ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-10-25
    Description: Many vertebrate organs adopt asymmetric positions with respect to the midline, but little is known about the cellular changes and tissue movements that occur downstream of left-right gene expression to produce this asymmetry. Here, we provide evidence that the looping of the zebrafish gut results from the asymmetric migration of the neighboring lateral plate mesoderm (LPM). Mutations that disrupt the epithelial structure of the LPM perturb this asymmetric migration and inhibit gut looping. Asymmetric LPM migration still occurs when the endoderm is ablated from the gut-looping region, suggesting that the LPM can autonomously provide a motive force for gut displacement. Finally, reducing left-sided Nodal activity randomizes the pattern of LPM migration and gut looping. These results reveal a cellular framework for the regulation of organ laterality by asymmetrically expressed genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horne-Badovinac, Sally -- Rebagliati, Michael -- Stainier, Didier Y R -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Movement ; Cues ; Endoderm/physiology ; *Gene Expression Regulation, Developmental ; Guanylate Kinase ; Homeodomain Proteins/genetics/physiology ; Intestines/*embryology ; Isoenzymes ; Mesoderm/cytology/physiology ; Morphogenesis ; Mutation ; *Nuclear Proteins ; Nucleoside-Phosphate Kinase/genetics/metabolism ; Oligonucleotides, Antisense ; Phenotype ; Protein Kinase C/genetics/physiology ; Transcription Factors/genetics/physiology ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-07-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horne-Badovinac, Sally -- Munro, Edwin -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):294-5. doi: 10.1126/science.1209687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA. shorne@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764735" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cadherins/metabolism ; Cell Division ; Cell Shape ; Drosophila/cytology/*embryology/genetics/metabolism ; Drosophila Proteins/genetics/metabolism ; Fibroblast Growth Factor 10/metabolism ; Intestines/cytology/embryology ; Lung/cytology/*embryology ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3/metabolism ; Models, Biological ; *Morphogenesis ; Myosin Type I/genetics/metabolism ; Organogenesis ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...