuits. Although the activity dependence of synaptic efficacy has been studied extensively, less is known about how activity shapes the intrinsic electrical properties of neurons. Lobster stomatogastric ganglion neurons fire in bursts when receiving synaptic and modulatory input but fire tonically when pharmacologically isolated. Long-term isolation in culture changed their intrinsic activity from tonic firing to burst firing. Rhythmic stimulation reversed this transition through a mechanism that was mediated by a rise in intracellular calcium concentration. These data suggest that neurons regulate their conductances to maintain stable activity patterns and that the intrinsic properties of a neuron depend on its recent history of activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turrigiano, G -- Abbott, L F -- Marder, E -- MH46742/MH/NIMH NIH HHS/ -- NS17813/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 May 13;264(5161):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/physiology ; Cells, Cultured ; Egtazic Acid/analogs & derivatives/pharmacology ; Electric Stimulation ; Electrophysiology ; Ganglia, Invertebrate/cytology ; Membrane Potentials ; Nephropidae ; Neurites/physiology ; Neurons/cytology/*physiology ; Synapses/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1994-02-11
    Description: Interleukin-1 beta converting enzyme (ICE) is a mammalian homolog of CED-3, a protein required for programmed cell death in the nematode Caenorhabditis elegans. The activity of ICE can be specifically inhibited by the product of crmA, a cytokine response modifier gene encoded by cowpox virus. Microinjection of the crmA gene into chicken dorsal root ganglion neurons was found to prevent cell death induced by deprivation of nerve growth factor. Thus, ICE is likely to participate in neuronal death in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagliardini, V -- Fernandez, P A -- Lee, R K -- Drexler, H C -- Rotello, R J -- Fishman, M C -- Yuan, J -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):826-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center, Massachusetts General Hospital, Charlestown 02129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303301" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 1 ; Cells, Cultured ; Chickens ; Ganglia, Spinal ; Gene Expression ; Metalloendopeptidases/*genetics/physiology ; Microinjections ; Nerve Growth Factors/pharmacology ; Neurons, Afferent/*cytology/metabolism ; Proto-Oncogene Proteins/genetics/physiology ; Proto-Oncogene Proteins c-bcl-2 ; Serpins/*genetics/physiology ; *Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1994-04-08
    Description: Most human peripheral blood gamma delta T lymphocytes respond to hitherto unidentified mycobacterial antigens. Four ligands from Mycobacterium tuberculosis strain H37Rv that stimulated proliferation of a major human gamma delta T cell subset were isolated and partially characterized. One of these ligands, TUBag4, is a 5' triphosphorylated thymidine-containing compound, to which the three other stimulatory molecules are structurally related. These findings support the hypothesis that some gamma delta T cells recognize nonpeptidic ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Constant, P -- Davodeau, F -- Peyrat, M A -- Poquet, Y -- Puzo, G -- Bonneville, M -- Fournie, J J -- New York, N.Y. -- Science. 1994 Apr 8;264(5156):267-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department III, Laboratoire de Pharmacologie et de Toxicologie Fondamentales du CNRS, Toulouse, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8146660" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Bacterial/chemistry/*immunology/isolation & purification ; Cells, Cultured ; Chromatography, Ion Exchange ; Humans ; Ligands ; *Lymphocyte Activation ; Magnetic Resonance Spectroscopy ; Mycobacterium tuberculosis/*immunology ; Receptors, Antigen, T-Cell, gamma-delta/*immunology ; T-Lymphocyte Subsets/*immunology ; Thymine Nucleotides/analysis/chemistry/*immunology/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: The repair of cyclobutane pyrimidine dimers (CPDs), DNA lesions induced by ultraviolet light, was studied at nucleotide resolution. Human fibroblasts were irradiated with ultraviolet light and allowed to repair. The DNA was enzymatically cleaved at the CPDs, and the induced breaks along the promoter and exon 1 of the PGK1 gene were mapped by ligation-mediated polymerase chain reaction. Repair rates within the nontranscribed strand varied as much as 15-fold, depending on nucleotide position. Preferential repair of the transcribed strand began just downstream of the transcription start site but was most pronounced beginning at nucleotide +140 in exon 1. The promoter contained two slowly repaired regions that coincided with two transcription factor binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, S -- Drouin, R -- Holmquist, G P -- CA54773/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1438-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beckman Research Institute of the City of Hope, Department of Biology, Duarte, CA 91010.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128226" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cells, Cultured ; *DNA Repair ; Exons ; *Genes ; HeLa Cells ; Humans ; Kinetics ; Phosphoglycerate Kinase/*genetics ; Promoter Regions, Genetic ; Pyrimidine Dimers/*metabolism ; Skin/metabolism/*radiation effects ; Transcription Factors/metabolism ; Transcription, Genetic ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1994-02-25
    Description: Encounters with antigen can stimulate T cells to become activated and proliferate, become nonresponsive to antigen, or to die. T cell death was shown to be a physiological response to interleukin-2-stimulated cell cycling and T cell receptor reengagement at high antigen doses. This feedback regulatory mechanism attenuates the immune response by deleting a portion of newly dividing, antigen-reactive T cells. This mechanism deleted autoreactive T cells and abrogated the clinical and pathological signs of autoimmune encephalomyelitis in mice after repetitive administration of myelin basic protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Critchfield, J M -- Racke, M K -- Zuniga-Pflucker, J C -- Cannella, B -- Raine, C S -- Goverman, J -- Lenardo, M J -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1139-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7509084" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*immunology ; Apoptosis ; CD4-Positive T-Lymphocytes/*immunology ; Cell Division ; Cells, Cultured ; Cytochrome c Group/immunology ; Dose-Response Relationship, Immunologic ; Encephalomyelitis, Autoimmune, Experimental/*immunology/pathology/therapy ; *Immune Tolerance ; Immunotherapy ; Interleukin-2/immunology/pharmacology ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Myelin Basic Protein/immunology ; Myelin Sheath/immunology/pathology ; Spinal Cord/pathology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-18
    Description: Cultured embryonic cortical neurons from rats were used to explore mechanisms of activity-dependent neuronal survival. Cell survival was increased by the activation of voltage-sensitive calcium channels (VSCCs) but not by activation of N-methyl-D-aspartate receptors. These effects correlated with the expression of brain-derived neurotrophic factor (BDNF) induced by these two classes of calcium channels. Antibodies to BDNF (which block intracellular signaling by BDNF, but not by nerve growth factor, NT3, or NT4/5) reduced the survival of cortical neurons and reversed the VSCC-mediated increase in survival. Thus, endogenous BDNF is a trophic factor for cortical neurons whose expression is VSCC-regulated and that functions in the VSCC-dependent survival of these neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, A -- Carnahan, J -- Greenberg, M E -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 18;263(5153):1618-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7907431" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Brain-Derived Neurotrophic Factor ; Calcium Channels/*physiology ; Cell Division/drug effects ; Cell Survival/drug effects ; Cells, Cultured ; Cerebral Cortex/*cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Embryo, Mammalian ; Glutamates/pharmacology ; Glutamic Acid ; N-Methylaspartate/pharmacology ; Nerve Growth Factors/biosynthesis/genetics/immunology/*physiology ; Nerve Tissue Proteins/biosynthesis/genetics/immunology/*physiology ; Neurons/*cytology ; Phosphorylation ; Potassium Chloride/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1994-06-24
    Description: The mechanisms underlying interferon (IFN)-induced antiviral states are not well understood. Interferon regulatory factor-1 (IRF-1) is an IFN-inducible transcriptional activator, whereas IRF-2 suppresses IRF-1 action. The inhibition of encephalomyocarditis virus (EMCV) replication by IFN-alpha and especially by IFN-gamma was impaired in cells from mice with a null mutation in the IRF-1 gene (IRF-1-/- mice). The IRF-1-/- mice were less resistant than normal mice to EMCV infection, as revealed by accelerated mortality and a larger virus titer in target organs. The absence of IRF-1 did not clearly affect replication of two other types of viruses. Thus, IRF-1 is necessary for the antiviral action of IFNs against some viruses, but IFNs activate multiple activation pathways through diverse target genes to induce the antiviral state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, T -- Nakayama, K -- Penninger, J -- Kitagawa, M -- Harada, H -- Matsuyama, T -- Tanaka, N -- Kamijo, R -- Vilcek, J -- Mak, T W -- R35CA49731/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1921-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8009222" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiovirus Infections/*immunology/microbiology ; Cells, Cultured ; DNA-Binding Proteins/genetics/*physiology ; Encephalomyocarditis virus/physiology ; Gene Expression Regulation ; Interferon Regulatory Factor-1 ; Interferon-alpha/*pharmacology ; Interferon-gamma/*pharmacology ; Mice ; Mutation ; Phosphoproteins/genetics/*physiology ; Simplexvirus/physiology ; Transcription Factors/genetics/*physiology ; Vesicular stomatitis Indiana virus/physiology ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: Retinotopic map development in nonmammalian vertebrates appears to be controlled by molecules that guide or restrict retinal axons to correct locations in their targets. However, the retinotopic map in the superior colliculus (SC) of the rat is developed instead by a topographic bias in collateral branching and arborization. Temporal retinal axons extending across alternating membranes from the topographically correct rostral SC or the incorrect caudal SC of embryonic rats preferentially branch on rostral membranes. Branching preference is due to an inhibitory phosphatidylinositol-linked molecule in the caudal SC. Thus, position-encoding membrane-bound molecules may establish retinotopic maps in mammals by regulating axon branching, not by directing axon growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roskies, A L -- O'Leary, D D -- NEI RO1 EY07025/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):799-803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Carbocyanines ; Cells, Cultured ; Embryonic and Fetal Development/physiology ; Fluorescent Dyes ; Phosphatidylinositol Diacylglycerol-Lyase ; Phosphoric Diester Hydrolases ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells/*physiology ; Superior Colliculi/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-10
    Description: T cell-mediated suppression is an established phenomenon, but its underlying mechanisms are obscure. An in vitro system was used to test the possibility that anergic T cells can act as specific suppressor cells. Anergic human T cells caused inhibition of antigen-specific and allospecific T cell proliferation. In order for the inhibition to occur, the anergic T cells had to be specific for the same antigen-presenting cells (APCs) as the T cells that were suppressed. The mechanism of this suppression appears to be competition for the APC surface and for locally produced interleukin-2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lombardi, G -- Sidhu, S -- Batchelor, R -- Lechler, R -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1587-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Royal Postgraduate Medical School, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8202711" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Presenting Cells/immunology ; Cell Line ; Cells, Cultured ; *Clonal Anergy ; Humans ; Interleukin-10/immunology ; Interleukin-2/immunology/secretion ; Interleukin-4/immunology ; Lymphocyte Activation ; Recombinant Proteins/immunology ; T-Lymphocytes, Helper-Inducer/*immunology ; T-Lymphocytes, Regulatory/*immunology ; Transforming Growth Factor beta/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-19
    Description: An efficient system was developed that induced the differentiation of embryonic stem (ES) cells into blood cells of erythroid, myeloid, and B cell lineages by coculture with the stromal cell line OP9. This cell line does not express functional macrophage colony-stimulating factor (M-CSF). The presence of M-CSF had inhibitory effects on the differentiation of ES cells to blood cells other than macrophages. Embryoid body formation or addition of exogenous growth factors was not required, and differentiation was highly reproducible even after the selection of ES cells with the antibiotic G418. Combined with the ability to genetically manipulate ES cells, this system will facilitate the study of molecular mechanisms involved in development and differentiation of hematopoietic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakano, T -- Kodama, H -- Honjo, T -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1098-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Faculty of Medicine, Kyoto University Yoshida, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/cytology ; Base Sequence ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Culture Media ; Erythrocytes/cytology ; Erythropoiesis ; Gene Rearrangement ; *Hematopoiesis ; Hematopoietic Stem Cells/*cytology ; Lymphocytes/*cytology ; Macrophage Colony-Stimulating Factor/pharmacology ; Macrophages/cytology ; Mesoderm/cytology ; Mice ; Molecular Sequence Data ; Recombinant Proteins/pharmacology ; Stromal Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1994-05-06
    Description: Apolipoprotein E4 (apoE4), one of the three common isoforms of apoE, has been implicated in Alzheimer's disease. The effects of apoE on neuronal growth were determined in cultures of dorsal root ganglion neurons. In the presence of beta-migrating very low density lipoproteins (beta-VLDL), apoE3 increased neurite outgrowth, whereas apoE4 decreased outgrowth. The effects of apoE3 or apoE4 in the presence of beta-VLDL were prevented by incubation with a monoclonal antibody to apoE or by reductive methylation of apoE, both of which block the ability of apoE to interact with lipoprotein receptors. The data suggest that receptor-mediated binding or internalization (or both) of apoE-enriched beta-VLDL leads to isoform-specific differences in interactions with cellular proteins that affect neurite outgrowth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nathan, B P -- Bellosta, S -- Sanan, D A -- Weisgraber, K H -- Mahley, R W -- Pitas, R E -- HL 41633/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1994 May 6;264(5160):850-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8171342" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoprotein E3 ; Apolipoprotein E4 ; Apolipoproteins E/metabolism/*pharmacology ; Cells, Cultured ; Culture Media, Serum-Free ; Fetus ; Ganglia, Spinal ; Lipoproteins, VLDL/pharmacology ; Neurites/*drug effects/ultrastructure ; Neurons/cytology/*drug effects ; Rabbits ; Receptors, LDL/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1994-09-09
    Description: As normal cells progress toward malignancy, they must switch to an angiogenic phenotype to attract the nourishing vasculature that they depend on for their growth. In cultured fibroblasts from Li-Fraumeni patients, this switch was found to coincide with loss of the wild-type allele of the p53 tumor suppressor gene and to be the result of reduced expression of thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis. Transfection assays revealed that p53 can stimulate the endogenous TSP-1 gene and positively regulate TSP-1 promoter sequences. These data indicate that, in fibroblasts, wild-type p53 inhibits angiogenesis through regulation of TSP-1 synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dameron, K M -- Volpert, O V -- Tainsky, M A -- Bouck, N -- CA52750/CA/NCI NIH HHS/ -- CA64239/CA/NCI NIH HHS/ -- P01 CA34936/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Sep 9;265(5178):1582-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7521539" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cells, Cultured ; Fibroblasts/*metabolism ; *Gene Expression Regulation ; *Genes, p53 ; Humans ; Li-Fraumeni Syndrome ; Membrane Glycoproteins/biosynthesis/*genetics/physiology ; *Neovascularization, Pathologic ; Phenotype ; Promoter Regions, Genetic ; Thrombospondins ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1994-07-08
    Description: Both interferon gamma (IFN-gamma) produced by T helper 1 (TH1) lymphocytes and interleukin-4 (IL-4) produced by TH2 lymphocytes were reduced in either bulk circulating mononuclear cells or mitogen-induced CD4+ T cell clones from the peripheral blood of individuals infected with human immunodeficiency virus (HIV). There was a preferential reduction in clones producing IL-4 and IL-5 in the advanced phases of infection. However, enhanced proportions of CD4+ T cell clones producing both TH1-type and TH2-type cytokines (TH0 clones) were generated from either skin-infiltrating T cells that had been activated in vivo or peripheral blood T cells stimulated by antigen in vitro when cells were isolated from HIV-infected individuals. All TH2 and most TH0 clones supported viral replication, although viral replication was not detected in any of the TH1 clones infected in vitro with HIV. These results suggest that HIV (i) does not induce a definite TH1 to TH2 switch, but can favor a shift to the TH0 phenotype in response to recall antigens, and (ii) preferentially replicates in CD4+ T cells producing TH2-type cytokines (TH2 and TH0).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maggi, E -- Mazzetti, M -- Ravina, A -- Annunziato, F -- de Carli, M -- Piccinni, M P -- Manetti, R -- Carbonari, M -- Pesce, A M -- del Prete, G -- New York, N.Y. -- Science. 1994 Jul 8;265(5169):244-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Clinical Immunology and Allergy, University of Florence, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023142" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology ; Cell Line ; Cells, Cultured ; HIV/*physiology ; HIV Infections/*immunology/microbiology ; HIV Seropositivity/immunology ; Humans ; Immunologic Memory ; Interferon-gamma/*biosynthesis ; Interleukin-4/biosynthesis ; Interleukin-5/biosynthesis ; Interleukins/*biosynthesis ; Lymphocyte Activation ; Phenotype ; T-Lymphocytes, Helper-Inducer/*immunology/microbiology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1994-10-21
    Description: Mice lacking the proto-oncogene c-fos develop the bone disease osteopetrosis. Fos mutant mice were found to have a block in the differentiation of bone-resorbing osteoclasts that was intrinsic to hematopoietic cells. Bone marrow transplantation rescued the osteopetrosis, and ectopic c-fos expression overcame this differentiation block. The lack of Fos also caused a lineage shift between osteoclasts and macrophages that resulted in increased numbers of bone marrow macrophages. These results identify Fos as a key regulator of osteoclast-macrophage lineage determination in vivo and provide insights into the molecular mechanisms underlying metabolic bone diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grigoriadis, A E -- Wang, Z Q -- Cecchini, M G -- Hofstetter, W -- Felix, R -- Fleisch, H A -- Wagner, E F -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):443-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Transplantation ; Bone Remodeling/*physiology ; Cell Differentiation ; Cells, Cultured ; Genes, fos ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology ; Macrophages/*cytology ; Mice ; Mice, Mutant Strains ; Osteoclasts/*cytology ; Osteogenesis ; Osteopetrosis/metabolism/pathology ; Proto-Oncogene Proteins c-fos/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: Ultraviolet light has been linked with the development of human skin cancers. Such cancers often exhibit mutations in the p53 tumor suppressor gene. Ligation-mediated polymerase chain reaction was used to analyze at nucleotide resolution the repair of cyclobutane pyrimidine dimers along the p53 gene in ultraviolet-irradiated human fibroblasts. Repair rates at individual nucleotides were highly variable and sequence-dependent. Slow repair was seen at seven of eight positions frequently mutated in skin cancer, suggesting that repair efficiency may strongly contribute to the mutation spectrum in a cancer-associated gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tornaletti, S -- Pfeifer, G P -- ES06070/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1436-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beckman Rsearch Institute of the City of Hope, Department of Biology, Duarte, CA 91010.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128225" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; *DNA Repair ; Exons ; *Genes, p53 ; HeLa Cells ; Humans ; Mutation ; Phosphoglycerate Kinase/genetics ; Polymerase Chain Reaction ; Pyrimidine Dimers/*metabolism ; Skin/metabolism/*radiation effects ; Skin Neoplasms/*genetics/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1994-04-08
    Description: Although beta-amyloid is the main constituent of neurite plaques and may play a role in the pathophysiology of Alzheimer's disease, mechanisms by which soluble beta-amyloid might produce early symptoms such as memory loss before diffuse plaque deposition have not been implicated. Treatment of fibroblasts with beta-amyloid (10 nM) induced the same potassium channel dysfunction previously shown to occur specifically in fibroblasts from patients with Alzheimer's disease--namely, the absence of a 113-picosiemen potassium channel. A tetraethylammonium-induced increase of intracellular concentrations of calcium, [Ca2+]i, a response that depends on functional 113-picosiemen potassium channels, was also eliminated or markedly reduced by 10 nM beta-amyloid. Increased [Ca2+]i induced by high concentrations of extracellular potassium and 166-picosiemen potassium channels were unaffected by 10 nM beta-amyloid. In Alzheimer's disease, then, beta-amyloid might alter potassium channels and thus impair neuronal function to produce symptoms such as memory loss by a means other than plaque formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Etcheberrigaray, R -- Ito, E -- Kim, C S -- Alkon, D L -- New York, N.Y. -- Science. 1994 Apr 8;264(5156):276-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8146663" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*metabolism ; Amyloid beta-Peptides/*pharmacology ; Bombesin/pharmacology ; Calcium/metabolism ; Cell Line ; Cells, Cultured ; Dimethyl Sulfoxide/pharmacology ; Female ; Fibroblasts/*drug effects/metabolism ; Humans ; Male ; Phenotype ; Potassium Channel Blockers ; Potassium Channels/*drug effects/metabolism ; Potassium Chloride/pharmacology ; Solubility ; Tetraethylammonium ; Tetraethylammonium Compounds/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1994-05-13
    Description: Synapsin I and synapsin II are neuron-specific phosphoproteins that have a role in the regulation of neurotransmitter release and in the formation of nerve terminals. After depletion of synapsin II by antisense oligonucleotides, rat hippocampal neurons in culture were unable to consolidate their minor processes and did not elongate axons. These aberrant morphological changes were accompanied by an abnormal distribution of intracellular filamentous actin (F-actin). In addition, synapsin II suppression resulted in a selective decrease in the amounts of several synaptic vesicle-associated proteins. These data suggest that synapsin II participates in cytoskeletal organization during the early stages of nerve cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferreira, A -- Kosik, K S -- Greengard, P -- Han, H Q -- New York, N.Y. -- Science. 1994 May 13;264(5161):977-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178158" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Base Sequence ; *Calcium-Binding Proteins ; Cells, Cultured ; Hippocampus/cytology ; Membrane Glycoproteins/*metabolism ; Microtubule-Associated Proteins/metabolism ; Molecular Sequence Data ; Nerve Tissue Proteins/*metabolism ; Neurites/*physiology ; Neurons/*cytology/metabolism/ultrastructure ; Oligonucleotides, Antisense/pharmacology ; Rats ; Synapsins/genetics/*metabolism ; Synaptophysin/*metabolism ; Synaptotagmins ; Tubulin/metabolism ; tau Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...