ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (524)
  • Models, Biological  (417)
  • Physics
  • Nature Publishing Group (NPG)  (948)
  • RAND Corporation  (22)
  • 1
    Publication Date: 2023-10-05
    Description: This report documents key technological innovations in the energy sector; identifies best practices of educational and training programs that have successfully responded to evolving labor markets in other sectors; analyzes four case-study energy-sector education and training programs in southwestern Pennsylvania; and provides recommendations for the energy-sector education and training system in the region.
    Keywords: Physics ; History ; Education ; Business ; bic Book Industry Communication::K Economics, finance, business & management::KJ Business & management::KJM Management & management techniques::KJMV Management of specific areas::KJMV2 Personnel & human resources management ; bic Book Industry Communication::J Society & social sciences::JN Education::JNM Higher & further education, tertiary education ; bic Book Industry Communication::H Humanities::HB History::HBJ Regional & national history::HBJK History of the Americas ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-04
    Description: Most environmental analyses focus on changing existing processes to use less energy and produce fewer emissions. This report uses energy service analysis (ESA) to examine possibilities for instead changing how a service is delivered. The ESA framework is used to analyze how changes in the provision of two services—news delivery and personal mobility—might reduce greenhouse-gas emissions and suggests other areas in which ESA could be applied.
    Keywords: Political Science ; Physics ; Technology ; Transportation Studies ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHD Classical mechanics::PHDY Energy ; bic Book Industry Communication::R Earth sciences, geography, environment, planning::RB Earth sciences::RBP Meteorology & climatology ; bic Book Industry Communication::W Lifestyle, sport & leisure::WG Transport: general interest::WGC Road & motor vehicles: general interest::WGCF Buses, trams & commercial vehicles: general interest ; thema EDItEUR::P Mathematics and Science::PH Physics::PHD Classical mechanics::PHDY Energy ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology ; thema EDItEUR::W Lifestyle, Hobbies and Leisure::WG Transport: general interest::WGC Road and motor vehicles: general interest::WGCF Buses, trams and commercial vehicles: general interest
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-29
    Description: This report describes an approach for planning under deep uncertainty, Robust Decision Making (RDM), and demonstrates its use by the El Dorado Irrigation District (EID). Using RDM, the authors and EID tested the robustness of current long-term water management plans and more robust alternatives across more than 50 futures reflecting different assumptions about future climate, urban growth, and the availability of important new supplies.
    Keywords: Political Science ; Physics ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPV Political control and freedoms ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RND Environmental policy and protocols ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-30
    Description: Communities, companies, and governments at all levels in the United States are making decisions that will influence where, what and how infrastructure will be built. This report describes insights about exposures from natural hazards now and in the future, as well as gaps in data that, if filled, could improve the nation’s ability to assess infrastructure risk and improve infrastructure resilience.
    Keywords: Business ; Physics ; Population Studies ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCS Economic systems and structures ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology ; thema EDItEUR::J Society and Social Sciences::JH Sociology and anthropology::JHB Sociology::JHBD Population and demography
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-05
    Description: Nigeria is an important oil producer, but security shortfalls impede oil production and new investment. Important new finds of oil and natural gas have been reported in the territorial waters of Nigeria and nearby nations. Making the offshore petroleum infrastructure more secure would promote additional oil field investment, leading to greater production. The U.S. Air Force has expertise that could help build local security capabilities.
    Keywords: Political Science ; Business ; Physics ; bic Book Industry Communication::K Economics, finance, business & management::KN Industry & industrial studies::KNB Energy industries & utilities ; bic Book Industry Communication::L Law::LB International law::LBB Public international law::LBBC Treaties & other sources of international law ; bic Book Industry Communication::R Earth sciences, geography, environment, planning::RN The environment::RND Environmental policy & protocols ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-05
    Description: RAND researchers and collaborators present a comprehensive approach for water utilities to assess climate risks to their systems and evaluate adaptation strategies. The approach, based on Robust Decision Making, is demonstrated through pilot studies with two water utilities: Colorado Springs Utilities and New York City Department of Environmental Protection.
    Keywords: Political Science ; Physics ; Technology ; bic Book Industry Communication::R Earth sciences, geography, environment, planning::RN The environment::RND Environmental policy & protocols ; bic Book Industry Communication::R Earth sciences, geography, environment, planning::RB Earth sciences::RBP Meteorology & climatology ; bic Book Industry Communication::T Technology, engineering, agriculture::TQ Environmental science, engineering & technology::TQS Sanitary & municipal engineering::TQSW Water supply & treatment
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-05
    Description: Space is now a congested, contested, and competitive environment. Space systems must become more resilient to potential adversary actions and system failures, but changes to space systems are costly. To reduce costs, the Air Force asked RAND to identify non-materiel means—doctrine, organization, training, leadership and education, personnel, facilities, and policy—to enhance space resilience over the near and far terms.
    Keywords: Physics ; Business ; History ; bic Book Industry Communication::K Economics, finance, business & management::KJ Business & management::KJM Management & management techniques::KJMV Management of specific areas::KJMV2 Personnel & human resources management ; bic Book Industry Communication::H Humanities::HB History::HBW Military history ; bic Book Industry Communication::J Society & social sciences::JW Warfare & defence::JWG Air forces & warfare ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHV Applied physics::PHVB Astrophysics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-02
    Description: The U.S. Environmental Protection Agency and its partners develop implementation plans to meet water quality standards. Climate change and other key drivers may significantly affect these plans, but are often neglected due to uncertainty. This study uses two case studies to demonstrate how Robust Decision Making (RDM) can help to address future uncertainty by identifying vulnerabilities in water quality plans and suggesting appropriate responses.
    Keywords: Political Science ; History ; Mathematics ; Physics ; thema EDItEUR::N History and Archaeology::NH History::NHK History of the Americas ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBK Calculus and mathematical analysis::PBKD Complex analysis, complex variables ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RND Environmental policy and protocols ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-04
    Description: The E-Vision 2002 Conference, held in May 2002, was sponsored by the U.S. Department of Energy as a step toward implementing a key recommendation of the Bush administration's National Energy Policy. It gathered 150 of the nation's leading energy experts to discuss ways of reducing the country's energy intensity. This volume and the additional volume enclosed on CD-ROM contain the presentations and discussions that took place at the conference, including the identification of goals and the means to achieve them. It is a key work for those involved in implementing the National Energy Policy.
    Keywords: Physics ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHD Classical mechanics::PHDY Energy ; thema EDItEUR::P Mathematics and Science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: The Global Methane Initiative (GMI) is a voluntary international partnership that promotes methane recovery and reuse activities in developing and transition economies. The U.S. Department of State requested an evaluation of the activities and outcomes supported in whole or in part by its contributions to GMI to gauge its value added to the program.
    Keywords: Physics ; Environmental Science ; Chemistry ; thema EDItEUR::P Mathematics and Science::PN Chemistry ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TQ Environmental science, engineering and technology ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-10-05
    Description: The 2012 Colorado River Basin Study evaluated the resiliency of the Colorado River system over the next 50 years to climate change and other factors, and then compared different options and strategies for ensuring successful management of the river’s resources. This report describes RAND’s contribution to this study. It focuses on the Robust Decision Making methodologies used to identify vulnerabilities and compare portfolios of options.
    Keywords: Physics ; Political Science ; Technology ; bic Book Industry Communication::R Earth sciences, geography, environment, planning::RN The environment::RND Environmental policy & protocols ; bic Book Industry Communication::R Earth sciences, geography, environment, planning::RB Earth sciences::RBP Meteorology & climatology ; bic Book Industry Communication::T Technology, engineering, agriculture::TQ Environmental science, engineering & technology::TQS Sanitary & municipal engineering::TQSW Water supply & treatment
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-30
    Description: Air pollution has been one of the most pernicious consequences of China’s last three decades of economic transformation and growth. This report estimates the costs of three measures to reduce air pollution in China: replacing coal with natural gas for residential and commercial heating, replacing half of China's coal-fired electric power generation with renewables or nuclear power, and scrapping highly polluting vehicles.
    Keywords: History ; Political Science ; Business ; Physics ; thema EDItEUR::K Economics, Finance, Business and Management::KN Industry and industrial studies::KNB Energy industries and utilities ; thema EDItEUR::N History and Archaeology::NH History::NHF Asian history ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RND Environmental policy and protocols ; thema EDItEUR::P Mathematics and Science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    RAND Corporation
    Publication Date: 2024-03-29
    Description: The National Intelligence Council's 2008 report "Global Trends 2025: A Transformed World" projects what the world will look like in 2025 based on recent trends. This paper asks: How should U.S. policy adapt now to account for these trends and the future that will result from them? The author explores such issues as climate change, defense, international relations, and the structure of the federal government.
    Keywords: Political Science ; Physics ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPS International relations ; thema EDItEUR::J Society and Social Sciences::JW Warfare and defence ; thema EDItEUR::P Mathematics and Science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-10-05
    Description: If policies aimed at large reductions of carbon dioxide (CO2) emissions are enacted, more carbon capture and storage will be needed. RAND researchers explored the ability of the industrial base supporting the transportation and sequestration of CO2 to expand, assessing the industrial base for transportation and injection of CO2 for both geologic storage and enhanced oil recovery.
    Keywords: Political Science ; Environmental Science ; Business ; Physics ; bic Book Industry Communication::K Economics, finance, business & management::KN Industry & industrial studies::KNB Energy industries & utilities ; bic Book Industry Communication::R Earth sciences, geography, environment, planning::RN The environment::RND Environmental policy & protocols ; bic Book Industry Communication::T Technology, engineering, agriculture::TQ Environmental science, engineering & technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-03-30
    Description: This report serves as the technical documentation and reference document for the data, methods, and analytic approach used in the analysis of national exposures to infrastructure from natural disasters. The analysis includes 11 natural hazards and five infrastructure sectors. Analytic findings about current and future exposures of infrastructure in the United States drawn from this data analysis are documented in a separate report.
    Keywords: Business ; Physics ; Population Studies ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCS Economic systems and structures ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology ; thema EDItEUR::J Society and Social Sciences::JH Sociology and anthropology::JHB Sociology::JHBD Population and demography
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-10-05
    Description: This book discusses the opportunities and risks the government of Israel faces in shifting to a greater reliance on domestic and imported natural gas. By applying newly developed methods for strategic planning and decisionmaking under deep uncertainty, the analysis seeks to help the Israeli government engage in managed change by choosing robust strategies that minimize potential consequences of relying more heavily on natural gas.
    Keywords: Physics ; Business ; bic Book Industry Communication::K Economics, finance, business & management::KN Industry & industrial studies::KNB Energy industries & utilities ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-14
    Description: Limiting climate change will require transformation of energy and other systems. This report presents an agent-based, game theoretic model designed to compare the long-term sustainability of alternative carbon emission reduction policies. The model tracks the co-evolution of an industry sector, its technology base, and political coalitions that influence government policy. It uses robust decision making methods to compare alternative policies.
    Keywords: Physics ; Mathematics ; Technology ; thema EDItEUR::U Computing and Information Technology::UN Databases::UNA Database design and theory ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBU Optimization::PBUD Game theory ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    RAND Corporation
    Publication Date: 2024-04-05
    Description: Orbital space debris represents a growing threat to the operation of man-made systems in space. With the goal of guiding future mitigation or remediation efforts, this monograph examines nine comparable problems that share similarities with orbital debris: acid rain, U.S. commercial airline security, asbestos, chlorofluorocarbons, hazardous waste, oil spills, radon, email spam, and U.S. border control.
    Keywords: Technology ; Physics ; Environmental Science ; thema EDItEUR::P Mathematics and Science::PH Physics::PHV Applied physics::PHVB Astrophysics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TQ Environmental science, engineering and technology ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TR Transport technology and trades::TRP Aerospace and aviation technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-04-02
    Description: This report describes a proof-of-concept analysis using Robust Decision Making to evaluate water resource management response packages for California’s Central Valley under future uncertainty. This analytic approach will be used to develop a more comprehensive analysis for the California Water Plan Update 2013.
    Keywords: History ; Political Science ; Physics ; thema EDItEUR::N History and Archaeology::NH History::NHK History of the Americas ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RN The environment::RND Environmental policy and protocols ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RB Earth sciences::RBP Meteorology and climatology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-10-05
    Description: To determine whether the industrial base for the U.S. domestic coal-based electricity generation industry can maintain the capability to design, construct, operate, and maintain coal-fired electricity generating units within reasonable cost, schedule, performance, environmental, and quality expectations, this book reviews interviews with stakeholders and data describing key elements of industry capability and validation or verification of concerns.
    Keywords: Physics ; Law ; Management & Organizational Behavior ; bic Book Industry Communication::K Economics, finance, business & management::KJ Business & management::KJM Management & management techniques ; bic Book Industry Communication::K Economics, finance, business & management::KN Industry & industrial studies::KNB Energy industries & utilities ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-03-30
    Description: RAND Corporation researchers review the current technical, regulatory, and economic context of the electricity market and theoretical benefits of developing a smart grid; discuss some entrepreneurial opportunities associated with smart-grid data; examine empirical evidence related to smart-grid adoption and implementation; and offer policy suggestions for overcoming identified barriers.
    Keywords: Law ; Physics ; Business ; thema EDItEUR::K Economics, Finance, Business and Management::KN Industry and industrial studies::KNB Energy industries and utilities ; thema EDItEUR::P Mathematics and Science::PH Physics::PHD Classical mechanics::PHDY Energy
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-10-05
    Description: Nuclear power is receiving renewed interest because of its low greenhouse gas emissions. However, if nuclear power is to be sustainable option for the United States, methods for managing spent fuel that meet stringent safety and environmental standards must be implemented. This report examines technical and institutional approaches to spent fuel management and highlights policy implications of pursuing alternative strategies.
    Keywords: Physics ; Environmental Science ; Business ; bic Book Industry Communication::K Economics, finance, business & management::KN Industry & industrial studies::KNB Energy industries & utilities ; bic Book Industry Communication::T Technology, engineering, agriculture::TQ Environmental science, engineering & technology ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHN Nuclear physics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-02-06
    Description: The position of Xenacoelomorpha in the tree of life remains a major unresolved question in the study of deep animal relationships. Xenacoelomorpha, comprising Acoela, Nemertodermatida, and Xenoturbella, are bilaterally symmetrical marine worms that lack several features common to most other bilaterians, for example an anus, nephridia, and a circulatory system. Two conflicting hypotheses are under debate: Xenacoelomorpha is the sister group to all remaining Bilateria (= Nephrozoa, namely protostomes and deuterostomes) or is a clade inside Deuterostomia. Thus, determining the phylogenetic position of this clade is pivotal for understanding the early evolution of bilaterian features, or as a case of drastic secondary loss of complexity. Here we show robust phylogenomic support for Xenacoelomorpha as the sister taxon of Nephrozoa. Our phylogenetic analyses, based on 11 novel xenacoelomorph transcriptomes and using different models of evolution under maximum likelihood and Bayesian inference analyses, strongly corroborate this result. Rigorous testing of 25 experimental data sets designed to exclude data partitions and taxa potentially prone to reconstruction biases indicates that long-branch attraction, saturation, and missing data do not influence these results. The sister group relationship between Nephrozoa and Xenacoelomorpha supported by our phylogenomic analyses implies that the last common ancestor of bilaterians was probably a benthic, ciliated acoelomate worm with a single opening into an epithelial gut, and that excretory organs, coelomic cavities, and nerve cords evolved after xenacoelomorphs separated from the stem lineage of Nephrozoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cannon, Johanna Taylor -- Vellutini, Bruno Cossermelli -- Smith, Julian 3rd -- Ronquist, Fredrik -- Jondelius, Ulf -- Hejnol, Andreas -- England -- Nature. 2016 Feb 4;530(7588):89-93. doi: 10.1038/nature16520.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Naturhistoriska Riksmuseet, PO Box 50007, SE-104 05 Stockholm, Sweden. ; Sars International Centre for Marine Molecular Biology, University of Bergen, Thormohlensgate 55, 5008 Bergen, Norway. ; Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, South Carolina 29733, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26842059" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/anatomy & histology ; Animals ; Aquatic Organisms/*classification/genetics ; Bayes Theorem ; Genes ; Likelihood Functions ; Male ; Models, Biological ; *Phylogeny ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-01-28
    Description: Adeno-associated virus (AAV) vectors are currently the leading candidates for virus-based gene therapies because of their broad tissue tropism, non-pathogenic nature and low immunogenicity. They have been successfully used in clinical trials to treat hereditary diseases such as haemophilia B (ref. 2), and have been approved for treatment of lipoprotein lipase deficiency in Europe. Considerable efforts have been made to engineer AAV variants with novel and biomedically valuable cell tropisms to allow efficacious systemic administration, yet basic aspects of AAV cellular entry are still poorly understood. In particular, the protein receptor(s) required for AAV entry after cell attachment remains unknown. Here we use an unbiased genetic screen to identify proteins essential for AAV serotype 2 (AAV2) infection in a haploid human cell line. The most significantly enriched gene of the screen encodes a previously uncharacterized type I transmembrane protein, KIAA0319L (denoted hereafter as AAV receptor (AAVR)). We characterize AAVR as a protein capable of rapid endocytosis from the plasma membrane and trafficking to the trans-Golgi network. We show that AAVR directly binds to AAV2 particles, and that anti-AAVR antibodies efficiently block AAV2 infection. Moreover, genetic ablation of AAVR renders a wide range of mammalian cell types highly resistant to AAV2 infection. Notably, AAVR serves as a critical host factor for all tested AAV serotypes. The importance of AAVR for in vivo gene delivery is further highlighted by the robust resistance of Aavr(-/-) (also known as Au040320(-/-) and Kiaa0319l(-/-)) mice to AAV infection. Collectively, our data indicate that AAVR is a universal receptor involved in AAV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pillay, S -- Meyer, N L -- Puschnik, A S -- Davulcu, O -- Diep, J -- Ishikawa, Y -- Jae, L T -- Wosen, J E -- Nagamine, C M -- Chapman, M S -- Carette, J E -- DP2 AI104557/AI/NIAID NIH HHS/ -- R01 GM066875/GM/NIGMS NIH HHS/ -- U19 AI109662/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Feb 4;530(7588):108-12. doi: 10.1038/nature16465. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA. ; Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health &Science University, 3181 Sam Jackson Park Road, Portland, Oregon 97239-3098, USA. ; Shriners Hospital for Children, 3101 Sam Jackson Park Road, Portland, Oregon 97239, USA. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Department of Comparative Medicine, Stanford University School of Medicine, 287 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/pharmacology ; Cell Line ; Dependovirus/classification/drug effects/*physiology ; Endocytosis/drug effects ; Female ; Gene Deletion ; Genetic Therapy/methods ; Host Specificity ; Humans ; Male ; Mice ; Parvoviridae Infections/*metabolism/*virology ; Receptors, Cell Surface/antagonists & inhibitors/deficiency/genetics/*metabolism ; Receptors, Virus/antagonists & inhibitors/deficiency/genetics/*metabolism ; *Viral Tropism/drug effects ; Virus Internalization/drug effects ; trans-Golgi Network/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-05-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bender, Eric -- England -- Nature. 2016 May 11;533(7602):S62-4. doi: 10.1038/533S62a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27167394" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amyotrophic Lateral Sclerosis/diagnosis ; *Awards and Prizes ; Biomedical Research/economics/*manpower/*methods ; Breast Neoplasms/diagnosis/pathology ; *Competitive Behavior ; Cooperative Behavior ; Crowdsourcing/economics/*methods ; Datasets as Topic ; Drug Industry/economics/methods ; Humans ; Information Dissemination ; *Interdisciplinary Communication ; Internet/utilization ; Male ; Models, Biological ; Monitoring, Physiologic/instrumentation ; Prognosis ; Reproducibility of Results ; Smartphone/utilization ; Statistics as Topic ; Systems Biology/manpower/methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-03-05
    Description: HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 A resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirchdoerfer, Robert N -- Cottrell, Christopher A -- Wang, Nianshuang -- Pallesen, Jesper -- Yassine, Hadi M -- Turner, Hannah L -- Corbett, Kizzmekia S -- Graham, Barney S -- McLellan, Jason S -- Ward, Andrew B -- R56 AI118016/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):118-21. doi: 10.1038/nature17200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA. ; Viral Pathogenesis Laboratory, National Institute of Allergy and Infectious Diseases, Building 40, Room 2502, 40 Convent Drive, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26935699" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Coronavirus/*chemistry/*ultrastructure ; Cryoelectron Microscopy ; Humans ; Membrane Fusion ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Proteolysis ; Receptors, Virus/metabolism ; Spike Glycoprotein, Coronavirus/*chemistry/metabolism/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-02-09
    Description: The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a mouse coronavirus S trimer ectodomain determined at 4.0 A resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walls, Alexandra C -- Tortorici, M Alejandra -- Bosch, Berend-Jan -- Frenz, Brandon -- Rottier, Peter J M -- DiMaio, Frank -- Rey, Felix A -- Veesler, David -- GM103310/GM/NIGMS NIH HHS/ -- T32GM008268/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):114-7. doi: 10.1038/nature16988. Epub 2016 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institut Pasteur, Unite de Virologie Structurale, 75015 Paris, France. ; CNRS UMR 3569 Virologie, 75015 Paris, France. ; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26855426" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Cell Line ; Coronavirus Infections/immunology/virology ; *Cryoelectron Microscopy ; Drosophila melanogaster ; Mice ; Models, Molecular ; Molecular Sequence Data ; Murine hepatitis virus/*chemistry/immunology/*ultrastructure ; Protein Multimerization ; Protein Structure, Tertiary ; Spike Glycoprotein, Coronavirus/*chemistry/immunology/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-03-24
    Description: (beta-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) beta-arrestin proteins (beta-arrestin1 and beta-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (beta-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of beta-arrestin with GPCRs, and the beta-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based beta-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in beta-arrestin2 that occur rapidly after the receptor-beta-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and beta-arrestins. They further indicate that beta-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of beta-arrestins, which permits their active signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nuber, Susanne -- Zabel, Ulrike -- Lorenz, Kristina -- Nuber, Andreas -- Milligan, Graeme -- Tobin, Andrew B -- Lohse, Martin J -- Hoffmann, Carsten -- 1 R01 DA038882/DA/NIDA NIH HHS/ -- BB/K019864/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Rudolf Virchow Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Comprehensive Heart Failure Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. ; MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/chemistry/*metabolism ; Biosensing Techniques ; Cattle ; Cell Line ; Cell Membrane/metabolism ; Cell Survival ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-03-31
    Description: Colonic epithelial cells are covered by thick inner and outer mucus layers. The inner mucus layer is free of commensal microbiota, which contributes to the maintenance of gut homeostasis. In the small intestine, molecules critical for prevention of bacterial invasion into epithelia such as Paneth-cell-derived anti-microbial peptides and regenerating islet-derived 3 (RegIII) family proteins have been identified. Although there are mucus layers providing physical barriers against the large number of microbiota present in the large intestine, the mechanisms that separate bacteria and colonic epithelia are not fully elucidated. Here we show that Ly6/PLAUR domain containing 8 (Lypd8) protein prevents flagellated microbiota invading the colonic epithelia in mice. Lypd8, selectively expressed in epithelial cells at the uppermost layer of the large intestinal gland, was secreted into the lumen and bound flagellated bacteria including Proteus mirabilis. In the absence of Lypd8, bacteria were present in the inner mucus layer and many flagellated bacteria invaded epithelia. Lypd8(-/-) mice were highly sensitive to intestinal inflammation induced by dextran sulfate sodium (DSS). Antibiotic elimination of Gram-negative flagellated bacteria restored the bacterial-free state of the inner mucus layer and ameliorated DSS-induced intestinal inflammation in Lypd8(-/-) mice. Lypd8 bound to flagella and suppressed motility of flagellated bacteria. Thus, Lypd8 mediates segregation of intestinal bacteria and epithelial cells in the colon to preserve intestinal homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okumura, Ryu -- Kurakawa, Takashi -- Nakano, Takashi -- Kayama, Hisako -- Kinoshita, Makoto -- Motooka, Daisuke -- Gotoh, Kazuyoshi -- Kimura, Taishi -- Kamiyama, Naganori -- Kusu, Takashi -- Ueda, Yoshiyasu -- Wu, Hong -- Iijima, Hideki -- Barman, Soumik -- Osawa, Hideki -- Matsuno, Hiroshi -- Nishimura, Junichi -- Ohba, Yusuke -- Nakamura, Shota -- Iida, Tetsuya -- Yamamoto, Masahiro -- Umemoto, Eiji -- Sano, Koichi -- Takeda, Kiyoshi -- England -- Nature. 2016 Apr 7;532(7597):117-21. doi: 10.1038/nature17406. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan. ; Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan. ; Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan. ; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan. ; Department of Bacteriology, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan. ; Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan. ; Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan. ; Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan. ; Laboratory of Immunoparasitology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027293" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Adhesion ; Caco-2 Cells ; Cell Line ; Colitis/chemically induced/drug therapy/genetics ; Colon/*microbiology ; Dextran Sulfate ; Epithelium/*microbiology ; Female ; *Flagella ; GPI-Linked Proteins/deficiency/genetics/*metabolism/secretion ; Gram-Negative Bacteria/drug effects/metabolism/pathogenicity/*physiology ; Homeostasis ; Humans ; Inflammation/chemically induced/drug therapy/genetics ; Intestinal Mucosa/cytology/metabolism/*microbiology/secretion ; Male ; Mice ; Proteus mirabilis/drug effects/metabolism/pathogenicity ; Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiermeier, Quirin -- Abbott, Alison -- England -- Nature. 2016 Apr 7;532(7597):18. doi: 10.1038/nature.2016.19672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27078546" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/*anatomy & histology/cytology/*physiology ; Computer Simulation ; *Computers ; Humans ; Models, Biological ; Neurosciences/*methods/trends ; *Software
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-02-18
    Description: Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levin, Michal -- Anavy, Leon -- Cole, Alison G -- Winter, Eitan -- Mostov, Natalia -- Khair, Sally -- Senderovich, Naftalie -- Kovalev, Ekaterina -- Silver, David H -- Feder, Martin -- Fernandez-Valverde, Selene L -- Nakanishi, Nagayasu -- Simmons, David -- Simakov, Oleg -- Larsson, Tomas -- Liu, Shang-Yun -- Jerafi-Vider, Ayelet -- Yaniv, Karina -- Ryan, Joseph F -- Martindale, Mark Q -- Rink, Jochen C -- Arendt, Detlev -- Degnan, Sandie M -- Degnan, Bernard M -- Hashimshony, Tamar -- Yanai, Itai -- 310927/European Research Council/International -- R01 GM093116/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 31;531(7596):637-41. doi: 10.1038/nature16994. Epub 2016 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel. ; School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia. ; Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St Augustine, Florida 32080-8610 USA. ; Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26886793" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning/genetics ; Conserved Sequence/genetics ; *Embryonic Development/genetics ; Evolution, Molecular ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genes, Developmental/genetics ; Models, Biological ; Phenotype ; *Phylogeny ; Species Specificity ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-02-11
    Description: The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fattahi, Faranak -- Steinbeck, Julius A -- Kriks, Sonja -- Tchieu, Jason -- Zimmer, Bastian -- Kishinevsky, Sarah -- Zeltner, Nadja -- Mica, Yvonne -- El-Nachef, Wael -- Zhao, Huiyong -- de Stanchina, Elisa -- Gershon, Michael D -- Grikscheit, Tracy C -- Chen, Shuibing -- Studer, Lorenz -- DP2 DK098093-01/DK/NIDDK NIH HHS/ -- NS15547/NS/NINDS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 NS015547/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):105-9. doi: 10.1038/nature16951. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Center for Stem Cell Biology, New York, New York 10065, USA. ; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York 10065, USA. ; Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA. ; Molecular Pharmacology Program, New York, New York 10065, USA. ; Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA. ; Children's Hospital Los Angeles, Pediatric Surgery, Los Angeles, California 90027, USA. ; Department of Surgery, Weill Medical College of Cornell University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863197" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Cell Differentiation ; Cell Line ; *Cell Lineage ; Cell Movement ; Cell Separation ; *Cell- and Tissue-Based Therapy/methods ; Chick Embryo ; Colon/drug effects/pathology ; Disease Models, Animal ; Drug Discovery/*methods ; Enteric Nervous System/*pathology ; Female ; Gastrointestinal Tract/drug effects/pathology ; Hirschsprung Disease/*drug therapy/*pathology/therapy ; Humans ; Male ; Mice ; Neurons/drug effects/*pathology ; Pepstatins/metabolism ; Pluripotent Stem Cells/pathology ; Receptor, Endothelin B/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-04-14
    Description: Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feeney, Kevin A -- Hansen, Louise L -- Putker, Marrit -- Olivares-Yanez, Consuelo -- Day, Jason -- Eades, Lorna J -- Larrondo, Luis F -- Hoyle, Nathaniel P -- O'Neill, John S -- van Ooijen, Gerben -- 093734/Z/10/Z/Wellcome Trust/United Kingdom -- MC_UP_1201/4/Medical Research Council/United Kingdom -- England -- Nature. 2016 Apr 21;532(7599):375-9. doi: 10.1038/nature17407. Epub 2016 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK. ; Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. ; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. ; School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27074515" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Chlorophyta/cytology/metabolism ; Circadian Clocks/genetics/*physiology ; Circadian Rhythm/genetics/*physiology ; *Energy Metabolism ; Feedback, Physiological ; Gene Expression Regulation ; Humans ; Intracellular Space/metabolism ; Magnesium/*metabolism ; Male ; Mice ; TOR Serine-Threonine Kinases/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-01-08
    Description: Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the leucine-rich repeats and carboxy-terminal low-complexity acidic region domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian-adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity, whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2(E627K), were rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapting the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710677/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710677/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Jason S -- Giotis, Efstathios S -- Moncorge, Olivier -- Frise, Rebecca -- Mistry, Bhakti -- James, Joe -- Morisson, Mireille -- Iqbal, Munir -- Vignal, Alain -- Skinner, Michael A -- Barclay, Wendy S -- 087039/Z/08/Z/Wellcome Trust/United Kingdom -- BB/K002465/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/E/I/00001708/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0600006/Medical Research Council/United Kingdom -- England -- Nature. 2016 Jan 7;529(7584):101-4. doi: 10.1038/nature16474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK. ; Centre d'etudes d'agents Pathogenes et Biotechnologies pour la Sante (CPBS), FRE 3689, CNRS-UM, 34293 Montpellier, France. ; Avian Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK. ; UMR INRA/Genetique Physiologie et Systemes d'Elevage, INRA, 31326 Castanet-Tolosan, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26738596" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Avian Proteins/*chemistry/deficiency/*metabolism ; Cell Line ; Chickens/virology ; Cricetinae ; Cricetulus ; Dogs ; Evolution, Molecular ; Gene Expression Regulation, Viral ; Gene Knockdown Techniques ; *Host Specificity ; Humans ; Influenza A Virus, H5N1 Subtype/enzymology/genetics/physiology ; Influenza A Virus, H7N9 Subtype/enzymology/genetics/physiology ; Influenza A virus/*enzymology/genetics/physiology ; Intracellular Signaling Peptides and Proteins/*chemistry/deficiency/*metabolism ; RNA Replicase/genetics/*metabolism ; Species Specificity ; Transcription, Genetic ; Viral Proteins/genetics/*metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-01-28
    Description: Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorenzo-Redondo, Ramon -- Fryer, Helen R -- Bedford, Trevor -- Kim, Eun-Young -- Archer, John -- Kosakovsky Pond, Sergei L -- Chung, Yoon-Seok -- Penugonda, Sudhir -- Chipman, Jeffrey G -- Fletcher, Courtney V -- Schacker, Timothy W -- Malim, Michael H -- Rambaut, Andrew -- Haase, Ashley T -- McLean, Angela R -- Wolinsky, Steven M -- AI1074340/AI/NIAID NIH HHS/ -- DA033773/DA/NIDA NIH HHS/ -- G1000196/Medical Research Council/United Kingdom -- GM110749/GM/NIGMS NIH HHS/ -- R01 DA033773/DA/NIDA NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2016 Feb 4;530(7588):51-6. doi: 10.1038/nature16933. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60011, USA. ; Institute for Emerging Infections, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. ; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Centro de Investigacao em Biodiversidade e Recursos Geneticos Universidade do Porto, 4485-661 Vairao, Portugal. ; Department of Medicine, University of California, San Diego, California 92093, USA. ; Division of AIDS, Center for Immunology and Pathology, Korea National Institutes of Health, Chungju-si, Chungcheongbuk-do, 28159, South Korea. ; Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, College of Pharmacy, Omaha, Nebraska 68198, USA. ; Division of Infectious Diseases, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Department of Infectious Diseases, King's College London, Guy's Hospital, London SE21 7DN, UK. ; Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK. ; Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814962" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/administration & dosage/pharmacology/therapeutic use ; Carrier State/blood/*drug therapy/*virology ; Drug Resistance, Viral/drug effects ; HIV Infections/blood/*drug therapy/*virology ; HIV-1/drug effects/genetics/*growth & development/isolation & purification ; Haplotypes/drug effects ; Humans ; Lymph Nodes/drug effects/virology ; Models, Biological ; Molecular Sequence Data ; Phylogeny ; Selection, Genetic/drug effects ; Sequence Analysis, DNA ; Spatio-Temporal Analysis ; Time Factors ; *Viral Load/drug effects ; *Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2016 Mar 10;531(7593):151. doi: 10.1038/nature.2016.19503.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961635" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/*methods/*standards ; Models, Biological ; *Probability ; Reproducibility of Results ; *Research Design ; Research Personnel/*education ; Statistics as Topic/*methods/*standards ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-02-04
    Description: The origin of eukaryotes stands as a major conundrum in biology. Current evidence indicates that the last eukaryotic common ancestor already possessed many eukaryotic hallmarks, including a complex subcellular organization. In addition, the lack of evolutionary intermediates challenges the elucidation of the relative order of emergence of eukaryotic traits. Mitochondria are ubiquitous organelles derived from an alphaproteobacterial endosymbiont. Different hypotheses disagree on whether mitochondria were acquired early or late during eukaryogenesis. Similarly, the nature and complexity of the receiving host are debated, with models ranging from a simple prokaryotic host to an already complex proto-eukaryote. Most competing scenarios can be roughly grouped into either mito-early, which consider the driving force of eukaryogenesis to be mitochondrial endosymbiosis into a simple host, or mito-late, which postulate that a significant complexity predated mitochondrial endosymbiosis. Here we provide evidence for late mitochondrial endosymbiosis. We use phylogenomics to directly test whether proto-mitochondrial proteins were acquired earlier or later than other proteins of the last eukaryotic common ancestor. We find that last eukaryotic common ancestor protein families of alphaproteobacterial ancestry and of mitochondrial localization show the shortest phylogenetic distances to their closest prokaryotic relatives, compared with proteins of different prokaryotic origin or cellular localization. Altogether, our results shed new light on a long-standing question and provide compelling support for the late acquisition of mitochondria into a host that already had a proteome of chimaeric phylogenetic origin. We argue that mitochondrial endosymbiosis was one of the ultimate steps in eukaryogenesis and that it provided the definitive selective advantage to mitochondria-bearing eukaryotes over less complex forms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780264/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780264/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pittis, Alexandros A -- Gabaldon, Toni -- England -- Nature. 2016 Mar 3;531(7592):101-4. doi: 10.1038/nature16941. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Carrer del Dr Aiguader, 88, 08003 Barcelona, Spain. ; Departament of Ciencies Experimentals I de La Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain. ; Institucio Catalana de Recerca i Estudis Avancats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840490" target="_blank"〉PubMed〈/a〉
    Keywords: Eukaryotic Cells/*cytology/metabolism ; Genes, Bacterial/*genetics ; Genes, Mitochondrial/*genetics ; Genomics ; Mitochondria/*genetics/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Models, Biological ; *Phylogeny ; Prokaryotic Cells/*cytology/metabolism ; Symbiosis/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-01-26
    Description: Intracellular aggregation of the human amyloid protein alpha-synuclein is causally linked to Parkinson's disease. While the isolated protein is intrinsically disordered, its native structure in mammalian cells is not known. Here we use nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to derive atomic-resolution insights into the structure and dynamics of alpha-synuclein in different mammalian cell types. We show that the disordered nature of monomeric alpha-synuclein is stably preserved in non-neuronal and neuronal cells. Under physiological cell conditions, alpha-synuclein is amino-terminally acetylated and adopts conformations that are more compact than when in buffer, with residues of the aggregation-prone non-amyloid-beta component (NAC) region shielded from exposure to the cytoplasm, which presumably counteracts spontaneous aggregation. These results establish that different types of crowded intracellular environments do not inherently promote alpha-synuclein oligomerization and, more generally, that intrinsic structural disorder is sustainable in mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theillet, Francois-Xavier -- Binolfi, Andres -- Bekei, Beata -- Martorana, Andrea -- Rose, Honor May -- Stuiver, Marchel -- Verzini, Silvia -- Lorenz, Dorothea -- van Rossum, Marleen -- Goldfarb, Daniella -- Selenko, Philipp -- England -- Nature. 2016 Feb 4;530(7588):45-50. doi: 10.1038/nature16531. Epub 2016 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rossle Strasse 10, 13125 Berlin, Germany. ; Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rossle Strasse 10, 13125 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26808899" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Line ; Cytoplasm/chemistry/metabolism ; Electron Spin Resonance Spectroscopy ; HeLa Cells ; Humans ; Intracellular Space/*chemistry/*metabolism ; Neurons/cytology/metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; alpha-Synuclein/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-01-21
    Description: The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Zapien, Denise -- Ruiz, Francesc Xavier -- Poirson, Juline -- Mitschler, Andre -- Ramirez, Juan -- Forster, Anne -- Cousido-Siah, Alexandra -- Masson, Murielle -- Vande Pol, Scott -- Podjarny, Alberto -- Trave, Gilles -- Zanier, Katia -- R01CA134737/CA/NCI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):541-5. doi: 10.1038/nature16481. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Equipe labellisee Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch, France. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France. ; Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Human papillomavirus 16/chemistry/*metabolism/pathogenicity ; Humans ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Oncogene Proteins, Viral/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; *Proteolysis ; Repressor Proteins/*chemistry/genetics/*metabolism ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitin-Protein Ligases/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-03-24
    Description: Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1alpha. Once activated, IRE1alpha recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-kappaB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1alpha kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1alpha/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keestra-Gounder, A Marijke -- Byndloss, Mariana X -- Seyffert, Nubia -- Young, Briana M -- Chavez-Arroyo, Alfredo -- Tsai, April Y -- Cevallos, Stephanie A -- Winter, Maria G -- Pham, Oanh H -- Tiffany, Connor R -- de Jong, Maarten F -- Kerrinnes, Tobias -- Ravindran, Resmi -- Luciw, Paul A -- McSorley, Stephen J -- Baumler, Andreas J -- Tsolis, Renee M -- AI044170/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- AI076278/AI/NIAID NIH HHS/ -- AI096528/AI/NIAID NIH HHS/ -- AI109799/AI/NIAID NIH HHS/ -- AI112258/AI/NIAID NIH HHS/ -- AI117303/AI/NIAID NIH HHS/ -- GM056765/GM/NIGMS NIH HHS/ -- R01 AI044170/AI/NIAID NIH HHS/ -- R01 AI076246/AI/NIAID NIH HHS/ -- R01 AI076278/AI/NIAID NIH HHS/ -- R01 AI096528/AI/NIAID NIH HHS/ -- R01 AI109799/AI/NIAID NIH HHS/ -- R21 AI112258/AI/NIAID NIH HHS/ -- R21 AI117303/AI/NIAID NIH HHS/ -- R25 GM056765/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):394-7. doi: 10.1038/nature17631. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, California 95616, USA. ; Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California at Davis, One Shields Ave, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007849" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Outer Membrane Proteins/metabolism ; Brucella abortus/immunology/pathogenicity ; Cell Line ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/drug effects/pathology ; *Endoplasmic Reticulum Stress/drug effects ; Endoribonucleases/antagonists & inhibitors ; Female ; Humans ; Immunity, Innate ; Inflammation/chemically induced/*metabolism ; Interleukin-6/biosynthesis ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nod1 Signaling Adaptor Protein/immunology/*metabolism ; Nod2 Signaling Adaptor Protein/immunology/*metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors ; Receptors, Pattern Recognition/metabolism ; *Signal Transduction/drug effects ; TNF Receptor-Associated Factor 2/metabolism ; Taurochenodeoxycholic Acid/pharmacology ; Thapsigargin/pharmacology ; Unfolded Protein Response/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powell, Kendall -- England -- Nature. 2016 Feb 11;530(7589):148-51. doi: 10.1038/530148a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863966" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Science Disciplines ; Internet/utilization ; Journal Impact Factor ; Open Access Publishing ; Peer Review, Research/*trends ; *Periodicals as Topic ; Physics ; Publishing/*trends ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-03-17
    Description: Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus 'more microbes, fewer viruses'.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knowles, B -- Silveira, C B -- Bailey, B A -- Barott, K -- Cantu, V A -- Cobian-Guemes, A G -- Coutinho, F H -- Dinsdale, E A -- Felts, B -- Furby, K A -- George, E E -- Green, K T -- Gregoracci, G B -- Haas, A F -- Haggerty, J M -- Hester, E R -- Hisakawa, N -- Kelly, L W -- Lim, Y W -- Little, M -- Luque, A -- McDole-Somera, T -- McNair, K -- de Oliveira, L S -- Quistad, S D -- Robinett, N L -- Sala, E -- Salamon, P -- Sanchez, S E -- Sandin, S -- Silva, G G Z -- Smith, J -- Sullivan, C -- Thompson, C -- Vermeij, M J A -- Youle, M -- Young, C -- Zgliczynski, B -- Brainard, R -- Edwards, R A -- Nulton, J -- Thompson, F -- Rohwer, F -- England -- Nature. 2016 Mar 24;531(7595):466-70. doi: 10.1038/nature17193. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Biology Institute, Rio de Janeiro Federal University, Av. Carlos Chagas Filho 373, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil. ; Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Hawaii Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Road, Kaneohe, Hawaii 96744, USA. ; Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Rainbow Rock, Ocean View, Hawaii 96737, USA. ; Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, 6525HP Nijmegen, The Netherlands. ; Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. ; Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, California 92037, USA. ; Department of Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Marine Sciences Department, Sao Paulo Federal University - Baixada Santista, Av. Alm. Saldanha da Gama, 89, Santos, Sao Paulo 11030-400, Brazil. ; National Geographic Society, 1145 17th St NW, Washington D.C. 20036, USA. ; CARMABI Foundation, Piscaderabaai z/n, Willemstad, Curacao, Netherlands Antilles. ; Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098XH Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/physiology/*virology ; Bacteriophages/pathogenicity/physiology ; Coral Reefs ; *Ecosystem ; Genes, Viral/genetics ; *Host-Pathogen Interactions ; Lysogeny ; Models, Biological ; Virulence/genetics ; Viruses/genetics/isolation & purification/*pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-02-06
    Description: The discovery of four new Xenoturbella species from deep waters of the eastern Pacific Ocean is reported here. The genus and two nominal species were described from the west coast of Sweden, but their taxonomic placement remains unstable. Limited evidence placed Xenoturbella with molluscs, but the tissues can be contaminated with prey. They were then considered deuterostomes. Further taxon sampling and analysis have grouped Xenoturbella with acoelomorphs (=Xenacoelomorpha) as sister to all other Bilateria (=Nephrozoa), or placed Xenacoelomorpha inside Deuterostomia with Ambulacraria (Hemichordata + Echinodermata). Here we describe four new species of Xenoturbella and reassess those hypotheses. A large species (〉20 cm long) was found at cold-water hydrocarbon seeps at 2,890 m depth in Monterey Canyon and at 1,722 m in the Gulf of California (Mexico). A second large species (~10 cm long) also occurred at 1,722 m in the Gulf of California. The third large species (~15 cm long) was found at ~3,700 m depth near a newly discovered carbonate-hosted hydrothermal vent in the Gulf of California. Finally, a small species (~2.5 cm long), found near a whale carcass at 631 m depth in Monterey Submarine Canyon (California), resembles the two nominal species from Sweden. Analysis of whole mitochondrial genomes places the three larger species as a sister clade to the smaller Atlantic and Pacific species. Phylogenomic analyses of transcriptomic sequences support placement of Xenacoelomorpha as sister to Nephrozoa or Protostomia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouse, Greg W -- Wilson, Nerida G -- Carvajal, Jose I -- Vrijenhoek, Robert C -- England -- Nature. 2016 Feb 4;530(7588):94-7. doi: 10.1038/nature16545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA. ; Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. ; School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia. ; Monterey Bay Aquarium and Research Institute, Moss Landing, California 95039, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26842060" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*classification/genetics ; Atlantic Ocean ; Bayes Theorem ; California ; Female ; Genes ; Genome, Mitochondrial/genetics ; Hydrothermal Vents ; Likelihood Functions ; Male ; Mexico ; Models, Biological ; Pacific Ocean ; *Phylogeny ; Species Specificity ; Sweden ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-03-24
    Description: Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium. This Ca(2+)-responsive mechanosensor hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers. Here we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. We developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca(2+) influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851444/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851444/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delling, M -- Indzhykulian, A A -- Liu, X -- Li, Y -- Xie, T -- Corey, D P -- Clapham, D E -- 5R01 DC000304/DC/NIDCD NIH HHS/ -- P30-HD 18655/HD/NICHD NIH HHS/ -- R01 DC000304/DC/NIDCD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 31;531(7596):656-60. doi: 10.1038/nature17426. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007841" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/analysis/*metabolism ; Calcium Signaling ; Cilia/*metabolism ; Embryo, Mammalian/cytology ; Epithelial Cells/cytology ; Female ; Hair Cells, Auditory, Inner/cytology ; Kidney/cytology ; Male ; *Mechanotransduction, Cellular ; Mice ; Mice, Transgenic ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-06-25
    Description: In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501432/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501432/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tresini, Maria -- Warmerdam, Daniel O -- Kolovos, Petros -- Snijder, Loes -- Vrouwe, Mischa G -- Demmers, Jeroen A A -- van IJcken, Wilfred F J -- Grosveld, Frank G -- Medema, Rene H -- Hoeijmakers, Jan H J -- Mullenders, Leon H F -- Vermeulen, Wim -- Marteijn, Jurgen A -- 10-0594/Worldwide Cancer Research/United Kingdom -- 233424/European Research Council/International -- 340988/European Research Council/International -- P01 AG017242/AG/NIA NIH HHS/ -- England -- Nature. 2015 Jul 2;523(7558):53-8. doi: 10.1038/nature14512. Epub 2015 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands. ; Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands. ; Erasmus MC Proteomics Center, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26106861" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/physiology ; Ataxia Telangiectasia Mutated Proteins/*metabolism ; Cell Line ; Chromatin/metabolism ; DNA Damage/*physiology ; DNA-Directed RNA Polymerases/metabolism ; Enzyme Activation ; Humans ; *Signal Transduction ; Spliceosomes/*metabolism ; Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palmer, Tim -- England -- Nature. 2015 Oct 1;526(7571):32-3. doi: 10.1038/526032a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Royal Society research professor of climate physics and co-director of the Oxford Martin Programme on Modelling and Predicting Climate at the University of Oxford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26432226" target="_blank"〉PubMed〈/a〉
    Keywords: Climate Change ; Computer Simulation/*trends ; Computers/*trends ; *Conservation of Energy Resources ; Equipment Design ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delude, Cathryn M -- England -- Nature. 2015 Nov 5;527(7576):S14-5. doi: 10.1038/527S14a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics ; Cell Line ; Datasets as Topic ; Diabetes Mellitus/genetics ; Disease/*genetics ; Disease Models, Animal ; Genetics, Medical/*trends ; Genomics/trends ; Humans ; Mice ; Mice, Knockout ; Multifactorial Inheritance/genetics ; *Phenotype ; Precision Medicine/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-10-16
    Description: Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed 'paradox breakers') that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Chao -- Spevak, Wayne -- Zhang, Ying -- Burton, Elizabeth A -- Ma, Yan -- Habets, Gaston -- Zhang, Jiazhong -- Lin, Jack -- Ewing, Todd -- Matusow, Bernice -- Tsang, Garson -- Marimuthu, Adhirai -- Cho, Hanna -- Wu, Guoxian -- Wang, Weiru -- Fong, Daniel -- Nguyen, Hoa -- Shi, Songyuan -- Womack, Patrick -- Nespi, Marika -- Shellooe, Rafe -- Carias, Heidi -- Powell, Ben -- Light, Emily -- Sanftner, Laura -- Walters, Jason -- Tsai, James -- West, Brian L -- Visor, Gary -- Rezaei, Hamid -- Lin, Paul S -- Nolop, Keith -- Ibrahim, Prabha N -- Hirth, Peter -- Bollag, Gideon -- England -- Nature. 2015 Oct 22;526(7574):583-6. doi: 10.1038/nature14982. Epub 2015 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plexxikon Inc., 91 Bolivar Drive, Berkeley, California 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26466569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Enzyme Activation/drug effects ; Female ; Genes, ras/genetics ; Heterocyclic Compounds, 2-Ring/adverse effects/pharmacology ; Humans ; Indoles/adverse effects/pharmacology ; MAP Kinase Signaling System/*drug effects/genetics ; Mice ; Mitogen-Activated Protein Kinases/*metabolism ; Models, Biological ; Mutation/genetics ; Protein Kinase Inhibitors/adverse effects/*pharmacology ; Proto-Oncogene Proteins B-raf/*antagonists & inhibitors/genetics ; Sulfonamides/adverse effects/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-05-29
    Description: Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Cheng-Zhong -- Spektor, Alexander -- Cornils, Hauke -- Francis, Joshua M -- Jackson, Emily K -- Liu, Shiwei -- Meyerson, Matthew -- Pellman, David -- GM083299-18/GM/NIGMS NIH HHS/ -- R01 GM061345/GM/NIGMS NIH HHS/ -- R01 GM083299/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 11;522(7555):179-84. doi: 10.1038/nature14493. Epub 2015 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [3] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [4] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [3] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [4] Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [3] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [4] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017310" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Survival ; *Chromosome Breakage ; Chromosome Segregation/genetics ; DNA Copy Number Variations/genetics ; *DNA Damage ; Gene Rearrangement/genetics ; Genomic Instability/genetics ; Humans ; *Micronuclei, Chromosome-Defective ; Mutation/genetics ; Neoplasms/genetics ; S Phase/genetics ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-06-05
    Description: The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaminets, Aliaksandr -- Heinrich, Theresa -- Mari, Muriel -- Grumati, Paolo -- Huebner, Antje K -- Akutsu, Masato -- Liebmann, Lutz -- Stolz, Alexandra -- Nietzsche, Sandor -- Koch, Nicole -- Mauthe, Mario -- Katona, Istvan -- Qualmann, Britta -- Weis, Joachim -- Reggiori, Fulvio -- Kurth, Ingo -- Hubner, Christian A -- Dikic, Ivan -- England -- Nature. 2015 Jun 18;522(7556):354-8. doi: 10.1038/nature14498. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. ; Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Kollegiengasse 10, 07743 Jena, Germany. ; 1] Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands [2] Department of Cell Biology, University Medical Center Utrecht, University of Groningen, Antonious Deusinglaan 1, 3713 AV Groningen, The Netherlands. ; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany. ; Electron Microscopy Center, Jena University Hospital, Friedrich-Schiller-University Jena, Ziegelmuhlenweg 1, 07743 Jena, Germany. ; Institute for Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany. ; Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany. ; 1] Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany [2] Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany [3] Institute of Immunology, School of Medicine University of Split, Mestrovicevo setaliste bb, 21 000 Split, Croatia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040720" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Apoptosis ; Autophagy/*physiology ; Biomarkers/metabolism ; Cell Line ; Endoplasmic Reticulum/chemistry/*metabolism ; Female ; Gene Deletion ; Humans ; Lysosomes/metabolism ; Male ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Neoplasm Proteins/deficiency/genetics/*metabolism ; Phagosomes/metabolism ; Protein Binding ; Sensory Receptor Cells/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-08-11
    Description: G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vafabakhsh, Reza -- Levitz, Joshua -- Isacoff, Ehud Y -- 2PN2EY018241/EY/NEI NIH HHS/ -- PN2 EY018241/EY/NEI NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):497-501. doi: 10.1038/nature14679. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA. ; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258295" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Drug Partial Agonism ; *Fluorescence Resonance Energy Transfer ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Conformation ; Rats ; Receptors, Metabotropic Glutamate/*chemistry/*classification/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-06-18
    Description: Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685948/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685948/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buenrostro, Jason D -- Wu, Beijing -- Litzenburger, Ulrike M -- Ruff, Dave -- Gonzales, Michael L -- Snyder, Michael P -- Chang, Howard Y -- Greenleaf, William J -- 5U54HG00455805/HG/NHGRI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50HG007735/HG/NHGRI NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- T32HG000044/HG/NHGRI NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19AI057266/AI/NIAID NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- UH2 AR067676/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 23;523(7561):486-90. doi: 10.1038/nature14590. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Fluidigm Corporation, South San Francisco, California 94080, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Applied Physics, Stanford University, Stanford, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Compartmentation ; Cell Cycle/genetics ; Cell Line ; Cells/classification/*metabolism ; Chromatin/*genetics/*metabolism ; DNA/genetics/metabolism ; Epigenesis, Genetic ; *Epigenomics ; Genome, Human/genetics ; Humans ; Microfluidics ; Signal Transduction ; Single-Cell Analysis/*methods ; Transcription Factors/metabolism ; Transposases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-01-21
    Description: The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnupf, Pamela -- Gaboriau-Routhiau, Valerie -- Gros, Marine -- Friedman, Robin -- Moya-Nilges, Maryse -- Nigro, Giulia -- Cerf-Bensussan, Nadine -- Sansonetti, Philippe J -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 2;520(7545):99-103. doi: 10.1038/nature14027. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Institut national de la recherche agronomique (INRA) Micalis UMR1319, 78350 Jouy-en-Josas, France [3] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France [2] Ecole Normale Superieure de Lyon, Department of Biology, 69007 Lyon, France. ; Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; Imagopole, Ultrastructural Microscopy Platform, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] Microbiologie et Maladies Infectieuses, College de France, 11 Marcelin Berthelot Square, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600271" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Bacteria/cytology/*growth & development/*immunology ; Cell Line ; Coculture Techniques/*methods ; Escherichia coli/cytology/growth & development/immunology ; Feces/microbiology ; Female ; Germ-Free Life ; Humans ; Immunity, Mucosal/immunology ; Intestinal Mucosa/cytology/immunology/microbiology ; Intestines/cytology/*immunology/*microbiology ; Lymphocytes/cytology/*immunology ; Male ; Mice ; Microbial Viability ; Peyer's Patches/immunology ; Symbiosis/*immunology ; Th17 Cells/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-02-18
    Description: The BCR-ABL1 fusion gene is a driver oncogene in chronic myeloid leukaemia and 30-50% of cases of adult acute lymphoblastic leukaemia. Introduction of ABL1 kinase inhibitors (for example, imatinib) has markedly improved patient survival, but acquired drug resistance remains a challenge. Point mutations in the ABL1 kinase domain weaken inhibitor binding and represent the most common clinical resistance mechanism. The BCR-ABL1 kinase domain gatekeeper mutation Thr315Ile (T315I) confers resistance to all approved ABL1 inhibitors except ponatinib, which has toxicity limitations. Here we combine comprehensive drug sensitivity and resistance profiling of patient cells ex vivo with structural analysis to establish the VEGFR tyrosine kinase inhibitor axitinib as a selective and effective inhibitor for T315I-mutant BCR-ABL1-driven leukaemia. Axitinib potently inhibited BCR-ABL1(T315I), at both biochemical and cellular levels, by binding to the active form of ABL1(T315I) in a mutation-selective binding mode. These findings suggest that the T315I mutation shifts the conformational equilibrium of the kinase in favour of an active (DFG-in) A-loop conformation, which has more optimal binding interactions with axitinib. Treatment of a T315I chronic myeloid leukaemia patient with axitinib resulted in a rapid reduction of T315I-positive cells from bone marrow. Taken together, our findings demonstrate an unexpected opportunity to repurpose axitinib, an anti-angiogenic drug approved for renal cancer, as an inhibitor for ABL1 gatekeeper mutant drug-resistant leukaemia patients. This study shows that wild-type proteins do not always sample the conformations available to disease-relevant mutant proteins and that comprehensive drug testing of patient-derived cells can identify unpredictable, clinically significant drug-repositioning opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pemovska, Tea -- Johnson, Eric -- Kontro, Mika -- Repasky, Gretchen A -- Chen, Jeffrey -- Wells, Peter -- Cronin, Ciaran N -- McTigue, Michele -- Kallioniemi, Olli -- Porkka, Kimmo -- Murray, Brion W -- Wennerberg, Krister -- England -- Nature. 2015 Mar 5;519(7541):102-5. doi: 10.1038/nature14119. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; La Jolla Laboratories, Pfizer Worldwide Research &Development, San Diego, California 92121, USA. ; Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, 00290 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686603" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/chemistry/pharmacology/therapeutic use ; Cell Line ; Cell Proliferation/drug effects ; Crystallization ; Crystallography, X-Ray ; Drug Repositioning ; Drug Resistance, Neoplasm/genetics ; Drug Screening Assays, Antitumor ; Fusion Proteins, bcr-abl/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Imidazoles/*chemistry/*pharmacology/therapeutic use ; Indazoles/*chemistry/*pharmacology/therapeutic use ; Kidney Neoplasms/drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy/genetics/metabolism ; Models, Molecular ; Molecular Conformation ; Phosphorylation/drug effects ; Protein Binding ; Protein Kinase Inhibitors/chemistry/pharmacology/therapeutic use ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor Receptor-2/antagonists & ; inhibitors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gravitz, Lauren -- England -- Nature. 2015 May 21;521(7552):S60-1. doi: 10.1038/521S60a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25992675" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/genetics/*physiology ; *Behavior, Animal ; DNA Methylation ; Epigenesis, Genetic/genetics/physiology ; Feeding Behavior ; Female ; Humans ; Instinct ; Male ; Models, Biological ; Reproduction/genetics/physiology ; Social Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-06-23
    Description: Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540238/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540238/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleinstiver, Benjamin P -- Prew, Michelle S -- Tsai, Shengdar Q -- Topkar, Ved V -- Nguyen, Nhu T -- Zheng, Zongli -- Gonzales, Andrew P W -- Li, Zhuyun -- Peterson, Randall T -- Yeh, Jing-Ruey Joanna -- Aryee, Martin J -- Joung, J Keith -- DP1 GM105378/DP/NCCDPHP CDC HHS/ -- DP1 GM105378/GM/NIGMS NIH HHS/ -- R01 GM088040/GM/NIGMS NIH HHS/ -- R01 GM107427/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [3] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden. ; 1] Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Broad Institute, Cambridge, Massachusetts 02142, USA. ; Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098369" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution/genetics ; Animals ; CRISPR-Associated Proteins/*genetics/*metabolism ; CRISPR-Cas Systems ; Cell Line ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Directed Molecular Evolution ; Genome/genetics ; Humans ; Mutation/genetics ; *Nucleotide Motifs ; Protein Engineering/*methods ; Staphylococcus aureus/enzymology ; Streptococcus pyogenes/*enzymology ; Streptococcus thermophilus/enzymology ; Substrate Specificity/genetics ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-04-24
    Description: It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diogo, Rui -- Kelly, Robert G -- Christiaen, Lionel -- Levine, Michael -- Ziermann, Janine M -- Molnar, Julia L -- Noden, Drew M -- Tzahor, Eldad -- NS076542/NS/NINDS NIH HHS/ -- R01 NS076542/NS/NINDS NIH HHS/ -- R01GM096032/GM/NIGMS NIH HHS/ -- R01HL108643/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):466-73. doi: 10.1038/nature14435.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Howard University College of Medicine, Washington DC 20059, USA. ; Aix Marseille Universite, Centre National de la Recherche Scientifique, Institut de Biologie du Developpement de Marseille UMR 7288, 13288 Marseille, France. ; Center for Developmental Genetics, Department of Biology, New York University, New York 10003, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, California 94720, USA. ; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA. ; Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903628" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Branchial Region/anatomy & histology/cytology/*embryology ; Head/*anatomy & histology/*embryology ; Heart/*anatomy & histology/*embryology ; Mesoderm/cytology ; Models, Biological ; Muscles/anatomy & histology/cytology/embryology ; Neural Crest/cytology ; Vertebrates/*anatomy & histology/*embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-10-13
    Description: The most abundant mRNA post-transcriptional modification is N(6)-methyladenosine (m(6)A), which has broad roles in RNA biology. In mammalian cells, the asymmetric distribution of m(6)A along mRNAs results in relatively less methylation in the 5' untranslated region (5'UTR) compared to other regions. However, whether and how 5'UTR methylation is regulated is poorly understood. Despite the crucial role of the 5'UTR in translation initiation, very little is known about whether m(6)A modification influences mRNA translation. Here we show that in response to heat shock stress, certain adenosines within the 5'UTR of newly transcribed mRNAs are preferentially methylated. We find that the dynamic 5'UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well-characterized m(6)A 'reader'. Upon heat shock stress, the nuclear YTHDF2 preserves 5'UTR methylation of stress-induced transcripts by limiting the m(6)A 'eraser' FTO from demethylation. Remarkably, the increased 5'UTR methylation in the form of m(6)A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single m(6)A modification site in the 5'UTR enables translation initiation independent of the 5' end N(7)-methylguanosine cap. The elucidation of the dynamic features of 5'UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m(6)A, but also uncovers a previously unappreciated translational control mechanism in heat shock response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jun -- Wan, Ji -- Gao, Xiangwei -- Zhang, Xingqian -- Jaffrey, Samie R -- Qian, Shu-Bing -- DA037150/DA/NIDA NIH HHS/ -- DP2OD006449/OD/NIH HHS/ -- R01AG042400/AG/NIA NIH HHS/ -- England -- Nature. 2015 Oct 22;526(7574):591-4. doi: 10.1038/nature15377. Epub 2015 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA. ; Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York City, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26458103" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Adenosine/*analogs & derivatives/metabolism ; Animals ; Cell Line ; Cell Nucleus/metabolism ; Fibroblasts/cytology/metabolism ; *Gene Expression Regulation ; HSP70 Heat-Shock Proteins/genetics ; *Heat-Shock Response/genetics ; *Methylation ; Mice ; Mixed Function Oxygenases/antagonists & inhibitors/metabolism ; Oxo-Acid-Lyases/antagonists & inhibitors/metabolism ; *Peptide Chain Initiation, Translational ; RNA Caps/metabolism ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-01-28
    Description: Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401560/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401560/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marsolier, J -- Perichon, M -- DeBarry, J D -- Villoutreix, B O -- Chluba, J -- Lopez, T -- Garrido, C -- Zhou, X Z -- Lu, K P -- Fritsch, L -- Ait-Si-Ali, S -- Mhadhbi, M -- Medjkane, S -- Weitzman, J B -- 08-0111/Worldwide Cancer Research/United Kingdom -- R01 CA167677/CA/NCI NIH HHS/ -- R01CA167677/CA/NCI NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):378-82. doi: 10.1038/nature14044. Epub 2015 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite Paris Diderot, Sorbonne Paris Cite, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France. ; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA. ; Universite Paris Diderot, Sorbonne Paris Cite, Molecules Therapeutiques in silico, INSERM UMR-S 973, 75013 Paris, France. ; 1] INSERM, UMR 866, Equipe labellisee Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, 21000 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 21000 Dijon, France. ; 1] INSERM, UMR 866, Equipe labellisee Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, 21000 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 21000 Dijon, France [3] Centre anticancereux George Francois Leclerc, CGFL, 21000 Dijon, France. ; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Laboratoire de Parasitologie, Ecole Nationale de Medecine Veterinaire, Universite de la Manouba, 2020 Sidi Thabet, Tunisia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25624101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cell Line ; *Cell Transformation, Neoplastic/drug effects ; Drug Resistance/genetics ; *Host-Parasite Interactions ; Humans ; Leukocytes/drug effects/parasitology/*pathology ; Naphthoquinones/pharmacology ; Parasites/drug effects/enzymology/pathogenicity ; Peptidylprolyl Isomerase/antagonists & inhibitors/genetics/*metabolism/*secretion ; Protein Stability ; Proto-Oncogene Proteins c-jun/metabolism ; SKP Cullin F-Box Protein Ligases/metabolism ; Signal Transduction/drug effects ; Theileria/drug effects/*enzymology/genetics/*pathogenicity ; Transcription Factor AP-1/metabolism ; Ubiquitination ; Xenograft Model Antitumor Assays ; Zebrafish/embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-08-19
    Description: Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca(2+)- and Mg(2+)-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca(2+)-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca(2+)-triggered neurotransmitter release in mouse hippocampal neuronal synapses and for Ca(2+)-triggered vesicle fusion in a reconstituted system. We propose that this interface forms before Ca(2+) triggering, moves en bloc as Ca(2+) influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Qiangjun -- Lai, Ying -- Bacaj, Taulant -- Zhao, Minglei -- Lyubimov, Artem Y -- Uervirojnangkoorn, Monarin -- Zeldin, Oliver B -- Brewster, Aaron S -- Sauter, Nicholas K -- Cohen, Aina E -- Soltis, S Michael -- Alonso-Mori, Roberto -- Chollet, Matthieu -- Lemke, Henrik T -- Pfuetzner, Richard A -- Choi, Ucheor B -- Weis, William I -- Diao, Jiajie -- Sudhof, Thomas C -- Brunger, Axel T -- GM095887/GM/NIGMS NIH HHS/ -- GM102520/GM/NIGMS NIH HHS/ -- MH086403/MH/NIMH NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P50 MH086403/MH/NIMH NIH HHS/ -- R01 GM077071/GM/NIGMS NIH HHS/ -- R01 GM095887/GM/NIGMS NIH HHS/ -- R01 GM102520/GM/NIGMS NIH HHS/ -- R37 MH063105/MH/NIMH NIH HHS/ -- R37MH63105/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 3;525(7567):62-7. doi: 10.1038/nature14975. Epub 2015 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA. ; Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; SLAC National Accelerator Laboratory, Stanford, California 94305, USA. ; Departments of Structural Biology, Molecular and Cellular Physiology, and Photon Science, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26280336" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites/genetics ; Calcium/chemistry/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Electrons ; *Exocytosis ; Hippocampus/cytology ; Lasers ; Magnesium/chemistry/metabolism ; Membrane Fusion ; Mice ; Models, Biological ; Models, Molecular ; Mutation/genetics ; Neurons/chemistry/cytology/*metabolism/secretion ; SNARE Proteins/*chemistry/genetics/*metabolism ; Synaptic Transmission ; Synaptic Vesicles/chemistry/metabolism/secretion ; Synaptotagmins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Yingying -- England -- Nature. 2015 Dec 17;528(7582):S170-3. doi: 10.1038/528S170a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26673023" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Science Disciplines ; Chemistry ; China ; Diffusion of Innovation ; Ecology ; Economic Recession ; Humans ; International Cooperation ; Nobel Prize ; Physics ; Research/economics/manpower/standards/*statistics & numerical data ; Research Personnel/education/standards/supply & distribution ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-04-22
    Description: Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins. However, HERVK is transcriptionally silenced by the host, with the exception of in certain pathological contexts such as germ-cell tumours, melanoma or human immunodeficiency virus (HIV) infection. Here we demonstrate that DNA hypomethylation at long terminal repeat elements representing the most recent genomic integrations, together with transactivation by OCT4 (also known as POU5F1), synergistically facilitate HERVK expression. Consequently, HERVK is transcribed during normal human embryogenesis, beginning with embryonic genome activation at the eight-cell stage, continuing through the emergence of epiblast cells in preimplantation blastocysts, and ceasing during human embryonic stem cell derivation from blastocyst outgrowths. Remarkably, we detected HERVK viral-like particles and Gag proteins in human blastocysts, indicating that early human development proceeds in the presence of retroviral products. We further show that overexpression of one such product, the HERVK accessory protein Rec, in a pluripotent cell line is sufficient to increase IFITM1 levels on the cell surface and inhibit viral infection, suggesting at least one mechanism through which HERVK can induce viral restriction pathways in early embryonic cells. Moreover, Rec directly binds a subset of cellular RNAs and modulates their ribosome occupancy, indicating that complex interactions between retroviral proteins and host factors can fine-tune pathways of early human development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grow, Edward J -- Flynn, Ryan A -- Chavez, Shawn L -- Bayless, Nicholas L -- Wossidlo, Mark -- Wesche, Daniel J -- Martin, Lance -- Ware, Carol B -- Blish, Catherine A -- Chang, Howard Y -- Pera, Renee A Reijo -- Wysocka, Joanna -- 1F30CA189514-01/CA/NCI NIH HHS/ -- 1S10RR02678001/RR/NCRR NIH HHS/ -- 1S10RR02933801/RR/NCRR NIH HHS/ -- DP2 AI112193/AI/NIAID NIH HHS/ -- DP2AI11219301/AI/NIAID NIH HHS/ -- F30 CA189514/CA/NCI NIH HHS/ -- P01GM099130/GM/NIGMS NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 GM112720/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 11;522(7555):221-5. doi: 10.1038/nature14308. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, Beaverton, Oregon 97006, USA. ; Stanford Immunology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Department of Comparative Medicine, University of Washington, Seattle, Washington 98195-8056, USA. ; Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [4] Department of Cell Biology and Neurosciences, Montana State University, Bozeman, Montana 59717, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [3] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896322" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation/metabolism ; Blastocyst/cytology/metabolism/*virology ; Cell Line ; DNA Methylation ; Endogenous Retroviruses/genetics/*metabolism ; Female ; Gene Products, gag/metabolism ; Humans ; Male ; Octamer Transcription Factor-3/metabolism ; Open Reading Frames/genetics ; Pluripotent Stem Cells/cytology/metabolism/*virology ; RNA, Messenger/genetics/metabolism ; Ribosomes/genetics/metabolism ; Terminal Repeat Sequences/genetics ; Transcription, Genetic/genetics ; Transcriptional Activation ; Viral Envelope Proteins/genetics/metabolism ; *Virus Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-07-16
    Description: Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640681/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640681/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinayak, Sumiti -- Pawlowic, Mattie C -- Sateriale, Adam -- Brooks, Carrie F -- Studstill, Caleb J -- Bar-Peled, Yael -- Cipriano, Michael J -- Striepen, Boris -- R01 AI112427/AI/NIAID NIH HHS/ -- R01AI112427/AI/NIAID NIH HHS/ -- T32 AI060546/AI/NIAID NIH HHS/ -- T32AI060546/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):477-80. doi: 10.1038/nature14651. Epub 2015 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, USA. ; 1] Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, USA [2] Department of Cellular Biology, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26176919" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/pharmacology ; Animals ; Antimalarials/pharmacology ; CRISPR-Cas Systems ; Cell Line ; Cryptosporidiosis/complications/*parasitology ; Cryptosporidium parvum/enzymology/*genetics/growth & development ; Diarrhea/complications/*parasitology ; Drug Evaluation, Preclinical ; Drug Resistance ; Female ; Gene Deletion ; Gene Knockout Techniques ; Genes, Reporter ; Genetic Engineering/*methods ; Humans ; Intestines/parasitology ; Mice ; Models, Animal ; Sporozoites ; Thymidine Kinase/deficiency/genetics ; Transfection/methods ; Trimethoprim/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-02-03
    Description: The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here we show that repair by alternative NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify polymerase theta (Poltheta; encoded by Polq in mice) as a crucial alternative NHEJ factor in mammalian cells. Polq inhibition suppresses alternative NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that loss of Polq in mice results in increased rates of homology-directed repair, evident by recombination of dysfunctional telomeres and accumulation of RAD51 at double-stranded breaks. Lastly, we show that depletion of Poltheta has a synergistic effect on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumours carrying mutations in homology-directed repair genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mateos-Gomez, Pedro A -- Gong, Fade -- Nair, Nidhi -- Miller, Kyle M -- Lazzerini-Denchi, Eros -- Sfeir, Agnel -- AG038677/AG/NIA NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 AG038677/AG/NIA NIH HHS/ -- England -- Nature. 2015 Feb 12;518(7538):254-7. doi: 10.1038/nature14157. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000, Austin, Texas 78712, USA. ; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642960" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Death/genetics ; Cell Line ; Chromosome Aberrations ; Chromosomes, Mammalian/genetics/*metabolism ; *DNA Breaks, Double-Stranded ; *DNA End-Joining Repair ; DNA-Directed DNA Polymerase/deficiency/*metabolism ; Genes, BRCA1 ; Genes, BRCA2 ; HeLa Cells ; Humans ; Mice ; Poly(ADP-ribose) Polymerases/genetics/metabolism ; Rad51 Recombinase/metabolism ; *Recombination, Genetic/genetics ; Recombinational DNA Repair/genetics ; Telomere/*genetics/*metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-03-13
    Description: Stochastic processes in cells are associated with fluctuations in mRNA, protein production and degradation, noisy partition of cellular components at division, and other cell processes. Variability within a clonal population of cells originates from such stochastic processes, which may be amplified or reduced by deterministic factors. Cell-to-cell variability, such as that seen in the heterogeneous response of bacteria to antibiotics, or of cancer cells to treatment, is understood as the inevitable consequence of stochasticity. Variability in cell-cycle duration was observed long ago; however, its sources are still unknown. A central question is whether the variance of the observed distribution originates from stochastic processes, or whether it arises mostly from a deterministic process that only appears to be random. A surprising feature of cell-cycle-duration inheritance is that it seems to be lost within one generation but to be still present in the next generation, generating poor correlation between mother and daughter cells but high correlation between cousin cells. This observation suggests the existence of underlying deterministic factors that determine the main part of cell-to-cell variability. We developed an experimental system that precisely measures the cell-cycle duration of thousands of mammalian cells along several generations and a mathematical framework that allows discrimination between stochastic and deterministic processes in lineages of cells. We show that the inter- and intra-generation correlations reveal complex inheritance of the cell-cycle duration. Finally, we build a deterministic nonlinear toy model for cell-cycle inheritance that reproduces the main features of our data. Our approach constitutes a general method to identify deterministic variability in lineages of cells or organisms, which may help to predict and, eventually, reduce cell-to-cell heterogeneity in various systems, such as cancer cells under treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandler, Oded -- Mizrahi, Sivan Pearl -- Weiss, Noga -- Agam, Oded -- Simon, Itamar -- Balaban, Nathalie Q -- England -- Nature. 2015 Mar 26;519(7544):468-71. doi: 10.1038/nature14318. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel. ; 1] Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel [2] Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel. ; Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762143" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Cell Cycle/drug effects/*genetics ; Cell Division/drug effects/genetics ; Cell Line ; *Cell Lineage ; Mammals ; Models, Biological ; Stochastic Processes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-04-22
    Description: About half of human genes use alternative cleavage and polyadenylation (ApA) to generate messenger RNA transcripts that differ in the length of their 3' untranslated regions (3' UTRs) while producing the same protein. Here we show in human cell lines that alternative 3' UTRs differentially regulate the localization of membrane proteins. The long 3' UTR of CD47 enables efficient cell surface expression of CD47 protein, whereas the short 3' UTR primarily localizes CD47 protein to the endoplasmic reticulum. CD47 protein localization occurs post-translationally and independently of RNA localization. In our model of 3' UTR-dependent protein localization, the long 3' UTR of CD47 acts as a scaffold to recruit a protein complex containing the RNA-binding protein HuR (also known as ELAVL1) and SET to the site of translation. This facilitates interaction of SET with the newly translated cytoplasmic domains of CD47 and results in subsequent translocation of CD47 to the plasma membrane via activated RAC1 (ref. 5). We also show that CD47 protein has different functions depending on whether it was generated by the short or long 3' UTR isoforms. Thus, ApA contributes to the functional diversity of the proteome without changing the amino acid sequence. 3' UTR-dependent protein localization has the potential to be a widespread trafficking mechanism for membrane proteins because HuR binds to thousands of mRNAs, and we show that the long 3' UTRs of CD44, ITGA1 and TNFRSF13C, which are bound by HuR, increase surface protein expression compared to their corresponding short 3' UTRs. We propose that during translation the scaffold function of 3' UTRs facilitates binding of proteins to nascent proteins to direct their transport or function--and this role of 3' UTRs can be regulated by ApA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkovits, Binyamin D -- Mayr, Christine -- DRR-24-13/Damon Runyon Cancer Research Foundation/ -- P30 CA008748/CA/NCI NIH HHS/ -- U01 CA164190/CA/NCI NIH HHS/ -- U01-CA164190/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jun 18;522(7556):363-7. doi: 10.1038/nature14321. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896326" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/*genetics ; Antigens, CD47/*genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; ELAV Proteins/metabolism ; ELAV-Like Protein 1 ; Endoplasmic Reticulum/metabolism ; Genes, Reporter ; Histone Chaperones/metabolism ; Humans ; Membrane Proteins/*metabolism ; Polyadenylation ; Protein Transport ; RNA Isoforms/*genetics/metabolism ; RNA, Messenger/chemistry/genetics/metabolism ; Transcription Factors/metabolism ; rac1 GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-09-30
    Description: Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per degrees C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 +/- 1.8 days degrees C(-1) during 1980-1994 to 2.3 +/- 1.6 days degrees C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Yongshuo H -- Zhao, Hongfang -- Piao, Shilong -- Peaucelle, Marc -- Peng, Shushi -- Zhou, Guiyun -- Ciais, Philippe -- Huang, Mengtian -- Menzel, Annette -- Penuelas, Josep -- Song, Yang -- Vitasse, Yann -- Zeng, Zhenzhong -- Janssens, Ivan A -- England -- Nature. 2015 Oct 1;526(7571):104-7. doi: 10.1038/nature15402. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. ; Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium. ; Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China. ; Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing 100085, China. ; Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette 91190, France. ; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. ; Ecoclimatology, Technische Universitat Munchen, Freising 85354, Germany. ; Technische Universitat Munchen, Institute for Advanced Study, Lichtenbergstrasse 2a, 85748 Garching, Germany. ; CREAF, Cerdanyola del Valles, Barcelona 08193, Catalonia, Spain. ; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, Barcelona 08193, Catalonia, Spain. ; Department of Atmospheric Sciences, University of Illinois, Urbana, Illinois 61801, USA. ; University of Neuchatel, Institute of Geography, Neuchatel 2000, Switzerland. ; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Neuchatel 2000, Switzerland. ; WSL Institute for Snow and Avalanche Research SLF, Group Mountain Ecosystems, Davos 7260, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416746" target="_blank"〉PubMed〈/a〉
    Keywords: Cold Temperature ; Europe ; *Global Warming ; Models, Biological ; Photoperiod ; Plant Leaves/*growth & development ; *Seasons ; Time Factors ; Trees/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-07-30
    Description: DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior beta-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ningning -- Zhai, Yuanliang -- Zhang, Yixiao -- Li, Wanqiu -- Yang, Maojun -- Lei, Jianlin -- Tye, Bik-Kwoon -- Gao, Ning -- England -- Nature. 2015 Aug 13;524(7564):186-91. doi: 10.1038/nature14685. Epub 2015 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. ; 1] Division of Life Science, Hong Kong Universityof Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China [2] Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26222030" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/chemistry/metabolism/ultrastructure ; Chromatin/chemistry ; Conserved Sequence ; *Cryoelectron Microscopy ; DNA/chemistry/metabolism/ultrastructure ; DNA-Directed DNA Polymerase/chemistry/ultrastructure ; G1 Phase ; Minichromosome Maintenance Proteins/*chemistry/metabolism/*ultrastructure ; Models, Biological ; Models, Molecular ; Multienzyme Complexes/chemistry/ultrastructure ; Nucleic Acid Denaturation ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/metabolism ; Replication Origin ; Saccharomyces cerevisiae/*chemistry/*ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-03-25
    Description: The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood. Here we find in mammalian cells that methyltransferase-like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the N(6)-methyladenosine (m(6)A) mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type-specific manner. Our findings reveal that the m(6)A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alarcon, Claudio R -- Lee, Hyeseung -- Goodarzi, Hani -- Halberg, Nils -- Tavazoie, Sohail F -- T32 CA009673/CA/NCI NIH HHS/ -- England -- Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799998" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Base Sequence ; Cell Line ; Gene Expression Regulation ; Humans ; Methylation ; Methyltransferases/deficiency/metabolism ; MicroRNAs/*chemistry/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Processing, Post-Transcriptional ; RNA-Binding Proteins/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamilton, Garry -- England -- Nature. 2015 Sep 24;525(7570):444-6. doi: 10.1038/525444a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26399812" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/pathology ; Animals ; Biological Therapy/*adverse effects ; Cell Nucleus/*genetics ; DNA, Mitochondrial/genetics ; Drosophila melanogaster/cytology/genetics ; *Evolution, Molecular ; Female ; Genome, Mitochondrial/genetics ; Haplotypes/genetics ; Humans ; Male ; Mice ; Mitochondria/*genetics/pathology/physiology/*transplantation ; Mitochondrial Diseases/genetics/*pathology/*therapy ; Models, Biological ; Neoplasms/genetics/pathology ; Neurodegenerative Diseases/genetics/pathology ; Obesity/genetics/pathology/therapy ; Risk Assessment/ethics/standards ; Symbiosis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-04-10
    Description: The main organelles of the secretory and endocytic pathways--the endoplasmic reticulum (ER) and endosomes, respectively--are connected through contact sites whose numbers increase as endosomes mature. One function of such sites is to enable dephosphorylation of the cytosolic tails of endosomal signalling receptors by an ER-associated phosphatase, whereas others serve to negatively control the association of endosomes with the minus-end-directed microtubule motor dynein or mediate endosome fission. Cholesterol transfer and Ca(2+) exchange have been proposed as additional functions of such sites. However, the compositions, activities and regulations of ER-endosome contact sites remain incompletely understood. Here we show in human and rat cell lines that protrudin, an ER protein that promotes protrusion and neurite outgrowth, forms contact sites with late endosomes (LEs) via coincident detection of the small GTPase RAB7 and phosphatidylinositol 3-phosphate (PtdIns(3)P). These contact sites mediate transfer of the microtubule motor kinesin 1 from protrudin to the motor adaptor FYCO1 on LEs. Repeated LE-ER contacts promote microtubule-dependent translocation of LEs to the cell periphery and subsequent synaptotagmin-VII-dependent fusion with the plasma membrane. Such fusion induces outgrowth of protrusions and neurites, which requires the abilities of protrudin and FYCO1 to interact with LEs and kinesin 1. Thus, protrudin-containing ER-LE contact sites are platforms for kinesin-1 loading onto LEs, and kinesin-1-mediated translocation of LEs to the plasma membrane, fuelled by repeated ER contacts, promotes protrusion and neurite outgrowth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raiborg, Camilla -- Wenzel, Eva M -- Pedersen, Nina M -- Olsvik, Hallvard -- Schink, Kay O -- Schultz, Sebastian W -- Vietri, Marina -- Nisi, Veronica -- Bucci, Cecilia -- Brech, Andreas -- Johansen, Terje -- Stenmark, Harald -- England -- Nature. 2015 Apr 9;520(7546):234-8. doi: 10.1038/nature14359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway [2] Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway. ; Institute of Medical Biology, University of Tromso - The Arctic University of Norway, N-9037 Tromso, Norway. ; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855459" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Biological Transport ; Cell Line ; Cell Membrane/metabolism ; DNA-Binding Proteins/metabolism ; Endoplasmic Reticulum/*metabolism ; Endosomes/*metabolism ; HeLa Cells ; Humans ; Kinesin/metabolism ; Microtubules/metabolism ; Neurites/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Rats ; Synaptotagmins/metabolism ; Transcription Factors/metabolism ; Vesicular Transport Proteins/metabolism ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-11-10
    Description: One of the most important questions in biology is how transcription factors (TFs) and cofactors control enhancer function and thus gene expression. Enhancer activation usually requires combinations of several TFs, indicating that TFs function synergistically and combinatorially. However, while TF binding has been extensively studied, little is known about how combinations of TFs and cofactors control enhancer function once they are bound. It is typically unclear which TFs participate in combinatorial enhancer activation, whether different TFs form functionally distinct groups, or if certain TFs might substitute for each other in defined enhancer contexts. Here we assess the potential regulatory contributions of TFs and cofactors to combinatorial enhancer control with enhancer complementation assays. We recruited GAL4-DNA-binding-domain fusions of 812 Drosophila TFs and cofactors to 24 enhancer contexts and measured enhancer activities by 82,752 luciferase assays in S2 cells. Most factors were functional in at least one context, yet their contributions differed between contexts and varied from repression to activation (up to 289-fold) for individual factors. Based on functional similarities across contexts, we define 15 groups of TFs that differ in developmental functions and protein sequence features. Similar TFs can substitute for each other, enabling enhancer re-engineering by exchanging TF motifs, and TF-cofactor pairs cooperate during enhancer control and interact physically. Overall, we show that activators and repressors can have diverse regulatory functions that typically depend on the enhancer context. The systematic functional characterization of TFs and cofactors should further our understanding of combinatorial enhancer control and gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stampfel, Gerald -- Kazmar, Tomas -- Frank, Olga -- Wienerroither, Sebastian -- Reiter, Franziska -- Stark, Alexander -- England -- Nature. 2015 Dec 3;528(7580):147-51. doi: 10.1038/nature15545. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550828" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Line ; DNA/genetics/metabolism ; Down-Regulation/genetics ; Drosophila melanogaster/genetics ; Enhancer Elements, Genetic/*genetics ; *Gene Expression Regulation/genetics ; Genes, Reporter/genetics ; Genetic Complementation Test ; Luciferases/genetics/metabolism ; Protein Binding ; Transcription Factors/*metabolism ; *Transcription, Genetic/genetics ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-02-03
    Description: Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, A Phillip -- Khoury-Hanold, William -- Staron, Matthew -- Tal, Michal C -- Pineda, Cristiana M -- Lang, Sabine M -- Bestwick, Megan -- Duguay, Brett A -- Raimundo, Nuno -- MacDuff, Donna A -- Kaech, Susan M -- Smiley, James R -- Means, Robert E -- Iwasaki, Akiko -- Shadel, Gerald S -- F31 AG039163/AG/NIA NIH HHS/ -- F32 DK091042/DK/NIDDK NIH HHS/ -- MOP37995/Canadian Institutes of Health Research/Canada -- P01 ES011163/ES/NIEHS NIH HHS/ -- R01 AG047632/AG/NIA NIH HHS/ -- R01 AI054359/AI/NIAID NIH HHS/ -- R01 AI081884/AI/NIAID NIH HHS/ -- T32 AI055403/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):553-7. doi: 10.1038/nature14156. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA. ; Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada. ; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA. ; 1] Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA, Mitochondrial/*metabolism ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Female ; Gene Expression Regulation/genetics/immunology ; Herpesvirus 1, Human/*immunology ; High Mobility Group Proteins/deficiency/genetics/metabolism ; Humans ; Immunity, Innate/*immunology ; Interferon Regulatory Factor-3/metabolism ; Interferon Type I/immunology ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/metabolism ; *Stress, Physiological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-01-22
    Description: Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monier, Bruno -- Gettings, Melanie -- Gay, Guillaume -- Mangeat, Thomas -- Schott, Sonia -- Guarner, Ana -- Suzanne, Magali -- England -- Nature. 2015 Feb 12;518(7538):245-8. doi: 10.1038/nature14152. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Universite de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France [2] CNRS, LBCMCP, F-31062 Toulouse, France. ; DamCB, Data Analysis and Modelling for Cell Biology, 13005 Marseille, France. ; Centro de Biologia Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607361" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/chemistry/metabolism ; Animals ; *Apoptosis ; *Cell Polarity ; Cell Shape ; Drosophila melanogaster/*cytology/*embryology ; Epithelial Cells/*cytology/metabolism ; Epithelium/*embryology ; Models, Biological ; *Morphogenesis ; Myosin Type II/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-09-08
    Description: To contend with hazards posed by environmental fluoride, microorganisms export this anion through F(-)-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F(-) over Cl(-) and dual-topology dimeric assembly. To understand the chemical basis for F(-) permeation and how the antiparallel subunits convene to form a F(-)-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F(-) present, to a maximum resolution of 2.1 A. The structures reveal a surprising 'double-barrelled' channel architecture in which two F(-) ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na(+). F(-) selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stockbridge, Randy B -- Kolmakova-Partensky, Ludmila -- Shane, Tania -- Koide, Akiko -- Koide, Shohei -- Miller, Christopher -- Newstead, Simon -- 102890/Z/13/Z/Wellcome Trust/United Kingdom -- K99 GM111767/GM/NIGMS NIH HHS/ -- K99-GM-111767/GM/NIGMS NIH HHS/ -- R01 GM107023/GM/NIGMS NIH HHS/ -- R01-GM107023/GM/NIGMS NIH HHS/ -- U54 GM087519/GM/NIGMS NIH HHS/ -- U54-GM087519/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):548-51. doi: 10.1038/nature14981. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA. ; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA. ; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QU, UK. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344196" target="_blank"〉PubMed〈/a〉
    Keywords: Anions/chemistry/metabolism/pharmacology ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Fluorides/chemistry/*metabolism/*pharmacology ; Ion Channels/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Phenylalanine/metabolism ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-05-27
    Description: Cells sense the context in which they grow to adapt their phenotype and allow multicellular patterning by mechanisms of autocrine and paracrine signalling. However, patterns also form in cell populations exposed to the same signalling molecules and substratum, which often correlate with specific features of the population context of single cells, such as local cell crowding. Here we reveal a cell-intrinsic molecular mechanism that allows multicellular patterning without requiring specific communication between cells. It acts by sensing the local crowding of a single cell through its ability to spread and activate focal adhesion kinase (FAK, also known as PTK2), resulting in adaptation of genes controlling membrane homeostasis. In cells experiencing low crowding, FAK suppresses transcription of the ABC transporter A1 (ABCA1) by inhibiting FOXO3 and TAL1. Agent-based computational modelling and experimental confirmation identified membrane-based signalling and feedback control as crucial for the emergence of population patterns of ABCA1 expression, which adapts membrane lipid composition to cell crowding and affects multiple signalling activities, including the suppression of ABCA1 expression itself. The simple design of this cell-intrinsic system and its broad impact on the signalling state of mammalian single cells suggests a fundamental role for a tunable membrane lipid composition in collective cell behaviour.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frechin, Mathieu -- Stoeger, Thomas -- Daetwyler, Stephan -- Gehin, Charlotte -- Battich, Nico -- Damm, Eva-Maria -- Stergiou, Lilli -- Riezman, Howard -- Pelkmans, Lucas -- England -- Nature. 2015 Jul 2;523(7558):88-91. doi: 10.1038/nature14429. Epub 2015 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland. ; 1] Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland [2] Life Science Zurich Graduate School, Ph.D. program in Systems Biology. ETH Zurich and University of Zurich, 8057 Zurich, Switzerland. ; Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland. ; Institute of Molecular Systems Biology, ETH Zurich, 8057, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26009010" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Binding Cassette Transporter 1/genetics/metabolism ; *Adaptation, Physiological ; Animals ; Cell Communication/*physiology ; Cell Count ; Cell Line, Tumor ; Cell Membrane/*chemistry ; Fibroblasts/chemistry/*cytology/enzymology ; Focal Adhesion Protein-Tyrosine Kinases/metabolism ; Forkhead Transcription Factors/metabolism ; Gene Expression Regulation ; Homeostasis ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Lipids/*chemistry ; Mice ; Models, Biological ; *Signal Transduction ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-04-16
    Description: CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561520/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561520/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, Asaf -- Goren, Moran G -- Yosef, Ido -- Auster, Oren -- Manor, Miriam -- Amitai, Gil -- Edgar, Rotem -- Qimron, Udi -- Sorek, Rotem -- 260432/European Research Council/International -- 336079/European Research Council/International -- England -- Nature. 2015 Apr 23;520(7548):505-10. doi: 10.1038/nature14302. Epub 2015 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25874675" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Bacteriophages/*genetics ; CRISPR-Cas Systems/genetics ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Consensus Sequence/genetics ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA Replication/genetics ; DNA, Bacterial/*genetics ; DNA, Viral/*genetics ; Escherichia coli/*genetics ; Exodeoxyribonuclease V/metabolism ; Models, Biological ; Plasmids/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Sep 24;525(7570):426. doi: 10.1038/525426a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26399791" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cellular Reprogramming ; Embryonic Stem Cells/cytology/*metabolism ; Genotype ; Induced Pluripotent Stem Cells/cytology/*metabolism ; Peer Review, Research ; *Periodicals as Topic ; Reproducibility of Results ; Research/*standards ; *Retraction of Publication as Topic ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-12-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- Callaway, Ewen -- Castelvecchi, Davide -- Morello, Lauren -- Reardon, Sara -- Schiermeier, Quirin -- Witze, Alexandra -- England -- Nature. 2015 Dec 24;528(7583):448-51. doi: 10.1038/528448a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26701034" target="_blank"〉PubMed〈/a〉
    Keywords: CRISPR-Cas Systems/genetics ; Congresses as Topic ; Cryoelectron Microscopy ; Dengue Vaccines/supply & distribution ; Earthquakes/statistics & numerical data ; Ebola Vaccines/immunology ; Genetic Engineering/ethics/legislation & jurisprudence ; Global Warming/legislation & jurisprudence/prevention & control ; Humans ; Hydraulic Fracking/statistics & numerical data ; International Cooperation ; Malaria Vaccines/immunology ; Paris ; Physics ; Pluto ; Precision Medicine ; Reproducibility of Results ; Research/standards ; *Science ; Sexism/statistics & numerical data ; Space Flight
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-11-05
    Description: It is estimated that more than 170 million people are infected with hepatitis C virus (HCV) worldwide. Clinical trials have demonstrated that, for the first time in human history, the potential exists to eradicate a chronic viral disease using combination therapies that contain only direct-acting antiviral agents. HCV non-structural protein 5A (NS5A) is a multifunctional protein required for several stages of the virus replication cycle. NS5A replication complex inhibitors, exemplified by daclatasvir (DCV; also known as BMS-790052 and Daklinza), belong to the most potent class of direct-acting anti-HCV agents described so far, with in vitro activity in the picomolar (pM) to low nanomolar (nM) range. The potency observed in vitro has translated into clinical efficacy, with HCV RNA declining by ~3-4 log10 in infected patients after administration of single oral doses of DCV. Understanding the exceptional potency of DCV was a key objective of this study. Here we show that although DCV and an NS5A inhibitor analogue (Syn-395) are inactive against certain NS5A resistance variants, combinations of the pair enhance DCV potency by 〉1,000-fold, restoring activity to the pM range. This synergistic effect was validated in vivo using an HCV-infected chimaeric mouse model. The cooperative interaction of a pair of compounds suggests that NS5A protein molecules communicate with each other: one inhibitor binds to resistant NS5A, causing a conformational change that is transmitted to adjacent NS5As, resensitizing resistant NS5A so that the second inhibitor can act to restore inhibition. This unprecedented synergistic anti-HCV activity also enhances the resistance barrier of DCV, providing additional options for HCV combination therapy and new insight into the role of NS5A in the HCV replication cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Jin-Hua -- O'Boyle, Donald R 2nd -- Fridell, Robert A -- Langley, David R -- Wang, Chunfu -- Roberts, Susan B -- Nower, Peter -- Johnson, Benjamin M -- Moulin, Frederic -- Nophsker, Michelle J -- Wang, Ying-Kai -- Liu, Mengping -- Rigat, Karen -- Tu, Yong -- Hewawasam, Piyasena -- Kadow, John -- Meanwell, Nicholas A -- Cockett, Mark -- Lemm, Julie A -- Kramer, Melissa -- Belema, Makonen -- Gao, Min -- England -- Nature. 2015 Nov 12;527(7577):245-8. doi: 10.1038/nature15711. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Leads Discovery and Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536115" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Animals ; Antiviral Agents/*pharmacology ; Biphenyl Compounds/*pharmacology ; Cell Line ; Drug Resistance, Viral/*drug effects ; Drug Synergism ; Drug Therapy, Combination ; Hepacivirus/*drug effects/*genetics/metabolism ; Hepatitis C/virology ; Hepatocytes/transplantation ; Humans ; Imidazoles/*pharmacology ; Mice ; Models, Molecular ; Protein Conformation/drug effects ; Protein Multimerization/drug effects ; Protein Structure, Quaternary/drug effects ; Reproducibility of Results ; Viral Nonstructural Proteins/chemistry/genetics/*metabolism ; Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reardon, Sara -- England -- Nature. 2015 May 28;521(7553):402-3. doi: 10.1038/521402a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Antimicrobial Cationic Peptides/pharmacology/therapeutic use ; Bacteria/drug effects/virology ; Bacterial Infections/drug therapy/*microbiology/*therapy ; Bacteriophages/pathogenicity ; Bdellovibrio/physiology ; CRISPR-Cas Systems/genetics ; Cell Line ; Chemistry, Pharmaceutical/*trends ; Deltaproteobacteria/physiology ; Drug Resistance, Bacterial/drug effects ; Genes, Bacterial/genetics ; Metal Nanoparticles/therapeutic use ; Metals/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-12-04
    Description: Overflow metabolism refers to the seemingly wasteful strategy in which cells use fermentation instead of the more efficient respiration to generate energy, despite the availability of oxygen. Known as the Warburg effect in the context of cancer growth, this phenomenon occurs ubiquitously for fast-growing cells, including bacteria, fungi and mammalian cells, but its origin has remained unclear despite decades of research. Here we study metabolic overflow in Escherichia coli, and show that it is a global physiological response used to cope with changing proteomic demands of energy biogenesis and biomass synthesis under different growth conditions. A simple model of proteomic resource allocation can quantitatively account for all of the observed behaviours, and accurately predict responses to new perturbations. The key hypothesis of the model, that the proteome cost of energy biogenesis by respiration exceeds that by fermentation, is quantitatively confirmed by direct measurement of protein abundances via quantitative mass spectrometry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Basan, Markus -- Hui, Sheng -- Okano, Hiroyuki -- Zhang, Zhongge -- Shen, Yang -- Williamson, James R -- Hwa, Terence -- R01-GM109069/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Dec 3;528(7580):99-104. doi: 10.1038/nature15765.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California at San Diego, La Jolla, California 92093-0374, USA. ; Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland. ; Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA. ; Department of Integrative Structural and Computational Biology, Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. ; Institute for Theoretical Studies, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26632588" target="_blank"〉PubMed〈/a〉
    Keywords: Acetic Acid/metabolism ; Biomass ; Cell Respiration ; Energy Metabolism ; Escherichia coli/growth & development/*metabolism ; Escherichia coli Proteins/*metabolism ; Fermentation ; Mass Spectrometry ; Models, Biological ; Neoplasms/metabolism/pathology ; Oxygen/metabolism ; Proteome/*metabolism ; Proteomics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-12-04
    Description: Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minocherhomji, Sheroy -- Ying, Songmin -- Bjerregaard, Victoria A -- Bursomanno, Sara -- Aleliunaite, Aiste -- Wu, Wei -- Mankouri, Hocine W -- Shen, Huahao -- Liu, Ying -- Hickson, Ian D -- England -- Nature. 2015 Dec 10;528(7581):286-90. doi: 10.1038/nature16139. Epub 2015 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. ; Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China. ; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China. ; State Key Laboratory of Respiratory Disease (SKLRD), Guangzhou 510120, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26633632" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinogenesis/*genetics ; Cell Line, Tumor ; Chromosomal Instability ; Chromosome Fragile Sites ; Chromosome Segregation ; DNA Polymerase III/metabolism ; DNA Repair/*physiology ; *DNA Replication/genetics ; DNA-Binding Proteins/metabolism ; Endodeoxyribonucleases/genetics/*metabolism ; Endonucleases/metabolism ; *Gene Expression Regulation, Neoplastic ; HCT116 Cells ; HT29 Cells ; HeLa Cells ; Humans ; Mitosis/*genetics ; Models, Biological ; Nondisjunction, Genetic/genetics ; Stress, Physiological/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-08-13
    Description: Protein aggregates and damaged organelles are tagged with ubiquitin chains to trigger selective autophagy. To initiate mitophagy, the ubiquitin kinase PINK1 phosphorylates ubiquitin to activate the ubiquitin ligase parkin, which builds ubiquitin chains on mitochondrial outer membrane proteins, where they act to recruit autophagy receptors. Using genome editing to knockout five autophagy receptors in HeLa cells, here we show that two receptors previously linked to xenophagy, NDP52 and optineurin, are the primary receptors for PINK1- and parkin-mediated mitophagy. PINK1 recruits NDP52 and optineurin, but not p62, to mitochondria to activate mitophagy directly, independently of parkin. Once recruited to mitochondria, NDP52 and optineurin recruit the autophagy factors ULK1, DFCP1 and WIPI1 to focal spots proximal to mitochondria, revealing a function for these autophagy receptors upstream of LC3. This supports a new model in which PINK1-generated phospho-ubiquitin serves as the autophagy signal on mitochondria, and parkin then acts to amplify this signal. This work also suggests direct and broader roles for ubiquitin phosphorylation in other autophagy pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazarou, Michael -- Sliter, Danielle A -- Kane, Lesley A -- Sarraf, Shireen A -- Wang, Chunxin -- Burman, Jonathon L -- Sideris, Dionisia P -- Fogel, Adam I -- Youle, Richard J -- Intramural NIH HHS/ -- England -- Nature. 2015 Aug 20;524(7565):309-14. doi: 10.1038/nature14893. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266977" target="_blank"〉PubMed〈/a〉
    Keywords: Autophagy/*physiology ; Carrier Proteins/metabolism ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins/metabolism ; Microtubule-Associated Proteins/metabolism ; Mitochondria/metabolism ; Mitochondrial Degradation/*physiology ; Mitochondrial Proteins/metabolism ; Models, Biological ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Transcription Factor TFIIIA/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-01-28
    Description: The origin of mutations is central to understanding evolution and of key relevance to health. Variation occurs non-randomly across the genome, and mechanisms for this remain to be defined. Here we report that the 5' ends of Okazaki fragments have significantly increased levels of nucleotide substitution, indicating a replicative origin for such mutations. Using a novel method, emRiboSeq, we map the genome-wide contribution of polymerases, and show that despite Okazaki fragment processing, DNA synthesized by error-prone polymerase-alpha (Pol-alpha) is retained in vivo, comprising approximately 1.5% of the mature genome. We propose that DNA-binding proteins that rapidly re-associate post-replication act as partial barriers to Pol-delta-mediated displacement of Pol-alpha-synthesized DNA, resulting in incorporation of such Pol-alpha tracts and increased mutation rates at specific sites. We observe a mutational cost to chromatin and regulatory protein binding, resulting in mutation hotspots at regulatory elements, with signatures of this process detectable in both yeast and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374164/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374164/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reijns, Martin A M -- Kemp, Harriet -- Ding, James -- de Proce, Sophie Marion -- Jackson, Andrew P -- Taylor, Martin S -- MC_PC_U127580972/Medical Research Council/United Kingdom -- MC_PC_U127597124/Medical Research Council/United Kingdom -- MC_U127597124/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Feb 26;518(7540):502-6. doi: 10.1038/nature14183. Epub 2015 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical and Developmental Genetics, MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Biomedical Systems Analysis, MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25624100" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatin/chemistry/metabolism ; Conserved Sequence/genetics ; DNA/*biosynthesis/*genetics ; DNA Polymerase I/metabolism ; DNA Polymerase III/metabolism ; DNA Replication/*genetics ; DNA-Binding Proteins/metabolism ; Evolution, Molecular ; Genome, Human/*genetics ; Humans ; Models, Biological ; Mutagenesis/genetics ; Mutation/*genetics ; Protein Binding ; Saccharomyces cerevisiae/genetics ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-01-22
    Description: DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baubec, Tuncay -- Colombo, Daniele F -- Wirbelauer, Christiane -- Schmidt, Juliane -- Burger, Lukas -- Krebs, Arnaud R -- Akalin, Altuna -- Schubeler, Dirk -- England -- Nature. 2015 Apr 9;520(7546):243-7. doi: 10.1038/nature14176. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] Swiss Institute of Bioinformatics. Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] University of Basel, Faculty of Sciences, Petersplatz 1, CH-4001 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607372" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromatin/chemistry/genetics/metabolism ; CpG Islands/genetics ; DNA (Cytosine-5-)-Methyltransferase/chemistry/*metabolism ; DNA Methylation/*genetics ; Embryonic Stem Cells/enzymology/metabolism ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; Genome/*genetics ; Genomics ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Histones/chemistry/metabolism ; Lysine/metabolism ; Mice ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-04-24
    Description: Over the past 200 years, almost every invertebrate phylum has been proposed as a starting point for evolving vertebrates. Most of these scenarios are outdated, but several are still seriously considered. The short-range transition from ancestral invertebrate chordates (similar to amphioxus and tunicates) to vertebrates is well accepted. However, longer-range transitions leading up to the invertebrate chordates themselves are more controversial. Opinion is divided between the annelid and the enteropneust scenarios, predicting, respectively, a complex or a simple ancestor for bilaterian animals. Deciding between these ideas will be facilitated by further comparative studies of multicellular animals, including enigmatic taxa such as xenacoelomorphs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holland, Nicholas D -- Holland, Linda Z -- Holland, Peter W H -- England -- Nature. 2015 Apr 23;520(7548):450-5. doi: 10.1038/nature14433.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, USA. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Annelida/anatomy & histology/classification ; Invertebrates/anatomy & histology/classification ; Models, Biological ; *Phylogeny ; Research ; *Vertebrates/anatomy & histology/classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-04-08
    Description: Regulation of protein synthesis is fundamental for all aspects of eukaryotic biology by controlling development, homeostasis and stress responses. The 13-subunit, 800-kilodalton eukaryotic initiation factor 3 (eIF3) organizes initiation factor and ribosome interactions required for productive translation. However, current understanding of eIF3 function does not explain genetic evidence correlating eIF3 deregulation with tissue-specific cancers and developmental defects. Here we report the genome-wide discovery of human transcripts that interact with eIF3 using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). eIF3 binds to a highly specific program of messenger RNAs involved in cell growth control processes, including cell cycling, differentiation and apoptosis, via the mRNA 5' untranslated region. Surprisingly, functional analysis of the interaction between eIF3 and two mRNAs encoding the cell proliferation regulators c-JUN and BTG1 reveals that eIF3 uses different modes of RNA stem-loop binding to exert either translational activation or repression. Our findings illuminate a new role for eIF3 in governing a specialized repertoire of gene expression and suggest that binding of eIF3 to specific mRNAs could be targeted to control carcinogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603833/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603833/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Amy S Y -- Kranzusch, Philip J -- Cate, Jamie H D -- P50 GM102706/GM/NIGMS NIH HHS/ -- S10 RR027303/RR/NCRR NIH HHS/ -- S10 RR029668/RR/NCRR NIH HHS/ -- S10RR025622/RR/NCRR NIH HHS/ -- S10RR027303/RR/NCRR NIH HHS/ -- S10RR029668/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 4;522(7554):111-4. doi: 10.1038/nature14267. Epub 2015 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular &Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Center for RNA Systems Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; 1] Department of Molecular &Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Howard Hughes Medical Institute (HHMI), University of California, Berkeley, Berkeley, California 94720, USA. ; 1] Department of Molecular &Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Center for RNA Systems Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA [4] Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25849773" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Apoptosis ; Binding Sites ; Cell Differentiation ; Cell Line ; Cell Proliferation/genetics ; Cross-Linking Reagents ; *Down-Regulation ; Eukaryotic Initiation Factor-3/chemistry/*metabolism ; Humans ; Immunoprecipitation ; Neoplasm Proteins/metabolism ; Neoplasms/metabolism/pathology ; Organ Specificity ; *Peptide Chain Initiation, Translational ; Phenotype ; Proto-Oncogene Proteins c-jun/metabolism ; RNA, Messenger/*genetics/*metabolism ; Reproducibility of Results ; Ribonucleosides ; Ribosomes/metabolism ; Substrate Specificity ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-11-05
    Description: Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barson, Nicola J -- Aykanat, Tutku -- Hindar, Kjetil -- Baranski, Matthew -- Bolstad, Geir H -- Fiske, Peder -- Jacq, Celeste -- Jensen, Arne J -- Johnston, Susan E -- Karlsson, Sten -- Kent, Matthew -- Moen, Thomas -- Niemela, Eero -- Nome, Torfinn -- Naesje, Tor F -- Orell, Panu -- Romakkaniemi, Atso -- Saegrov, Harald -- Urdal, Kurt -- Erkinaro, Jaakko -- Lien, Sigbjorn -- Primmer, Craig R -- England -- Nature. 2015 Dec 17;528(7582):405-8. doi: 10.1038/nature16062. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 As, Norway. ; Department of Biology, University of Turku, FI-20014, Finland. ; Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway. ; Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1431 As, Norway. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK. ; AquaGen, NO-7462 Trondheim, Norway. ; Natural Resources Institute Finland, Oulu, FI-90014, Finland. ; Radgivende Biologer, NO-5003 Bergen, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536110" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Animals ; Biological Evolution ; Body Size/*genetics ; Female ; Fish Proteins/*genetics/metabolism ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Growth/*genetics ; Humans ; Male ; Models, Biological ; Phenotype ; Reproduction/genetics/physiology ; Salmo salar/*genetics ; *Sex Characteristics ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-01-07
    Description: Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H(+)-ATPase. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator-RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, whereas loss of SLC38A9 expression impaired amino-acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid sensing machinery that controls the activation of mTOR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376665/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376665/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rebsamen, Manuele -- Pochini, Lorena -- Stasyk, Taras -- de Araujo, Mariana E G -- Galluccio, Michele -- Kandasamy, Richard K -- Snijder, Berend -- Fauster, Astrid -- Rudashevskaya, Elena L -- Bruckner, Manuela -- Scorzoni, Stefania -- Filipek, Przemyslaw A -- Huber, Kilian V M -- Bigenzahn, Johannes W -- Heinz, Leonhard X -- Kraft, Claudine -- Bennett, Keiryn L -- Indiveri, Cesare -- Huber, Lukas A -- Superti-Furga, Giulio -- P 26682/Austrian Science Fund FWF/Austria -- England -- Nature. 2015 Mar 26;519(7544):477-81. doi: 10.1038/nature14107. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. ; Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, 87036 Arcavacata di Rende, Italy. ; Biocenter, Division of Cell Biology, Innsbruck Medical University, 6020 Innsbruck, Austria. ; Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25561175" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport Systems/*metabolism ; Amino Acids/*metabolism ; Animals ; Cell Line ; Humans ; Lysosomes/*metabolism ; Mice ; Monomeric GTP-Binding Proteins/metabolism ; Multiprotein Complexes/*metabolism ; Nucleotides/metabolism ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-09-17
    Description: Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGlynn, Shawn E -- Chadwick, Grayson L -- Kempes, Christopher P -- Orphan, Victoria J -- England -- Nature. 2015 Oct 22;526(7574):531-5. doi: 10.1038/nature15512. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA. ; Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Moffett Field, California 94035, USA. ; Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, USA. ; SETI Institute, Mountain View, California 94034, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375009" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Archaea/cytology/*metabolism ; Cytochromes/genetics/metabolism/ultrastructure ; Deltaproteobacteria/cytology/*metabolism ; Diffusion ; Electron Transport ; Genome, Archaeal/genetics ; Genome, Bacterial/genetics ; Heme/metabolism ; Methane/*metabolism ; Microbiota/physiology ; Models, Biological ; Molecular Sequence Data ; *Single-Cell Analysis ; Sulfates/metabolism ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-06-26
    Description: Tumour formation is blocked by two barriers: replicative senescence and crisis. Senescence is triggered by short telomeres and is bypassed by disruption of tumour-suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbour unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remains unexplained. Here we show that human cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. This phenotype is induced by loss of p53 function, and is suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating that such fusions are the underlying cause of cell death. Exacerbation of mitotic telomere deprotection by partial TRF2 (also known as TERF2) knockdown increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481881/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481881/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, Makoto T -- Cesare, Anthony J -- Rivera, Teresa -- Karlseder, Jan -- 5T32CA009370/CA/NCI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30CA014195/CA/NCI NIH HHS/ -- R01 CA174942/CA/NCI NIH HHS/ -- R01 GM087476/GM/NIGMS NIH HHS/ -- R01CA174942/CA/NCI NIH HHS/ -- R01GM087476/GM/NIGMS NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jun 25;522(7557):492-6. doi: 10.1038/nature14513.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Gene Mechanisms, Graduate School of Biostudies/The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; 1] The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2] Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia. ; The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26108857" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging ; *Cell Cycle Checkpoints/genetics ; *Cell Death/drug effects/genetics ; Cell Line ; *Chromosome Aberrations ; Chromosomes, Human/genetics/metabolism ; DNA Damage ; Gene Fusion/genetics ; Genomic Instability ; Humans ; *Mitosis/drug effects/genetics ; Neoplasms/drug therapy/genetics/*pathology ; Telomerase/genetics/metabolism ; Telomere/genetics/*metabolism ; Telomeric Repeat Binding Protein 2/deficiency/metabolism ; Tumor Suppressor Protein p53/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-07-21
    Description: Mitochondria are multifunctional organelles whose dysfunction leads to neuromuscular degeneration and ageing. The multi-functionality poses a great challenge for understanding the mechanisms by which mitochondrial dysfunction causes specific pathologies. Among the leading mitochondrial mediators of cell death are energy depletion, free radical production, defects in iron-sulfur cluster biosynthesis, the release of pro-apoptotic and non-cell-autonomous signalling molecules, and altered stress signalling. Here we identify a new pathway of mitochondria-mediated cell death in yeast. This pathway was named mitochondrial precursor over-accumulation stress (mPOS), and is characterized by aberrant accumulation of mitochondrial precursors in the cytosol. mPOS can be triggered by clinically relevant mitochondrial damage that is not limited to the core machineries of protein import. We also discover a large network of genes that suppress mPOS, by modulating ribosomal biogenesis, messenger RNA decapping, transcript-specific translation, protein chaperoning and turnover. In response to mPOS, several ribosome-associated proteins were upregulated, including Gis2 and Nog2, which promote cap-independent translation and inhibit the nuclear export of the 60S ribosomal subunit, respectively. Gis2 and Nog2 upregulation promotes cell survival, which may be part of a feedback loop that attenuates mPOS. Our data indicate that mitochondrial dysfunction contributes directly to cytosolic proteostatic stress, and provide an explanation for the association between these two hallmarks of degenerative diseases and ageing. The results are relevant to understanding diseases (for example, spinocerebellar ataxia, amyotrophic lateral sclerosis and myotonic dystrophy) that involve mutations within the anti-degenerative network.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582408/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582408/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaowen -- Chen, Xin Jie -- R01 AG023731/AG/NIA NIH HHS/ -- R01AG023731/AG/NIA NIH HHS/ -- R21 AG047400/AG/NIA NIH HHS/ -- R21AG047400/AG/NIA NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):481-4. doi: 10.1038/nature14859. Epub 2015 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26192197" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Cell Death ; Cell Nucleus/metabolism ; Cytosol/*metabolism ; Feedback, Physiological ; GTP Phosphohydrolases/metabolism ; Gene Expression Regulation, Fungal ; Mitochondria/*metabolism/*pathology ; Mitochondrial Proteins/*metabolism ; Models, Biological ; Protein Biosynthesis/genetics ; Protein Precursors/*metabolism ; Protein Transport ; Proteome/genetics/metabolism ; RNA Caps/metabolism ; RNA-Binding Proteins/metabolism ; Ribosome Subunits, Large, Eukaryotic/metabolism ; Ribosomes/metabolism ; Saccharomyces cerevisiae/*cytology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Stress, Physiological ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-09-01
    Description: In all domains of life, DNA synthesis occurs bidirectionally from replication origins. Despite variable rates of replication fork progression, fork convergence often occurs at specific sites. Escherichia coli sets a 'replication fork trap' that allows the first arriving fork to enter but not to leave the terminus region. The trap is set by oppositely oriented Tus-bound Ter sites that block forks on approach from only one direction. However, the efficiency of fork blockage by Tus-Ter does not exceed 50% in vivo despite its apparent ability to almost permanently arrest replication forks in vitro. Here we use data from single-molecule DNA replication assays and structural studies to show that both polarity and fork-arrest efficiency are determined by a competition between rates of Tus displacement and rearrangement of Tus-Ter interactions that leads to blockage of slower moving replisomes by two distinct mechanisms. To our knowledge this is the first example where intrinsic differences in rates of individual replisomes have different biological outcomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elshenawy, Mohamed M -- Jergic, Slobodan -- Xu, Zhi-Qiang -- Sobhy, Mohamed A -- Takahashi, Masateru -- Oakley, Aaron J -- Dixon, Nicholas E -- Hamdan, Samir M -- England -- Nature. 2015 Sep 17;525(7569):394-8. doi: 10.1038/nature14866. Epub 2015 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia. ; Centre for Medical &Molecular Bioscience, Illawarra Health &Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26322585" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding, Competitive ; Chromosomes, Bacterial/genetics/metabolism ; Crystallography, X-Ray ; *DNA Replication ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Escherichia coli/*genetics/metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Kinetics ; Models, Biological ; Models, Molecular ; Movement ; Multienzyme Complexes/chemistry/*metabolism ; Protein Conformation ; Regulatory Sequences, Nucleic Acid/*genetics ; Surface Plasmon Resonance ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-12-25
    Description: Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kunstler, Georges -- Falster, Daniel -- Coomes, David A -- Hui, Francis -- Kooyman, Robert M -- Laughlin, Daniel C -- Poorter, Lourens -- Vanderwel, Mark -- Vieilledent, Ghislain -- Wright, S Joseph -- Aiba, Masahiro -- Baraloto, Christopher -- Caspersen, John -- Cornelissen, J Hans C -- Gourlet-Fleury, Sylvie -- Hanewinkel, Marc -- Herault, Bruno -- Kattge, Jens -- Kurokawa, Hiroko -- Onoda, Yusuke -- Penuelas, Josep -- Poorter, Hendrik -- Uriarte, Maria -- Richardson, Sarah -- Ruiz-Benito, Paloma -- Sun, I-Fang -- Stahl, Goran -- Swenson, Nathan G -- Thompson, Jill -- Westerlund, Bertil -- Wirth, Christian -- Zavala, Miguel A -- Zeng, Hongcheng -- Zimmerman, Jess K -- Zimmermann, Niklaus E -- Westoby, Mark -- England -- Nature. 2016 Jan 14;529(7585):204-7. doi: 10.1038/nature16476. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Irstea, UR EMGR, 2 rue de la Papeterie BP-76, F-38402, St-Martin-d'Heres, France. ; Univ. Grenoble Alpes, F-38402 Grenoble, France. ; Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia. ; Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK. ; Mathematical Sciences Institute, The Australian National University, Canberra 0200, Australia. ; National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney 2000, New South Wales, Australia. ; Environmental Research Institute, School of Science, University of Waikato, Hamilton 3240, New Zealand. ; Forest Ecology and Forest Management Group, Wageningen University, 6708 PB Wageningen, The Netherlands. ; Department of Biology, University of Regina, 3737 Wascana Pkwy, Regina SK S4S 0A2, Canada. ; Cirad, UPR BSEF, F-34398 Montpellier, France. ; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama. ; Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan. ; INRA, UMR Ecologie des Forets de Guyane, BP 709, 97387 Kourou Cedex, France. ; International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA. ; Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada. ; Swiss Federal Research Institute WSL, Landscape Dynamics Unit, CH-8903 Birmensdorf, Switzerland. ; Systems Ecology, Department of Ecological Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands. ; Swiss Federal Research Institute WSL, Forest Resources and Management Unit, CH-8903 Birmensdorf, Switzerland. ; University of Freiburg, Chair of Forestry Economics and Planning, D-79106 Freiburg, Germany. ; Cirad, UMR Ecologie des Forets de Guyane, Campus Agronomique, BP 701, 97387 Kourou, France. ; Max Planck Institute for Biogeochemistry, Hans Knoll Str. 10, 07745 Jena, Germany. ; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e 04103 Leipzig, Germany. ; Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan. ; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles 08193, Catalonia, Spain. ; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain. ; Plant Sciences (IBG-2), Forschungszentrum Julich GmbH, D-52425 Julich, Germany. ; Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA. ; Landcare Research, PO Box 40, Lincoln 7640, New Zealand. ; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK. ; Forest Ecology and Restoration Group, Department of Life Sciences, Science Building, University of Alcala, Campus Universitario, 28805 Alcala de Henares (Madrid), Spain. ; Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 97401, Taiwan. ; Department of Forest Resource Management, Swedish University of Agricultural Sciences (SLU), Skogsmarksgrand, 901 83 Umea, Sweden. ; Department of Biology, University of Maryland, College Park, Maryland 20742, USA. ; Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK. ; Department of Environmental Sciences, University of Puerto Rico, Rio Piedras Campus PO Box 70377 San Juan, Puerto Rico 00936-8377, USA. ; Institute for Systematic, Botany and Functional Biodiversity, University of Leipzig, Johannisallee 21 04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700807" target="_blank"〉PubMed〈/a〉
    Keywords: Forests ; Internationality ; Models, Biological ; *Phenotype ; Plant Leaves/physiology ; Trees/*anatomy & histology/growth & development/*physiology ; Wood/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-02-13
    Description: Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P 〈 5 x 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shungin, Dmitry -- Winkler, Thomas W -- Croteau-Chonka, Damien C -- Ferreira, Teresa -- Locke, Adam E -- Magi, Reedik -- Strawbridge, Rona J -- Pers, Tune H -- Fischer, Krista -- Justice, Anne E -- Workalemahu, Tsegaselassie -- Wu, Joseph M W -- Buchkovich, Martin L -- Heard-Costa, Nancy L -- Roman, Tamara S -- Drong, Alexander W -- Song, Ci -- Gustafsson, Stefan -- Day, Felix R -- Esko, Tonu -- Fall, Tove -- Kutalik, Zoltan -- Luan, Jian'an -- Randall, Joshua C -- Scherag, Andre -- Vedantam, Sailaja -- Wood, Andrew R -- Chen, Jin -- Fehrmann, Rudolf -- Karjalainen, Juha -- Kahali, Bratati -- Liu, Ching-Ti -- Schmidt, Ellen M -- Absher, Devin -- Amin, Najaf -- Anderson, Denise -- Beekman, Marian -- Bragg-Gresham, Jennifer L -- Buyske, Steven -- Demirkan, Ayse -- Ehret, Georg B -- Feitosa, Mary F -- Goel, Anuj -- Jackson, Anne U -- Johnson, Toby -- Kleber, Marcus E -- Kristiansson, Kati -- Mangino, Massimo -- Mateo Leach, Irene -- Medina-Gomez, Carolina -- Palmer, Cameron D -- Pasko, Dorota -- Pechlivanis, Sonali -- Peters, Marjolein J -- Prokopenko, Inga -- Stancakova, Alena -- Ju Sung, Yun -- Tanaka, Toshiko -- Teumer, Alexander -- Van Vliet-Ostaptchouk, Jana V -- Yengo, Loic -- Zhang, Weihua -- Albrecht, Eva -- Arnlov, Johan -- Arscott, Gillian M -- Bandinelli, Stefania -- Barrett, Amy -- Bellis, Claire -- Bennett, Amanda J -- Berne, Christian -- Bluher, Matthias -- Bohringer, Stefan -- Bonnet, Fabrice -- Bottcher, Yvonne -- Bruinenberg, Marcel -- Carba, Delia B -- Caspersen, Ida H -- Clarke, Robert -- Daw, E Warwick -- Deelen, Joris -- Deelman, Ewa -- Delgado, Graciela -- Doney, Alex S F -- Eklund, Niina -- Erdos, Michael R -- Estrada, Karol -- Eury, Elodie -- Friedrich, Nele -- Garcia, Melissa E -- Giedraitis, Vilmantas -- Gigante, Bruna -- Go, Alan S -- Golay, Alain -- Grallert, Harald -- Grammer, Tanja B -- Grassler, Jurgen -- Grewal, Jagvir -- Groves, Christopher J -- Haller, Toomas -- Hallmans, Goran -- Hartman, Catharina A -- Hassinen, Maija -- Hayward, Caroline -- Heikkila, Kauko -- Herzig, Karl-Heinz -- Helmer, Quinta -- Hillege, Hans L -- Holmen, Oddgeir -- Hunt, Steven C -- Isaacs, Aaron -- Ittermann, Till -- James, Alan L -- Johansson, Ingegerd -- Juliusdottir, Thorhildur -- Kalafati, Ioanna-Panagiota -- Kinnunen, Leena -- Koenig, Wolfgang -- Kooner, Ishminder K -- Kratzer, Wolfgang -- Lamina, Claudia -- Leander, Karin -- Lee, Nanette R -- Lichtner, Peter -- Lind, Lars -- Lindstrom, Jaana -- Lobbens, Stephane -- Lorentzon, Mattias -- Mach, Francois -- Magnusson, Patrik K E -- Mahajan, Anubha -- McArdle, Wendy L -- Menni, Cristina -- Merger, Sigrun -- Mihailov, Evelin -- Milani, Lili -- Mills, Rebecca -- Moayyeri, Alireza -- Monda, Keri L -- Mooijaart, Simon P -- Muhleisen, Thomas W -- Mulas, Antonella -- Muller, Gabriele -- Muller-Nurasyid, Martina -- Nagaraja, Ramaiah -- Nalls, Michael A -- Narisu, Narisu -- Glorioso, Nicola -- Nolte, Ilja M -- Olden, Matthias -- Rayner, Nigel W -- Renstrom, Frida -- Ried, Janina S -- Robertson, Neil R -- Rose, Lynda M -- Sanna, Serena -- Scharnagl, Hubert -- Scholtens, Salome -- Sennblad, Bengt -- Seufferlein, Thomas -- Sitlani, Colleen M -- Vernon Smith, Albert -- Stirrups, Kathleen -- Stringham, Heather M -- Sundstrom, Johan -- Swertz, Morris A -- Swift, Amy J -- Syvanen, Ann-Christine -- Tayo, Bamidele O -- Thorand, Barbara -- Thorleifsson, Gudmar -- Tomaschitz, Andreas -- Troffa, Chiara -- van Oort, Floor V A -- Verweij, Niek -- Vonk, Judith M -- Waite, Lindsay L -- Wennauer, Roman -- Wilsgaard, Tom -- Wojczynski, Mary K -- Wong, Andrew -- Zhang, Qunyuan -- Hua Zhao, Jing -- Brennan, Eoin P -- Choi, Murim -- Eriksson, Per -- Folkersen, Lasse -- Franco-Cereceda, Anders -- Gharavi, Ali G -- Hedman, Asa K -- Hivert, Marie-France -- Huang, Jinyan -- Kanoni, Stavroula -- Karpe, Fredrik -- Keildson, Sarah -- Kiryluk, Krzysztof -- Liang, Liming -- Lifton, Richard P -- Ma, Baoshan -- McKnight, Amy J -- McPherson, Ruth -- Metspalu, Andres -- Min, Josine L -- Moffatt, Miriam F -- Montgomery, Grant W -- Murabito, Joanne M -- Nicholson, George -- Nyholt, Dale R -- Olsson, Christian -- Perry, John R B -- Reinmaa, Eva -- Salem, Rany M -- Sandholm, Niina -- Schadt, Eric E -- Scott, Robert A -- Stolk, Lisette -- Vallejo, Edgar E -- Westra, Harm-Jan -- Zondervan, Krina T -- ADIPOGen Consortium -- CARDIOGRAMplusC4D Consortium -- CKDGen Consortium -- GEFOS Consortium -- GENIE Consortium -- GLGC -- ICBP -- International Endogene Consortium -- LifeLines Cohort Study -- MAGIC Investigators -- MuTHER Consortium -- PAGE Consortium -- ReproGen Consortium -- Amouyel, Philippe -- Arveiler, Dominique -- Bakker, Stephan J L -- Beilby, John -- Bergman, Richard N -- Blangero, John -- Brown, Morris J -- Burnier, Michel -- Campbell, Harry -- Chakravarti, Aravinda -- Chines, Peter S -- Claudi-Boehm, Simone -- Collins, Francis S -- Crawford, Dana C -- Danesh, John -- de Faire, Ulf -- de Geus, Eco J C -- Dorr, Marcus -- Erbel, Raimund -- Eriksson, Johan G -- Farrall, Martin -- Ferrannini, Ele -- Ferrieres, Jean -- Forouhi, Nita G -- Forrester, Terrence -- Franco, Oscar H -- Gansevoort, Ron T -- Gieger, Christian -- Gudnason, Vilmundur -- Haiman, Christopher A -- Harris, Tamara B -- Hattersley, Andrew T -- Heliovaara, Markku -- Hicks, Andrew A -- Hingorani, Aroon D -- Hoffmann, Wolfgang -- Hofman, Albert -- Homuth, Georg -- Humphries, Steve E -- Hypponen, Elina -- Illig, Thomas -- Jarvelin, Marjo-Riitta -- Johansen, Berit -- Jousilahti, Pekka -- Jula, Antti M -- Kaprio, Jaakko -- Kee, Frank -- Keinanen-Kiukaanniemi, Sirkka M -- Kooner, Jaspal S -- Kooperberg, Charles -- Kovacs, Peter -- Kraja, Aldi T -- Kumari, Meena -- Kuulasmaa, Kari -- Kuusisto, Johanna -- Lakka, Timo A -- Langenberg, Claudia -- Le Marchand, Loic -- Lehtimaki, Terho -- Lyssenko, Valeriya -- Mannisto, Satu -- Marette, Andre -- Matise, Tara C -- McKenzie, Colin A -- McKnight, Barbara -- Musk, Arthur W -- Mohlenkamp, Stefan -- Morris, Andrew D -- Nelis, Mari -- Ohlsson, Claes -- Oldehinkel, Albertine J -- Ong, Ken K -- Palmer, Lyle J -- Penninx, Brenda W -- Peters, Annette -- Pramstaller, Peter P -- Raitakari, Olli T -- Rankinen, Tuomo -- Rao, D C -- Rice, Treva K -- Ridker, Paul M -- Ritchie, Marylyn D -- Rudan, Igor -- Salomaa, Veikko -- Samani, Nilesh J -- Saramies, Jouko -- Sarzynski, Mark A -- Schwarz, Peter E H -- Shuldiner, Alan R -- Staessen, Jan A -- Steinthorsdottir, Valgerdur -- Stolk, Ronald P -- Strauch, Konstantin -- Tonjes, Anke -- Tremblay, Angelo -- Tremoli, Elena -- Vohl, Marie-Claude -- Volker, Uwe -- Vollenweider, Peter -- Wilson, James F -- Witteman, Jacqueline C -- Adair, Linda S -- Bochud, Murielle -- Boehm, Bernhard O -- Bornstein, Stefan R -- Bouchard, Claude -- Cauchi, Stephane -- Caulfield, Mark J -- Chambers, John C -- Chasman, Daniel I -- Cooper, Richard S -- Dedoussis, George -- Ferrucci, Luigi -- Froguel, Philippe -- Grabe, Hans-Jorgen -- Hamsten, Anders -- Hui, Jennie -- Hveem, Kristian -- Jockel, Karl-Heinz -- Kivimaki, Mika -- Kuh, Diana -- Laakso, Markku -- Liu, Yongmei -- Marz, Winfried -- Munroe, Patricia B -- Njolstad, Inger -- Oostra, Ben A -- Palmer, Colin N A -- Pedersen, Nancy L -- Perola, Markus -- Perusse, Louis -- Peters, Ulrike -- Power, Chris -- Quertermous, Thomas -- Rauramaa, Rainer -- Rivadeneira, Fernando -- Saaristo, Timo E -- Saleheen, Danish -- Sinisalo, Juha -- Slagboom, P Eline -- Snieder, Harold -- Spector, Tim D -- Thorsteinsdottir, Unnur -- Stumvoll, Michael -- Tuomilehto, Jaakko -- Uitterlinden, Andre G -- Uusitupa, Matti -- van der Harst, Pim -- Veronesi, Giovanni -- Walker, Mark -- Wareham, Nicholas J -- Watkins, Hugh -- Wichmann, H-Erich -- Abecasis, Goncalo R -- Assimes, Themistocles L -- Berndt, Sonja I -- Boehnke, Michael -- Borecki, Ingrid B -- Deloukas, Panos -- Franke, Lude -- Frayling, Timothy M -- Groop, Leif C -- Hunter, David J -- Kaplan, Robert C -- O'Connell, Jeffrey R -- Qi, Lu -- Schlessinger, David -- Strachan, David P -- Stefansson, Kari -- van Duijn, Cornelia M -- Willer, Cristen J -- Visscher, Peter M -- Yang, Jian -- Hirschhorn, Joel N -- Zillikens, M Carola -- McCarthy, Mark I -- Speliotes, Elizabeth K -- North, Kari E -- Fox, Caroline S -- Barroso, Ines -- Franks, Paul W -- Ingelsson, Erik -- Heid, Iris M -- Loos, Ruth J F -- Cupples, L Adrienne -- Morris, Andrew P -- Lindgren, Cecilia M -- Mohlke, Karen L -- 084766/Wellcome Trust/United Kingdom -- 085235/Wellcome Trust/United Kingdom -- 097117/Wellcome Trust/United Kingdom -- 098381/Wellcome Trust/United Kingdom -- 098498/Wellcome Trust/United Kingdom -- 12/0004470/Diabetes UK/United Kingdom -- 14136/Cancer Research UK/United Kingdom -- CZB/4/710/Chief Scientist Office/United Kingdom -- G0601261/Medical Research Council/United Kingdom -- G1000143/Medical Research Council/United Kingdom -- K01 HL116770/HL/NHLBI NIH HHS/ -- K23 DK080145/DK/NIDDK NIH HHS/ -- MC_PC_U127561128/Medical Research Council/United Kingdom -- MC_U106179471/Medical Research Council/United Kingdom -- MC_UP_A620_1014/Medical Research Council/United Kingdom -- MC_UU_12011/1/Medical Research Council/United Kingdom -- MC_UU_12015/1/Medical Research Council/United Kingdom -- MC_UU_12015/2/Medical Research Council/United Kingdom -- MC_UU_12015/5/Medical Research Council/United Kingdom -- MR/K011480/1/Medical Research Council/United Kingdom -- MR/K013351/1/Medical Research Council/United Kingdom -- P20 MD006899/MD/NIMHD NIH HHS/ -- P30 DK020541/DK/NIDDK NIH HHS/ -- P30 DK020572/DK/NIDDK NIH HHS/ -- P30 GM103341/GM/NIGMS NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R00 HL094535/HL/NHLBI NIH HHS/ -- R01 AG041517/AG/NIA NIH HHS/ -- R01 DK062370/DK/NIDDK NIH HHS/ -- R01 DK072193/DK/NIDDK NIH HHS/ -- R01 DK075787/DK/NIDDK NIH HHS/ -- R01 DK078150/DK/NIDDK NIH HHS/ -- R01 DK089256/DK/NIDDK NIH HHS/ -- R01 DK093757/DK/NIDDK NIH HHS/ -- R01 HL109946/HL/NHLBI NIH HHS/ -- R01 HL117626/HL/NHLBI NIH HHS/ -- R21 DA027040/DA/NIDA NIH HHS/ -- T32 GM007092/GM/NIGMS NIH HHS/ -- T32 GM067553/GM/NIGMS NIH HHS/ -- T32 HL007055/HL/NHLBI NIH HHS/ -- T32 HL069768/HL/NHLBI NIH HHS/ -- U01 AG049505/AG/NIA NIH HHS/ -- U01 DK062370/DK/NIDDK NIH HHS/ -- U01 HG007416/HG/NHGRI NIH HHS/ -- U01 HG007419/HG/NHGRI NIH HHS/ -- UM1 CA182910/CA/NCI NIH HHS/ -- Z01 HG000024-14/Intramural NIH HHS/ -- England -- Nature. 2015 Feb 12;518(7538):187-96. doi: 10.1038/nature14132.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Public Health and Clinical Medicine, Unit of Medicine, Umea University, 901 87 Umea, Sweden. [2] Department of Clinical Sciences, Genetic &Molecular Epidemiology Unit, Lund University Diabetes Center, Skane University Hosptial, 205 02 Malmo, Sweden. [3] Department of Odontology, Umea University, 901 85 Umea, Sweden. ; Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, D-93053 Regensburg, Germany. ; 1] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. ; Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Estonian Genome Center, University of Tartu, Tartu 51010, Estonia. ; Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden. ; 1] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. [4] Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby 2800, Denmark. ; Estonian Genome Center, University of Tartu, Tartu 51010, Estonia. ; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; 1] National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham Massachusetts 01702, USA. [2] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; 1] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden. [2] Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden. [3] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden. ; 1] Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden. [2] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden. ; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. ; 1] Estonian Genome Center, University of Tartu, Tartu 51010, Estonia. [2] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [3] Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA. [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1010, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland. [3] Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. ; 1] Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, 45147 Germany. [2] Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena 07743, Germany. ; 1] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA. ; Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK. ; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands. ; Department of Internal Medicine, Division of Gastroenterology, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA. ; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA. ; Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands. ; Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia 6008, Australia. ; 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands. [2] Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. ; 1] Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA. [2] Kidney Epidemiology and Cost Center, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Department of Statistics &Biostatistics, Rutgers University, Piscataway, New Jersey 08854, USA. [2] Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA. ; 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands. [2] Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands. ; 1] Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. [2] Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Geneva 1211, Switzerland. ; Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Division of Cardiovacular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK. ; 1] Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland. [2] Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland. [3] University Institute for Social and Preventative Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne 1005, Switzerland. ; 1] Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, D-68187 Mannheim, Germany. [2] Department of Internal Medicine II, Ulm University Medical Centre, D-89081 Ulm, Germany. ; National Institute for Health and Welfare, FI-00271 Helsinki, Finland. ; Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands. ; 1] Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands. [2] Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. [3] Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. ; Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, 45147 Germany. ; 1] Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands. [2] Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK. [3] Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; University of Eastern Finland, FI-70210 Kuopio, Finland. ; Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21225, USA. ; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany. ; Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands. ; 1] CNRS UMR 8199, F-59019 Lille, France. [2] European Genomic Institute for Diabetes, F-59000 Lille, France. [3] Universite de Lille 2, F-59000 Lille, France. ; 1] Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK. [2] Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK. ; Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. ; 1] Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden. [2] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden. [3] School of Health and Social Studies, Dalarna University, SE-791 88 Falun, Sweden. ; PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia 6009, Australia. ; Geriatric Unit, Azienda Sanitaria Firenze (ASF), 50125 Florence, Italy. ; Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK. ; 1] Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, USA. [2] Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4001, Australia. ; Department of Medical Sciences, Endocrinology, Diabetes and Metabolism, Uppsala University, Uppsala 75185, Sweden. ; 1] Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, D-04103 Leipzig, Germany. [2] Department of Medicine, University of Leipzig, D-04103 Leipzig, Germany. ; 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands. [2] Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. ; Inserm UMR991, Department of Endocrinology, University of Rennes, F-35000 Rennes, France. ; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, D-04103 Leipzig, Germany. ; LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands. ; USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City 6000, Philippines. ; Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway. ; Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK. ; Information Sciences Institute, University of Southern California, Marina del Rey, California 90292, USA. ; Department of Public Health and Clinical Medicine, Unit of Medicine, Umea University, 901 87 Umea, Sweden. ; Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK. ; 1] National Institute for Health and Welfare, FI-00271 Helsinki, Finland. [2] Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland. ; Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA. ; 1] Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA. [2] Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. [3] Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. ; Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, Maryland 20892, USA. ; Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala 75185, Sweden. ; Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm 17177, Sweden. ; Kaiser Permanente, Division of Research, Oakland, California 94612, USA. ; Service of Therapeutic Education for Diabetes, Obesity and Chronic Diseases, Geneva University Hospital, Geneva CH-1211, Switzerland. ; 1] Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. [2] Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. [3] German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany. ; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universitat Dresden, D-01307 Dresden, Germany. ; Department of Public Health and Clinical Medicine, Unit of Nutritional Research, Umea University, Umea 90187, Sweden. ; Department of Psychiatry, University of Groningen, University Medical Center Groningen, 9700RB Groningen, The Netherlands. ; Kuopio Research Institute of Exercise Medicine, FI-70100 Kuopio, Finland. ; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK. ; Hjelt Institute Department of Public Health, University of Helsinki, FI-00014 Helsinki, Finland. ; 1] Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland. [2] Medical Research Center Oulu and Oulu University Hospital, FI-90014 Oulu, Finland. [3] Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland. ; 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands. [2] Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. [3] Faculty of Psychology and Education, VU University Amsterdam, 1081BT Amsterdam, The Netherlands. ; 1] Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands. [2] Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands. ; Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim 7489, Norway. ; Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84108, USA. ; 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands. [2] Center for Medical Sytems Biology, 2300 RC Leiden, The Netherlands. ; Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. ; 1] Department of Pulmonary Physiology and Sleep Medicine, Nedlands, Western Australia 6009, Australia. [2] School of Medicine and Pharmacology, University of Western Australia, Crawley 6009, Australia. ; Department of Odontology, Umea University, 901 85 Umea, Sweden. ; Department of Dietetics-Nutrition, Harokopio University, 17671 Athens, Greece. ; Department of Internal Medicine II, Ulm University Medical Centre, D-89081 Ulm, Germany. ; Department of Internal Medicine I, Ulm University Medical Centre, D-89081 Ulm, Germany. ; Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria. ; Institute of Human Genetics, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. ; Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 75185, Sweden. ; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden. ; Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Geneva 1211, Switzerland. ; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden. ; School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK. ; Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, D-89081 Ulm, Germany. ; 1] Estonian Genome Center, University of Tartu, Tartu 51010, Estonia. [2] Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia. ; 1] Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. [2] Farr Institute of Health Informatics Research, University College London, London NW1 2DA, UK. ; 1] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. [2] The Center for Observational Research, Amgen, Inc., Thousand Oaks, California 91320, USA. ; 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands. [2] Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. ; 1] Department of Genomics, Life &Brain Center, University of Bonn, 53127 Bonn, Germany. [2] Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany. ; Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, Cagliari, Sardinia 09042, Italy. ; Center for Evidence-based Healthcare, University Hospital Carl Gustav Carus, Technische Universitat Dresden, D-01307 Dresden, Germany. ; 1] Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. [2] Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universitat, D-81377 Munich, Germany. [3] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universitat, D-81377 Munich, Germany. [4] Deutsches Forschungszentrum fur Herz-Kreislauferkrankungen (DZHK) (German Research Centre for Cardiovascular Research), Munich Heart Alliance, D-80636 Munich, Germany. ; Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland 21224, USA. ; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Hypertension and Related Diseases Centre - AOU, University of Sassari Medical School, Sassari 07100, Italy. ; Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. [3] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK. ; Department of Clinical Sciences, Genetic &Molecular Epidemiology Unit, Lund University Diabetes Center, Skane University Hosptial, 205 02 Malmo, Sweden. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK. ; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria. ; 1] Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden. [2] Science for Life Laboratory, Karolinska Institutet, Stockholm 171 65, Sweden. ; Department of Medicine, University of Washington, Seattle, Washington 98101, USA. ; 1] Icelandic Heart Association, Kopavogur 201, Iceland. [2] University of Iceland, Reykjavik 101, Iceland. ; 1] Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. [2] William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. ; 1] Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden. [2] Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala 75144, Sweden. ; Department of Public Health Sciences, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 61053, USA. ; 1] German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany. [2] Institute of Epidemiology II, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, Neuherberg, Germany, D-85764 Neuherberg, Germany. ; deCODE Genetics, Amgen Inc., Reykjavik 101, Iceland. ; Department of Cardiology, Medical University of Graz, Graz 8036, Austria. ; Department of Child and Adolescent Psychiatry, Psychology, Erasmus MC University Medical Centre, 3000 CB Rotterdam, The Netherlands. ; Department of Clinical Chemistry, Ulm University Medical Centre, D-89081 Ulm, Germany. ; Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromso, Norway. ; MRC Unit for Lifelong Health and Ageing at University College London, London WC1B 5JU, UK. ; Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland. ; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden. ; Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032, USA. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden. [3] Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden. ; 1] Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. [2] Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; 1] State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. [2] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. ; 1] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK. [2] NIHR Oxford Biomedical Research Centre, OUH Trust, Oxford OX3 7LE, UK. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] Harvard School of Public Health, Department of Biostatistics, Harvard University, Boston, Massachusetts 02115, USA. ; Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, New Haven, Connecticut 06520, USA. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning 116026, China. ; Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, County Down BT9 7AB, UK. ; University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada. ; National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK. ; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia. ; 1] National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham Massachusetts 01702, USA. [2] Section of General Internal Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA. ; 1] Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK. [2] MRC Harwell, Harwell Science and Innovation Campus, Harwell OX11 0QG, UK. ; 1] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia. [2] Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK. [3] Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; 1] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biomedical Engineering and Computational Science, Aalto University School of Science, FI-00076 Helsinki, Finland. [2] Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, FI-00290 Helsinki, Finland. [3] Folkhalsan Institute of Genetics, Folkhalsan Research Center, FI-00290 Helsinki, Finland. ; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10580, USA. ; 1] Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands. [2] Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. ; Computer Science Department, Tecnologico de Monterrey, Atizapan de Zaragoza, 52926, Mexico. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Nuffield Department of Obstetrics &Gynaecology, University of Oxford, Oxford OX3 7BN, UK. ; Institut Pasteur de Lille; INSERM, U744; Universite de Lille 2; F-59000 Lille, France. ; Department of Epidemiology and Public Health, EA3430, University of Strasbourg, Faculty of Medicine, Strasbourg, France. ; Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands. ; 1] PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia 6009, Australia. [2] Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia. ; Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California 90048, USA. ; Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, USA. ; Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK. ; Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland. ; Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK. ; Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; 1] Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA. [2] Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. ; 1] Biological Psychology, VU University Amsterdam, 1081BT Amsterdam, The Netherlands. [2] Institute for Research in Extramural Medicine, Institute for Health and Care Research, VU University, 1081BT Amsterdam, The Netherlands. ; 1] Department of Internal Medicine B, University Medicine Greifswald, D-17475 Greifswald, Germany. [2] DZHK (Deutsches Zentrum fur Herz-Kreislaufforschung - German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany. ; Clinic of Cardiology, West-German Heart Centre, University Hospital Essen, 45122 Essen, Germany. ; 1] National Institute for Health and Welfare, FI-00271 Helsinki, Finland. [2] Department of General Practice and Primary Health Care, University of Helsinki, FI-00290 Helsinki, Finland. [3] Unit of General Practice, Helsinki University Central Hospital, Helsinki FI-00290, Finland. ; 1] Department of Internal Medicine, University of Pisa, Pisa 56100, Italy. [2] National Research Council Institute of Clinical Physiology, University of Pisa, Pisa 56124, Italy. ; Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, 31400 Toulouse, France. ; UWI Solutions for Developing Countries, The University of the West Indies, Mona, Kingston 7, Jamaica. ; 1] Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands. [2] Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. ; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA. ; Institute of Biomedical &Clinical Science, University of Exeter, Barrack Road, Exeter EX2 5DW, UK. ; Center for Biomedicine, European Academy Bozen, Bolzano (EURAC), Bolzano 39100, Italy (affiliated Institute of the University of Lubeck, D-23562 Lubeck, Germany). ; Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK. ; 1] Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. [2] DZHK (Deutsches Zentrum fur Herz-Kreislaufforschung - German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany. ; Centre for Cardiovascular Genetics, Institute Cardiovascular Sciences, University College London, London WC1E 6JJ, UK. ; 1] Sansom Institute for Health Research, University of South Australia, Adelaide 5000, South Australia, Australia. [2] School of Population Health, University of South Australia, Adelaide 5000, South Australia, Australia. [3] South Australian Health and Medical Research Institute, Adelaide 5000, South Australia, Australia. [4] Population, Policy, and Practice, University College London Institute of Child Health, London WC1N 1EH, UK. ; 1] Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. [2] Hannover Unified Biobank, Hannover Medical School, Hannover, D-30625 Hannover, Germany. ; 1] Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK. [2] Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland. [3] National Institute for Health and Welfare, FI-90101 Oulu, Finland. [4] MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK. [5] Unit of Primary Care, Oulu University Hospital, FI-90220 Oulu, Finland. [6] Institute of Health Sciences, University of Oulu, FI-90014 Oulu, Finland. ; 1] National Institute for Health and Welfare, FI-00271 Helsinki, Finland. [2] Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland. [3] Hjelt Institute Department of Public Health, University of Helsinki, FI-00014 Helsinki, Finland. ; UK Clinical Research Collaboration Centre of Excellence for Public Health (NI), Queens University of Belfast, Belfast BT7 1NN, Northern Ireland, UK. ; 1] Institute of Health Sciences, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland. [2] Unit of Primary Health Care/General Practice, Oulu University Hospital, FI-90220 Oulu, Finland. ; 1] Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK. [2] National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK. [3] Imperial College Healthcare NHS Trust, London W12 0HS, UK. ; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; 1] Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK. [2] Department of Biological and Social Epidemiology, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK. ; Department of Medicine, Kuopio University Hospital and University of Eastern Finland, FI-70210 Kuopio, Finland. ; 1] Kuopio Research Institute of Exercise Medicine, FI-70100 Kuopio, Finland. [2] Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, FI-70211 Kuopio, Finland. [3] Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, FI-70210 Kuopio, Finland. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK. ; Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA. ; Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine University of Tampere, FI-33520 Tampere, Finland. ; 1] Steno Diabetes Center A/S, Gentofte DK-2820, Denmark. [2] Lund University Diabetes Centre and Department of Clinical Science, Diabetes &Endocrinology Unit, Lund University, Malmo 221 00, Sweden. ; 1] Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Faculty of Medicine, Laval University, Quebec QC G1V 0A6, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Quebec QC G1V 0A6, Canada. ; Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA. ; Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA. ; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] MRC Unit for Lifelong Health and Ageing at University College London, London WC1B 5JU, UK. ; 1] Epidemiology and Obstetrics &Gynaecology, University of Toronto, Toronto, Ontario M5G 1E2, Canada. [2] Genetic Epidemiology &Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. ; 1] Institute for Research in Extramural Medicine, Institute for Health and Care Research, VU University, 1081BT Amsterdam, The Netherlands. [2] Department of Psychiatry, Neuroscience Campus, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands. ; 1] Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. [2] Deutsches Forschungszentrum fur Herz-Kreislauferkrankungen (DZHK) (German Research Centre for Cardiovascular Research), Munich Heart Alliance, D-80636 Munich, Germany. [3] Institute of Epidemiology II, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, Neuherberg, Germany, D-85764 Neuherberg, Germany. ; 1] Center for Biomedicine, European Academy Bozen, Bolzano (EURAC), Bolzano 39100, Italy (affiliated Institute of the University of Lubeck, D-23562 Lubeck, Germany). [2] Department of Neurology, General Central Hospital, Bolzano 39100, Italy. ; 1] Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, FI-20521 Turku, Finland. [2] Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, FI-20521 Turku, Finland. ; Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA. ; 1] Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA. [2] Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri 63110, USA. [3] Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; 1] Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri 63110, USA. [2] Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; 1] Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; Center for Systems Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; 1] Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK. [2] Croatian Centre for Global Health, Faculty of Medicine, University of Split, 21000 Split, Croatia. ; 1] Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK. [2] National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK. ; South Carelia Central Hospital, 53130 Lappeenranta, Finland. ; 1] Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universitat Dresden, D-01307 Dresden, Germany. [2] Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), 01307 Dresden, Germany. ; 1] Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. [2] Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. [3] Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland 21201, USA. ; 1] Department of Epidemiology, Maastricht University, 6229 HA Maastricht, The Netherlands. [2] Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, B-3000 Leuven, Belgium. ; 1] Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. [2] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universitat, D-81377 Munich, Germany. ; Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada. ; Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita di Milano &Centro Cardiologico Monzino, Instituto di Ricovero e Cura a Carattere Scientifico, Milan 20133, Italy. ; 1] Institute of Nutrition and Functional Foods, Laval University, Quebec QC G1V 0A6, Canada. [2] Department of Food Science and Nutrition, Laval University, Quebec, QC G1V 0A6, Canada. ; 1] Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany. [2] DZHK (Deutsches Zentrum fur Herz-Kreislaufforschung - German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany. ; Department of Internal Medicine, University Hospital (CHUV) and University of Lausanne, 1011, Switzerland. ; Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. ; Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; 1] Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1010 Lausanne, Switzerland. [2] Ministry of Health, Victoria, Republic of Seychelles. ; 1] Lee Kong Chian School of Medicine, Imperial College London and Nanyang Technological University, Singapore, 637553 Singapore, Singapore. [2] Department of Internal Medicine I, Ulm University Medical Centre, D-89081 Ulm, Germany. ; Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. ; 1] Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK. [2] Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK. [3] Imperial College Healthcare NHS Trust, London W12 0HS, UK. ; 1] Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. [2] CNRS UMR 8199, F-59019 Lille, France. [3] European Genomic Institute for Diabetes, F-59000 Lille, France. [4] Universite de Lille 2, F-59000 Lille, France. ; 1] Department of Psychiatry and Psychotherapy, University Medicine Greifswald, HELIOS-Hospital Stralsund, D-17475 Greifswald, Germany. [2] German Center for Neurodegenerative Diseases (DZNE), Rostock, Greifswald, D-17475 Greifswald, Germany. ; 1] PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia 6009, Australia. [2] Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia. [3] School of Population Health, The University of Western Australia, Nedlands, Western Australia 6009, Australia. ; Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK. ; Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA. ; 1] Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, D-68187 Mannheim, Germany. [2] Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria. [3] Synlab Academy, Synlab Services GmbH, 68163 Mannheim, Germany. ; 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands. [2] Center for Medical Sytems Biology, 2300 RC Leiden, The Netherlands. [3] Department of Clinical Genetics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands. ; 1] Estonian Genome Center, University of Tartu, Tartu 51010, Estonia. [2] National Institute for Health and Welfare, FI-00271 Helsinki, Finland. [3] Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland. ; 1] Institute of Nutrition and Functional Foods, Laval University, Quebec QC G1V 0A6, Canada. [2] Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada. ; Population, Policy, and Practice, University College London Institute of Child Health, London WC1N 1EH, UK. ; Department of Medicine, Stanford University School of Medicine, Palo Alto, California 94304, USA. ; 1] Kuopio Research Institute of Exercise Medicine, FI-70100 Kuopio, Finland. [2] Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, FI-70210 Kuopio, Finland. ; 1] Finnish Diabetes Association, Kirjoniementie 15, FI-33680 Tampere, Finland. [2] Pirkanmaa Hospital District, FI-33521 Tampere, Finland. ; 1] Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. [2] Center for Non-Communicable Diseases, Karatchi, Pakistan. [3] Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA. ; Helsinki University Central Hospital Heart and Lung Center, Department of Medicine, Helsinki University Central Hospital, FI-00290 Helsinki, Finland. ; 1] deCODE Genetics, Amgen Inc., Reykjavik 101, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland. ; 1] National Institute for Health and Welfare, FI-00271 Helsinki, Finland. [2] Instituto de Investigacion Sanitaria del Hospital Universario LaPaz (IdiPAZ), 28046 Madrid, Spain. [3] Diabetes Research Group, King Abdulaziz University, 21589 Jeddah, Saudi Arabia. [4] Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria. ; 1] Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211 Kuopio, Finland. [2] Research Unit, Kuopio University Hospital, FI-70210 Kuopio, Finland. ; 1] Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands. [2] Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands. [3] Durrer Center for Cardiogenetic Research, Interuniversity Cardiology Institute Netherlands-Netherlands Heart Institute, 3501 DG Utrecht, The Netherlands. ; EPIMED Research Center, Department of Clinical and Experimental Medicine, University of Insubria, Varese I-21100, Italy. ; Institute of Cellular Medicine, Newcastle University, Newcastle NE1 7RU, UK. ; 1] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universitat, D-85764 Munich, Germany. [2] Klinikum Grosshadern, D-81377 Munich, Germany. [3] Institute of Epidemiology I, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, Neuherberg, Germany, D-85764 Neuherberg, Germany. ; Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. [2] William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. [3] Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, 21589 Jeddah, Saudi Arabia. ; 1] Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland. [2] Lund University Diabetes Centre and Department of Clinical Science, Diabetes &Endocrinology Unit, Lund University, Malmo 221 00, Sweden. ; 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [3] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Belfer 1306, New York 10461, USA. ; 1] Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. [2] Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. ; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Population Health Sciences &Education, St George's, University of London, London SW17 0RE, UK. ; 1] Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands. [3] Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands. [4] Center for Medical Sytems Biology, 2300 RC Leiden, The Netherlands. ; 1] Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA. [2] Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA. [3] Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia. [2] The University of Queensland Diamantina Institute, The Translation Research Institute, Brisbane 4012, Australia. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK. [3] Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford OX3 7LJ, UK. ; 1] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. [2] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham Massachusetts 01702, USA. ; 1] Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. [2] University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK. [3] NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK. ; 1] Department of Public Health and Clinical Medicine, Unit of Medicine, Umea University, 901 87 Umea, Sweden. [2] Department of Clinical Sciences, Genetic &Molecular Epidemiology Unit, Lund University Diabetes Center, Skane University Hosptial, 205 02 Malmo, Sweden. ; 1] Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, D-93053 Regensburg, Germany. [2] Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. [3] The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. [4] The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. [2] National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham Massachusetts 01702, USA. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Estonian Genome Center, University of Tartu, Tartu 51010, Estonia. [3] Department of Biostatistics, University of Liverpool, Liverpool L69 3GA, UK. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25673412" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Adipogenesis/genetics ; Adipose Tissue/*metabolism ; Age Factors ; *Body Fat Distribution ; Body Mass Index ; Continental Population Groups/genetics ; Epigenesis, Genetic ; Europe/ethnology ; Female ; Genome, Human/genetics ; *Genome-Wide Association Study ; Humans ; Insulin/*metabolism ; Insulin Resistance/genetics ; Male ; Models, Biological ; Neovascularization, Physiologic/genetics ; Obesity/genetics ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/*genetics ; Sex Characteristics ; Transcription, Genetic/genetics ; Waist-Hip Ratio
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-10-28
    Description: The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signalling; however, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighbouring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signalling in cellular communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prindle, Arthur -- Liu, Jintao -- Asally, Munehiro -- Ly, San -- Garcia-Ojalvo, Jordi -- Suel, Gurol M -- P50 GM085764/GM/NIGMS NIH HHS/ -- R01GM088428/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Nov 5;527(7576):59-63. doi: 10.1038/nature15709. Epub 2015 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, California 92093, USA. ; Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK. ; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503040" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*cytology/growth & development/*metabolism ; Biofilms/*growth & development ; *Electric Conductivity ; Feedback, Physiological ; Ion Channel Gating ; Membrane Potentials ; Models, Biological ; Potassium/metabolism ; Potassium Channels/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-05-06
    Description: Transposable elements comprise roughly 40% of mammalian genomes. They have an active role in genetic variation, adaptation and evolution through the duplication or deletion of genes or their regulatory elements, and transposable elements themselves can act as alternative promoters for nearby genes, resulting in non-canonical regulation of transcription. However, transposable element activity can lead to detrimental genome instability, and hosts have evolved mechanisms to silence transposable element mobility appropriately. Recent studies have demonstrated that a subset of transposable elements, endogenous retroviral elements (ERVs) containing long terminal repeats (LTRs), are silenced through trimethylation of histone H3 on lysine 9 (H3K9me3) by ESET (also known as SETDB1 or KMT1E) and a co-repressor complex containing KRAB-associated protein 1 (KAP1; also known as TRIM28) in mouse embryonic stem cells. Here we show that the replacement histone variant H3.3 is enriched at class I and class II ERVs, notably those of the early transposon (ETn)/MusD family and intracisternal A-type particles (IAPs). Deposition at a subset of these elements is dependent upon the H3.3 chaperone complex containing alpha-thalassaemia/mental retardation syndrome X-linked (ATRX) and death-domain-associated protein (DAXX). We demonstrate that recruitment of DAXX, H3.3 and KAP1 to ERVs is co-dependent and occurs upstream of ESET, linking H3.3 to ERV-associated H3K9me3. Importantly, H3K9me3 is reduced at ERVs upon H3.3 deletion, resulting in derepression and dysregulation of adjacent, endogenous genes, along with increased retrotransposition of IAPs. Our study identifies a unique heterochromatin state marked by the presence of both H3.3 and H3K9me3, and establishes an important role for H3.3 in control of ERV retrotransposition in embryonic stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509593/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509593/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsasser, Simon J -- Noh, Kyung-Min -- Diaz, Nichole -- Allis, C David -- Banaszynski, Laura A -- R01 GM040922/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jun 11;522(7555):240-4. doi: 10.1038/nature14345. Epub 2015 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK [2] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden. ; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; 1] Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Cecil H. and Ida Green Center for Reproductive Biology Science and Children's Medical Center Research Institute, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25938714" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/metabolism ; Cell Line ; DNA Helicases/metabolism ; Embryonic Stem Cells/*virology ; Endogenous Retroviruses/*genetics ; *Gene Silencing ; Genomic Instability ; Heterochromatin/genetics/metabolism ; Histones/chemistry/*metabolism ; Intracellular Signaling Peptides and Proteins/metabolism ; Methylation ; Mice ; Nuclear Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-12-25
    Description: The carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) subunit POLR2A is a platform for modifications specifying the recruitment of factors that regulate transcription, mRNA processing, and chromatin remodelling. Here we show that a CTD arginine residue (R1810 in human) that is conserved across vertebrates is symmetrically dimethylated (me2s). This R1810me2s modification requires protein arginine methyltransferase 5 (PRMT5) and recruits the Tudor domain of the survival of motor neuron (SMN, also known as GEMIN1) protein, which is mutated in spinal muscular atrophy. SMN interacts with senataxin, which is sometimes mutated in ataxia oculomotor apraxia type 2 and amyotrophic lateral sclerosis. Because POLR2A R1810me2s and SMN, like senataxin, are required for resolving RNA-DNA hybrids created by RNA polymerase II that form R-loops in transcription termination regions, we propose that R1810me2s, SMN, and senataxin are components of an R-loop resolution pathway. Defects in this pathway can influence transcription termination and may contribute to neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Dorothy Yanling -- Gish, Gerald -- Braunschweig, Ulrich -- Li, Yue -- Ni, Zuyao -- Schmitges, Frank W -- Zhong, Guoqing -- Liu, Ke -- Li, Weiguo -- Moffat, Jason -- Vedadi, Masoud -- Min, Jinrong -- Pawson, Tony J -- Blencowe, Benjamin J -- Greenblatt, Jack F -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 7;529(7584):48-53. doi: 10.1038/nature16469. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada. ; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700805" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/*metabolism ; Cell Line ; DNA Damage ; Humans ; Methylation ; Neurodegenerative Diseases/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/genetics/metabolism ; RNA Helicases/genetics/metabolism ; RNA Polymerase II/*chemistry/*metabolism ; Survival of Motor Neuron 1 Protein/genetics/*metabolism ; Transcription Elongation, Genetic ; *Transcription Termination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...