ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Kathryn -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1499.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645825" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; *Biological Evolution ; Desert Climate ; Ecosystem ; Environment ; Genes, Plant ; Helianthus/*genetics/growth & development/physiology ; History, 20th Century ; History, 21st Century ; *Hybridization, Genetic ; Mutation ; Phenotype ; Sodium Chloride/pharmacology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-05-06
    Description: Degenerative disorders of motor neurons include a range of progressive fatal diseases such as amyotrophic lateral sclerosis (ALS), spinal-bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Although the causative genetic alterations are known for some cases, the molecular basis of many SMA and SBMA-like syndromes and most ALS cases is unknown. Here we show that missense point mutations in the cytoplasmic dynein heavy chain result in progressive motor neuron degeneration in heterozygous mice, and in homozygotes this is accompanied by the formation of Lewy-like inclusion bodies, thus resembling key features of human pathology. These mutations exclusively perturb neuron-specific functions of dynein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hafezparast, Majid -- Klocke, Rainer -- Ruhrberg, Christiana -- Marquardt, Andreas -- Ahmad-Annuar, Azlina -- Bowen, Samantha -- Lalli, Giovanna -- Witherden, Abi S -- Hummerich, Holger -- Nicholson, Sharon -- Morgan, P Jeffrey -- Oozageer, Ravi -- Priestley, John V -- Averill, Sharon -- King, Von R -- Ball, Simon -- Peters, Jo -- Toda, Takashi -- Yamamoto, Ayumu -- Hiraoka, Yasushi -- Augustin, Martin -- Korthaus, Dirk -- Wattler, Sigrid -- Wabnitz, Philipp -- Dickneite, Carmen -- Lampel, Stefan -- Boehme, Florian -- Peraus, Gisela -- Popp, Andreas -- Rudelius, Martina -- Schlegel, Juergen -- Fuchs, Helmut -- Hrabe de Angelis, Martin -- Schiavo, Giampietro -- Shima, David T -- Russ, Andreas P -- Stumm, Gabriele -- Martin, Joanne E -- Fisher, Elizabeth M C -- New York, N.Y. -- Science. 2003 May 2;300(5620):808-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurodegenerative Disease, Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730604" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Horn Cells/pathology ; Apoptosis ; *Axonal Transport ; Cell Differentiation ; Cell Movement ; Central Nervous System/embryology ; Chromosome Mapping ; Dimerization ; Dyneins/chemistry/*genetics/*physiology ; Female ; Ganglia, Spinal/pathology ; Golgi Apparatus/metabolism/ultrastructure ; Heterozygote ; Homozygote ; Lewy Bodies/pathology ; Male ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Motor Neuron Disease/*genetics/pathology/physiopathology ; Motor Neurons/*physiology/ultrastructure ; Mutation ; Mutation, Missense ; *Nerve Degeneration ; Peptide Fragments/metabolism ; Phenotype ; Point Mutation ; Spinal Nerves/growth & development ; Tetanus Toxin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-03-01
    Description: Recent progress in the science of aging is driven largely by the use of model systems, ranging from yeast and nematodes to mice. These models have revealed conservation in genetic pathways that balance energy production and its damaging by-products with pathways that preserve somatic maintenance. Maintaining genome integrity has emerged as a major factor in longevity and cell viability. Here we discuss the use of mouse models with defects in genome maintenance for understanding the molecular basis of aging in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasty, Paul -- Campisi, Judith -- Hoeijmakers, Jan -- van Steeg, Harry -- Vijg, Jan -- AG17242/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1355-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78245, USA. hastye@uthscsa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610296" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging/genetics ; Aging, Premature/*genetics ; Animals ; Apoptosis ; Cell Aging ; *DNA Damage ; DNA Helicases/genetics/metabolism ; *DNA Repair/genetics ; Exodeoxyribonucleases ; *Genome ; Genome, Human ; Humans ; Longevity/genetics ; Mice ; Mutation ; Reactive Oxygen Species/metabolism ; RecQ Helicases ; Syndrome ; Telomere/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-01
    Description: Parkinson's disease (PD) is a complex disorder with many different causes, yet they may intersect in common pathways, raising the possibility that neuroprotective agents may have broad applicability in the treatment of PD. Current evidence suggests that mitochondrial complex I inhibition may be the central cause of sporadic PD and that derangements in complex I cause alpha-synuclein aggregation, which contributes to the demise of dopamine neurons. Accumulation and aggregation of alpha-synuclein may further contribute to the death of dopamine neurons through impairments in protein handling and detoxification. Dysfunction of parkin (a ubiquitin E3 ligase) and DJ-1 could contribute to these deficits. Strategies aimed at restoring complex I activity, reducing oxidative stress and alpha-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Ted M -- Dawson, Valina L -- NS38377/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):819-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. tdawson@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593166" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Brain/*metabolism/pathology ; Cysteine Endopeptidases/metabolism ; Dopamine/metabolism ; Electron Transport Complex I/antagonists & inhibitors/genetics/*metabolism ; Humans ; Mitochondria/enzymology ; Multienzyme Complexes/metabolism ; Mutation ; Nerve Degeneration ; Nerve Tissue Proteins/chemistry/genetics/metabolism ; Neurons/*metabolism/pathology ; Oxidative Stress ; Parkinson Disease/*etiology/genetics/metabolism/pathology ; Parkinsonian Disorders/genetics/metabolism/pathology ; Proteasome Endopeptidase Complex ; Synucleins ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/metabolism ; alpha-Synuclein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lubick, Naomi -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):451.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Conservation of Natural Resources ; DNA, Mitochondrial/genetics ; *Ecosystem ; Female ; Genetic Variation ; Genetics, Population ; Male ; Mutation ; Population Density ; Population Dynamics ; Time Factors ; *Whales/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eden, Amir -- Gaudet, Francois -- Waghmare, Alpana -- Jaenisch, Rudolf -- CA87869/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):455.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702868" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/*genetics/physiology ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; *DNA Methylation ; Fibroblasts/metabolism ; Genes, Neurofibromatosis 1 ; Genes, p53 ; Humans ; *Loss of Heterozygosity ; Mice ; Mutation ; Neoplasms/genetics ; Recombination, Genetic ; Sarcoma/*genetics ; Soft Tissue Neoplasms/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintz, Nathaniel -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):59-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Rockefeller University, New York, NY 10021, USA. heintz@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843383" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Substitution ; Animals ; Ataxin-1 ; Ataxins ; Cell Nucleus/metabolism ; Disease Progression ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Peptides ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Purkinje Cells/metabolism/ultrastructure ; Signal Transduction ; Spinocerebellar Ataxias/etiology/genetics/pathology/*physiopathology ; *Trinucleotide Repeat Expansion ; Tyrosine 3-Monooxygenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: Although curvature of biological surfaces has been considered from mathematical and biophysical perspectives, its molecular and developmental basis is unclear. We have studied the cin mutant of Antirrhinum, which has crinkly rather than flat leaves. Leaves of cin display excess growth in marginal regions, resulting in a gradual introduction of negative curvature during development. This reflects a change in the shape and the progression of a cell-cycle arrest front moving from the leaf tip toward the base. CIN encodes a TCP protein and is expressed downstream of the arrest front. We propose that CIN promotes zero curvature (flatness) by making cells more sensitive to an arrest signal, particularly in marginal regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nath, Utpal -- Crawford, Brian C W -- Carpenter, Rosemary -- Coen, Enrico -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antirrhinum/cytology/*genetics/*growth & development/metabolism ; Base Sequence ; Cell Cycle ; Cell Differentiation ; Cell Division ; Cell Size ; Cyclin D3 ; Cyclins/genetics/metabolism ; Gene Deletion ; *Gene Expression Regulation, Plant ; *Genes, Plant ; Histones/genetics/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Plant Leaves/anatomy & histology/cytology/*growth & development/metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Surface Properties ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Sandre-Giovannoli, Annachiara -- Bernard, Rafaelle -- Cau, Pierre -- Navarro, Claire -- Amiel, Jeanne -- Boccaccio, Irene -- Lyonnet, Stanislas -- Stewart, Colin L -- Munnich, Arnold -- Le Merrer, Martine -- Levy, Nicolas -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2055. Epub 2003 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inserm U491: Genetique Medicale et Developpement, Faculte de Medecine Timone, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702809" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Nucleus/ultrastructure ; Child ; Exons ; Female ; Humans ; Lamin Type A/analysis/*chemistry/*genetics ; Lymphocytes/chemistry/ultrastructure ; Mutation ; Polymorphism, Genetic ; Progeria/blood/*genetics ; RNA Splicing ; RNA, Messenger/genetics ; Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-25
    Description: Complete genomic sequences from diverse phylogenetic lineages reveal notable increases in genome complexity from prokaryotes to multicellular eukaryotes. The changes include gradual increases in gene number, resulting from the retention of duplicate genes, and more abrupt increases in the abundance of spliceosomal introns and mobile genetic elements. We argue that many of these modifications emerged passively in response to the long-term population-size reductions that accompanied increases in organism size. According to this model, much of the restructuring of eukaryotic genomes was initiated by nonadaptive processes, and this in turn provided novel substrates for the secondary evolution of phenotypic complexity by natural selection. The enormous long-term effective population sizes of prokaryotes may impose a substantial barrier to the evolution of complex genomes and morphologies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynch, Michael -- Conery, John S -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1401-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA. mlynch@bio.indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631042" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Bacteria/genetics ; Body Constitution ; Eukaryota/genetics ; *Evolution, Molecular ; Fungi/genetics ; Gene Duplication ; Gene Silencing ; Genetic Drift ; Genetic Variation ; *Genome ; Humans ; Interspersed Repetitive Sequences ; Introns ; Invertebrates/genetics ; Mutation ; *Phylogeny ; Plants/genetics ; Population Density ; Recombination, Genetic ; Selection, Genetic ; Spliceosomes ; Vertebrates/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elena, Santiago F -- Sanjuan, Rafael -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2074-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-UPV, 46022 Valencia, Spain. sfelena@ibmcp.upv.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684807" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; *Biological Evolution ; Chlamydomonas/physiology ; Darkness ; *Ecosystem ; Environment ; *Genetic Variation ; Genotype ; Light ; Mutation ; Phenotype ; Pseudomonas fluorescens/genetics/*physiology ; RNA Viruses/physiology ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2003-08-16
    Description: Plants attacked by pathogens rapidly deposit callose, a beta-1,3-glucan, at wound sites. Traditionally, this deposition is thought to reinforce the cell wall and is regarded as a defense response. Surprisingly, here we found that powdery mildew resistant 4 (pmr4), a mutant lacking pathogen-induced callose, became resistant to pathogens, rather than more susceptible. This resistance was due to mutation of a callose synthase, resulting in a loss of the induced callose response. Double-mutant analysis indicated that blocking the salicylic acid (SA) defense signaling pathway was sufficient to restore susceptibility to pmr4 mutants. Thus, callose or callose synthase negatively regulates the SA pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, Marc T -- Stein, Monica -- Hou, Bi-Huei -- Vogel, John P -- Edwards, Herb -- Somerville, Shauna C -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):969-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920300" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/cytology/genetics/*metabolism/*microbiology ; Ascomycota/*physiology ; Cell Death ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucans/metabolism ; Glucosyltransferases/*genetics/metabolism ; *Membrane Proteins ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; *Plant Diseases ; Plant Leaves/metabolism ; Salicylic Acid/*metabolism ; *Schizosaccharomyces pombe Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: The success of the green revolution largely resulted from the creation of dwarf cultivars of wheat and rice, which had much higher yields than conventional crops. Characterization of these dwarf cultivars showed that the mutant genes were involved in either the synthesis or signaling of gibberellin, a plant growth hormone. In his Perspective, Salamini highlights new work (Multani et al.) that identifies the cause of dwarfism in agronomically important varieties of maize and sorghum. In these cases, dwarfism is caused by defective transport of another growth hormone called auxin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salamini, Francesco -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):71-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Breeding Research, 50829 Koln, Germany. salamini@mpiz-koeln.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526071" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Arabidopsis/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Biological Transport ; Breeding ; *Genes, Plant ; Genetic Engineering ; Genome, Plant ; Indoleacetic Acids/*metabolism ; Light ; Mutation ; P-Glycoproteins/genetics/metabolism ; Phenotype ; Plant Proteins/genetics/metabolism ; Poaceae/genetics/growth & development/*metabolism ; Quantitative Trait Loci ; Zea mays/genetics/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gundersen, Gregg G -- Bretscher, Anthony -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2040-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology and Department of Pathology, Columbia University, New York, NY 10032, USA. ggg1@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829769" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Cell Polarity ; Cyclins/metabolism ; Microtubule Proteins/metabolism ; Microtubule-Organizing Center/*metabolism/ultrastructure ; Microtubules/*metabolism/ultrastructure ; Models, Biological ; Mutation ; Myosin Heavy Chains/metabolism ; Myosin Type V/metabolism ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Transport ; Saccharomyces cerevisiae/cytology/metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/metabolism ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2003-08-23
    Description: To elucidate gene function on a global scale, we identified pairs of genes that are coexpressed over 3182 DNA microarrays from humans, flies, worms, and yeast. We found 22,163 such coexpression relationships, each of which has been conserved across evolution. This conservation implies that the coexpression of these gene pairs confers a selective advantage and therefore that these genes are functionally related. Many of these relationships provide strong evidence for the involvement of new genes in core biological functions such as the cell cycle, secretion, and protein expression. We experimentally confirmed the predictions implied by some of these links and identified cell proliferation functions for several genes. By assembling these links into a gene-coexpression network, we found several components that were animal-specific as well as interrelationships between newly evolved and ancient modules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stuart, Joshua M -- Segal, Eran -- Koller, Daphne -- Kim, Stuart K -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):249-55. Epub 2003 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stanford Medical Informatics, 251 Campus Drive, Medical School Office Building X-215, Stanford, CA 94305-5329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Caenorhabditis elegans/genetics ; Cell Cycle/genetics ; Cell Division/genetics ; Computational Biology ; Conserved Sequence ; Databases, Genetic ; Drosophila melanogaster/genetics ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes, Fungal ; Genes, Helminth ; Genes, Insect ; Humans ; Models, Statistical ; Mutation ; *Oligonucleotide Array Sequence Analysis ; Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Signal Transduction/genetics ; Species Specificity ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, John F -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1530-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden. john.allen@plantbio.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624254" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/isolation & purification/metabolism ; Animals ; Binding Sites ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chlorophyll/metabolism ; Electron Transport ; Fluorescence ; Gene Library ; Light ; Light-Harvesting Protein Complexes ; Models, Biological ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Plastoquinone/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Svejstrup, Jesper Q -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1053-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research, London Research Institute, Clare Hall Laboratories, Hertfordshire, UK. j.svejstrup@cancer.org.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12933997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/metabolism ; DNA/metabolism ; *DNA-Binding Proteins ; Dimerization ; Drosophila/genetics/metabolism ; *Drosophila Proteins ; *High Mobility Group Proteins ; Histones/*metabolism ; Humans ; Mutation ; Nuclear Proteins/*metabolism ; Nucleosomes/*metabolism ; RNA Polymerase II/*metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Transcription, Genetic ; Transcriptional Elongation Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2003-09-27
    Description: A survey of the dog genome sequence (6.22 million sequence reads; 1.5x coverage) demonstrates the power of sample sequencing for comparative analysis of mammalian genomes and the generation of species-specific resources. More than 650 million base pairs (〉25%) of dog sequence align uniquely to the human genome, including fragments of putative orthologs for 18,473 of 24,567 annotated human genes. Mutation rates, conserved synteny, repeat content, and phylogeny can be compared among human, mouse, and dog. A variety of polymorphic elements are identified that will be valuable for mapping the genetic basis of diseases and traits in the dog.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirkness, Ewen F -- Bafna, Vineet -- Halpern, Aaron L -- Levy, Samuel -- Remington, Karin -- Rusch, Douglas B -- Delcher, Arthur L -- Pop, Mihai -- Wang, Wei -- Fraser, Claire M -- Venter, J Craig -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1898-903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/genetics ; Computational Biology ; Conserved Sequence ; Contig Mapping ; DNA, Intergenic ; Dogs/*genetics ; Genetic Variation ; *Genome ; Genome, Human ; Genomics ; Humans ; Long Interspersed Nucleotide Elements ; Male ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Phylogeny ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Sequence Alignment ; *Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2003-10-25
    Description: Many vertebrate organs adopt asymmetric positions with respect to the midline, but little is known about the cellular changes and tissue movements that occur downstream of left-right gene expression to produce this asymmetry. Here, we provide evidence that the looping of the zebrafish gut results from the asymmetric migration of the neighboring lateral plate mesoderm (LPM). Mutations that disrupt the epithelial structure of the LPM perturb this asymmetric migration and inhibit gut looping. Asymmetric LPM migration still occurs when the endoderm is ablated from the gut-looping region, suggesting that the LPM can autonomously provide a motive force for gut displacement. Finally, reducing left-sided Nodal activity randomizes the pattern of LPM migration and gut looping. These results reveal a cellular framework for the regulation of organ laterality by asymmetrically expressed genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horne-Badovinac, Sally -- Rebagliati, Michael -- Stainier, Didier Y R -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Movement ; Cues ; Endoderm/physiology ; *Gene Expression Regulation, Developmental ; Guanylate Kinase ; Homeodomain Proteins/genetics/physiology ; Intestines/*embryology ; Isoenzymes ; Mesoderm/cytology/physiology ; Morphogenesis ; Mutation ; *Nuclear Proteins ; Nucleoside-Phosphate Kinase/genetics/metabolism ; Oligonucleotides, Antisense ; Phenotype ; Protein Kinase C/genetics/physiology ; Transcription Factors/genetics/physiology ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2003-01-25
    Description: Disruption of the adaptor protein ELF, a beta-spectrin, leads to disruption of transforming growth factor-beta (TGF-beta) signaling by Smad proteins in mice. Elf-/- mice exhibit a phenotype similar to smad2+/-/smad3+/- mutant mice of midgestational death due to gastrointestinal, liver, neural, and heart defects. We show that TGF-beta triggers phosphorylation and association of ELF with Smad3 and Smad4, followed by nuclear translocation. ELF deficiency results in mislocalization of Smad3 and Smad4 and loss of the TGF-beta-dependent transcriptional response, which could be rescued by overexpression of the COOH-terminal region of ELF. This study reveals an unexpected molecular link between a major dynamic scaffolding protein and a key signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Yi -- Katuri, Varalakshmi -- Dillner, Allan -- Mishra, Bibhuti -- Deng, Chu-Xia -- Mishra, Lopa -- R01 DK56111/DK/NIDDK NIH HHS/ -- R01 DK58637/DK/NIDDK NIH HHS/ -- R03 DK53861/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Department of Medicine, Georgetown University, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543979" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple ; Animals ; Carrier Proteins/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Contractile Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Filamins ; Gene Targeting ; Genes, fos ; Liver/abnormalities/embryology/*metabolism ; Mice ; Mice, Knockout ; Microfilament Proteins/metabolism ; Microscopy, Confocal ; Mutation ; Phenotype ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; *Signal Transduction ; Smad2 Protein ; Smad3 Protein ; Smad4 Protein ; Spectrin/genetics/*metabolism ; Trans-Activators/metabolism ; Transcriptional Activation ; Transforming Growth Factor beta/*metabolism/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2003-01-11
    Description: Proteins of the ARGONAUTE family are important in diverse posttranscriptional RNA-mediated gene-silencing systems as well as in transcriptional gene silencing in Drosophila and fission yeast and in programmed DNA elimination in Tetrahymena. We cloned ARGONAUTE4 (AGO4) from a screen for mutants that suppress silencing of the Arabidopsis SUPERMAN (SUP) gene. The ago4-1 mutant reactivated silent SUP alleles and decreased CpNpG and asymmetric DNA methylation as well as histone H3 lysine-9 methylation. In addition, ago4-1 blocked histone and DNA methylation and the accumulation of 25-nucleotide small interfering RNAs (siRNAs) that correspond to the retroelement AtSN1. These results suggest that AGO4 and long siRNAs direct chromatin modifications, including histone methylation and non-CpG DNA methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zilberman, Daniel -- Cao, Xiaofeng -- Jacobsen, Steven E -- GM07185/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):716-9. Epub 2003 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522258" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Argonaute Proteins ; Cloning, Molecular ; *DNA Methylation ; DNA, Plant/metabolism ; DNA-Cytosine Methylases/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; Gene Silencing ; Genes, Plant ; Genes, Suppressor ; Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; Methylation ; Methyltransferases/genetics/metabolism ; Mutation ; RNA, Plant/metabolism ; RNA, Small Interfering/*metabolism ; Retroelements ; Suppression, Genetic ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2003-03-08
    Description: Norwalk-like caliciviruses (Noroviruses) cause over 90% of nonbacterial epidemic gastroenteritis worldwide, but the pathogenesis of norovirus infection is poorly understood because these viruses do not grow in cultured cells and there is no small animal model. Here, we report a previously unknown murine norovirus. Analysis of Murine Norovirus 1 infection revealed that signal transducer and activator of transcription 1-dependent innate immunity, but not T and B cell-dependent adaptive immunity, is essential for norovirus resistance. The identification of host molecules essential for murine norovirus resistance may provide targets for prevention or control of an important human disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karst, Stephanie M -- Wobus, Christiane E -- Lay, Margarita -- Davidson, John -- Virgin, Herbert W 4th -- R01 AI49286/AI/NIAID NIH HHS/ -- T32-CA09547/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1575-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624267" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Brain/virology ; Caliciviridae Infections/*immunology ; DNA-Binding Proteins/genetics/*physiology ; Genes, RAG-1 ; Genome, Viral ; Homeodomain Proteins/physiology ; *Immunity, Innate ; Immunocompromised Host ; Intestines/virology ; Liver/virology ; Membrane Proteins ; Mice ; Mutation ; Norovirus/classification/*immunology/*isolation & purification/pathogenicity ; Phylogeny ; RNA, Viral/analysis ; Receptor, Interferon alpha-beta ; Receptors, Interferon/genetics/physiology ; STAT1 Transcription Factor ; Spleen/virology ; T-Lymphocytes/immunology ; Trans-Activators/genetics/*physiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2003-07-19
    Description: Mice in which all members of the Hox10 or Hox11 paralogous group are disrupted provide evidence that these Hox genes are involved in global patterning of the axial and appendicular skeleton. In the absence of Hox10 function, no lumbar vertebrae are formed. Instead, ribs project from all posterior vertebrae, extending caudally from the last thoracic vertebrae to beyond the sacral region. In the absence of Hox11 function, sacral vertebrae are not formed and instead these vertebrae assume a lumbar identity. The redundancy among these paralogous family members is so great that this global aspect of Hox patterning is not apparent in mice that are mutant for five of the six paralogous alleles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wellik, Deneen M -- Capecchi, Mario R -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):363-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and University of Utah, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869760" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Body Patterning ; Bone and Bones/*embryology ; Female ; Forelimb/embryology ; Gene Expression Regulation, Developmental ; *Genes, Homeobox ; Hindlimb/embryology ; Homeodomain Proteins/*genetics/physiology ; Male ; Mice ; Mice, Mutant Strains ; Mutation ; Oncogene Proteins/*genetics/physiology ; Phenotype ; Spine/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2003-02-08
    Description: Chronic hepatitis B virus (HBV) infection is a major cause of liver disease. Only interferon-alpha and the nucleosidic inhibitors of the viral polymerase, 3TC and adefovir, are approved for therapy. However, these therapies are limited by the side effects of interferon and the substantial resistance of the virus to nucleosidic inhibitors. Potent new antiviral compounds suitable for monotherapy or combination therapy are highly desired. We describe non-nucleosidic inhibitors of HBV nucleocapsid maturation that possess in vitro and in vivo antiviral activity. These inhibitors have potential for future therapeutic regimens to combat chronic HBV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deres, Karl -- Schroder, Claus H -- Paessens, Arnold -- Goldmann, Siegfried -- Hacker, Hans Jorg -- Weber, Olaf -- Kramer, Thomas -- Niewohner, Ulrich -- Pleiss, Ulrich -- Stoltefuss, Jurgen -- Graef, Erwin -- Koletzki, Diana -- Masantschek, Ralf N A -- Reimann, Anja -- Jaeger, Rainer -- Gross, Rainer -- Beckermann, Bernhard -- Schlemmer, Karl-Heinz -- Haebich, Dieter -- Rubsamen-Waigmann, Helga -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):893-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Chemistry, Isotope Chemistry, Preclinical Pharmakokinetics, Toxicology, Safety Pharmacology, Bayer Research Center, Wuppertal, Germany. karl.deres.kd1@bayer-ag.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574631" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/*analogs & derivatives/pharmacology ; Amino Acid Substitution ; Antiviral Agents/chemistry/metabolism/*pharmacology ; Binding Sites ; Capsid/metabolism ; DNA Replication/drug effects ; DNA, Viral/biosynthesis ; Half-Life ; Hepatitis B Virus, Duck/drug effects/metabolism ; Hepatitis B virus/*drug effects/physiology ; Humans ; Mutation ; Nucleocapsid/*metabolism ; Pyridines/chemistry/metabolism/*pharmacology ; Pyrimidines/chemistry/metabolism/*pharmacology ; Recombinant Proteins/metabolism ; Stereoisomerism ; Triazoles/chemistry/metabolism/*pharmacology ; Tumor Cells, Cultured ; Viral Core Proteins/chemistry/genetics/metabolism ; Virus Assembly/drug effects ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2003-04-26
    Description: We generated mice lacking Cks2, one of two mammalian homologs of the yeast Cdk1-binding proteins, Suc1 and Cks1, and found them to be viable but sterile in both sexes. Sterility is due to failure of both male and female germ cells to progress past the first meiotic metaphase. The chromosomal events up through the end of prophase I are normal in both CKS2-/- males and females, suggesting that the phenotype is due directly to failure to enter anaphase and not a consequence of a checkpoint-mediated metaphase I arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spruck, Charles H -- de Miguel, Maria P -- Smith, Adrian P L -- Ryan, Aimee -- Stein, Paula -- Schultz, Richard M -- Lincoln, A Jeannine -- Donovan, Peter J -- Reed, Steven I -- CA74224/CA/NCI NIH HHS/ -- HD22681/HD/NICHD NIH HHS/ -- HD38252/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):647-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, MB-7, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714746" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Animals ; Apoptosis ; *CDC2-CDC28 Kinases ; CDC28 Protein Kinase, S cerevisiae/genetics/*physiology ; Chromosome Segregation ; Cyclin A/metabolism ; Cyclin B/metabolism ; Epididymis/cytology/physiology ; Female ; Gene Targeting ; In Situ Hybridization ; Infertility, Female/physiopathology ; Infertility, Male/physiopathology ; Male ; *Meiosis ; *Metaphase ; Mice ; Mutation ; Oocytes/*physiology ; Ovary/cytology/physiology ; RNA, Messenger/genetics/metabolism ; Recombination, Genetic ; Spermatocytes/*physiology ; Spermatogenesis ; Testis/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2003-12-20
    Description: Adaptation to a specific niche theoretically constrains a population's ability to subsequently diversify into other niches. We tested this theory using the bacterium Pseudomonas fluorescens, which diversifies into niche specialists when propagated in laboratory microcosms. Numerically dominant genotypes were allowed to diversify in isolation. As predicted, populations increased in fitness through time but showed a greatly decreased ability to diversify. Subsequent experiments demonstrated that niche generalists and reductions in intrinsic evolvability were not responsible for our data. These results show that niche specialization may come with a cost of reduced potential to diversify.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buckling, Angus -- Wills, Matthew A -- Colegrave, Nick -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2107-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. bssagjb@bath.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684817" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; *Biological Evolution ; *Ecosystem ; Environment ; *Genetic Variation ; Genotype ; Mutation ; Phenotype ; Pseudomonas fluorescens/cytology/genetics/*physiology ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harberd, Nicholas P -- New York, N.Y. -- Science. 2003 Mar 21;299(5614):1853-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉John Innes Centre, Norwich, Norfolk NR4 7UH, UK. nicholas.harberd@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649470" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Genes, Plant ; Gibberellins/*metabolism/pharmacology ; Indoleacetic Acids/metabolism ; Ligases/metabolism ; Models, Biological ; Mutation ; Oryza/genetics/*growth & development/metabolism ; Peptide Hydrolases/metabolism ; Phosphorylation ; Plant Proteins/*genetics/*metabolism ; *Proteasome Endopeptidase Complex ; Signal Transduction ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2003-08-09
    Description: Hybridization is frequent in many organismal groups, but its role in adaptation is poorly understood. In sunflowers, species found in the most extreme habitats are ancient hybrids, and new gene combinations generated by hybridization are speculated to have contributed to ecological divergence. This possibility was tested through phenotypic and genomic comparisons of ancient and synthetic hybrids. Most trait differences in ancient hybrids could be recreated by complementary gene action in synthetic hybrids and were favored by selection. The same combinations of parental chromosomal segments required to generate extreme phenotypes in synthetic hybrids also occurred in ancient hybrids. Thus, hybridization facilitated ecological divergence in sunflowers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rieseberg, Loren H -- Raymond, Olivier -- Rosenthal, David M -- Lai, Zhao -- Livingstone, Kevin -- Nakazato, Takuya -- Durphy, Jennifer L -- Schwarzbach, Andrea E -- Donovan, Lisa A -- Lexer, Christian -- R01 G59065/PHS HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1211-6. Epub 2003 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA. lriesebe@indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907807" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; *Biological Evolution ; Chromosome Mapping ; Diploidy ; *Ecosystem ; Environment ; Genes, Plant ; Genome, Plant ; Genotype ; Helianthus/*genetics/physiology ; *Hybridization, Genetic ; Microsatellite Repeats ; Mutation ; Phenotype ; Quantitative Trait Loci ; Selection, Genetic ; Species Specificity ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: A C4-symmetric tetrameric aldolase was used to produce a quadratic network consisting of the enzyme as a rigid four-way connector and stiff streptavidin rods as spacers. Each aldolase subunit was furnished with a His6 tag for oriented binding to a planar surface and two tethered biotins for binding streptavidin in an oriented manner. The networks were improved by starting with composite units and also by binding to nickel-nitrilotriacetic acid-lipid monolayers. The mesh was adjustable in 5-nanometer increments. The production of a net with switchable mesh was initiated with the use of a calcium ion-containing beta-helix spacer that denatured on calcium ion depletion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ringler, Philippe -- Schulz, Georg E -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstrasse 21, D-79104 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526081" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/genetics/metabolism ; Binding Sites ; Biotin/chemistry/metabolism ; Calcium/metabolism ; Edetic Acid ; *Glycoside Hydrolases ; Lipids/chemistry ; Macromolecular Substances ; Metalloendopeptidases/chemistry/metabolism ; Microscopy, Electron ; Models, Molecular ; Mutation ; Nitrilotriacetic Acid ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Structure, Secondary ; Recombinant Fusion Proteins/chemistry ; Streptavidin/*chemistry ; beta-Galactosidase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2003-08-02
    Description: Reelin is an extracellular protein that is crucial for layer formation in the embryonic brain. Here, we demonstrate that Reelin functions postnatally to regulate the development of the neuromuscular junction. Reelin is required for motor end-plate maturation and proper nerve-muscle connectivity, and it directly promotes synapse elimination. Unlike layer formation, neuromuscular junction development requires a function of Reelin that is not mediated by Disabled1 or very-low-density lipoprotein receptors and apolipoprotein E receptor 2 receptors but by a distinct mechanism involving its protease activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quattrocchi, Carlo C -- Huang, Cheng -- Niu, Sanyong -- Sheldon, Michael -- Benhayon, David -- Cartwright, Joiner Jr -- Mosier, Dennis R -- Keller, Flavio -- D'Arcangelo, Gabriella -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):649-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Cain Foundation Laboratories, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893944" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/metabolism ; Cell Adhesion Molecules, Neuronal/genetics/metabolism/pharmacology/*physiology ; Culture Media, Conditioned ; Diaphragm/innervation ; Extracellular Matrix Proteins/genetics/metabolism/pharmacology/*physiology ; LDL-Receptor Related Proteins ; Mice ; Mice, Neurologic Mutants ; Microscopy, Confocal ; Microscopy, Electron ; Motor Endplate/ultrastructure ; Motor Neurons/metabolism ; Muscle, Skeletal/innervation ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Neuromuscular Junction/*growth & ; development/metabolism/*physiology/ultrastructure ; Receptors, LDL/genetics/metabolism ; Receptors, Lipoprotein/genetics/metabolism ; Schwann Cells/metabolism ; Serine Endopeptidases ; Serine Proteinase Inhibitors/pharmacology ; Sulfones/pharmacology ; Synapses/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2003-11-01
    Description: The Arabidopsis autonomous floral-promotion pathway promotes flowering independently of the photoperiod and vernalization pathways by repressing FLOWERING LOCUS C (FLC), a MADS-box transcription factor that blocks the transition from vegetative to reproductive development. Here, we report that FLOWERING LOCUS D (FLD), one of six genes in the autonomous pathway, encodes a plant homolog of a protein found in histone deacetylase complexes in mammals. Lesions in FLD result in hyperacetylation of histones in FLC chromatin, up-regulation of FLC expression, and extremely delayed flowering. Thus, the autonomous pathway regulates flowering in part by histone deacetylation. However, not all autonomous-pathway mutants exhibit FLC hyperacetylation, indicating that multiple means exist by which this pathway represses FLC expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuehui -- Michaels, Scott D -- Amasino, Richard M -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1751-4. Epub 2003 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593187" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Chromatin/metabolism ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Genes, Plant ; Histone Deacetylases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Humans ; Introns ; MADS Domain Proteins/chemistry/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/chemistry/metabolism ; Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2003-03-08
    Description: Mutations in the cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1) gene are a common cause of human primary congenital glaucoma (PCG). Here we show that Cyp1b1-/- mice have ocular drainage structure abnormalities resembling those reported in human PCG patients. Using Cyp1b1-/- mice, we identified the tyrosinase gene (Tyr) as a modifier of the drainage structure phenotype, with Tyr deficiency increasing the magnitude of dysgenesis. The severe dysgenesis in eyes lacking both CYP1B1 and TYR was alleviated by administration of the tyrosinase product dihydroxyphenylalanine (l-dopa). Tyr also modified the drainage structure dysgenesis in mice with a mutant Foxc1 gene, which is also involved in PCG. These experiments raise the possibility that a tyrosinase/l-dopa pathway modifies human PCG, which could open new therapeutic avenues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libby, Richard T -- Smith, Richard S -- Savinova, Olga V -- Zabaleta, Adriana -- Martin, Janice E -- Gonzalez, Frank J -- John, Simon W M -- CA34196/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624268" target="_blank"〉PubMed〈/a〉
    Keywords: Albinism, Ocular/genetics/pathology ; Animals ; Anterior Eye Segment/*abnormalities ; Aryl Hydrocarbon Hydroxylases/deficiency/genetics ; Cornea/abnormalities ; Cytochrome P-450 CYP1B1 ; *DNA-Binding Proteins ; Disease Models, Animal ; Female ; Forkhead Transcription Factors ; Glaucoma/*congenital/enzymology/*genetics/pathology ; Intraocular Pressure ; Iris/abnormalities ; Levodopa/administration & dosage/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Monophenol Monooxygenase/deficiency/*genetics/metabolism ; Mutation ; Phenotype ; Pregnancy ; Trabecular Meshwork/abnormalities ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbott, Richard J -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1189-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biology, University of St. Andrews, Fife KY16 9TH, UK. rja@st-and.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947185" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; *Biological Evolution ; Diploidy ; *Ecosystem ; Environment ; Genes, Plant ; Genotype ; Helianthus/*genetics/physiology ; *Hybridization, Genetic ; Mutation ; Phenotype ; Quantitative Trait Loci ; Recombination, Genetic ; Selection, Genetic ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2003-02-01
    Description: Cell polarization can occur in the absence of any spatial cues. To investigate the mechanism of spontaneous cell polarization, we used an assay in yeast where expression of an activated form of Cdc42, a Rho-type guanosine triphosphatase (GTPase) required for cell polarization, could generate cell polarity without any recourse to a preestablished physical cue. The polar distribution of Cdc42 in this assay required targeted secretion directed by the actin cytoskeleton. A mathematical simulation showed that a stable polarity axis could be generated through a positive feedback loop in which a stochastic increase in the local concentration of activated Cdc42 on the plasma membrane enhanced the probability of actin polymerization and increased the probability of further Cdc42 accumulation to that site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wedlich-Soldner, Roland -- Altschuler, Steve -- Wu, Lani -- Li, Rong -- GM057063/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1231-5. Epub 2003 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560471" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actins/metabolism ; Actomyosin/*metabolism ; Cell Membrane/*metabolism ; *Cell Polarity ; Computer Simulation ; Cues ; G1 Phase ; Guanosine Triphosphate/metabolism ; Intracellular Membranes/metabolism ; Microscopy, Confocal ; Models, Biological ; Mutation ; Protein Transport ; Saccharomyces cerevisiae/cytology/genetics/*metabolism/ultrastructure ; Secretory Vesicles/metabolism ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2003-08-02
    Description: Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramson, Jeff -- Smirnova, Irina -- Kasho, Vladimir -- Verner, Gillian -- Kaback, H Ronald -- Iwata, So -- DK51131: 08/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):610-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Biological Transport ; Cell Membrane/enzymology ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/enzymology ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ion Transport ; Lactose/*metabolism ; Membrane Transport Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; *Monosaccharide Transport Proteins ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protons ; Substrate Specificity ; *Symporters ; Thiogalactosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2003-08-23
    Description: Previous studies have suggested that transcription elongation results in changes in chromatin structure. Here we present studies of Saccharomyces cerevisiae Spt6, a conserved protein implicated in both transcription elongation and chromatin structure. Our results show that, surprisingly, an spt6 mutant permits aberrant transcription initiation from within coding regions. Furthermore, transcribed chromatin in the spt6 mutant is hypersensitive to micrococcal nuclease, and this hypersensitivity is suppressed by mutational inactivation of RNA polymerase II. These results suggest that Spt6 plays a critical role in maintaining normal chromatin structure during transcription elongation, thereby repressing transcription initiation from cryptic promoters. Other elongation and chromatin factors, including Spt16 and histone H3, appear to contribute to this control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplan, Craig D -- Laprade, Lisa -- Winston, Fred -- GM32967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1096-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934008" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/metabolism ; *Gene Expression Regulation, Fungal ; Genes, Fungal ; Histones/metabolism ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Nucleosomes/metabolism ; Oligonucleotide Array Sequence Analysis ; *Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; TATA-Box Binding Protein/metabolism ; Trans-Activators/genetics ; *Transcription, Genetic ; Transcriptional Elongation Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2003-11-01
    Description: Early detection of neurodegenerative disorders would provide clues to the underlying pathobiology of these diseases and would enable more effective diagnosis and treatment of patients. Recent advances in molecular neuroscience have begun to provide the tools to detect diseases like Alzheimer's disease, Parkinson's disease, and others early in their course and potentially even before the development of clinical manifestations of disease. These genetic, imaging, clinical, and biochemical tools are being validated in a number of studies. Early detection of these slowly progressive diseases offers the promise of presymptomatic diagnosis and, ultimately, of disease-modifying medications for use early in disease and during the presymptomatic period.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeKosky, Steven T -- Marek, Kenneth -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):830-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Alzheimer Disease Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. DeKoskyST@upmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593169" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alzheimer Disease/diagnosis/genetics/metabolism/pathology ; Biomarkers/*analysis ; Brain/metabolism/pathology ; Cognition Disorders/diagnosis ; Diagnostic Imaging ; Dopamine/metabolism ; Genetic Markers ; Genetic Predisposition to Disease ; Humans ; Huntington Disease/diagnosis/genetics/metabolism/pathology ; Memory ; Mutation ; Neurodegenerative Diseases/*diagnosis/genetics/metabolism/pathology ; Parkinson Disease/diagnosis/genetics/metabolism/pathology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2003-08-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerrero, Isabel -- Ruiz i Altaba, Ariel -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):774-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Universidad Autonoma de Madrid, Madrid E-28049, Spain. iguerrero@cbm.uam.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspases/metabolism ; Central Nervous System/cytology/*embryology ; Chick Embryo ; Drosophila/growth & development/metabolism ; Drosophila Proteins/metabolism ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mutation ; Neoplasms/etiology ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface ; Signal Transduction ; Trans-Activators/*metabolism ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2003-08-30
    Description: The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea and the model legume Medicago truncatula to identify genes specifically involved in rhizobial infection. The SYM2 orthologous region of M. truncatula contains 15 putative receptor-like genes, of which 7 are LysM domain-containing receptor-like kinases (LYKs). Using reverse genetics in M. truncatula, we show that two LYK genes are specifically involved in infection thread formation. This, as well as the properties of the LysM domains, strongly suggests that they are Nod factor entry receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Limpens, Erik -- Franken, Carolien -- Smit, Patrick -- Willemse, Joost -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):630-3. Epub 2003 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947035" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Gene Expression ; *Genes, Plant ; Ligands ; Lipopolysaccharides/*metabolism ; Medicago/genetics/microbiology/*physiology ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nitrogen Fixation ; Peas ; Phenotype ; Plant Roots/*microbiology/physiology ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Sinorhizobium meliloti/chemistry/genetics/growth & development/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2003-02-01
    Description: The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yankovskaya, Victoria -- Horsefield, Rob -- Tornroth, Susanna -- Luna-Chavez, Cesar -- Miyoshi, Hideto -- Leger, Christophe -- Byrne, Bernadette -- Cecchini, Gary -- Iwata, So -- GM61606/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):700-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560550" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Dinitrophenols/chemistry/pharmacology ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Mutation ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/*metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Succinic Acid/metabolism ; Superoxides/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2003-11-01
    Description: The incidence of Alzheimer's disease (AD) and that of prion disorders (PrD) could not be more different. One-third of octogenarians succumb to AD, whereas Creutzfeldt-Jakob disease typically affects one individual in a million each year. However, these diseases have many common features impinging on the metabolism of neuronal membrane proteins: the amyloid precursor protein APP in the case of AD, and the cellular prion protein PrPC in PrD. APP begets the Abeta peptide, whereas PrPC begets the malignant prion protein PrPSc. Both Abeta and PrPSc are associated with disease, but we do not know what triggers their accumulation and neurotoxicity. A great deal has been learned, however, about protein folding, misfolding, and aggregation; an entirely new class of intramembrane proteases has been identified; and unsuspected roles for the immune system have been uncovered. There is reason to expect that prion research will profit from advances in the understanding of AD, and vice versa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aguzzi, Adriano -- Haass, Christian -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):814-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland. adriano@pathol.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593165" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*metabolism/pathology ; Amyloid Precursor Protein Secretases ; Amyloid beta-Peptides/chemistry/metabolism ; Amyloid beta-Protein Precursor/chemistry/*metabolism ; Animals ; Aspartic Acid Endopeptidases ; Brain/metabolism/pathology ; Creutzfeldt-Jakob Syndrome/metabolism/pathology ; Endopeptidases/metabolism ; Humans ; Membrane Proteins/chemistry/genetics/metabolism ; Mutation ; PrPC Proteins/chemistry/classification/genetics/*metabolism ; PrPSc Proteins/chemistry/classification/metabolism ; Presenilin-1 ; Presenilin-2 ; Prion Diseases/*metabolism/pathology ; Protein Folding ; Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2003-09-23
    Description: G protein-coupled receptors (GPCRs) at the cell surface activate heterotrimeric G proteins by inducing the G protein alpha (Galpha) subunit to exchange guanosine diphosphate for guanosine triphosphate. Regulators of G protein signaling (RGS) proteins accelerate the deactivation of Galpha subunits to reduce GPCR signaling. Here we identified an RGS protein (AtRGS1) in Arabidopsis that has a predicted structure similar to a GPCR as well as an RGS box with GTPase accelerating activity. Expression of AtRGS1 complemented the pheromone supersensitivity phenotype of a yeast RGS mutant, sst2Delta. Loss of AtRGS1 increased the activity of the Arabidopsis Galpha subunit, resulting in increased cell elongation in hypocotyls in darkness and increased cell production in roots grown in light. These findings suggest that AtRGS1 is a critical modulator of plant cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Jin-Gui -- Willard, Francis S -- Huang, Jirong -- Liang, Jiansheng -- Chasse, Scott A -- Jones, Alan M -- Siderovski, David P -- GM055316/GM/NIGMS NIH HHS/ -- GM62338/GM/NIGMS NIH HHS/ -- GM65533/GM/NIGMS NIH HHS/ -- GM65989/GM/NIGMS NIH HHS/ -- R01 GM065989/GM/NIGMS NIH HHS/ -- R01 GM065989-01/GM/NIGMS NIH HHS/ -- R01 GM065989-02/GM/NIGMS NIH HHS/ -- R01 GM065989-03/GM/NIGMS NIH HHS/ -- R01 GM065989-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500984" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/*cytology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Differentiation ; *Cell Division ; Cell Membrane/metabolism ; *GTP-Binding Protein alpha Subunits ; Heterotrimeric GTP-Binding Proteins/metabolism ; Meristem/metabolism ; Mitosis ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phenotype ; Plant Roots/cytology/growth & development/metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; RGS Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2003-10-25
    Description: The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaochun -- Chini, Claudia Christiano Silva -- He, Miao -- Mer, Georges -- Chen, Junjie -- CA89239/CA/NCI NIH HHS/ -- CA92312/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):639-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; BRCA1 Protein/*chemistry/*metabolism ; Carrier Proteins/chemistry/metabolism ; Cell Cycle ; *Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA Repair ; *DNA-Binding Proteins ; E2F Transcription Factors ; G2 Phase ; Humans ; Mitosis ; Mutation ; Nuclear Proteins ; Peptide Library ; Phosphoprotein Phosphatases/chemistry/metabolism ; Phosphoproteins/chemistry/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA Helicases/chemistry/genetics/*metabolism ; RNA Polymerase II/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2003-04-12
    Description: DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882961/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882961/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scherer, Stephen W -- Cheung, Joseph -- MacDonald, Jeffrey R -- Osborne, Lucy R -- Nakabayashi, Kazuhiko -- Herbrick, Jo-Anne -- Carson, Andrew R -- Parker-Katiraee, Layla -- Skaug, Jennifer -- Khaja, Razi -- Zhang, Junjun -- Hudek, Alexander K -- Li, Martin -- Haddad, May -- Duggan, Gavin E -- Fernandez, Bridget A -- Kanematsu, Emiko -- Gentles, Simone -- Christopoulos, Constantine C -- Choufani, Sanaa -- Kwasnicka, Dorota -- Zheng, Xiangqun H -- Lai, Zhongwu -- Nusskern, Deborah -- Zhang, Qing -- Gu, Zhiping -- Lu, Fu -- Zeesman, Susan -- Nowaczyk, Malgorzata J -- Teshima, Ikuko -- Chitayat, David -- Shuman, Cheryl -- Weksberg, Rosanna -- Zackai, Elaine H -- Grebe, Theresa A -- Cox, Sarah R -- Kirkpatrick, Susan J -- Rahman, Nazneen -- Friedman, Jan M -- Heng, Henry H Q -- Pelicci, Pier Giuseppe -- Lo-Coco, Francesco -- Belloni, Elena -- Shaffer, Lisa G -- Pober, Barbara -- Morton, Cynthia C -- Gusella, James F -- Bruns, Gail A P -- Korf, Bruce R -- Quade, Bradley J -- Ligon, Azra H -- Ferguson, Heather -- Higgins, Anne W -- Leach, Natalia T -- Herrick, Steven R -- Lemyre, Emmanuelle -- Farra, Chantal G -- Kim, Hyung-Goo -- Summers, Anne M -- Gripp, Karen W -- Roberts, Wendy -- Szatmari, Peter -- Winsor, Elizabeth J T -- Grzeschik, Karl-Heinz -- Teebi, Ahmed -- Minassian, Berge A -- Kere, Juha -- Armengol, Lluis -- Pujana, Miguel Angel -- Estivill, Xavier -- Wilson, Michael D -- Koop, Ben F -- Tosi, Sabrina -- Moore, Gudrun E -- Boright, Andrew P -- Zlotorynski, Eitan -- Kerem, Batsheva -- Kroisel, Peter M -- Petek, Erwin -- Oscier, David G -- Mould, Sarah J -- Dohner, Hartmut -- Dohner, Konstanze -- Rommens, Johanna M -- Vincent, John B -- Venter, J Craig -- Li, Peter W -- Mural, Richard J -- Adams, Mark D -- Tsui, Lap-Chee -- 38103/Canadian Institutes of Health Research/Canada -- P01 GM061354/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):767-72. Epub 2003 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8. steve@genet.sickkids.on.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690205" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics ; Chromosome Aberrations ; Chromosome Fragile Sites ; Chromosome Fragility ; Chromosome Mapping ; Chromosomes, Human, Pair 7/*genetics ; Computational Biology ; Congenital Abnormalities/genetics ; CpG Islands ; DNA, Complementary ; Databases, Genetic ; Euchromatin/genetics ; Expressed Sequence Tags ; Gene Duplication ; Genes, Overlapping ; Genetic Diseases, Inborn/genetics ; Genomic Imprinting ; Humans ; In Situ Hybridization, Fluorescence ; Limb Deformities, Congenital/genetics ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasms/genetics ; Pseudogenes ; RNA/genetics ; Retroelements ; *Sequence Analysis, DNA ; Williams Syndrome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2003-10-04
    Description: Sensations from viscera, like fullness, easily become painful if the stimulus persists. Mice lacking alpha1G T-type Ca2+ channels show hyperalgesia to visceral pain. Thalamic infusion of a T-type blocker induced similar hyperalgesia in wild-type mice. In response to visceral pain, the ventroposterolateral thalamic neurons evokeda surge of single spikes, which then slowly decayed as T type-dependent burst spikes gradually increased. In alpha1G-deficient neurons, the single-spike response persisted without burst spikes. These results indicate that T-type Ca2+ channels underlie an antinociceptive mechanism operating in the thalamus andsupport the idea that burst firing plays a critical role in sensory gating in the thalamus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Daesoo -- Park, Donghyun -- Choi, Soonwook -- Lee, Sukchan -- Sun, Minjeong -- Kim, Chanki -- Shin, Hee-Sup -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):117-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Creative Research Initiative Center for Calcium and Learning, Korea Institutes of Science and Technology, Seoul 136-791, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526084" target="_blank"〉PubMed〈/a〉
    Keywords: Abdominal Pain/physiopathology ; Acetic Acid/pharmacology ; Action Potentials ; Analysis of Variance ; Animals ; Calcium Channel Blockers/pharmacology ; Calcium Channels, T-Type/genetics/*physiology ; Female ; Magnesium Sulfate/pharmacology ; Male ; Mibefradil/pharmacology ; Mice ; Mice, Inbred C57BL ; Mutation ; Neurons/physiology ; Pain/*physiopathology ; Pain Measurement ; Ventral Thalamic Nuclei/*physiology ; Viscera
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2003-08-02
    Description: Auxin is a plant hormone that regulates many aspects of plant growth and development. We used a chemical genetics approach to identify SIR1, a regulator of many auxin-inducible genes. The sir1 mutant was resistant to sirtinol, a small molecule that activates many auxin-inducible genes and promotes auxin-related developmental phenotypes. SIR1 is predicted to encode a protein composed of a ubiquitin-activating enzyme E1-like domain and a Rhodanese-like domain homologous to that of prolyl isomerase. We suggest a molecular context for how the auxin signal is propagated to exert its biological effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yunde -- Dai, Xinhua -- Blackwell, Helen E -- Schreiber, Stuart L -- Chory, Joanne -- 1R01GM68631-01/GM/NIGMS NIH HHS/ -- 2R01GM52413/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1107-10. Epub 2003 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA. yzhao@biomail.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893885" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Arabidopsis/drug effects/genetics/growth & development/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Benzamides/metabolism/pharmacology ; Binding Sites ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Indoleacetic Acids/*metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Naphthols/metabolism/pharmacology ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Leaves/drug effects/growth & development ; Plant Roots/drug effects/growth & development ; Protein Structure, Tertiary ; *Signal Transduction ; Sirtuins/antagonists & inhibitors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2003-01-25
    Description: Although seed plants and multicellular animals are predominantly diploid, the prominence of diploidy varies greatly among eukaryote life cycles, and no general evolutionary advantage of diploidy has been demonstrated. By doubling the copy number of each gene, diploidy may increase the rate at which adaptive mutations are produced. However, models suggest that this does not necessarily accelerate adaptation by diploid populations. We tested model predictions regarding rates of adaptation using asexual yeast populations. Adaptive mutations were on average partially recessive. As predicted, diploidy slowed adaptation by large populations but not by small populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeyl, Clifford -- Vanderford, Thomas -- Carter, Michele -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):555-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA. zeylcw@wfu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543972" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Analysis of Variance ; *Biological Evolution ; Diploidy ; Genes, Dominant ; Genes, Fungal ; Genes, Recessive ; *Haploidy ; Heterozygote ; Homozygote ; Models, Biological ; Mutation ; Reproduction ; Saccharomyces cerevisiae/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2003-08-16
    Description: The severity of many inherited disorders is influenced by genetic background. We describe a modifier interaction in C57BL/6Jmice that converts a chronic movement disorder into a lethal neurological disease. The primary mutation (medJ) changes a splice donor site of the sodium channel gene Scn8a (Nav1.6). The modifier mutation is characteristic of strain C57BL/6Jand introduces a nonsense codon into sodium channel modifier 1 (SCNM1), a zinc finger protein and a putative splice factor. An internally deleted SCNM1 protein is also predicted as a result of exon skipping associated with disruption of a consensus exonic splicing enhancer. The effect of the modifier mutation is to reduce the abundance of correctly spliced sodium channel transcripts below the threshold for survival. Our finding that genetic variation in a putative RNA splicing factor influences disease susceptibility in mice raises the possibility that a similar mechanism modifies the severity of human inherited disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buchner, David A -- Trudeau, Michelle -- Meisler, Miriam H -- GM24872/GM/NIGMS NIH HHS/ -- T32 DC00011/DC/NIDCD NIH HHS/ -- T32 GM07544/GM/NIGMS NIH HHS/ -- T32 HG00040/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):967-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109-0618, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920299" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*genetics/metabolism ; Chromosome Mapping ; Codon, Nonsense ; Codon, Terminator ; Genetic Predisposition to Disease ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Neurologic Mutants ; Mice, Transgenic ; Molecular Sequence Data ; Movement Disorders/genetics/metabolism ; Mutation ; NAV1.6 Voltage-Gated Sodium Channel ; *Nerve Tissue Proteins ; Nervous System Diseases/*genetics/metabolism ; Phenotype ; Phylogeny ; *RNA Splicing ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Sodium Channels/*genetics/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2003-11-08
    Description: Natural variation in clock parameters is necessary for the circadian clock to contribute to organismal fitness over a broad geographic range. Considerable variation is evident in the period, phase, and amplitude of 150 Arabidopsis accessions, and the period length is correlated with the day length at the latitude of origin, implying the adaptive significance of correctly regulated circadian timing. Quantitative trait loci analysis of recombinant inbred lines indicates that multiple loci interact to determine period, phase, and amplitude. The loss-of-function analysis of each member of the ARABIDOPSIS PSEUDO-RESPONSE REGULATOR family suggests that they are candidates for clock quantitative trait loci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michael, Todd P -- Salome, Patrice A -- Yu, Hannah J -- Spencer, Taylor R -- Sharp, Emily L -- McPeek, Mark A -- Alonso, Jose M -- Ecker, Joseph R -- McClung, C Robertson -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1049-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605371" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Alleles ; Arabidopsis/genetics/*physiology ; Arabidopsis Proteins/genetics/*physiology ; Biological Clocks ; *Circadian Rhythm ; DNA, Bacterial ; Fourier Analysis ; *Genes, Plant ; *Genetic Variation ; Light ; Mutation ; Plant Leaves/*physiology ; *Quantitative Trait Loci ; Seasons ; Selection, Genetic ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2003-12-13
    Description: Although Mdm2-mediated ubiquitination is essential for both degradation and nuclear export of p53, the molecular basis for the differential effects of Mdm2 remains unknown. Here we show that low levels of Mdm2 activity induce monoubiquitination and nuclear export of p53, whereas high levels promote p53's polyubiquitination and nuclear degradation. A p53-ubiquitin fusion protein that mimics monoubiquitinated p53 was found to accumulate in the cytoplasm in an Mdm2-independent manner, indicating that monoubiquitination is critical for p53 trafficking. These results clarify the nature of ubiquitination-mediated p53 regulation and suggest that distinct mechanisms regulate p53 function in accordance with the levels of Mdm2 activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Muyang -- Brooks, Christopher L -- Wu-Baer, Foon -- Chen, Delin -- Baer, Richard -- Gu, Wei -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1972-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics and Department of Pathology, College of Physicians & Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671306" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Line, Tumor ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; Humans ; Mice ; Mice, Knockout ; Mutation ; *Nuclear Proteins ; Protein Transport ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics/*metabolism ; Ubiquitin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: The identification and study of long-lived mutant animals has provided valuable insights into the mechanisms that limit the life-span of organisms. Findings with the gene SIR2 suggest that the rate of aging can be regulated under certain conditions. Indeed, increased expression of SIR2 lengthens life-span by acting on biological processes that promote survival under conditions of scarcity. In addition, studies of mutant strains of Caenorhabditis elegans, in particular daf-2, clk-1, and isp-1 mutants, suggest that the biology of reactive oxygen species in the mitochondria and elsewhere might be the main determinant of life-span in this organism. Thus, the aging process may be more specific than previously anticipated on evolutionary grounds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hekimi, Siegfried -- Guarente, Leonard -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1351-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada. siegfried.hekimi@mcgill.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610295" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Animals ; Caenorhabditis elegans/genetics/physiology ; *Caenorhabditis elegans Proteins ; Electron Transport Complex III/genetics/metabolism ; Gene Expression Regulation ; Helminth Proteins/genetics/metabolism ; Histone Deacetylases/genetics/*metabolism ; Iron-Sulfur Proteins/genetics/metabolism ; Longevity/*genetics ; Mitochondria/*metabolism ; Mutation ; Reactive Oxygen Species/*metabolism ; Receptor, Insulin/genetics/metabolism ; Saccharomyces cerevisiae/genetics/physiology ; Sirtuins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nadeau, Joseph H -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):927-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA. jhn4@cwru.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics/physiology ; Cloning, Molecular ; Codon, Terminator ; Exons ; Gene Expression Regulation ; Humans ; Ion Transport ; Mice ; Mice, Inbred C57BL ; Mice, Neurologic Mutants ; Mutation ; NAV1.6 Voltage-Gated Sodium Channel ; *Nerve Tissue Proteins ; Nervous System Diseases/*genetics/metabolism ; Phenotype ; RNA Precursors/genetics/metabolism ; *RNA Splicing ; RNA, Messenger/genetics/metabolism ; Sodium/metabolism ; Sodium Channels/*genetics/metabolism ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2003-04-12
    Description: Humans and their closest evolutionary relatives, the chimpanzees, differ in approximately 1.24% of their genomic DNA sequences. The fraction of these changes accumulated during the speciation processes that have separated the two lineages may be of special relevance in understanding the basis of their differences. We analyzed human and chimpanzee sequence data to search for the patterns of divergence and polymorphism predicted by a theoretical model of speciation. According to the model, positively selected changes should accumulate in chromosomes that present fixed structural differences, such as inversions, between the two species. Protein evolution was more than 2.2 times faster in chromosomes that had undergone structural rearrangements compared with colinear chromosomes. Also, nucleotide variability is slightly lower in rearranged chromosomes. These patterns of divergence and polymorphism may be, at least in part, the molecular footprint of speciation events in the human and chimpanzee lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navarro, Arcadi -- Barton, Nick H -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):321-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 80, 08003 Barcelona, Catalonia, Spain. arcadi.navarro@cexs.upf.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690198" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Biological Evolution ; Chromosome Inversion ; Chromosomes, Human/genetics ; Chromosomes, Mammalian/*genetics ; *Evolution, Molecular ; Genetics, Population ; Hominidae/*genetics/physiology ; Humans ; Karyotyping ; Mutation ; Pan troglodytes/*genetics/physiology ; Proteins/chemistry/*genetics ; *Recombination, Genetic ; Reproduction ; Selection, Genetic ; Sequence Analysis, DNA ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2003-10-25
    Description: Rab/Ypt guanosine triphosphatases (GTPases) represent a family of key membrane traffic regulators in eukaryotic cells whose function is governed by the guanosine diphosphate (GDP) dissociation inhibitor (RabGDI). Using a combination of chemical synthesis and protein engineering, we generated and crystallized the monoprenylated Ypt1:RabGDI complex. The structure of the complex was solved to 1.5 angstrom resolution and provides a structural basis for the ability of RabGDI to inhibit the release of nucleotide by Rab proteins. Isoprenoid binding requires a conformational change that opens a cavity in the hydrophobic core of its domain II. Analysis of the structure provides a molecular basis for understanding a RabGDI mutant that causes mental retardation in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rak, Alexey -- Pylypenko, Olena -- Durek, Thomas -- Watzke, Anja -- Kushnir, Susanna -- Brunsveld, Lucas -- Waldmann, Herbert -- Goody, Roger S -- Alexandrov, Kirill -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576435" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Guanine Nucleotide Dissociation Inhibitors/*chemistry/genetics/metabolism ; Guanosine Diphosphate/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipid Metabolism ; Magnesium/chemistry/metabolism ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation ; Protein Prenylation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; rab GTP-Binding Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ranganathan, Rama -- New York, N.Y. -- Science. 2003 Mar 14;299(5613):1677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. rama@chop.swmed.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637727" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/metabolism ; Animals ; *Apoptosis ; Arrestins/metabolism ; Cell Survival ; Ceramidases ; Ceramides/biosynthesis/*metabolism ; Clathrin/physiology ; Drosophila/genetics/*physiology ; Endocytosis ; Genes, Insect ; Humans ; Light ; Models, Biological ; Mutation ; Necrosis ; Phosphoproteins/metabolism ; Photoreceptor Cells, Invertebrate/cytology/*physiology ; Retinal Degeneration/genetics ; Rhodopsin/*analogs & derivatives/metabolism ; *Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ransohoff, David F -- New York, N.Y. -- Science. 2003 Mar 14;299(5613):1679-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7080, USA. ransohof@med.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637728" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomarkers, Tumor/analysis ; Colon/metabolism ; Colorectal Neoplasms/*diagnosis/genetics ; DNA Methylation ; Gene Expression Profiling ; Gene Silencing ; Genetic Predisposition to Disease ; Genetic Testing ; *Genomic Imprinting ; Humans ; Insulin-Like Growth Factor II/*genetics ; Intestinal Mucosa/metabolism ; Mass Spectrometry ; Mutation ; Neoplasms/*diagnosis/genetics ; Oligonucleotide Array Sequence Analysis ; Prognosis ; Proteome ; Proteomics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ackermann, Martin -- Stearns, Stephen C -- Jenal, Urs -- New York, N.Y. -- Science. 2003 Jun 20;300(5627):1920.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. MKAckerm@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12817142" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/physiology ; Caulobacter crescentus/cytology/genetics/growth & development/*physiology ; *Cell Division ; Mutation ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2003-03-15
    Description: Mutations in proteins of the Drosophila phototransduction cascade, a prototypic guanine nucleotide-binding protein-coupled receptor signaling system, lead to retinal degeneration and have been used as models to understand human degenerative disorders. Here, modulating the sphingolipid biosynthetic pathway rescued retinal degeneration in Drosophila mutants. Targeted expression of Drosophila neutral ceramidase rescued retinal degeneration in arrestin and phospholipase C mutants. Decreasing flux through the de novo sphingolipid biosynthetic pathway also suppressed degeneration in these mutants. Both genetic backgrounds modulated the endocytic machinery because they suppressed defects in a dynamin mutant. Suppression of degeneration in arrestin mutant flies expressing ceramidase correlated with a decrease in ceramide levels. Thus, enzymes of sphingolipid metabolism may be suitable targets in the therapeutic management of retinal degeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Acharya, Usha -- Patel, Shetal -- Koundakjian, Edmund -- Nagashima, Kunio -- Han, Xianlin -- Acharya, Jairaj K -- New York, N.Y. -- Science. 2003 Mar 14;299(5613):1740-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick, Frederick, MD 21702, USA. acharyau@mail.ncifcrf.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637747" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics/metabolism ; Amidohydrolases/genetics/*metabolism ; Animals ; Animals, Genetically Modified ; Apoptosis ; Arrestins/genetics/metabolism ; Ceramidases ; Ceramides/biosynthesis/*metabolism ; Clathrin/physiology ; Cloning, Molecular ; Crosses, Genetic ; Drosophila/genetics/*physiology ; Dynamins/genetics/physiology ; Electroretinography ; *Endocytosis ; Genes, Insect ; Light ; Mutation ; Necrosis ; Neutral Ceramidase ; Phosphatidylinositol Diacylglycerol-Lyase ; Phosphoproteins/genetics/metabolism ; Photoreceptor Cells, Invertebrate/cytology/*physiology/ultrastructure ; Receptors, Cell Surface/metabolism ; Retinal Degeneration/genetics ; Rhodopsin/metabolism ; Serine C-Palmitoyltransferase ; Spectrometry, Mass, Electrospray Ionization ; Sphingosine/metabolism ; Type C Phospholipases/genetics/metabolism ; *Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2003-01-11
    Description: Bloom syndrome, characterized by a predisposition to cancer, is caused by mutation of the RecQ DNA helicase gene BLM. The precise function of BLM remains unclear. Previous research suggested that Drosophila BLM functions in the repair of DNA double-strand breaks. Most double-strand breaks in flies are repaired by homologous recombination through the synthesis-dependent strand-annealing pathway. Here, we demonstrate that Drosophila BLM mutants are severely impaired in their ability to carry out repair DNA synthesis during synthesis-dependent strand annealing. Consequently, repair in the mutants is completed by error-prone pathways that create large deletions. These results suggest a model in which BLM maintains genomic stability by promoting efficient repair DNA synthesis and thereby prevents double-strand break repair by less precise pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, Melissa D -- McVey, Mitch -- Sekelsky, Jeff J -- GM000678/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):265-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA/*biosynthesis/metabolism ; *DNA Damage ; DNA Helicases/genetics/*physiology ; *DNA Repair ; Drosophila/genetics/*metabolism ; Drosophila Proteins/genetics/*physiology ; Eye Color ; Female ; Genes, Insect ; Male ; Mutation ; Terminal Repeat Sequences ; Transposases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2003-10-18
    Description: Human immunodeficiency virus-1 (HIV-1) Vif is essential for viral evasion of host antiviral factor CEM15/APOBEC3G. We report that Vif interacts with cellular proteins Cul5, elongins B and C, and Rbx1 to form an Skp1-cullin-F-box (SCF)-like complex. The ability of Vif to suppress antiviral activity of APOBEC3G was specifically dependent on Cul5-SCF function, allowing Vif to interact with APOBEC3G and induce its ubiquitination and degradation. A Vif mutant that interacted with APOBEC3G but not with Cul5-SCF was functionally inactive. The Cul5-SCF was also required for Vif function in distantly related simian immunodeficiency virus mac. These results indicate that the conserved Cul5-SCF pathway used by Vif is a potential target for antiviral development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xianghui -- Yu, Yunkai -- Liu, Bindong -- Luo, Kun -- Kong, Wei -- Mao, Panyong -- Yu, Xiao-Fang -- 1S10-RR14702/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1056-60. Epub 2003 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cullin Proteins/genetics/*metabolism ; Cytidine Deaminase ; Gene Products, vif/genetics/*metabolism ; HIV-1/genetics/*physiology ; Humans ; Mutation ; Nucleoside Deaminases ; Proteins/*metabolism ; Repressor Proteins ; Transcription Factors/genetics/metabolism ; Transfection ; Ubiquitin/*metabolism ; Virus Replication ; vif Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2003-08-02
    Description: Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, Jose M -- Stepanova, Anna N -- Leisse, Thomas J -- Kim, Christopher J -- Chen, Huaming -- Shinn, Paul -- Stevenson, Denise K -- Zimmerman, Justin -- Barajas, Pascual -- Cheuk, Rosa -- Gadrinab, Carmelita -- Heller, Collen -- Jeske, Albert -- Koesema, Eric -- Meyers, Cristina C -- Parker, Holly -- Prednis, Lance -- Ansari, Yasser -- Choy, Nathan -- Deen, Hashim -- Geralt, Michael -- Hazari, Nisha -- Hom, Emily -- Karnes, Meagan -- Mulholland, Celene -- Ndubaku, Ral -- Schmidt, Ian -- Guzman, Plinio -- Aguilar-Henonin, Laura -- Schmid, Markus -- Weigel, Detlef -- Carter, David E -- Marchand, Trudy -- Risseeuw, Eddy -- Brogden, Debra -- Zeko, Albana -- Crosby, William L -- Berry, Charles C -- Ecker, Joseph R -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):653-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893945" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; 5' Untranslated Regions ; Alleles ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Base Composition ; Chromosomes, Plant/genetics ; DNA, Bacterial/genetics ; DNA, Plant/chemistry/genetics ; Ethylenes/pharmacology ; Exons ; Expressed Sequence Tags ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant/drug effects ; Genes, Plant ; *Genome, Plant ; Introns ; *Mutagenesis, Insertional ; Mutation ; Oligonucleotide Array Sequence Analysis ; Promoter Regions, Genetic ; Recombination, Genetic ; Rhizobium/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2003-05-24
    Description: Loss of CD2-associated protein (CD2AP), a component of the filtration complex in the kidney, causes death in mice at 6 weeks of age. Mice with CD2AP haploinsufficiency developed glomerular changes at 9 months of age and had increased susceptibility to glomerular injury by nephrotoxic antibodies or immune complexes. Electron microscopic analysis of podocytes revealed defects in the formation of multivesicular bodies, suggesting an impairment of the intracellular degradation pathway. Two human patients with focal segmental glomerulosclerosis had a mutation predicted to ablate expression of one CD2AP allele, implicating CD2AP as a determinant of human susceptibility to glomerular disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jeong M -- Wu, Hui -- Green, Gopa -- Winkler, Cheryl A -- Kopp, Jeffrey B -- Miner, Jeffrey H -- Unanue, Emil R -- Shaw, Andrey S -- New York, N.Y. -- Science. 2003 May 23;300(5623):1298-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764198" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Antigen-Antibody Complex ; Basement Membrane/immunology/metabolism/pathology ; Chromatography, High Pressure Liquid ; Cytoskeletal Proteins ; Endocytosis ; Epithelial Cells/pathology/physiology ; Exons ; Ferritins/metabolism ; *Genetic Predisposition to Disease ; Genetic Variation ; Glomerular Mesangium/immunology/pathology ; Glomerulosclerosis, Focal Segmental/*genetics/metabolism/pathology ; Heterozygote ; Humans ; Immunoglobulins/analysis ; Kidney Diseases/*genetics/metabolism/pathology ; *Kidney Glomerulus/immunology/metabolism/pathology ; Mice ; Mice, Knockout ; Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Proteins/*genetics/*physiology ; Proteinuria/etiology ; RNA Splicing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2003-08-16
    Description: We describe a general and rapid route for the addition of unnatural amino acids to the genetic code of Saccharomyces cerevisiae. Five amino acids have been incorporated into proteins efficiently and with high fidelity in response to the nonsense codon TAG. The side chains of these amino acids contain a keto group, which can be uniquely modified in vitro and in vivo with a wide range of chemical probes and reagents; a heavy atom-containing amino acid for structural studies; and photocrosslinkers for cellular studies of protein interactions. This methodology not only removes the constraints imposed by the genetic code on our ability to manipulate protein structure and function in yeast, it provides a gateway to the systematic expansion of the genetic codes of multicellular eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chin, Jason W -- Cropp, T Ashton -- Anderson, J Christopher -- Mukherji, Mridul -- Zhang, Zhiwen -- Schultz, Peter G -- GM 62159/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):964-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920298" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*genetics/metabolism ; Anticodon ; Azides/metabolism ; *Codon, Nonsense ; Escherichia coli/enzymology/genetics ; *Genetic Code ; Humans ; Methyltyrosines/*genetics/metabolism ; Mutation ; Phenylalanine/*analogs & derivatives/genetics/metabolism ; Protein Biosynthesis ; RNA, Transfer/genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Superoxide Dismutase/chemistry/genetics/metabolism ; Tyrosine-tRNA Ligase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2003-10-25
    Description: Risks of breast and ovarian cancer were determined for Ashkenazi Jewish women with inherited mutations in the tumor suppressor genes BRCA1 and BRCA2. We selected 1008 index cases, regardless of family history of cancer, and carried out molecular analysis across entire families. The lifetime risk of breast cancer among female mutation carriers was 82%, similar to risks in families with many cases. Risks appear to be increasing with time: Breast cancer risk by age 50 among mutation carriers born before 1940 was 24%, but among those born after 1940 it was 67%. Lifetime risks of ovarian cancer were 54% for BRCA1 and 23% for BRCA2 mutation carriers. Physical exercise and lack of obesity in adolescence were associated with significantly delayed breast cancer onset.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Mary-Claire -- Marks, Joan H -- Mandell, Jessica B -- New York Breast Cancer Study Group -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):643-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195, USA. mcking@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576434" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Alleles ; Breast Neoplasms/epidemiology/*genetics ; Cohort Studies ; Exercise ; Family ; Fathers ; Female ; *Genes, BRCA1 ; *Genes, BRCA2 ; *Genetic Predisposition to Disease ; Genotype ; Heterozygote ; Humans ; Incidence ; Jews/genetics ; Life Style ; Male ; Mutation ; Obesity ; Ovarian Neoplasms/epidemiology/*genetics ; Penetrance ; Risk ; Risk Assessment ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2003-10-04
    Description: Control of integrin affinity for ligands (integrin activation) is essential for normal cell adhesion, migration, and assembly of an extracellular matrix. Integrin activation is usually mediated through the integrin beta subunit cytoplasmic tail and can be regulated by many different biochemical signaling pathways. We report that specific binding of the cytoskeletal protein talin to integrin beta subunit cytoplasmic tails leads to the conformational rearrangements of integrin extracellular domains that increase their affinity. Thus, regulated binding of talin to integrin beta tails is a final common element of cellular signaling cascades that control integrin activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tadokoro, Seiji -- Shattil, Sanford J -- Eto, Koji -- Tai, Vera -- Liddington, Robert C -- de Pereda, Jose M -- Ginsberg, Mark H -- Calderwood, David A -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, CD29/chemistry/metabolism ; Cell Line ; Fibronectins/metabolism ; Humans ; Integrin beta Chains/chemistry/*metabolism ; Integrin beta3/chemistry/metabolism ; Molecular Sequence Data ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; *Signal Transduction ; Talin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2003-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, Martin -- Vogel, Gretchen -- New York, N.Y. -- Science. 2003 May 2;300(5620):715-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730563" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Coronavirus/classification/genetics ; Databases, Nucleic Acid ; *Genetic Variation ; *Genome, Viral ; Humans ; Internet ; Mutation ; Publishing ; SARS Virus/classification/*genetics/isolation & purification ; Severe Acute Respiratory Syndrome/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-27
    Description: The genomes of human, mouse, and rat have been sequenced. Now, as O'Brien and Murphy announce in their Perspective, the genome sequence derby is heating up with the addition of dog to the list (Kirkness et al.). As they explain, even though the coverage of the dog genome (1.5x) is lower than that of mouse (8x), there are many valuable insights to be gained from comparing the sequence of dog with those of mouse and human.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, Stephen J -- Murphy, William J -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1854-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512608" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Chromosomes, Mammalian/genetics ; Computational Biology ; Conserved Sequence ; Contig Mapping ; DNA, Intergenic ; Dogs/*genetics ; Genetic Markers ; *Genome ; Genome, Human ; Genomics ; Humans ; Mice/genetics ; Mutation ; National Institutes of Health (U.S.) ; Radiation Hybrid Mapping ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Species Specificity ; Synteny ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2003-10-11
    Description: The genomes of several nonphotosynthetic bacteria, such as Bacillus subtilis, and some Archaea include genes for proteins with sequence homology to the large subunit of ribulose bisphosphate carboxylase/oxygenase (RuBisCO). We found that such a RuBisCO-like protein (RLP) from B. subtilis catalyzed the 2,3-diketo-5-methylthiopentyl-1-phosphate enolase reaction in the methionine salvage pathway. A growth-defective mutant, in which the gene for this RLP had been disrupted, was rescued by the gene for RuBisCOfrom the photosynthetic bacterium Rhodospirillum rubrum. Thus, the photosynthetic RuBisCO from R. rubrum retains the ability to function in the methionine salvage pathway in B. subtilis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashida, Hiroki -- Saito, Yohtaro -- Kojima, Chojiro -- Kobayashi, Kazuo -- Ogasawara, Naotake -- Yokota, Akiho -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):286-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551435" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus subtilis/*enzymology/genetics/growth & development ; Bacterial Proteins/chemistry/genetics/*metabolism ; Catalysis ; Genes, Bacterial ; Magnetic Resonance Spectroscopy ; Methionine/metabolism ; Molecular Sequence Data ; Mutation ; Operon ; Phylogeny ; Recombinant Proteins/metabolism ; Rhodospirillum rubrum/*enzymology/genetics ; Ribulose-Bisphosphate Carboxylase/chemistry/genetics/*metabolism ; Sequence Alignment ; Thioglycosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2003-10-18
    Description: Listeria monocytogenes is a Gram-positive intracytosolic pathogen that causes severe disease in pregnant and immunocompromised individuals. We found that L. monocytogenes lacking the lipoate protein ligase LplA1 was defective for growth specifically in the host cytosol and was less virulent in animals by a factor of 300. A major target for LplA1, the E2 subunit of pyruvate dehydrogenase (PDH), lacked a critical lipoyl modification when the DeltalplA1 strain was grown intracellularly, which suggests that abortive growth was due to loss of PDH function. Thus, the use of host-derived lipoic acid may be a critical process for in vivo replication of bacterial pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Riordan, Mary -- Moors, Marlena A -- Portnoy, Daniel A -- AI29619/AI/NIAID NIH HHS/ -- R01 AI027655/AI/NIAID NIH HHS/ -- R01 AI27655/AI/NIAID NIH HHS/ -- R37 AI029619/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 17;302(5644):462-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, School of Public Health, University of California, Berkeley, CA 94720-3202, USA. oriordan@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Culture Media ; Cytosol/microbiology ; Dihydrolipoyllysine-Residue Acetyltransferase ; Gene Deletion ; Lethal Dose 50 ; Listeria monocytogenes/genetics/*growth & development/metabolism/*pathogenicity ; Listeriosis/microbiology ; Macrophages/metabolism/*microbiology ; Mice ; Mice, Inbred BALB C ; Mutation ; Open Reading Frames ; Peptide Synthases/genetics/metabolism ; Pyruvate Dehydrogenase Complex/metabolism ; Thioctic Acid/*metabolism ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2003-01-04
    Description: How scaffold proteins control information flow in signaling pathways is poorly understood: Do they simply tether components, or do they precisely orient and activate them? We found that the yeast mitogen-activated protein (MAP) kinase scaffold Ste5 is tolerant to major stereochemical perturbations; heterologous protein interactions could functionally replace native kinase recruitment interactions, indicating that simple tethering is largely sufficient for scaffold-mediated signaling. Moreover, by engineering a scaffold that tethers a unique kinase set, we could create a synthetic MAP kinase pathway with non-natural input-output properties. These findings demonstrate that scaffolds are highly flexible organizing factors that can facilitate pathway evolution and engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Hyun -- Zarrinpar, Ali -- Lim, Wendell A -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1061-4. Epub 2003 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511654" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Evolution, Molecular ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Kinases/genetics/*metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/enzymology/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2003-01-25
    Description: Steroid response and stress-activated genes such as hsp70 undergo puffing in Drosophila larval salivary glands, a local loosening of polytene chromatin structure associated with gene induction. We find that puffs acquire elevated levels of adenosine diphosphate (ADP)-ribose modified proteins and that poly(ADP)-ribose polymerase (PARP) is required to produce normal-sized puffs and normal amounts of Hsp70 after heat exposure. We propose that chromosomal PARP molecules become activated by developmental or environmental cues and strip nearby chromatin proteins off DNA to generate a puff. Such local loosening may facilitate transcription and may transiently make protein complexes more accessible to modification, promoting chromatin remodeling during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tulin, Alexei -- Spradling, Allan -- GM27875/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):560-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Research Laboratories, Embryology Department, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543974" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/metabolism ; Chromatin/*metabolism ; Chromosomes/*metabolism ; DNA/metabolism ; Drosophila/*enzymology/genetics/growth & development/immunology ; Drosophila Proteins/genetics/metabolism ; Enzyme Activation ; *Gene Expression Regulation ; HSP70 Heat-Shock Proteins/genetics ; Heat-Shock Response ; Immunity, Innate ; Insect Proteins/genetics/metabolism ; Models, Biological ; Mutation ; NF-kappa B/metabolism ; Nucleosomes/metabolism ; Poly Adenosine Diphosphate Ribose/metabolism ; Poly(ADP-ribose) Polymerases/*metabolism ; Recombinant Fusion Proteins/genetics ; Transcription Factors/metabolism ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paul, Sarah M -- Beitel, Greg J -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2077-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684810" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*embryology/growth & development/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Chloride Channels/chemistry/*metabolism ; Cytoskeleton/metabolism ; Hot Temperature ; Humans ; Intracellular Membranes/metabolism ; Ion Transport ; Membrane Fusion ; Morphogenesis ; Mutation ; Pinocytosis ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Vacuoles/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, Paul -- Parkhurst, Susan M -- New York, N.Y. -- Science. 2003 Apr 4;300(5616):63-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, University College London, Gower Street, London WC1E 6BT, UK. paul.martin@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12677046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Polarity ; Drosophila/*embryology/genetics ; Embryo, Nonmammalian/*physiology ; Embryonic Development ; Epithelial Cells/physiology ; Epithelium/physiology ; Genes, Insect ; Lasers ; Mathematics ; Microsurgery ; *Models, Biological ; *Morphogenesis ; Mutation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2003-04-19
    Description: Persistent infections with hepatitis C virus (HCV) are likely to depend on viral inhibition of host defenses. We show that the HCV NS3/4A serine protease blocks the phosphorylation and effector action of interferon regulatory factor-3 (IRF-3), a key cellular antiviral signaling molecule. Disruption of NS3/4A protease function by mutation or a ketoamide peptidomimetic inhibitor relieved this blockade and restored IRF-3 phosphorylation after cellular challenge with an unrelated virus. Furthermore, dominant-negative or constitutively active IRF-3 mutants, respectively, enhanced or suppressed HCV RNA replication in hepatoma cells. Thus, the NS3/4A protease represents a dual therapeutic target, the inhibition of which may both block viral replication and restore IRF-3 control of HCV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foy, Eileen -- Li, Kui -- Wang, Chunfu -- Sumpter, Rhea Jr -- Ikeda, Masanori -- Lemon, Stanley M -- Gale, Michael Jr -- U01-AI48235/AI/NIAID NIH HHS/ -- U19-AI40035/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 May 16;300(5622):1145-8. Epub 2003 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702807" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Binding Proteins/*antagonists & inhibitors/metabolism ; Gene Expression Regulation ; Gene Expression Regulation, Viral ; Hepacivirus/enzymology/immunology/*physiology ; Hepatitis C/therapy/virology ; Humans ; Interferon Regulatory Factor-3 ; Interferons/biosynthesis/genetics ; Mutation ; Phosphorylation ; Protease Inhibitors/pharmacology ; RNA, Viral/metabolism ; RNA-Binding Proteins/genetics/metabolism ; Serine Endopeptidases/*metabolism ; Transcription Factors/*antagonists & inhibitors/metabolism ; Tumor Cells, Cultured ; Viral Nonstructural Proteins/antagonists & inhibitors/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2003-01-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Gelder, Russell N -- Wee, Raymond -- Lee, Janet A -- Tu, Daniel C -- K08EY00403/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63131, USA. vangelder@vision.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/*genetics/*physiology ; *Light ; Mice ; Miotics/pharmacology ; Mutation ; *Photoreceptor Cells, Invertebrate ; Pilocarpine/pharmacology ; Pupil/drug effects/*physiology ; Receptors, G-Protein-Coupled ; *Reflex, Pupillary ; Retina/physiology ; Retinal Degeneration/genetics/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2003-12-06
    Description: Size determination represents a fundamental requirement for multicomponent biological structures. Some pathogenic bacteria possess a weapon derived from the flagellum. Like the flagellum, this type-III secretion apparatus, called the injectisome, has a transmembrane basal body, but the external component is a needle-like structure instead of a hook and a filament. Here, we provide evidence that the length of this needle is determined by the size of a protein, YscP, acting as a molecular ruler.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Journet, Laure -- Agrain, Celine -- Broz, Petr -- Cornelis, Guy R -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1757-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biozentrum, Universitat Basel, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657497" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Bacterial Proteins/analysis/*chemistry/genetics/*physiology ; Flagella/chemistry ; Genes, Bacterial ; Genetic Complementation Test ; Microscopy, Electron ; Mutation ; Sequence Deletion ; Yersinia enterocolitica/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2003-12-20
    Description: The Caenorhabditis elegans excretory canal is composed of a single elongated and branched cell that is tunneled by an inner lumen of apical character. Loss of the exc-4 gene causes a cystic enlargement of this intracellular tube. exc-4 encodes a member of the chloride intracellular channel (CLIC) family of proteins. EXC-4 protein localizes to various tubular membranes in distinct cell types, including the lumenal membrane of the excretory tubes. A conserved 55-amino acid domain enables EXC-4 translocation from the cytosol to the lumenal membrane. The tubular architecture of this membrane requires EXC-4 for both its formation and maintenance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berry, Katherine L -- Bulow, Hannes E -- Hall, David H -- Hobert, Oliver -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684823" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/cytology/*embryology/growth & development/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Membrane/*metabolism ; Chloride Channels/chemistry/genetics/*metabolism ; Cytoplasm/metabolism ; Epithelial Cells/metabolism ; Gene Expression ; Genes, Reporter ; Green Fluorescent Proteins ; Hot Temperature ; Humans ; Intracellular Membranes/*metabolism ; Luminescent Proteins ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Pinocytosis ; Promoter Regions, Genetic ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Vacuoles/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-01-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menaker, Michael -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):213-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Virginia, Charlottesville, VA 22904, USA. mm7e@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522238" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks ; *Circadian Rhythm ; Cryptochromes ; Darkness ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*physiology ; Humans ; *Light ; Mice ; Mice, Knockout ; Mutation ; *Photoreceptor Cells, Invertebrate ; Photoreceptor Cells, Vertebrate/*physiology ; Receptors, G-Protein-Coupled ; Reflex, Pupillary ; Retinal Ganglion Cells/cytology/*physiology ; Rod Opsins/genetics/metabolism/*physiology ; Suprachiasmatic Nucleus/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2003-08-30
    Description: Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis, resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Feng -- Golstein, Catherine -- Ade, Jules -- Stoutemyer, Mark -- Dixon, Jack E -- Innes, Roger W -- DK18849/DK/NIDDK NIH HHS/ -- GM46451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1230-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947197" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Genes, Bacterial ; Genes, Plant ; Genetic Complementation Test ; Humans ; Models, Biological ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Plant Diseases/*microbiology ; Plant Extracts/metabolism ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Pseudomonas/*metabolism ; Recombinant Proteins/metabolism ; Tobacco/genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2003-03-15
    Description: Members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily share an intracytoplasmic Toll-IL-1 receptor (TIR) domain, which mediates recruitment of the interleukin-1 receptor-associated kinase (IRAK) complex via TIR-containing adapter molecules. We describe three unrelated children with inherited IRAK-4 deficiency. Their blood and fibroblast cells did not activate nuclear factor kappaB and mitogen-activated protein kinase (MAPK) and failed to induce downstream cytokines in response to any of the known ligands of TIR-bearing receptors. The otherwise healthy children developed infections caused by pyogenic bacteria. These findings suggest that, in humans, the TIR-IRAK signaling pathway is crucial for protective immunity against specific bacteria but is redundant against most other microorganisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Picard, Capucine -- Puel, Anne -- Bonnet, Marion -- Ku, Cheng-Lung -- Bustamante, Jacinta -- Yang, Kun -- Soudais, Claire -- Dupuis, Stephanie -- Feinberg, Jacqueline -- Fieschi, Claire -- Elbim, Carole -- Hitchcock, Remi -- Lammas, David -- Davies, Graham -- Al-Ghonaium, Abdulaziz -- Al-Rayes, Hassan -- Al-Jumaah, Sulaiman -- Al-Hajjar, Sami -- Al-Mohsen, Ibrahim Zaid -- Frayha, Husn H -- Rucker, Rajivi -- Hawn, Thomas R -- Aderem, Alan -- Tufenkeji, Haysam -- Haraguchi, Soichi -- Day, Noorbibi K -- Good, Robert A -- Gougerot-Pocidalo, Marie-Anne -- Ozinsky, Adrian -- Casanova, Jean-Laurent -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2076-9. Epub 2003 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Humaine des Maladies Infectieuses, Universite Rene Descartes-INSERM U550, Faculte Necker, 156 rue de Vaugirard, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637671" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Child ; Codon, Terminator ; Cytokines/secretion ; *Drosophila Proteins ; Female ; Fibroblasts/immunology ; Humans ; Interleukin-1 Receptor-Associated Kinases ; Interleukins/immunology/secretion ; Lipopolysaccharides/immunology ; Male ; Membrane Glycoproteins/chemistry/immunology/metabolism ; Monocytes/immunology ; Mutation ; Neutrophils/immunology ; Pedigree ; Phosphotransferases (Alcohol Group Acceptor)/*deficiency/*genetics/metabolism ; Pneumococcal Infections/*immunology/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/immunology/metabolism ; Receptors, Interleukin/immunology ; Receptors, Interleukin-1/chemistry ; Signal Transduction ; Staphylococcal Infections/*immunology/metabolism ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallenfang, Matthew R -- Matunis, Erika -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1490-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970553" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Cell Division ; Cell Polarity ; Centrosome/physiology ; Drosophila/*cytology/genetics/physiology ; *Drosophila Proteins ; Germ Cells/cytology/*physiology ; Homeodomain Proteins/genetics/physiology ; Interphase ; Male ; Mutation ; Spindle Apparatus/*physiology ; Stem Cells/cytology/*physiology ; Testis/cytology ; Tubulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lengauer, Christoph -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):442-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. lengauer@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702865" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Chromosome Aberrations ; Chromosomes/*genetics/physiology ; Colorectal Neoplasms/genetics ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; *DNA Methylation ; DNA Repair ; Gene Silencing ; Genes, Neurofibromatosis 1 ; Genes, p53 ; Humans ; *Loss of Heterozygosity ; Lymphoma, T-Cell/genetics ; Mice ; Mutation ; Neoplasms/*genetics ; Recombination, Genetic ; Sarcoma/genetics ; Soft Tissue Neoplasms/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-01-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crespi, Bernard -- Springer, Stevan -- New York, N.Y. -- Science. 2003 Jan 3;299(5603):56-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Behavioural Ecology Research Group, Department of Biosciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. crespi@sfu.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511635" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Altruism ; Animals ; Cell Adhesion ; Cell Adhesion Molecules/*genetics/*physiology ; Cell Communication ; Dictyostelium/*genetics/*physiology ; *Genes, Protozoan ; Movement ; Mutation ; Phenotype ; Protozoan Proteins/*genetics/*physiology ; Social Behavior ; Spores, Protozoan/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2003-01-18
    Description: In plants, cell-to-cell communication is mediated by plasmodesmata and involves the trafficking of non-cell-autonomous proteins (NCAPs). A component in this pathway, Nicotiana tabacum NON-CELL-AUTONOMOUS PATHWAY PROTEIN1 (NtNCAPP1), was affinity purified and cloned. Protein overlay assays and in vivo studies showed that NtNCAPP1 is located on the endoplasmic reticulum at the cell periphery and displays specificity in its interaction with NCAPs. Deletion of the NtNCAPP1 amino-terminal transmembrane domain produced a dominant-negative mutant that blocked the trafficking of specific NCAPs. Transgenic tobacco plants expressing this mutant form of NtNCAPP1 and plants in which the NtNCAPP1 gene was silenced were compromised in their ability to regulate leaf and floral development. These results support a model in which NCAP delivery to plasmodesmata is both selective and regulated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jung-Youn -- Yoo, Byung-Chun -- Rojas, Maria R -- Gomez-Ospina, Natalia -- Staehelin, L Andrew -- Lucas, William J -- GM18639/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):392-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12532017" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Communication ; Cell Line ; Cloning, Molecular ; Cytoplasm/metabolism ; Endoplasmic Reticulum/metabolism ; Flowers/growth & development ; Gene Silencing ; Green Fluorescent Proteins ; Immunohistochemistry ; Luminescent Proteins/metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Leaves/growth & development ; Plant Proteins/chemistry/genetics/*isolation & purification/*metabolism ; Plants, Genetically Modified ; Plasmodesmata/*metabolism ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Tobacco/genetics/growth & development/*metabolism ; Tobacco Mosaic Virus ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porteus, Matthew H -- Baltimore, David -- R01-GM39458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):763.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, California Institute of Technology, Pasadena CA 91125, USA. matthew.porteus@UTSouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730593" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA/metabolism ; Deoxyribonucleases, Type II Site-Specific/chemistry/genetics/*metabolism ; Dimerization ; Gene Targeting/*methods ; Green Fluorescent Proteins ; Humans ; Luminescent Proteins/genetics ; Mutation ; Nuclear Localization Signals ; Recombinant Fusion Proteins/chemistry/*metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae Proteins ; Transfection ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-21
    Description: Spore formation by the bacterium Bacillus subtilis is an elaborate developmental process that is triggered by nutrient limitation. Here we report that cells that have entered the pathway to sporulate produce and export a killing factor and a signaling protein that act cooperatively to block sister cells from sporulating and to cause them to lyse. The sporulating cells feed on the nutrients thereby released, which allows them to keep growing rather than to complete morphogenesis. We propose that sporulation is a stress-response pathway of last resort and that B. subtilis delays a commitment to spore formation by cannibalizing its siblings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Pastor, Jose E -- Hobbs, Errett C -- Losick, Richard -- GM18568/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):510-3. Epub 2003 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12817086" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacillus subtilis/genetics/metabolism/*physiology ; Bacterial Proteins/genetics/*metabolism ; Bacteriolysis ; Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Mutation ; Oligonucleotide Array Sequence Analysis ; *Operon ; Sigma Factor/genetics/metabolism ; Signal Transduction ; Spores, Bacterial/*physiology ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2003-12-13
    Description: The production of nitric oxide and other reactive nitrogen intermediates (RNI) by macrophages helps to control infection by Mycobacterium tuberculosis (Mtb). However, the protection is imperfect and infection persists. To identify genes that Mtb requires to resist RNI, we screened 10,100 Mtb transposon mutants for hypersusceptibility to acidified nitrite. We found 12 mutants with insertions in seven genes representing six pathways, including the repair of DNA (uvrB) and the synthesis of a flavin cofactor (fbiC). Five mutants had insertions in proteasome-associated genes. An Mtb mutant deficient in a presumptive proteasomal adenosine triphosphatase was attenuated in mice, and exposure to proteasomal protease inhibitors markedly sensitized wild-type Mtb to RNI. Thus, the mycobacterial proteasome serves as a defense against oxidative or nitrosative stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Darwin, K Heran -- Ehrt, Sabine -- Gutierrez-Ramos, Jose-Carlos -- Weich, Nadine -- Nathan, Carl F -- AI055549/AI/NIAID NIH HHS/ -- HL61241/HL/NHLBI NIH HHS/ -- T32 AI07621/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1963-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671303" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/antagonists & inhibitors/genetics/*metabolism ; Animals ; Antitubercular Agents/pharmacology ; Bacterial Proteins/genetics/metabolism ; Carrier Proteins/antagonists & inhibitors/genetics/*metabolism ; Colony Count, Microbial ; Cysteine Endopeptidases/genetics/*metabolism ; DNA Transposable Elements ; Genes, Bacterial ; Genetic Complementation Test ; Hydrogen Peroxide/pharmacology ; Hydrogen-Ion Concentration ; Macrophages/*microbiology ; Mice ; Mice, Inbred C57BL ; Microbial Sensitivity Tests ; Multienzyme Complexes/genetics/*metabolism ; Mutation ; Mycobacterium tuberculosis/drug effects/genetics/metabolism/*pathogenicity ; Nitric Oxide/*metabolism/*pharmacology ; Nitric Oxide Synthase/genetics/metabolism ; Nitric Oxide Synthase Type II ; Nitrites/pharmacology ; Oxidative Stress ; Protease Inhibitors/pharmacology ; Proteasome Endopeptidase Complex ; Tuberculosis/microbiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy-Lahad, Ephrat -- Plon, Sharon E -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):574-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Genetics Unit, Shaare Zedek Medical Center, Hebrew University, Jerusalem 91031, Israel. lahad@szmc.org.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576407" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/epidemiology/*genetics ; Family ; Female ; *Genes, BRCA1 ; *Genes, BRCA2 ; *Genetic Predisposition to Disease ; Genetic Testing ; Genotype ; Heterozygote ; Humans ; Incidence ; Jews/genetics ; Mutation ; Ovarian Neoplasms/epidemiology/genetics ; Phenotype ; Risk Assessment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ptashne, Mark -- Gann, Alexander -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1025-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. m-ptashne@ski.mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12586931" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Membrane/enzymology/metabolism ; Evolution, Molecular ; *GTP-Binding Protein beta Subunits ; Heterotrimeric GTP-Binding Proteins/metabolism ; Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase Kinases/*metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Binding ; Protein Kinases/*metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Saccharomyces cerevisiae/enzymology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2003-12-03
    Description: The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peter, Brian J -- Kent, Helen M -- Mills, Ian G -- Vallis, Yvonne -- Butler, P Jonathan G -- Evans, Philip R -- McMahon, Harvey T -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):495-9. Epub 2003 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645856" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/chemistry/genetics/metabolism ; *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; COP-Coated Vesicles/metabolism ; Carrier Proteins/chemistry/genetics/metabolism ; Cell Membrane/chemistry/metabolism ; Clathrin/metabolism ; Clathrin-Coated Vesicles/metabolism ; Coated Vesicles/chemistry/*metabolism ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; Dimerization ; Drosophila/chemistry ; Drosophila Proteins/*chemistry/*metabolism ; GTPase-Activating Proteins/chemistry/metabolism ; Liposomes/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/chemistry/metabolism ; Phosphoproteins/chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; *Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2003-12-03
    Description: The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mizuguchi, Gaku -- Shen, Xuetong -- Landry, Joe -- Wu, Wei-Hua -- Sen, Subhojit -- Wu, Carl -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):343-8. Epub 2003 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645854" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/genetics/isolation & purification/*metabolism ; Adenosine Triphosphate/*metabolism ; Catalysis ; Catalytic Domain ; Chromatin/*metabolism ; Chromosomes, Fungal/genetics ; DNA, Fungal/genetics/metabolism ; Dimerization ; Gene Expression Profiling ; *Gene Expression Regulation, Fungal ; Gene Silencing ; Genes, Fungal ; Histones/genetics/*metabolism ; Mutation ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/isolation & ; purification/*metabolism ; Telomere/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: Kinesin is a processive motor that takes 8.3-nm center-of-mass steps along microtubules for each adenosine triphosphate hydrolyzed. Whether kinesin moves by a "hand-over-hand" or an "inchworm" model has been controversial. We have labeled a single head of the kinesin dimer with a Cy3 fluorophore and localized the position of the dye to within 2 nm before and after a step. We observed that single kinesin heads take steps of 17.3 +/- 3.3 nm. A kinetic analysis of the dwell times between steps shows that the 17-nm steps alternate with 0-nm steps. These results strongly support a hand-over-hand mechanism, and not an inchworm mechanism. In addition, our results suggest that kinesin is bound by both heads to the microtubule while it waits for adenosine triphosphate in between steps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yildiz, Ahmet -- Tomishige, Michio -- Vale, Ronald D -- Selvin, Paul R -- AR42895/AR/NIAMS NIH HHS/ -- AR44420/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):676-8. Epub 2003 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684828" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Carbocyanines ; Dimerization ; Fluorescence ; Fluorescent Dyes ; Humans ; Kinesin/chemistry/genetics/*metabolism ; Kinetics ; Microtubules/*metabolism ; *Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/genetics/*metabolism ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2003-08-02
    Description: Plant microRNAs (miRNAs) show a high degree of sequence complementarity to, and are believed to guide the cleavage of, their target messenger RNAs. Here, I show that miRNA172, which can base-pair with the messenger RNA of a floral homeotic gene, APETALA2, regulates APETALA2 expression primarily through translational inhibition. Elevated miRNA172 accumulation results in floral organ identity defects similar to those in loss-of-function apetala2 mutants. Elevated levels of mutant APETALA2 RNA with disrupted miRNA172 base pairing, but not wild-type APETALA2 RNA, result in elevated levels of APETALA2 protein and severe floral patterning defects. Therefore, miRNA172 likely acts in cell-fate specification as a translational repressor of APETALA2 in Arabidopsis flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xuemei -- R01 GM61146/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2022-5. Epub 2003 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA. xuemei@waksman.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893888" target="_blank"〉PubMed〈/a〉
    Keywords: Antisense Elements (Genetics) ; Arabidopsis/*genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism/physiology ; Base Pairing ; Binding Sites ; Flowers/anatomy & histology/*growth & development ; *Gene Expression Regulation, Plant ; Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/*genetics/metabolism ; In Situ Hybridization ; MicroRNAs/chemistry/*genetics/metabolism ; Mutation ; Nuclear Proteins/*genetics/metabolism ; Phenotype ; *Plant Proteins ; Plants, Genetically Modified ; *Protein Biosynthesis ; RNA, Messenger/chemistry/metabolism ; RNA, Plant/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2003-08-09
    Description: During early development in vertebrates, Sonic hedgehog (Shh) is produced by the notochord and the floor plate. A ventrodorsal gradient of Shh directs ventrodorsal patterning of the neural tube. However, Shh is also required for the survival of neuroepithelial cells. We show that Patched (Ptc) induces apoptotic cell death unless its ligand Shh is present to block the signal. Moreover, the blockade of Ptc-induced cell death partly rescues the chick spinal cord defect provoked by Shh deprivation. Thus, the proapoptotic activity of unbound Ptc and the positive effect of Shh-bound Ptc on cell differentiation probably cooperate to achieve the appropriate spinal cord development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thibert, Chantal -- Teillet, Marie-Aimee -- Lapointe, Francoise -- Mazelin, Laetitia -- Le Douarin, Nicole M -- Mehlen, Patrick -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):843-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Apoptosis/Differentiation Laboratory, "La Ligue," Molecular and Cellular Genetic Center, CNRS Unite Mixte Recherche (UMR) 5534, University of Lyon, 69622 Villeurbanne, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspases/metabolism ; Cell Differentiation ; Cell Line ; Central Nervous System/cytology/*embryology/metabolism ; Chick Embryo ; Electroporation ; Epithelial Cells/cytology/metabolism ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mutation ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptors, Cell Surface ; Signal Transduction ; Spinal Cord/cytology/embryology ; Trans-Activators/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2003-09-23
    Description: Mammals can be trained to make a conditioned movement at a precise time, which is correlated to the interval between the conditioned stimulus and unconditioned stimulus during the learning. This learning-dependent timing has been shown to depend on an intact cerebellar cortex, but which cellular process is responsible for this form of learning remains to be demonstrated. Here, we show that protein kinase C-dependent long-term depression in Purkinje cells is necessary for learning-dependent timing of Pavlovian-conditioned eyeblink responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koekkoek, S K E -- Hulscher, H C -- Dortland, B R -- Hensbroek, R A -- Elgersma, Y -- Ruigrok, T J H -- De Zeeuw, C I -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Blinking ; Cerebellum/*physiology ; *Conditioning, Eyelid ; Electroshock ; *Learning ; *Long-Term Synaptic Depression ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; N-Methylaspartate/pharmacology ; Protein Kinase C/genetics/metabolism ; Purkinje Cells/*physiology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2003-12-13
    Description: Even though human and chimpanzee gene sequences are nearly 99% identical, sequence comparisons can nevertheless be highly informative in identifying biologically important changes that have occurred since our ancestral lineages diverged. We analyzed alignments of 7645 chimpanzee gene sequences to their human and mouse orthologs. These three-species sequence alignments allowed us to identify genes undergoing natural selection along the human and chimp lineage by fitting models that include parameters specifying rates of synonymous and nonsynonymous nucleotide substitution. This evolutionary approach revealed an informative set of genes with significantly different patterns of substitution on the human lineage compared with the chimpanzee and mouse lineages. Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport. In addition to suggesting adaptive physiological differences between chimps and humans, human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Andrew G -- Glanowski, Stephen -- Nielsen, Rasmus -- Thomas, Paul D -- Kejariwal, Anish -- Todd, Melissa A -- Tanenbaum, David M -- Civello, Daniel -- Lu, Fu -- Murphy, Brian -- Ferriera, Steve -- Wang, Gary -- Zheng, Xianqgun -- White, Thomas J -- Sninsky, John J -- Adams, Mark D -- Cargill, Michele -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1960-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671302" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus/genetics ; Amino Acids/metabolism ; Animals ; Biological Evolution ; Computational Biology ; *Evolution, Molecular ; Female ; Genes ; Genetic Diseases, Inborn/genetics ; *Genome ; *Genome, Human ; Humans ; Likelihood Functions ; Male ; Mice/genetics ; Models, Genetic ; Models, Statistical ; Mutation ; Pan troglodytes/*genetics ; Phylogeny ; Proteins/chemistry/genetics ; Pseudogenes ; Receptors, Odorant/genetics ; *Selection, Genetic ; Sequence Alignment ; Sequence Homology, Nucleic Acid ; Signal Transduction/genetics ; Smell/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bardelli, Alberto -- Parsons, D Williams -- Silliman, Natalie -- Ptak, Janine -- Szabo, Steve -- Saha, Saurabh -- Markowitz, Sanford -- Willson, James K V -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Vogelstein, Bert -- Velculescu, Victor E -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Howard Hughes Medical Institute and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738854" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Colorectal Neoplasms/*enzymology/*genetics ; Computational Biology ; *DNA Mutational Analysis ; Exons ; Fusion Proteins, gag-onc/genetics ; Guanylate Cyclase/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*genetics/metabolism ; Receptor, EphA3/genetics ; Receptor, trkB/genetics ; Receptor, trkC/genetics ; Sequence Analysis, DNA ; Vascular Endothelial Growth Factor Receptor-2/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2003-02-08
    Description: The zebrafish is an attractive model organism for studying cancer development because of its genetic accessibility. Here we describe the induction of clonally derived T cell acute lymphoblastic leukemia in transgenic zebrafish expressing mouse c-myc under control of the zebrafish Rag2 promoter. Visualization of leukemic cells expressing a chimeric transgene encoding Myc fused to green fluorescent protein (GFP) revealed that leukemias arose in the thymus, spread locally into gill arches and retro-orbital soft tissue, and then disseminated into skeletal muscle and abdominal organs. Leukemic cells homed back to the thymus in irradiated fish transplanted with GFP-labeled leukemic lymphoblasts. This transgenic model provides a platform for drug screens and for genetic screens aimed at identifying mutations that suppress or enhance c-myc- induced carcinogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langenau, David M -- Traver, David -- Ferrando, Adolfo A -- Kutok, Jeffery L -- Aster, Jon C -- Kanki, John P -- Lin, Shuo -- Prochownik, Ed -- Trede, Nikolaus S -- Zon, Leonard I -- Look, A Thomas -- CA-06516/CA/NCI NIH HHS/ -- CA-68484/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):887-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cell Lineage ; *Cell Transformation, Neoplastic ; Clone Cells ; DNA-Binding Proteins/genetics ; *Disease Models, Animal ; Female ; Fertilization in Vitro ; Gene Expression Profiling ; *Genes, myc ; Green Fluorescent Proteins ; Kidney/pathology ; *Leukemia-Lymphoma, Adult T-Cell/genetics/pathology ; Leukemic Infiltration ; Luminescent Proteins/metabolism ; Male ; Mice ; Mutation ; Neoplasm Transplantation ; Olfactory Bulb/pathology ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Spleen/pathology ; T-Lymphocytes/immunology/*pathology/physiology ; Thymus Gland/pathology ; Transgenes ; *Zebrafish/embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2003-02-08
    Description: Nuclear genes control plastid differentiation in response to developmental signals, environmental signals, and retrograde signals from plastids themselves. In return, plastids emit signals that are essential for proper expression of many nuclear photosynthetic genes. Accumulation of magnesium-protoporphyrin IX (Mg-Proto), an intermediate in chlorophyll biosynthesis, is a plastid signal that represses nuclear transcription through a signaling pathway that, in Arabidopsis, requires the GUN4 gene. GUN4 binds the product and substrate of Mg- chelatase, an enzyme that produces Mg-Proto, and activates Mg-chelatase. Thus, GUN4 participates in plastid-to-nucleus signaling by regulating Mg-Proto synthesis or trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larkin, Robert M -- Alonso, Jose M -- Ecker, Joseph R -- Chory, Joanne -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):902-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574634" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/isolation & purification/*metabolism ; Carrier Proteins/chemistry/*genetics/isolation & purification/*metabolism ; Cell Nucleus/metabolism ; Chlorophyll/*biosynthesis ; Chloroplasts/*metabolism ; Chromosome Mapping ; Chromosomes, Plant ; Cloning, Molecular ; Cyanobacteria/enzymology/genetics/metabolism ; Deuteroporphyrins/metabolism ; Enzyme Activation ; *Genes, Plant ; Genes, Reporter ; *Intracellular Signaling Peptides and Proteins ; Lyases/chemistry/isolation & purification/metabolism ; Magnesium/metabolism ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Protein Binding ; Protein Subunits/metabolism ; Protein Transport ; Protoporphyrins/*metabolism ; Recombinant Proteins/metabolism ; *Signal Transduction ; Thylakoids/chemistry/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):1972-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; *Disease Models, Animal ; Disease Progression ; Drug Resistance, Neoplasm ; Drug Screening Assays, Antitumor ; Gene Expression Regulation, Neoplastic ; Gene Transfer Techniques ; *Genes, Tumor Suppressor ; Humans ; *Mice ; *Mice, Transgenic ; Mutation ; Neoplasm Metastasis ; Neoplasm Transplantation ; *Neoplasms, Experimental/drug therapy/genetics/pathology ; *Oncogenes ; Stem Cells ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...