ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-07-10
    Description: The tumor necrosis factor (TNF) superfamily of cytokines includes both soluble and membrane-bound proteins that regulate immune responses. A member of the human TNF family, BLyS (B lymphocyte stimulator), was identified that induced B cell proliferation and immunoglobulin secretion. BLyS expression on human monocytes could be up-regulated by interferon-gamma. Soluble BLyS functioned as a potent B cell growth factor in costimulation assays. Administration of soluble recombinant BLyS to mice disrupted splenic B and T cell zones and resulted in elevated serum immunoglobulin concentrations. The B cell tropism of BLyS is consistent with its receptor expression on B-lineage cells. The biological profile of BLyS suggests it is involved in monocyte-driven B cell activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, P A -- Belvedere, O -- Orr, A -- Pieri, K -- LaFleur, D W -- Feng, P -- Soppet, D -- Charters, M -- Gentz, R -- Parmelee, D -- Li, Y -- Galperina, O -- Giri, J -- Roschke, V -- Nardelli, B -- Carrell, J -- Sosnovtseva, S -- Greenfield, W -- Ruben, S M -- Olsen, H S -- Fikes, J -- Hilbert, D M -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sciences, 9410 Key West Avenue, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398604" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Lymphocyte Subsets/immunology ; B-Lymphocytes/*immunology ; Cell Line ; Cells, Cultured ; Humans ; Immunoglobulins/blood ; Interferon-gamma/pharmacology ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/pharmacology/*physiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Monocytes/*immunology ; Receptors, Cytokine/metabolism ; Receptors, Tumor Necrosis Factor/metabolism ; Recombinant Proteins/pharmacology ; Sequence Alignment ; Species Specificity ; Tumor Necrosis Factor-alpha/chemistry/genetics/pharmacology/*physiology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-02-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-02-01
    Description: A 300 m deep monitoring well was completed to the Detroit River Group of formations in Sarnia, Ontario, to evaluate the potential near-surface impacts resulting from previous deep injection of industrial waste. Detailed logging, testing, and sampling were performed to evaluate the vertical distribution of industrial waste and to determine hydraulic conductivity and hydraulic head in the disposal horizon and in the confining formations. Results of hydraulic testing indicate the hydraulic conductivity of the disposal formation is 2 × 10−9 to 2 × 10−7 m/s and that of most of the confining shale and limestone formations is less than 1 × 10−10 m/s. Analyses of groundwater samples and results from other studies show that industrial waste, characterized by elevated phenol concentrations, is present in a 10 m horizon in the Lucas dolomite disposal formation at 192 m depth. Waste is also likely present within 2–3 m thick, high-permeability limestone layers at 74 and 123 m depth in the confining units of the Hamilton Group. Because of the generally low vertical hydraulic conductivity of the confining formations, waste in the permeable limestone layers was likely introduced via poorly constructed disposal wells, cavern storage wells, or abandoned oil and gas wells. The hydraulic conductivity and hydraulic head data indicate the high pressures resulting from injection into the disposal formation have dissipated. The head within the zone of residual contamination in the disposal formation is now 8 m below the level of the St. Clair River. The hydraulic data and chemical composition of the injected waste show that the discharges of tarry liquids on the bottom of the St. Clair River in 1984 and 1985 were not caused by upward migration of injected waste. Key words: deep-well disposal, pressurized waste injection, industrial waste, Sarnia.
    Print ISSN: 0008-3674
    Electronic ISSN: 1208-6010
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...