ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: Although curvature of biological surfaces has been considered from mathematical and biophysical perspectives, its molecular and developmental basis is unclear. We have studied the cin mutant of Antirrhinum, which has crinkly rather than flat leaves. Leaves of cin display excess growth in marginal regions, resulting in a gradual introduction of negative curvature during development. This reflects a change in the shape and the progression of a cell-cycle arrest front moving from the leaf tip toward the base. CIN encodes a TCP protein and is expressed downstream of the arrest front. We propose that CIN promotes zero curvature (flatness) by making cells more sensitive to an arrest signal, particularly in marginal regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nath, Utpal -- Crawford, Brian C W -- Carpenter, Rosemary -- Coen, Enrico -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antirrhinum/cytology/*genetics/*growth & development/metabolism ; Base Sequence ; Cell Cycle ; Cell Differentiation ; Cell Division ; Cell Size ; Cyclin D3 ; Cyclins/genetics/metabolism ; Gene Deletion ; *Gene Expression Regulation, Plant ; *Genes, Plant ; Histones/genetics/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Plant Leaves/anatomy & histology/cytology/*growth & development/metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Surface Properties ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-24
    Description: The root meristem consists of populations of distal and proximal stem cells and an organizing center known as the quiescent center. During embryogenesis, initiation of the root meristem occurs when an asymmetric cell division of the hypophysis forms the distal stem cells and quiescent center. We have identified NO TRANSMITTING TRACT (NTT) and two closely related paralogs as being required for the initiation of the root meristem. All three genes are expressed in the hypophysis, and their expression is dependent on the auxin-signaling pathway. Expression of these genes is necessary for distal stem cell fate within the root meristem, whereas misexpression is sufficient to transform other stem cell populations to a distal stem cell fate in both the embryo and mature roots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crawford, Brian C W -- Sewell, Jared -- Golembeski, Greg -- Roshan, Carmel -- Long, Jeff A -- Yanofsky, Martin F -- 5 R01 GM072764/GM/NIGMS NIH HHS/ -- R01 GM072764/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):655-9. doi: 10.1126/science.aaa0196. Epub 2015 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA. ; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA. ; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA. marty@ucsd.edu jeffalong@ucla.edu. ; Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA. marty@ucsd.edu jeffalong@ucla.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25612610" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/embryology/genetics ; Arabidopsis Proteins/genetics/*physiology ; *Gene Expression Regulation, Developmental ; *Gene Expression Regulation, Plant ; Indoleacetic Acids/pharmacology ; Meristem/cytology/*embryology ; Mutation ; Plant Development/*genetics ; Stem Cells/cytology/drug effects/*physiology ; Transcription Factors/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...