ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (219)
  • Crystallography, X-Ray  (123)
  • Reproducibility of Results  (96)
  • Nature Publishing Group (NPG)  (219)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Springer Nature
  • 2005-2009  (219)
Collection
  • Articles  (219)
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2009-10-09
    Description: Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, Donald F -- Pinto, Dalila -- Redon, Richard -- Feuk, Lars -- Gokcumen, Omer -- Zhang, Yujun -- Aerts, Jan -- Andrews, T Daniel -- Barnes, Chris -- Campbell, Peter -- Fitzgerald, Tomas -- Hu, Min -- Ihm, Chun Hwa -- Kristiansson, Kati -- Macarthur, Daniel G -- Macdonald, Jeffrey R -- Onyiah, Ifejinelo -- Pang, Andy Wing Chun -- Robson, Sam -- Stirrups, Kathy -- Valsesia, Armand -- Walter, Klaudia -- Wei, John -- Wellcome Trust Case Control Consortium -- Tyler-Smith, Chris -- Carter, Nigel P -- Lee, Charles -- Scherer, Stephen W -- Hurles, Matthew E -- 077006/Z/05/Z/Wellcome Trust/United Kingdom -- 077008/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077014/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- GM081533/GM/NIGMS NIH HHS/ -- HG004221/HG/NHGRI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Apr 1;464(7289):704-12. doi: 10.1038/nature08516. Epub 2009 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812545" target="_blank"〉PubMed〈/a〉
    Keywords: Continental Population Groups/genetics ; DNA Copy Number Variations/*genetics ; Gene Duplication ; Genetic Predisposition to Disease/*genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Genotype ; Haplotypes/genetics ; Humans ; Mutagenesis/*genetics ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-22
    Description: Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sibanda, Bancinyane L -- Chirgadze, Dimitri Y -- Blundell, Tom L -- 079281/Wellcome Trust/United Kingdom -- A3846/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jan 7;463(7277):118-21. doi: 10.1038/nature08648. Epub 2009 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Old Addenbrooke's site, 80 Tennis Court Road, Cambridge CB2 1GA, UK. lynn@cryst.bioc.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20023628" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Nuclear/chemistry ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA Breaks, Double-Stranded ; DNA-Activated Protein Kinase/*chemistry/metabolism ; DNA-Binding Proteins/chemistry ; HeLa Cells ; *Helix-Turn-Helix Motifs ; Humans ; Models, Molecular ; Nuclear Proteins/*chemistry/metabolism ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-31
    Description: P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X(4) receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in beta-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an approximately 8 A slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawate, Toshimitsu -- Michel, Jennifer Carlisle -- Birdsong, William T -- Gouaux, Eric -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM075026-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 30;460(7255):592-8. doi: 10.1038/nature08198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641588" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Gadolinium/metabolism ; Humans ; Ion Channels/antagonists & inhibitors/*chemistry ; Membrane Proteins/chemistry ; *Models, Molecular ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Purinergic P2 Receptor Antagonists ; Receptors, Purinergic P2/*chemistry ; Receptors, Purinergic P2X4 ; Zebrafish/*physiology ; Zebrafish Proteins/antagonists & inhibitors/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-03-06
    Description: Osmoregulated transporters sense intracellular osmotic pressure and respond to hyperosmotic stress by accumulation of osmolytes to restore normal hydration levels. Here we report the determination of the X-ray structure of a member of the family of betaine/choline/carnitine transporters, the Na(+)-coupled symporter BetP from Corynebacterium glutamicum, which is a highly effective osmoregulated uptake system for glycine betaine. Glycine betaine is bound in a tryptophan box occluded from both sides of the membrane with aromatic side chains lining the transport pathway. BetP has the same overall fold as three unrelated Na(+)-coupled symporters. Whereas these are crystallized in either the outward-facing or the inward-facing conformation, the BetP structure reveals a unique intermediate conformation in the Na(+)-coupled transport cycle. The trimeric architecture of BetP and the break in three-fold symmetry by the osmosensing C-terminal helices suggest a regulatory mechanism of Na(+)-coupled osmolyte transport to counteract osmotic stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ressl, Susanne -- Terwisscha van Scheltinga, Anke C -- Vonrhein, Clemens -- Ott, Vera -- Ziegler, Christine -- England -- Nature. 2009 Mar 5;458(7234):47-52. doi: 10.1038/nature07819.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Biophysics, Department of Structural Biology, 60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262666" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Betaine/*metabolism ; Binding Sites ; Carrier Proteins/*chemistry/genetics/*metabolism ; Corynebacterium glutamicum/*chemistry/genetics ; Crystallography, X-Ray ; Ion Transport ; Models, Molecular ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Sodium/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-11-20
    Description: Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, Glt(Ph), which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt(Ph) in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt(Ph) and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, Nicolas -- Ginter, Christopher -- Boudker, Olga -- R01 NS064357/NS/NINDS NIH HHS/ -- R01 NS064357-01A1/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):880-5. doi: 10.1038/nature08616. Epub 2009 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, Box 75, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924125" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport System X-AG/*chemistry/genetics/*metabolism ; Binding Sites ; Biological Transport ; Cross-Linking Reagents ; Crystallography, X-Ray ; Cysteine/genetics/metabolism ; Models, Molecular ; Movement ; Mutant Proteins/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Pyrococcus horikoshii/*chemistry ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-02-06
    Description: The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Puwei -- Bartlam, Mark -- Lou, Zhiyong -- Chen, Shoudeng -- Zhou, Jie -- He, Xiaojing -- Lv, Zongyang -- Ge, Ruowen -- Li, Xuemei -- Deng, Tao -- Fodor, Ervin -- Rao, Zihe -- Liu, Yingfang -- G0700848/Medical Research Council/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):909-13. doi: 10.1038/nature07720. Epub 2009 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194458" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Catalytic Domain ; Crystallography, X-Ray ; Endonucleases/*chemistry/genetics/*metabolism ; Influenza A Virus, H5N1 Subtype/*enzymology ; Influenza in Birds/*virology ; Models, Molecular ; Protein Subunits/chemistry/genetics/metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-17
    Description: Interaction specificity is a required feature of biological networks and a necessary characteristic of protein or small-molecule reagents and therapeutics. The ability to alter or inhibit protein interactions selectively would advance basic and applied molecular science. Assessing or modelling interaction specificity requires treating multiple competing complexes, which presents computational and experimental challenges. Here we present a computational framework for designing protein-interaction specificity and use it to identify specific peptide partners for human basic-region leucine zipper (bZIP) transcription factors. Protein microarrays were used to characterize designed, synthetic ligands for all but one of 20 bZIP families. The bZIP proteins share strong sequence and structural similarities and thus are challenging targets to bind specifically. Nevertheless, many of the designs, including examples that bind the oncoproteins c-Jun, c-Fos and c-Maf (also called JUN, FOS and MAF, respectively), were selective for their targets over all 19 other families. Collectively, the designs exhibit a wide range of interaction profiles and demonstrate that human bZIPs have only sparsely sampled the possible interaction space accessible to them. Our computational method provides a way to systematically analyse trade-offs between stability and specificity and is suitable for use with many types of structure-scoring functions; thus, it may prove broadly useful as a tool for protein design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748673/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748673/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grigoryan, Gevorg -- Reinke, Aaron W -- Keating, Amy E -- GM67681/GM/NIGMS NIH HHS/ -- R01 GM067681/GM/NIGMS NIH HHS/ -- R01 GM067681-04/GM/NIGMS NIH HHS/ -- R01 GM067681-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 16;458(7240):859-64. doi: 10.1038/nature07885.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MIT Department of Biology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370028" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Basic-Leucine Zipper Transcription Factors/*chemistry/classification/*metabolism ; Computational Biology/*methods ; Drug Design ; Humans ; Leucine Zippers ; Protein Array Analysis ; Protein Binding ; Protein Engineering/*methods ; Reproducibility of Results ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-02-27
    Description: Establishment and maintenance of the pluripotent state of ESCs is a key issue in stem cell biology and regenerative medicine, and consequently identification of transcription factors that regulate ESC pluripotency is an important goal. Singh et al. claim that the transcriptional repressor REST is such a regulator and that a 50% reduction of REST in ESCs leads to activation of a specific microRNA, miR-21, and that this subsequently results in loss of pluripotency markers and a reciprocal gain in some lineage-specific differentiation markers. In contrast, we show that, in haplodeficient Rest(+/-) ESCs, we detected no change in pluripotency markers, no precocious expression of differentiated neuronal markers and no interaction of REST with miR-21. It is vital that identification of factors that regulate pluripotency is based on robust, consistent data, and the contrast in data reported here undermines the claim by Singh et al. that REST is such a regulator.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buckley, Noel J -- Johnson, Rory -- Sun, Yuh-Man -- Stanton, Lawrence W -- England -- Nature. 2009 Feb 26;457(7233):E5-6; discussion E7. doi: 10.1038/nature07784.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK. noel.buckley@iop.kcl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Embryonic Stem Cells/*cytology/*metabolism ; Gene Knockdown Techniques ; Mice ; MicroRNAs/genetics/metabolism ; Pluripotent Stem Cells/*cytology/*metabolism ; Polymerase Chain Reaction ; Repressor Proteins/genetics/*metabolism ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rose, Steven -- England -- Nature. 2009 Nov 5;462(7269):35. doi: 10.1038/462035c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890309" target="_blank"〉PubMed〈/a〉
    Keywords: Continental Population Groups/*genetics ; *Ethics, Research ; Female ; Humans ; Intelligence/*genetics ; Male ; Reproducibility of Results ; *Sex Characteristics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Feb 19;457(7232):935-6. doi: 10.1038/457935b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225471" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Specimen Banks/economics/*standards ; *Cell Line ; DNA Fingerprinting/economics ; Humans ; Quality Control ; Reproducibility of Results ; *Research Design
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2009-09-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dempsey, Patrick -- England -- Nature. 2009 Sep 17;461(7262):341. doi: 10.1038/461341a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759599" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Eastern ; Alligators and Crocodiles/*physiology ; Animals ; Archaeology/methods ; *Hominidae ; Humans ; Paleontology/*methods ; Reproducibility of Results ; Stomach/*physiology ; *Technology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2009-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knepper, Mark A -- Mindell, Joseph A -- England -- Nature. 2009 Dec 10;462(7274):733-4. doi: 10.1038/462733a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010678" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Desulfovibrio vulgaris/*chemistry ; Humans ; Kidney/metabolism ; Membrane Transport Proteins/*chemistry/*metabolism ; Protein Structure, Quaternary ; Structure-Activity Relationship ; Urea/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Declan -- England -- Nature. 2009 Oct 29;461(7268):1187. doi: 10.1038/4611187a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865138" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; *Clinical Trials, Phase III as Topic ; HIV Infections/*prevention & control ; Humans ; Reproducibility of Results ; Thailand ; Viral Load
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-01-17
    Description: Autonomous and self-sustained oscillator circuits mediating the periodic induction of specific target genes are minimal genetic time-keeping devices found in the central and peripheral circadian clocks. They have attracted significant attention because of their intriguing dynamics and their importance in controlling critical repair, metabolic and signalling pathways. The precise molecular mechanism and expression dynamics of this mammalian circadian clock are still not fully understood. Here we describe a synthetic mammalian oscillator based on an auto-regulated sense-antisense transcription control circuit encoding a positive and a time-delayed negative feedback loop, enabling autonomous, self-sustained and tunable oscillatory gene expression. After detailed systems design with experimental analyses and mathematical modelling, we monitored oscillating concentrations of green fluorescent protein with tunable frequency and amplitude by time-lapse microscopy in real time in individual Chinese hamster ovary cells. The synthetic mammalian clock may provide an insight into the dynamics of natural periodic processes and foster advances in the design of prosthetic networks in future gene and cell therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tigges, Marcel -- Marquez-Lago, Tatiana T -- Stelling, Jorg -- Fussenegger, Martin -- England -- Nature. 2009 Jan 15;457(7227):309-12. doi: 10.1038/nature07616.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; CHO Cells ; Circadian Rhythm/*physiology ; Cricetinae ; Cricetulus ; Feedback, Physiological ; Fluorescence ; Gene Expression Regulation/*genetics ; Genes, Synthetic/*genetics ; *Genetic Engineering ; Green Fluorescent Proteins/analysis/genetics/metabolism ; Models, Biological ; Reproducibility of Results ; Time Factors ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2009-09-04
    Description: We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4 A resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764300/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764300/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Jianping -- Birktoft, Jens J -- Chen, Yi -- Wang, Tong -- Sha, Ruojie -- Constantinou, Pamela E -- Ginell, Stephan L -- Mao, Chengde -- Seeman, Nadrian C -- 1R21EB007472/EB/NIBIB NIH HHS/ -- R21 EB007472/EB/NIBIB NIH HHS/ -- R21 EB007472-03/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Sep 3;461(7260):74-7. doi: 10.1038/nature08274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, New York University, New York 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19727196" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry/genetics ; *Drug Design ; Molecular Sequence Data ; *Nucleic Acid Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2009-04-17
    Description: Biosynthesis of the DNA base thymine depends on activity of the enzyme thymidylate synthase to catalyse the methylation of the uracil moiety of 2'-deoxyuridine-5'-monophosphate. All known thymidylate synthases rely on an active site residue of the enzyme to activate 2'-deoxyuridine-5'-monophosphate. This functionality has been demonstrated for classical thymidylate synthases, including human thymidylate synthase, and is instrumental in mechanism-based inhibition of these enzymes. Here we report an example of thymidylate biosynthesis that occurs without an enzymatic nucleophile. This unusual biosynthetic pathway occurs in organisms containing the thyX gene, which codes for a flavin-dependent thymidylate synthase (FDTS), and is present in several human pathogens. Our findings indicate that the putative active site nucleophile is not required for FDTS catalysis, and no alternative nucleophilic residues capable of serving this function can be identified. Instead, our findings suggest that a hydride equivalent (that is, a proton and two electrons) is transferred from the reduced flavin cofactor directly to the uracil ring, followed by an isomerization of the intermediate to form the product, 2'-deoxythymidine-5'-monophosphate. These observations indicate a very different chemical cascade than that of classical thymidylate synthases or any other known biological methylation. The findings and chemical mechanism proposed here, together with available structural data, suggest that selective inhibition of FDTSs, with little effect on human thymine biosynthesis, should be feasible. Because several human pathogens depend on FDTS for DNA biosynthesis, its unique mechanism makes it an attractive target for antibiotic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759699/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759699/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koehn, Eric M -- Fleischmann, Todd -- Conrad, John A -- Palfey, Bruce A -- Lesley, Scott A -- Mathews, Irimpan I -- Kohen, Amnon -- GM08270/GM/NIGMS NIH HHS/ -- R01 GM065368/GM/NIGMS NIH HHS/ -- R01 GM065368-05/GM/NIGMS NIH HHS/ -- R01 GM61087/GM/NIGMS NIH HHS/ -- U54GM074898/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 16;458(7240):919-23. doi: 10.1038/nature07973.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370033" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyuracil Nucleotides/chemistry/metabolism ; Deuterium/metabolism ; Electrons ; Flavin-Adenine Dinucleotide/chemistry/metabolism ; Flavins/chemistry/*metabolism ; Helicobacter pylori/enzymology ; Humans ; Magnetic Resonance Spectroscopy ; Methylation ; Models, Molecular ; Mycobacterium tuberculosis/enzymology ; Protons ; Thermotoga maritima/*enzymology/*metabolism ; Thymidine/analogs & derivatives/metabolism ; Thymidine Monophosphate/*biosynthesis ; Thymidylate Synthase/antagonists & inhibitors/*genetics/*metabolism ; Uracil/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2009-02-03
    Description: There is growing recognition that mammalian cells produce many thousands of large intergenic transcripts. However, the functional significance of these transcripts has been particularly controversial. Although there are some well-characterized examples, most (〉95%) show little evidence of evolutionary conservation and have been suggested to represent transcriptional noise. Here we report a new approach to identifying large non-coding RNAs using chromatin-state maps to discover discrete transcriptional units intervening known protein-coding loci. Our approach identified approximately 1,600 large multi-exonic RNAs across four mouse cell types. In sharp contrast to previous collections, these large intervening non-coding RNAs (lincRNAs) show strong purifying selection in their genomic loci, exonic sequences and promoter regions, with greater than 95% showing clear evolutionary conservation. We also developed a functional genomics approach that assigns putative functions to each lincRNA, demonstrating a diverse range of roles for lincRNAs in processes from embryonic stem cell pluripotency to cell proliferation. We obtained independent functional validation for the predictions for over 100 lincRNAs, using cell-based assays. In particular, we demonstrate that specific lincRNAs are transcriptionally regulated by key transcription factors in these processes such as p53, NFkappaB, Sox2, Oct4 (also known as Pou5f1) and Nanog. Together, these results define a unique collection of functional lincRNAs that are highly conserved and implicated in diverse biological processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754849/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754849/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guttman, Mitchell -- Amit, Ido -- Garber, Manuel -- French, Courtney -- Lin, Michael F -- Feldser, David -- Huarte, Maite -- Zuk, Or -- Carey, Bryce W -- Cassady, John P -- Cabili, Moran N -- Jaenisch, Rudolf -- Mikkelsen, Tarjei S -- Jacks, Tyler -- Hacohen, Nir -- Bernstein, Bradley E -- Kellis, Manolis -- Regev, Aviv -- Rinn, John L -- Lander, Eric S -- DP1 OD003958/OD/NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-05/HG/NHGRI NIH HHS/ -- England -- Nature. 2009 Mar 12;458(7235):223-7. doi: 10.1038/nature07672. Epub 2009 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182780" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Chromatin/*genetics ; *Conserved Sequence/genetics ; DNA, Intergenic ; Exons/genetics ; Mammals/*genetics ; Mice ; Promoter Regions, Genetic/genetics ; RNA/*genetics ; Reproducibility of Results ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2009-06-19
    Description: Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at approximately 550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent-offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755253/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755253/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diskin, Sharon J -- Hou, Cuiping -- Glessner, Joseph T -- Attiyeh, Edward F -- Laudenslager, Marci -- Bosse, Kristopher -- Cole, Kristina -- Mosse, Yael P -- Wood, Andrew -- Lynch, Jill E -- Pecor, Katlyn -- Diamond, Maura -- Winter, Cynthia -- Wang, Kai -- Kim, Cecilia -- Geiger, Elizabeth A -- McGrady, Patrick W -- Blakemore, Alexandra I F -- London, Wendy B -- Shaikh, Tamim H -- Bradfield, Jonathan -- Grant, Struan F A -- Li, Hongzhe -- Devoto, Marcella -- Rappaport, Eric R -- Hakonarson, Hakon -- Maris, John M -- GM081519/GM/NIGMS NIH HHS/ -- R00 CA151869/CA/NCI NIH HHS/ -- R01 CA087847/CA/NCI NIH HHS/ -- R01 CA087847-05/CA/NCI NIH HHS/ -- R01 CA124709/CA/NCI NIH HHS/ -- R01 CA124709-02/CA/NCI NIH HHS/ -- R01-CA124709/CA/NCI NIH HHS/ -- R01-CA87847/CA/NCI NIH HHS/ -- T32-HG000046/HG/NHGRI NIH HHS/ -- U10 CA098543/CA/NCI NIH HHS/ -- U10 CA098543-07/CA/NCI NIH HHS/ -- U10-CA98543/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jun 18;459(7249):987-91. doi: 10.1038/nature08035.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536264" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Chromosome Breakage ; Chromosomes, Human, Pair 1/*genetics ; European Continental Ancestry Group/genetics ; Fetus/metabolism ; Gene Dosage/*genetics ; Genetic Predisposition to Disease/genetics ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Genotype ; Humans ; In Situ Hybridization, Fluorescence ; Neuroblastoma/*genetics ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide/genetics ; RNA, Messenger/genetics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2009-10-02
    Description: A key step in many chromatin-related processes is the recognition of histone post-translational modifications by effector modules such as bromodomains and chromo-like domains of the Royal family. Whereas effector-mediated recognition of single post-translational modifications is well characterized, how the cell achieves combinatorial readout of histones bearing multiple modifications is poorly understood. One mechanism involves multivalent binding by linked effector modules. For example, the tandem bromodomains of human TATA-binding protein-associated factor-1 (TAF1) bind better to a diacetylated histone H4 tail than to monoacetylated tails, a cooperative effect attributed to each bromodomain engaging one acetyl-lysine mark. Here we report a distinct mechanism of combinatorial readout for the mouse TAF1 homologue Brdt, a testis-specific member of the BET protein family. Brdt associates with hyperacetylated histone H4 (ref. 7) and is implicated in the marked chromatin remodelling that follows histone hyperacetylation during spermiogenesis, the stage of spermatogenesis in which post-meiotic germ cells mature into fully differentiated sperm. Notably, we find that a single bromodomain (BD1) of Brdt is responsible for selectively recognizing histone H4 tails bearing two or more acetylation marks. The crystal structure of BD1 bound to a diacetylated H4 tail shows how two acetyl-lysine residues cooperate to interact with one binding pocket. Structure-based mutagenesis that reduces the selectivity of BD1 towards diacetylated tails destabilizes the association of Brdt with acetylated chromatin in vivo. Structural analysis suggests that other chromatin-associated proteins may be capable of a similar mode of ligand recognition, including yeast Bdf1, human TAF1 and human CBP/p300 (also known as CREBBP and EP300, respectively). Our findings describe a new mechanism for the combinatorial readout of histone modifications in which a single effector module engages two marks on a histone tail as a composite binding epitope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moriniere, Jeanne -- Rousseaux, Sophie -- Steuerwald, Ulrich -- Soler-Lopez, Montserrat -- Curtet, Sandrine -- Vitte, Anne-Laure -- Govin, Jerome -- Gaucher, Jonathan -- Sadoul, Karin -- Hart, Darren J -- Krijgsveld, Jeroen -- Khochbin, Saadi -- Muller, Christoph W -- Petosa, Carlo -- England -- Nature. 2009 Oct 1;461(7264):664-8. doi: 10.1038/nature08397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP 181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794495" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Allosteric Regulation ; Animals ; Binding Sites ; COS Cells ; Cercopithecus aethiops ; Chromatin/chemistry/metabolism ; Crystallography, X-Ray ; Histones/*chemistry/*metabolism ; Lysine/metabolism ; Mice ; Models, Molecular ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2009-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zlitni, Soumaya -- Brown, Eric D -- England -- Nature. 2009 Mar 5;458(7234):39-40. doi: 10.1038/458039a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*pharmacology ; Drug Evaluation, Preclinical ; *Drug Resistance, Bacterial ; Fatty Acids/analysis/*biosynthesis/chemistry/pharmacology ; Gram-Positive Bacteria/*drug effects/enzymology/genetics/pathogenicity ; Humans ; Reproducibility of Results ; Serum/chemistry/microbiology ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolgin, Elie -- England -- Nature. 2009 Dec 17;462(7275):843-5. doi: 10.1038/462843a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016572" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Genome, Human/*genetics ; History, 20th Century ; History, 21st Century ; *Human Genome Project/history ; Humans ; Male ; Reproducibility of Results ; Research Design ; *Research Personnel ; Research Subjects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2009-05-08
    Description: Pore-forming toxins (PFTs) are a class of potent virulence factors that convert from a soluble form to a membrane-integrated pore. They exhibit their toxic effect either by destruction of the membrane permeability barrier or by delivery of toxic components through the pores. Among the group of bacterial PFTs are some of the most dangerous toxins, such as diphtheria and anthrax toxin. Examples of eukaryotic PFTs are perforin and the membrane-attack complex, proteins of the immune system. PFTs can be subdivided into two classes, alpha-PFTs and beta-PFTs, depending on the suspected mode of membrane integration, either by alpha-helical or beta-sheet elements. The only high-resolution structure of a transmembrane PFT pore is available for a beta-PFT--alpha-haemolysin from Staphylococcus aureus. Cytolysin A (ClyA, also known as HlyE), an alpha-PFT, is a cytolytic -helical toxin responsible for the haemolytic phenotype of several Escherichia coli and Salmonella enterica strains. ClyA is cytotoxic towards cultured mammalian cells, induces apoptosis of macrophages and promotes tissue pervasion. Electron microscopic reconstructions demonstrated that the soluble monomer of ClyA must undergo large conformational changes to form the transmembrane pore. Here we report the 3.3 A crystal structure of the 400 kDa dodecameric transmembrane pore formed by ClyA. The tertiary structure of ClyA protomers in the pore is substantially different from that in the soluble monomer. The conversion involves more than half of all residues. It results in large rearrangements, up to 140 A, of parts of the monomer, reorganization of the hydrophobic core, and transitions of -sheets and loop regions to -helices. The large extent of interdependent conformational changes indicates a sequential mechanism for membrane insertion and pore formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mueller, Marcus -- Grauschopf, Ulla -- Maier, Timm -- Glockshuber, Rudi -- Ban, Nenad -- England -- Nature. 2009 Jun 4;459(7247):726-30. doi: 10.1038/nature08026.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19421192" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallography, X-Ray ; Escherichia coli K12/*chemistry ; Escherichia coli Proteins/*chemistry ; Hemolysin Proteins/*chemistry ; Membrane Proteins/*chemistry ; *Models, Molecular ; *Protein Folding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2009-04-03
    Description: CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 A structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined alpha-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Xiuhua -- Biswas, Anindita -- Suel, Katherine E -- Jackson, Laurie K -- Martinez, Rita -- Gu, Hongmei -- Chook, Yuh Min -- 5-T32-GM008297/GM/NIGMS NIH HHS/ -- R01 GM069909/GM/NIGMS NIH HHS/ -- R01GM069909/GM/NIGMS NIH HHS/ -- R01GM069909-03S1/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 30;458(7242):1136-41. doi: 10.1038/nature07975. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, Texas 75390-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339969" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Crystallography, X-Ray ; Epitopes ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Karyopherins/*chemistry/*metabolism ; Leucine/*metabolism ; Models, Molecular ; Nuclear Export Signals/*physiology ; Protein Binding/drug effects ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; snRNP Core Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanderson, Katharine -- England -- Nature. 2009 Apr 16;458(7240):817. doi: 10.1038/458817a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19369996" target="_blank"〉PubMed〈/a〉
    Keywords: Deuterium/*analysis/*chemistry ; Forensic Toxicology/*methods/standards/trends ; Humans ; Patents as Topic/legislation & jurisprudence ; Pharmaceutical Preparations/*chemistry ; Reference Standards ; Reproducibility of Results ; United States ; United States Food and Drug Administration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2009-10-23
    Description: Maturation of precursor transfer RNA (pre-tRNA) includes excision of the 5' leader and 3' trailer sequences, removal of introns and addition of the CCA terminus. Nucleotide modifications are incorporated at different stages of tRNA processing, after the RNA molecule adopts the proper conformation. In bacteria, tRNA(Ile2) lysidine synthetase (TilS) modifies cytidine into lysidine (L; 2-lysyl-cytidine) at the first anticodon of tRNA(Ile2) (refs 4-9). This modification switches tRNA(Ile2) from a methionine-specific to an isoleucine-specific tRNA. However, the aminoacylation of tRNA(Ile2) by methionyl-tRNA synthetase (MetRS), before the modification by TilS, might lead to the misincorporation of methionine in response to isoleucine codons. The mechanism used by bacteria to avoid this pitfall is unknown. Here we show that the TilS enzyme specifically recognizes and modifies tRNA(Ile2) in its precursor form, thereby avoiding translation errors. We identified the lysidine modification in pre-tRNA(Ile2) isolated from RNase-E-deficient Escherichia coli and did not detect mature tRNA(Ile2) lacking this modification. Our kinetic analyses revealed that TilS can modify both types of RNA molecule with comparable efficiencies. X-ray crystallography and mutational analyses revealed that TilS specifically recognizes the entire L-shape structure in pre-tRNA(Ile2) through extensive interactions coupled with sequential domain movements. Our results demonstrate how TilS prevents the recognition of tRNA(Ile2) by MetRS and achieves high specificity for its substrate. These two key points form the basis for maintaining the fidelity of isoleucine codon translation in bacteria. Our findings also provide a rationale for the necessity of incorporating specific modifications at the precursor level during tRNA biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakanishi, Kotaro -- Bonnefond, Luc -- Kimura, Satoshi -- Suzuki, Tsutomu -- Ishitani, Ryuichiro -- Nureki, Osamu -- England -- Nature. 2009 Oct 22;461(7267):1144-8. doi: 10.1038/nature08474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 225-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/genetics/*metabolism ; Apoproteins/genetics/metabolism ; Bacillus subtilis ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli ; Geobacillus ; Kinetics ; Lysine/analogs & derivatives/metabolism ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; *Protein Biosynthesis ; Pyrimidine Nucleosides/metabolism ; RNA, Transfer, Ile/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbott, Alison -- England -- Nature. 2009 Jan 15;457(7227):245. doi: 10.1038/457245a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148065" target="_blank"〉PubMed〈/a〉
    Keywords: Bias (Epidemiology) ; *Brain Mapping ; Emotions/*physiology ; Humans ; Magnetic Resonance Imaging ; Neurosciences/*standards ; Reproducibility of Results ; Research Design ; Research Personnel ; Social Sciences/*standards ; Statistics as Topic/*standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2009-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ladle, Richard J -- Jepson, Paul -- Jennings, Steve -- Malhado, Ana C M -- England -- Nature. 2009 Oct 8;461(7265):723. doi: 10.1038/461723c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*classification ; Conservation of Natural Resources/*methods/trends ; *Extinction, Biological ; Reproducibility of Results ; Species Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2009-06-12
    Description: Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tubbs, Julie L -- Latypov, Vitaly -- Kanugula, Sreenivas -- Butt, Amna -- Melikishvili, Manana -- Kraehenbuehl, Rolf -- Fleck, Oliver -- Marriott, Andrew -- Watson, Amanda J -- Verbeek, Barbara -- McGown, Gail -- Thorncroft, Mary -- Santibanez-Koref, Mauro F -- Millington, Christopher -- Arvai, Andrew S -- Kroeger, Matthew D -- Peterson, Lisa A -- Williams, David M -- Fried, Michael G -- Margison, Geoffrey P -- Pegg, Anthony E -- Tainer, John A -- CA018137/CA/NCI NIH HHS/ -- CA097209/CA/NCI NIH HHS/ -- CA59887/CA/NCI NIH HHS/ -- GM070662/GM/NIGMS NIH HHS/ -- R01 CA059887/CA/NCI NIH HHS/ -- R01 CA059887-12/CA/NCI NIH HHS/ -- R01 CA059887-13/CA/NCI NIH HHS/ -- R01 GM070662/GM/NIGMS NIH HHS/ -- R01 GM070662-01/GM/NIGMS NIH HHS/ -- R01 GM070662-02/GM/NIGMS NIH HHS/ -- R01 GM070662-03/GM/NIGMS NIH HHS/ -- R01 GM070662-04/GM/NIGMS NIH HHS/ -- R01 GM070662-05/GM/NIGMS NIH HHS/ -- R01 GM070662-06/GM/NIGMS NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Jun 11;459(7248):808-13. doi: 10.1038/nature08076.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516334" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*chemistry/*metabolism ; Alkylation ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Damage ; *DNA Repair ; Guanine/analogs & derivatives/chemistry/metabolism ; Humans ; Models, Molecular ; Protein Binding ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-07-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartung, Thomas -- England -- Nature. 2009 Jul 9;460(7252):208-12. doi: 10.1038/460208a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Health Sciences at the Johns Hopkins University Bloomberg School of Public Health, USA. thartung@jhsph.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587762" target="_blank"〉PubMed〈/a〉
    Keywords: Adverse Drug Reaction Reporting Systems ; Animals ; False Positive Reactions ; History, 20th Century ; Humans ; Models, Animal ; Rats ; Reproducibility of Results ; Research Design ; Toxicity Tests ; Toxicology/history/*methods/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2009-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ng, Pauline C -- Murray, Sarah S -- Levy, Samuel -- Venter, J Craig -- England -- Nature. 2009 Oct 8;461(7265):724-6. doi: 10.1038/461724a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Science Center Drive, San Diego, California 92121, USA. png@jcvi.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812653" target="_blank"〉PubMed〈/a〉
    Keywords: Ethnic Groups/genetics ; False Negative Reactions ; Female ; Gene Frequency/genetics ; Genetic Counseling/methods/*standards ; Genetic Markers/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Testing/methods/*standards ; Genetics, Medical/methods/*standards ; Genome, Human/*genetics ; Genome-Wide Association Study ; Genotype ; Health Behavior ; Humans ; Male ; Odds Ratio ; Pharmacogenetics ; *Practice Guidelines as Topic ; Prospective Studies ; Reproducibility of Results ; Sequence Analysis, DNA/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicchitta, Christopher V -- England -- Nature. 2009 Feb 5;457(7230):668-9. doi: 10.1038/457668a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194438" target="_blank"〉PubMed〈/a〉
    Keywords: Basic-Leucine Zipper Transcription Factors/*genetics ; Crystallography, X-Ray ; Endoplasmic Reticulum/*metabolism ; Membrane Glycoproteins/chemistry/*metabolism ; Protein Biosynthesis ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/*metabolism ; Repressor Proteins/*genetics ; Saccharomyces cerevisiae/*cytology/*genetics ; Saccharomyces cerevisiae Proteins/chemistry/*genetics/*metabolism ; *Stress, Physiological/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayden, Erika Check -- England -- Nature. 2009 Oct 15;461(7266):859. doi: 10.1038/461859a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829341" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Computational Biology/*standards ; *Computer Simulation ; Drug Design ; Ligands ; Protein Binding ; *Protein Stability ; Reproducibility of Results ; Research Personnel/ethics/standards ; *Retraction of Publication as Topic ; Scientific Misconduct ; *Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2009-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Check Hayden, Erika -- England -- Nature. 2009 Dec 10;462(7274):707. doi: 10.1038/462707a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010658" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/chemistry/metabolism ; Escherichia coli/*metabolism ; Glycoproteins/*biosynthesis/chemistry ; Glycosylation ; *Protein Biosynthesis ; Reproducibility of Results ; *Retraction of Publication as Topic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2009-09-01
    Description: The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarado, Diego -- Klein, Daryl E -- Lemmon, Mark A -- R01 CA079992/CA/NCI NIH HHS/ -- R01 CA079992-09/CA/NCI NIH HHS/ -- R01 CA079992-10/CA/NCI NIH HHS/ -- R01 CA125432/CA/NCI NIH HHS/ -- R01 CA125432-01A1/CA/NCI NIH HHS/ -- R01 CA125432-02/CA/NCI NIH HHS/ -- R01 CA125432-03/CA/NCI NIH HHS/ -- England -- Nature. 2009 Sep 10;461(7261):287-91. doi: 10.1038/nature08297. Epub 2009 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19718021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Drosophila melanogaster/chemistry/*metabolism ; Enzyme Activation ; Humans ; Ligands ; Models, Molecular ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Receptor, ErbB-2/antagonists & inhibitors/*chemistry/*metabolism ; Receptors, Invertebrate Peptide/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Scattering, Small Angle ; Solubility ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2009-07-07
    Description: To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from the gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic beta-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 A resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Yiling -- Jayaram, Hariharan -- Shane, Tania -- Kolmakova-Partensky, Ludmila -- Wu, Fang -- Williams, Carole -- Xiong, Yong -- Miller, Christopher -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM031768/GM/NIGMS NIH HHS/ -- R01 GM031768-26/GM/NIGMS NIH HHS/ -- R01 GM089688/GM/NIGMS NIH HHS/ -- T32 NS 07292/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Aug 20;460(7258):1040-3. doi: 10.1038/nature08201. Epub 2009 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19578361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/*chemistry/metabolism ; Antiporters/*chemistry/metabolism ; Bacterial Proteins/*chemistry ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multigene Family ; Protein Conformation ; Salmonella typhi/*chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiermeier, Quirin -- England -- Nature. 2009 Jan 29;457(7229):520-1. doi: 10.1038/457520b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19177092" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Carbon Dioxide/*chemistry/*isolation & purification ; *Ecosystem ; Germany ; Human Activities ; Iron/*chemistry ; Oceans and Seas ; Reproducibility of Results ; Research/*trends ; Seawater/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2009-11-06
    Description: Recent earth science studies have pointed out that massive acceleration of the global nitrogen cycle by anthropogenic addition of bio-available nitrogen has led to a host of environmental problems. Nitrous oxide (N(2)O) is a greenhouse gas that is an intermediate during the biological process known as denitrification. Copper-containing nitrite reductase (CuNIR) is a key enzyme in the process; it produces a precursor for N(2)O by catalysing the one-electron reduction of nitrite (NO2-) to nitric oxide (NO). The reduction step is performed by an efficient electron-transfer reaction with a redox-partner protein. However, details of the mechanism during the electron-transfer reaction are still unknown. Here we show the high-resolution crystal structure of the electron-transfer complex for CuNIR with its cognate cytochrome c as the electron donor. The hydrophobic electron-transfer path is formed at the docking interface by desolvation owing to close contact between the two proteins. Structural analysis of the interface highlights an essential role for the loop region with a hydrophobic patch for protein-protein recognition; it also shows how interface construction allows the variation in atomic components to achieve diverse biological electron transfers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nojiri, Masaki -- Koteishi, Hiroyasu -- Nakagami, Takuya -- Kobayashi, Kazuo -- Inoue, Tsuyoshi -- Yamaguchi, Kazuya -- Suzuki, Shinnichiro -- England -- Nature. 2009 Nov 5;462(7269):117-20. doi: 10.1038/nature08507.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. nojiri@ch.wani.osaka-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890332" target="_blank"〉PubMed〈/a〉
    Keywords: Achromobacter denitrificans/*enzymology ; Crystallography, X-Ray ; Cytochromes c/chemistry/metabolism ; Electron Transport ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nitric Oxide/metabolism ; Nitrite Reductases/*chemistry/*metabolism ; Nitrites/metabolism ; Nitrous Oxide/metabolism ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2009-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Check Hayden, Erika -- England -- Nature. 2009 Feb 12;457(7231):768-9. doi: 10.1038/news.2009.86.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212365" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology/instrumentation/*methods ; *Genome ; Humans ; Reproducibility of Results ; Sequence Analysis, DNA/economics/instrumentation/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2009-02-03
    Description: Membrane proteins that transport hydrophobic compounds have important roles in multi-drug resistance and can cause a number of diseases, underscoring the importance of protein-mediated transport of hydrophobic compounds. Hydrophobic compounds readily partition into regular membrane lipid bilayers, and their transport through an aqueous protein channel is energetically unfavourable. Alternative transport models involving acquisition from the lipid bilayer by lateral diffusion have been proposed for hydrophobic substrates. So far, all transport proteins for which a lateral diffusion mechanism has been proposed function as efflux pumps. Here we present the first example of a lateral diffusion mechanism for the uptake of hydrophobic substrates by the Escherichia coli outer membrane long-chain fatty acid transporter FadL. A FadL mutant in which a lateral opening in the barrel wall is constricted, but which is otherwise structurally identical to wild-type FadL, does not transport substrates. A crystal structure of FadL from Pseudomonas aeruginosa shows that the opening in the wall of the beta-barrel is conserved and delineates a long, hydrophobic tunnel that could mediate substrate passage from the extracellular environment, through the polar lipopolysaccharide layer and, by means of the lateral opening in the barrel wall, into the lipid bilayer from where the substrate can diffuse into the periplasm. Because FadL homologues are found in pathogenic and biodegrading bacteria, our results have implications for combating bacterial infections and bioremediating xenobiotics in the environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hearn, Elizabeth M -- Patel, Dimki R -- Lepore, Bryan W -- Indic, Mridhu -- van den Berg, Bert -- 1R01GM074824/GM/NIGMS NIH HHS/ -- F32 GM079820-01/GM/NIGMS NIH HHS/ -- F32 GM079820-02/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM074824/GM/NIGMS NIH HHS/ -- R01 GM074824-01/GM/NIGMS NIH HHS/ -- R01 GM074824-02/GM/NIGMS NIH HHS/ -- R01 GM074824-03/GM/NIGMS NIH HHS/ -- R01 GM074824-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Mar 19;458(7236):367-70. doi: 10.1038/nature07678. Epub 2009 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182779" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; Diffusion ; Escherichia coli/*chemistry/genetics ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Fatty Acid Transport Proteins/*chemistry/genetics/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/metabolism ; Models, Molecular ; Pseudomonas aeruginosa/*chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2009-08-04
    Description: Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nolen, B J -- Tomasevic, N -- Russell, A -- Pierce, D W -- Jia, Z -- McCormick, C D -- Hartman, J -- Sakowicz, R -- Pollard, T D -- F32 GM074374-02/GM/NIGMS NIH HHS/ -- GM-066311/GM/NIGMS NIH HHS/ -- GM074374-02/GM/NIGMS NIH HHS/ -- P01 GM066311/GM/NIGMS NIH HHS/ -- P01 GM066311-01A1/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1031-4. doi: 10.1038/nature08231. Epub 2009 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19648907" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/metabolism ; Actin-Related Protein 2/antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 2-3 Complex/*antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 3/antagonists & inhibitors/chemistry/metabolism ; Actins/chemistry/metabolism ; Animals ; Biopolymers/chemistry/metabolism ; Cattle ; Cell Line ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Indoles/classification/metabolism/pharmacology ; Listeria/physiology ; Models, Molecular ; Monocytes/immunology ; Protein Conformation/drug effects ; Schizosaccharomyces ; Thiazoles/chemistry/classification/metabolism/pharmacology ; Thiophenes/classification/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Anthony G -- England -- Nature. 2009 Nov 26;462(7272):420-1. doi: 10.1038/462420a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940907" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/*chemistry/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Neutron Diffraction ; Potassium Channels, Voltage-Gated/*chemistry/*metabolism ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-05-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnabel, Jim -- England -- Nature. 2009 May 21;459(7245):310. doi: 10.1038/459310a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458681" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/blood/*metabolism/*pathology/urine ; Amyloid beta-Peptides/blood/genetics/*metabolism/urine ; Animals ; Disease Models, Animal ; Humans ; Mice ; Mice, Transgenic ; *Models, Neurological ; Peptide Fragments/blood/*metabolism/urine ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2009-06-02
    Description: Apoptosis is a conserved form of programmed cell death firmly established in the aetiology, pathogenesis and treatment of many human diseases. Central to the core machinery of apoptosis are the caspases and their proximal regulators. Current models for caspase control involve a balance of opposing elements, with variable contributions from positive and negative regulators among different cell types and species. To advance a comprehensive view of components that support caspase-dependent cell death, we conducted a genome-wide silencing screen in the Drosophila model. Our strategy used a library of double-stranded RNAs together with a chemical antagonist of Inhibitor of apoptosis proteins (IAPs) that simulates the action of native regulators in the Reaper and Smac (also known as Diablo) families. Here we present a highly validated set of targets that is necessary for death provoked by several stimuli. Among these, Tango7 is identified as a new effector. Cells depleted for this gene resisted apoptosis at a step before the induction of effector caspase activity, and the directed silencing of Tango7 in Drosophila prevented caspase-dependent programmed cell death. Unlike known apoptosis regulators in this model system, Tango7 activity did not influence stimulus-dependent loss of Drosophila DIAP1 (also known as th and IAP1), but instead regulated levels of the apical caspase Dronc (Nc). Similarly, the human Tango7 counterpart, PCID1 (also known as EIF3M), impinged on caspase 9, revealing a new regulatory axis affecting the apoptosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777527/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777527/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chew, Su Kit -- Chen, Po -- Link, Nichole -- Galindo, Kathleen A -- Pogue, Kristi -- Abrams, John M -- R01 AA017328/AA/NIAAA NIH HHS/ -- R01 AA017328-01/AA/NIAAA NIH HHS/ -- R01 AA017328-02/AA/NIAAA NIH HHS/ -- R01 GM072124/GM/NIGMS NIH HHS/ -- R01 GM072124-10/GM/NIGMS NIH HHS/ -- R01 GM072124-11/GM/NIGMS NIH HHS/ -- R01 GM072124-12/GM/NIGMS NIH HHS/ -- R01 GM072124-13/GM/NIGMS NIH HHS/ -- R01 GM072124-14A1/GM/NIGMS NIH HHS/ -- R56 GM072124/GM/NIGMS NIH HHS/ -- R56 GM072124-14/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jul 2;460(7251):123-7. doi: 10.1038/nature08087. Epub 2009 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19483676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*genetics/*physiology ; Apoptosomes/metabolism ; Aryl Hydrocarbon Receptor Nuclear Translocator/genetics/*metabolism ; Caspase 9/metabolism ; Caspases/metabolism ; Conserved Sequence ; Drosophila Proteins/deficiency/genetics/*metabolism ; Drosophila melanogaster/*genetics ; Eukaryotic Initiation Factor-3 ; Eukaryotic Initiation Factors/*metabolism ; *Gene Silencing ; Genes, Insect/genetics ; Genome, Insect/*genetics ; Humans ; Inhibitor of Apoptosis Proteins/antagonists & inhibitors/genetics/metabolism ; Mitochondrial Proteins ; Molecular Mimicry ; RNA Interference ; RNA, Double-Stranded/genetics ; Reproducibility of Results ; Xenopus Proteins
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2009-09-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vasquez, Valeria -- Perozo, Eduardo -- England -- Nature. 2009 Sep 3;461(7260):47-9. doi: 10.1038/461047a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19727188" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Ion Channel Gating/*physiology ; Ion Channels/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Mycobacterium tuberculosis/chemistry ; Pressure ; Protein Structure, Quaternary ; Staphylococcus aureus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2009-01-02
    Description: Pyrrolysine (Pyl), the 22nd natural amino acid, is genetically encoded by UAG and inserted into proteins by the unique suppressor tRNA(Pyl) (ref. 1). The Methanosarcinaceae produce Pyl and express Pyl-containing methyltransferases that allow growth on methylamines. Homologous methyltransferases and the Pyl biosynthetic and coding machinery are also found in two bacterial species. Pyl coding is maintained by pyrrolysyl-tRNA synthetase (PylRS), which catalyses the formation of Pyl-tRNA(Pyl) (refs 4, 5). Pyl is not a recent addition to the genetic code. PylRS was already present in the last universal common ancestor; it then persisted in organisms that utilize methylamines as energy sources. Recent protein engineering efforts added non-canonical amino acids to the genetic code. This technology relies on the directed evolution of an 'orthogonal' tRNA synthetase-tRNA pair in which an engineered aminoacyl-tRNA synthetase (aaRS) specifically and exclusively acylates the orthogonal tRNA with a non-canonical amino acid. For Pyl the natural evolutionary process developed such a system some 3 billion years ago. When transformed into Escherichia coli, Methanosarcina barkeri PylRS and tRNA(Pyl) function as an orthogonal pair in vivo. Here we show that Desulfitobacterium hafniense PylRS-tRNA(Pyl) is an orthogonal pair in vitro and in vivo, and present the crystal structure of this orthogonal pair. The ancient emergence of PylRS-tRNA(Pyl) allowed the evolution of unique structural features in both the protein and the tRNA. These structural elements manifest an intricate, specialized aaRS-tRNA interaction surface that is highly distinct from those observed in any other known aaRS-tRNA complex; it is this general property that underlies the molecular basis of orthogonality.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nozawa, Kayo -- O'Donoghue, Patrick -- Gundllapalli, Sarath -- Araiso, Yuhei -- Ishitani, Ryuichiro -- Umehara, Takuya -- Soll, Dieter -- Nureki, Osamu -- R01 GM022854/GM/NIGMS NIH HHS/ -- R01 GM022854-33/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B34 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19118381" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/genetics/*metabolism ; Aminoacylation ; Crystallography, X-Ray ; Desulfitobacterium/*enzymology/genetics ; Escherichia coli/genetics ; Lysine/*analogs & derivatives/biosynthesis/genetics/metabolism ; Methanosarcina barkeri/enzymology/genetics ; Models, Molecular ; RNA, Transfer, Amino Acid-Specific/genetics/metabolism ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2009-02-20
    Description: The complement system is an essential component of the innate and acquired immune system, and consists of a series of proteolytic cascades that are initiated by the presence of microorganisms. In health, activation of complement is precisely controlled through membrane-bound and soluble plasma-regulatory proteins including complement factor H (fH; ref. 2), a 155 kDa protein composed of 20 domains (termed complement control protein repeats). Many pathogens have evolved the ability to avoid immune-killing by recruiting host complement regulators and several pathogens have adapted to avoid complement-mediated killing by sequestering fH to their surface. Here we present the structure of a complement regulator in complex with its pathogen surface-protein ligand. This reveals how the important human pathogen Neisseria meningitidis subverts immune responses by mimicking the host, using protein instead of charged-carbohydrate chemistry to recruit the host complement regulator, fH. The structure also indicates the molecular basis of the host-specificity of the interaction between fH and the meningococcus, and informs attempts to develop novel therapeutics and vaccines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670278/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670278/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, Muriel C -- Prosser, Beverly E -- Caesar, Joseph J E -- Kugelberg, Elisabeth -- Li, Su -- Zhang, Qian -- Quoraishi, Sadik -- Lovett, Janet E -- Deane, Janet E -- Sim, Robert B -- Roversi, Pietro -- Johnson, Steven -- Tang, Christoph M -- Lea, Susan M -- 083599/Wellcome Trust/United Kingdom -- G0400775/Medical Research Council/United Kingdom -- G0400775(71657)/Medical Research Council/United Kingdom -- G0500367/Medical Research Council/United Kingdom -- G0601195/Medical Research Council/United Kingdom -- G0601195(79743)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):890-3. doi: 10.1038/nature07769. Epub 2009 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225461" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Bacterial/*chemistry/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Carbohydrates/*chemistry ; Complement Factor H/*chemistry/immunology/*metabolism ; Crystallography, X-Ray ; Ligands ; Models, Molecular ; *Molecular Mimicry ; Neisseria meningitidis/chemistry/immunology/*metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2009-06-19
    Description: MicroRNAs (miRNAs) have critical roles in the regulation of gene expression; however, as miRNA activity requires base pairing with only 6-8 nucleotides of messenger RNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein-RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native argonaute (Ago, also called Eif2c) protein-RNA complexes in mouse brain. This produced two simultaneous data sets-Ago-miRNA and Ago-mRNA binding sites-that were combined with bioinformatic analysis to identify interaction sites between miRNA and target mRNA. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733940/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733940/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, Sung Wook -- Zang, Julie B -- Mele, Aldo -- Darnell, Robert B -- R01 NS034389/NS/NINDS NIH HHS/ -- R01 NS034389-14/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 23;460(7254):479-86. doi: 10.1038/nature08170. Epub 2009 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents/chemistry/metabolism ; *Gene Expression Regulation ; HeLa Cells ; Humans ; Immunoprecipitation/*methods ; Mice ; MicroRNAs/*metabolism ; Protein Interaction Mapping ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2009-04-17
    Description: Uncovering the origins of myocardial cells is important for understanding and treating heart diseases. Cai et al. suggest that Tbx18-expressing epicardium provides a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Here we show that the T-box transcription factor gene 18 (Tbx18) itself is expressed in the myocardium, showing that their genetic lineage tracing system does not allow conclusions of an epicardial origin of cardiomyocytes in vivo to be drawn.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christoffels, Vincent M -- Grieskamp, Thomas -- Norden, Julia -- Mommersteeg, Mathilda T M -- Rudat, Carsten -- Kispert, Andreas -- England -- Nature. 2009 Apr 16;458(7240):E8-9; discussion E9-10. doi: 10.1038/nature07916.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy & Embryology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15 L2-108, 1105 AZ Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19369973" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Cell Lineage ; Fluorescent Dyes ; Gene Expression Regulation, Developmental ; Gene Knock-In Techniques ; Heart Ventricles/cytology/embryology/metabolism ; In Situ Hybridization ; Integrases/genetics/metabolism ; Mice ; Myocardium/*cytology ; Myocytes, Cardiac/cytology/metabolism ; Pericardium/*cytology/embryology ; RNA/analysis/genetics ; Reproducibility of Results ; Stem Cells/*cytology/*metabolism ; T-Box Domain Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leopold, David A -- Z01 MH002838-04/Intramural NIH HHS/ -- Z01 MH002896-01/Intramural NIH HHS/ -- Z01 MH002899-01/Intramural NIH HHS/ -- England -- Nature. 2009 Jan 22;457(7228):387-8. doi: 10.1038/457387a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158777" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; *Cerebrovascular Circulation ; Humans ; Macaca mulatta/*physiology ; Magnetic Resonance Imaging ; Neurons/physiology ; Reproducibility of Results ; Time Factors ; Visual Cortex/*blood supply/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vihinen, Mauno -- England -- Nature. 2009 Jan 1;457(7225):26. doi: 10.1038/457026b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19122620" target="_blank"〉PubMed〈/a〉
    Keywords: *Databases, Factual ; Periodicals as Topic/standards ; *Plagiarism ; Reproducibility of Results ; Software
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2009-06-12
    Description: Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cicchillo, Robert M -- Zhang, Houjin -- Blodgett, Joshua A V -- Whitteck, John T -- Li, Gongyong -- Nair, Satish K -- van der Donk, Wilfred A -- Metcalf, William W -- P01 GM077596/GM/NIGMS NIH HHS/ -- P01 GM077596-03/GM/NIGMS NIH HHS/ -- R01 GM059334/GM/NIGMS NIH HHS/ -- R01 GM059334-09/GM/NIGMS NIH HHS/ -- R01 GM59334/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):871-4. doi: 10.1038/nature07972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516340" target="_blank"〉PubMed〈/a〉
    Keywords: Aminobutyrates/*chemistry/*metabolism ; Biocatalysis ; Crystallography, X-Ray ; Dioxygenases/chemistry/genetics/*metabolism ; Escherichia coli ; Formates/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Organophosphonates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2009-10-30
    Description: Urea is highly concentrated in the mammalian kidney to produce the osmotic gradient necessary for water re-absorption. Free diffusion of urea across cell membranes is slow owing to its high polarity, and specialized urea transporters have evolved to achieve rapid and selective urea permeation. Here we present the 2.3 A structure of a functional urea transporter from the bacterium Desulfovibrio vulgaris. The transporter is a homotrimer, and each subunit contains a continuous membrane-spanning pore formed by the two homologous halves of the protein. The pore contains a constricted selectivity filter that can accommodate several dehydrated urea molecules in single file. Backbone and side-chain oxygen atoms provide continuous coordination of urea as it progresses through the filter, and well-placed alpha-helix dipoles provide further compensation for dehydration energy. These results establish that the urea transporter operates by a channel-like mechanism and reveal the physical and chemical basis of urea selectivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871279/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871279/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levin, Elena J -- Quick, Matthias -- Zhou, Ming -- GM075026/GM/NIGMS NIH HHS/ -- HL086392/HL/NHLBI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01 HL086392-04/HL/NHLBI NIH HHS/ -- R01 HL086392-04S1/HL/NHLBI NIH HHS/ -- R01 HL086392-05/HL/NHLBI NIH HHS/ -- T32 HL087745/HL/NHLBI NIH HHS/ -- T32 HL087745-03/HL/NHLBI NIH HHS/ -- T32HL087745/HL/NHLBI NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM075026-040007/GM/NIGMS NIH HHS/ -- U54 GM075026-050007/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):757-61. doi: 10.1038/nature08558. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865084" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; Desulfovibrio vulgaris/*chemistry ; Humans ; Kidney/*chemistry ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Oocytes/metabolism ; Protein Folding ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Urea/metabolism ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ciochon, Russell L -- England -- Nature. 2009 Jun 18;459(7249):910-1. doi: 10.1038/459910a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Iowa, Iowa City, Iowa 52242, USA. russell-ciochon@uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asia, Southeastern ; China ; *Fossils ; *Hominidae/anatomy & histology/classification ; Humans ; Reproducibility of Results ; Tooth/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oliveira, Joao Ricardo -- England -- Nature. 2009 Jan 29;457(7229):532. doi: 10.1038/457532b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19177105" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Enhancement/*ethics ; *Cognition ; Health ; Humans ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2009-05-22
    Description: Acetoacetate decarboxylase (AADase) has long been cited as the prototypical example of the marked shifts in the pK(a) values of ionizable groups that can occur in an enzyme active site. In 1966, it was hypothesized that in AADase the origin of the large pK(a) perturbation (-4.5 log units) observed in the nucleophilic Lys 115 results from the proximity of Lys 116, marking the first proposal of microenvironment effects in enzymology. The electrostatic perturbation hypothesis has been demonstrated in a number of enzymes, but never for the enzyme that inspired its conception, owing to the lack of a three-dimensional structure. Here we present the X-ray crystal structures of AADase and of the enamine adduct with the substrate analogue 2,4-pentanedione. Surprisingly, the shift of the pK(a) of Lys 115 is not due to the proximity of Lys 116, the side chain of which is oriented away from the active site. Instead, Lys 116 participates in the structural anchoring of Lys 115 in a long, hydrophobic funnel provided by the novel fold of the enzyme. Thus, AADase perturbs the pK(a) of the nucleophile by means of a desolvation effect by placement of the side chain into the protein core while enforcing the proximity of polar residues, which facilitate decarboxylation through electrostatic and steric effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, Meng-Chiao -- Menetret, Jean-Francois -- Tsuruta, Hiro -- Allen, Karen N -- England -- Nature. 2009 May 21;459(7245):393-7. doi: 10.1038/nature07938.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458715" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Carboxy-Lyases/*chemistry ; Catalytic Domain ; Chromobacterium/*enzymology ; Clostridium acetobutylicum/*enzymology ; Crystallography, X-Ray ; Decarboxylation ; Hydrophobic and Hydrophilic Interactions ; Lysine/chemistry/metabolism ; Models, Molecular ; Pentanones/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2009-01-02
    Description: The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661029/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661029/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Fiona L -- Stec, Boguslaw -- Pop, Cristina -- Dobaczewska, Malgorzata K -- Lee, JeongEun J -- Monosov, Edward -- Robinson, Howard -- Salvesen, Guy S -- Schwarzenbacher, Robert -- Riedl, Stefan J -- P01 CA069381/CA/NCI NIH HHS/ -- P01 CA069381-130009/CA/NCI NIH HHS/ -- P01CA69381/CA/NCI NIH HHS/ -- P30 CA030199/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01AA017238/AA/NIAAA NIH HHS/ -- England -- Nature. 2009 Feb 19;457(7232):1019-22. doi: 10.1038/nature07606. Epub 2008 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Apoptosis and Cell Death Research, The Burnham Institute for Medical Research, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19118384" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD95/*chemistry/*metabolism ; Crystallography, X-Ray ; Death Domain Receptor Signaling Adaptor Proteins/chemistry/metabolism ; Fas-Associated Death Domain Protein/*chemistry/*metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/chemistry/metabolism ; *Receptor Aggregation ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, J Michael -- Horne, Jon S -- Garton, Edward O -- England -- Nature. 2009 Feb 19;457(7232):956. doi: 10.1038/457956b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225496" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*trends ; Data Collection ; Ecosystem ; Extinction, Biological ; Hawaii ; Passeriformes/*physiology ; Population Density ; Reproducibility of Results ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2009-06-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hofreiter, Michael -- England -- Nature. 2009 Jun 11;459(7248):774. doi: 10.1038/459774a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516319" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/*methods ; Ecology/*methods ; *Extinction, Biological ; *Genomics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2009-06-19
    Description: The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF protein containing a functional output domain; the mechanism of light activation in this new class of photoreceptors has thus remained poorly understood. Here we report the biochemical, structural and mechanistic characterization of a full-length, active photoreceptor, BlrP1 (also known as KPN_01598), from Klebsiella pneumoniae. BlrP1 consists of a BLUF sensor domain and a phosphodiesterase EAL output domain which hydrolyses cyclic dimeric GMP (c-di-GMP). This ubiquitous second messenger controls motility, biofilm formation, virulence and antibiotic resistance in the Bacteria. Crystal structures of BlrP1 complexed with its substrate and metal ions involved in catalysis or in enzyme inhibition provide a detailed understanding of the mechanism of the EAL-domain c-di-GMP phosphodiesterases. These structures also sketch out a path of light activation of the phosphodiesterase output activity. Photon absorption by the BLUF domain of one subunit of the antiparallel BlrP1 homodimer activates the EAL domain of the second subunit through allosteric communication transmitted through conserved domain-domain interfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barends, Thomas R M -- Hartmann, Elisabeth -- Griese, Julia J -- Beitlich, Thorsten -- Kirienko, Natalia V -- Ryjenkov, Dmitri A -- Reinstein, Jochen -- Shoeman, Robert L -- Gomelsky, Mark -- Schlichting, Ilme -- England -- Nature. 2009 Jun 18;459(7249):1015-8. doi: 10.1038/nature07966.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Jahnstrasse 29, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536266" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-GMP Phosphodiesterases/*chemistry/metabolism/*radiation effects ; Allosteric Regulation/radiation effects ; Biocatalysis/radiation effects ; Catalytic Domain ; Crystallography, X-Ray ; Cyclic GMP/analogs & derivatives/metabolism ; Klebsiella pneumoniae/*enzymology ; *Light ; Metals/metabolism ; Models, Molecular ; Phosphorus/metabolism ; Photons ; Photoreceptors, Microbial/*chemistry/metabolism/*radiation effects ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2009-12-17
    Description: Gene duplication is the primary source of new genes, but the molecular evolutionary mechanisms underlying functional divergence of duplicate genes are not well understood. Des Marais and Rausher argued that data from plant dihydroflavonol-4-reductase (DFR) genes support the model that gene duplication allows the escape from adaptive conflict (EAC) among several functions of a single-copy progenitor gene. As the authors indicated, the key predictions of EAC, in comparison to other models, are that (i) adaptive changes occur in both daughter genes after duplication, and (ii) these adaptive changes must improve ancestral functions. Furthermore, EAC indicates that (iii) the improvement of several ancestral functions is constrained before duplication, although this last point was not explicitly stated. Here we show that contrary to the predictions of EAC, only one of the duplicated DFR lineages exhibited adaptive sequence changes. Owing to the lack of information on enzyme concentrations we question the accuracy of enzyme activity comparisons, and it is thus not clear that any ancestral function has been improved in either lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barkman, Todd -- Zhang, Jianzhi -- England -- Nature. 2009 Dec 10;462(7274):E1; discussion E2-3. doi: 10.1038/nature08663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010636" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Alcohol Oxidoreductases/*genetics/*metabolism ; Evolution, Molecular ; Gene Duplication ; Genes, Duplicate/*genetics ; Genes, Plant/*genetics ; *Models, Biological ; Reproducibility of Results ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barnaby, Wendy -- England -- Nature. 2009 Mar 19;458(7236):282-3. doi: 10.1038/458282a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉w.barnaby@btinternet.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295588" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/economics/methods ; Commerce/statistics & numerical data ; Conflict (Psychology) ; Food Supply/economics/statistics & numerical data ; Humans ; Reproducibility of Results ; *Warfare ; Water Supply/economics/*statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hopkins, Andrew L -- England -- Nature. 2009 Nov 12;462(7270):167-8. doi: 10.1038/462167a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Artificial Intelligence ; *Computational Biology ; Drug Discovery/*methods ; Drug-Related Side Effects and Adverse Reactions ; Humans ; Ligands ; Off-Label Use ; Pharmaceutical Preparations/*metabolism ; Reproducibility of Results ; *Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2009-03-03
    Description: The lipopolysaccharide (LPS) of Gram negative bacteria is a well-known inducer of the innate immune response. Toll-like receptor (TLR) 4 and myeloid differentiation factor 2 (MD-2) form a heterodimer that recognizes a common 'pattern' in structurally diverse LPS molecules. To understand the ligand specificity and receptor activation mechanism of the TLR4-MD-2-LPS complex we determined its crystal structure. LPS binding induced the formation of an m-shaped receptor multimer composed of two copies of the TLR4-MD-2-LPS complex arranged symmetrically. LPS interacts with a large hydrophobic pocket in MD-2 and directly bridges the two components of the multimer. Five of the six lipid chains of LPS are buried deep inside the pocket and the remaining chain is exposed to the surface of MD-2, forming a hydrophobic interaction with the conserved phenylalanines of TLR4. The F126 loop of MD-2 undergoes localized structural change and supports this core hydrophobic interface by making hydrophilic interactions with TLR4. Comparison with the structures of tetra-acylated antagonists bound to MD-2 indicates that two other lipid chains in LPS displace the phosphorylated glucosamine backbone by approximately 5 A towards the solvent area. This structural shift allows phosphate groups of LPS to contribute to receptor multimerization by forming ionic interactions with a cluster of positively charged residues in TLR4 and MD-2. The TLR4-MD-2-LPS structure illustrates the remarkable versatility of the ligand recognition mechanisms employed by the TLR family, which is essential for defence against diverse microbial infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Beom Seok -- Song, Dong Hyun -- Kim, Ho Min -- Choi, Byong-Seok -- Lee, Hayyoung -- Lee, Jie-Oh -- England -- Nature. 2009 Apr 30;458(7242):1191-5. doi: 10.1038/nature07830. Epub 2009 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, KAIST, Daejeon, 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19252480" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; Lipopolysaccharides/*chemistry/*immunology ; Lymphocyte Antigen 96/*chemistry/*immunology ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Structure-Activity Relationship ; Toll-Like Receptor 4/*chemistry/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2009-10-09
    Description: Growing evidence supports the notion that proteasome-mediated destruction of transcriptional activators can be intimately coupled to their function. Recently, Nalley et al. challenged this view by reporting that the prototypical yeast activator Gal4 does not dynamically associate with chromatin, but rather 'locks in' to stable promoter complexes that are resistant to competition. Here we present evidence that the assay used to reach this conclusion is unsuitable, and that promoter-bound, active Gal4 is indeed susceptible to competition in vivo. Our data challenge the key evidence that Nalley et al. used to reach their conclusion, and indicate that Gal4 functions in vivo within the context of dynamic promoter complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072683/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072683/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Galen A -- Lipford, J Russell -- Deshaies, Raymond J -- Tansey, William P -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-310027/CA/NCI NIH HHS/ -- England -- Nature. 2009 Oct 8;461(7265):E7; discussion E8. doi: 10.1038/nature08406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812621" target="_blank"〉PubMed〈/a〉
    Keywords: Binding, Competitive/drug effects ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/*metabolism ; Estradiol/pharmacology ; Galactokinase/genetics ; Promoter Regions, Genetic/genetics ; Protein Binding/drug effects ; Receptors, Estrogen/agonists/chemistry/metabolism ; Reproducibility of Results ; Research Design ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Tamoxifen/analogs & derivatives/pharmacology ; Trans-Activators/genetics ; Transcription Factors/*metabolism ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yi -- England -- Nature. 2009 Sep 24;461(7263):484-5. doi: 10.1038/461484a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779441" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation/drug effects ; Humans ; Phosphorylation/drug effects ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Protein-Serine-Threonine Kinases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2009-08-25
    Description: The ability of cells to sense and respond to mechanical force underlies diverse processes such as touch and hearing in animals, gravitropism in plants, and bacterial osmoregulation. In bacteria, mechanosensation is mediated by the mechanosensitive channels of large (MscL), small (MscS), potassium-dependent (MscK) and mini (MscM) conductances. These channels act as 'emergency relief valves' protecting bacteria from lysis upon acute osmotic down-shock. Among them, MscL has been intensively studied since the original identification and characterization 15 years ago. MscL is reversibly and directly gated by changes in membrane tension. In the open state, MscL forms a non-selective 3 nS conductance channel which gates at tensions close to the lytic limit of the bacterial membrane. An earlier crystal structure at 3.5 A resolution of a pentameric MscL from Mycobacterium tuberculosis represents a closed-state or non-conducting conformation. MscL has a complex gating behaviour; it exhibits several intermediates between the closed and open states, including one putative non-conductive expanded state and at least three sub-conducting states. Although our understanding of the closed and open states of MscL has been increasing, little is known about the structures of the intermediate states despite their importance in elucidating the complete gating process of MscL. Here we present the crystal structure of a carboxy-terminal truncation mutant (Delta95-120) of MscL from Staphylococcus aureus (SaMscL(CDelta26)) at 3.8 A resolution. Notably, SaMscL(CDelta26) forms a tetrameric channel with both transmembrane helices tilted away from the membrane normal at angles close to that inferred for the open state, probably corresponding to a non-conductive but partially expanded intermediate state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737600/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737600/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Zhenfeng -- Gandhi, Chris S -- Rees, Douglas C -- GM084211/GM/NIGMS NIH HHS/ -- R01 GM084211/GM/NIGMS NIH HHS/ -- R01 GM084211-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Sep 3;461(7260):120-4. doi: 10.1038/nature08277. Epub 2009 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19701184" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium tuberculosis/chemistry/metabolism ; Pressure ; Protein Structure, Quaternary ; Staphylococcus aureus/*chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2009-11-06
    Description: Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor alpha (ER-alpha) in the human genome. We found that most high-confidence remote ER-alpha-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-alpha functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774924/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774924/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fullwood, Melissa J -- Liu, Mei Hui -- Pan, You Fu -- Liu, Jun -- Xu, Han -- Mohamed, Yusoff Bin -- Orlov, Yuriy L -- Velkov, Stoyan -- Ho, Andrea -- Mei, Poh Huay -- Chew, Elaine G Y -- Huang, Phillips Yao Hui -- Welboren, Willem-Jan -- Han, Yuyuan -- Ooi, Hong Sain -- Ariyaratne, Pramila N -- Vega, Vinsensius B -- Luo, Yanquan -- Tan, Peck Yean -- Choy, Pei Ye -- Wansa, K D Senali Abayratna -- Zhao, Bing -- Lim, Kar Sian -- Leow, Shi Chi -- Yow, Jit Sin -- Joseph, Roy -- Li, Haixia -- Desai, Kartiki V -- Thomsen, Jane S -- Lee, Yew Kok -- Karuturi, R Krishna Murthy -- Herve, Thoreau -- Bourque, Guillaume -- Stunnenberg, Hendrik G -- Ruan, Xiaoan -- Cacheux-Rataboul, Valere -- Sung, Wing-Kin -- Liu, Edison T -- Wei, Chia-Lin -- Cheung, Edwin -- Ruan, Yijun -- 1U54HG004557-01/HG/NHGRI NIH HHS/ -- R01 HG004456/HG/NHGRI NIH HHS/ -- R01 HG004456-01/HG/NHGRI NIH HHS/ -- R01 HG004456-02/HG/NHGRI NIH HHS/ -- R01 HG004456-03/HG/NHGRI NIH HHS/ -- R01HG003521-01/HG/NHGRI NIH HHS/ -- R01HG004456-01/HG/NHGRI NIH HHS/ -- U54 HG004557/HG/NHGRI NIH HHS/ -- U54 HG004557-01/HG/NHGRI NIH HHS/ -- U54 HG004557-02/HG/NHGRI NIH HHS/ -- U54 HG004557-03/HG/NHGRI NIH HHS/ -- U54 HG004557-04/HG/NHGRI NIH HHS/ -- England -- Nature. 2009 Nov 5;462(7269):58-64. doi: 10.1038/nature08497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890323" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Chromatin/*genetics/*metabolism ; Chromatin Immunoprecipitation ; Cross-Linking Reagents ; Estrogen Receptor alpha/*metabolism ; Formaldehyde ; Genome, Human/*genetics ; Humans ; Promoter Regions, Genetic/genetics ; Protein Binding ; Reproducibility of Results ; Sequence Analysis, DNA ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2009-06-26
    Description: Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a marked increase in incidence in the early 1960s due to the tragic toxicological effects of the drug thalidomide, which had been prescribed as a mild sedative. This human birth defect is mimicked in developing chick limb buds exposed to X-irradiation. Both X-irradiation and thalidomide-induced phocomelia have been interpreted as patterning defects in the context of the progress zone model, which states that a cell's proximodistal identity is determined by the length of time spent in a distal limb region termed the 'progress zone'. Indeed, studies of X-irradiation-induced phocomelia have served as one of the two major experimental lines of evidence supporting the validity of the progress zone model. Here, using a combination of molecular analysis and lineage tracing in chick, we show that X-irradiation-induced phocomelia is fundamentally not a patterning defect, but rather results from a time-dependent loss of skeletal progenitors. Because skeletal condensation proceeds from the shoulder to fingers (in a proximal to distal direction), the proximal elements are differentially affected in limb buds exposed to radiation at early stages. This conclusion changes the framework for considering the effect of thalidomide and other forms of phocomelia, suggesting the possibility that the aetiology lies not in a defect in the patterning process, but rather in progenitor cell survival and differentiation. Moreover, molecular evidence that proximodistal patterning is unaffected after X-irradiation does not support the predictions of the progress zone model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711994/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711994/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galloway, Jenna L -- Delgado, Irene -- Ros, Maria A -- Tabin, Clifford J -- F32 HD057701/HD/NICHD NIH HHS/ -- F32 HD057701-01/HD/NICHD NIH HHS/ -- F32 HD057701-02/HD/NICHD NIH HHS/ -- F32HD057701/HD/NICHD NIH HHS/ -- L40 HD057084/HD/NICHD NIH HHS/ -- L40 HD057084-01/HD/NICHD NIH HHS/ -- R37 HD032443/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Jul 16;460(7253):400-4. doi: 10.1038/nature08117. Epub 2009 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19553938" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*radiation effects ; Bone and Bones/cytology/radiation effects ; Cell Death/radiation effects ; Cell Differentiation/radiation effects ; Cell Lineage/radiation effects ; Cell Proliferation/radiation effects ; Chick Embryo ; Chondrogenesis/radiation effects ; Ectromelia/*etiology/genetics/*pathology ; Gene Expression Regulation, Developmental/radiation effects ; Limb Buds/abnormalities/*pathology/*radiation effects/transplantation ; Reproducibility of Results ; Stem Cells/cytology/radiation effects ; Thalidomide/adverse effects ; Time Factors ; X-Rays/adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2009-10-09
    Description: RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of approximately 20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-l-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 A crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-l-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg(2+)-dependent 2'-O-methylation mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Ying -- Ji, Lijuan -- Huang, Qichen -- Vassylyev, Dmitry G -- Chen, Xuemei -- Ma, Jin-Biao -- GM074252/GM/NIGMS NIH HHS/ -- R01 GM074840/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 8;461(7265):823-7. doi: 10.1038/nature08433.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812675" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Magnesium/metabolism ; Methylation ; Methyltransferases/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Protein Structure, Tertiary ; RNA/genetics/*metabolism ; RNA-Binding Proteins/chemistry/metabolism ; S-Adenosylhomocysteine/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2009-10-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sherman, David H -- England -- Nature. 2009 Oct 22;461(7267):1068-9. doi: 10.1038/4611068a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847256" target="_blank"〉PubMed〈/a〉
    Keywords: Aflatoxin B1/biosynthesis ; Aspergillus/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Cyclization ; Pantetheine/analogs & derivatives/metabolism ; Polyketide Synthases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2009-08-15
    Description: Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, Atlanta G -- Fukuhara, Noemi -- Jinek, Martin -- Conti, Elena -- England -- Nature. 2009 Sep 3;461(7260):60-5. doi: 10.1038/nature08394.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Cell Biology, MPI for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19680239" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Nucleus/*metabolism ; Crystallography, X-Ray ; Cytosol/*metabolism ; GTPase-Activating Proteins/chemistry/metabolism ; Models, Molecular ; Nuclear Pore Complex Proteins/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; *RNA Transport ; RNA, Fungal/chemistry/genetics/metabolism ; RNA, Transfer/chemistry/genetics/*metabolism ; RNA, Transfer, Phe/chemistry/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Schizosaccharomyces pombe Proteins/*chemistry/*metabolism ; Substrate Specificity ; ran GTP-Binding Protein/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2009-05-01
    Description: Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)-two genes encoding neuronal cell-adhesion molecules-revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 x 10(-8), odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 x 10(-8) to 2.1 x 10(-10). Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kai -- Zhang, Haitao -- Ma, Deqiong -- Bucan, Maja -- Glessner, Joseph T -- Abrahams, Brett S -- Salyakina, Daria -- Imielinski, Marcin -- Bradfield, Jonathan P -- Sleiman, Patrick M A -- Kim, Cecilia E -- Hou, Cuiping -- Frackelton, Edward -- Chiavacci, Rosetta -- Takahashi, Nagahide -- Sakurai, Takeshi -- Rappaport, Eric -- Lajonchere, Clara M -- Munson, Jeffrey -- Estes, Annette -- Korvatska, Olena -- Piven, Joseph -- Sonnenblick, Lisa I -- Alvarez Retuerto, Ana I -- Herman, Edward I -- Dong, Hongmei -- Hutman, Ted -- Sigman, Marian -- Ozonoff, Sally -- Klin, Ami -- Owley, Thomas -- Sweeney, John A -- Brune, Camille W -- Cantor, Rita M -- Bernier, Raphael -- Gilbert, John R -- Cuccaro, Michael L -- McMahon, William M -- Miller, Judith -- State, Matthew W -- Wassink, Thomas H -- Coon, Hilary -- Levy, Susan E -- Schultz, Robert T -- Nurnberger, John I -- Haines, Jonathan L -- Sutcliffe, James S -- Cook, Edwin H -- Minshew, Nancy J -- Buxbaum, Joseph D -- Dawson, Geraldine -- Grant, Struan F A -- Geschwind, Daniel H -- Pericak-Vance, Margaret A -- Schellenberg, Gerard D -- Hakonarson, Hakon -- 1U24MH081810/MH/NIMH NIH HHS/ -- HD055751/HD/NICHD NIH HHS/ -- HD055782-01/HD/NICHD NIH HHS/ -- HD055784/HD/NICHD NIH HHS/ -- M01-RR00064/RR/NCRR NIH HHS/ -- MH061009/MH/NIMH NIH HHS/ -- MH0666730/MH/NIMH NIH HHS/ -- MH080647/MH/NIMH NIH HHS/ -- MH081754/MH/NIMH NIH HHS/ -- MH64547/MH/NIMH NIH HHS/ -- MH69359/MH/NIMH NIH HHS/ -- N01-HD-4-3368/HD/NICHD NIH HHS/ -- N01-HD-4-3383/HD/NICHD NIH HHS/ -- NS049261/NS/NINDS NIH HHS/ -- NS26630/NS/NINDS NIH HHS/ -- NS36768/NS/NINDS NIH HHS/ -- P01 NS026630/NS/NINDS NIH HHS/ -- P01 NS026630-109001/NS/NINDS NIH HHS/ -- P50 HD055748/HD/NICHD NIH HHS/ -- P50 HD055751/HD/NICHD NIH HHS/ -- P50 HD055751-01/HD/NICHD NIH HHS/ -- P50 HD055782-01/HD/NICHD NIH HHS/ -- P50 HD055784/HD/NICHD NIH HHS/ -- P50 HD055784-01/HD/NICHD NIH HHS/ -- P50 HD055784-010002/HD/NICHD NIH HHS/ -- P50 HD055784-020002/HD/NICHD NIH HHS/ -- P50 HD055784-030002/HD/NICHD NIH HHS/ -- R01 MH061009/MH/NIMH NIH HHS/ -- R01 MH061009-01A1/MH/NIMH NIH HHS/ -- R01 MH064547/MH/NIMH NIH HHS/ -- R01 MH064547-01/MH/NIMH NIH HHS/ -- R01 MH064547-01S1/MH/NIMH NIH HHS/ -- R01 MH064547-02/MH/NIMH NIH HHS/ -- R01 MH064547-02S1/MH/NIMH NIH HHS/ -- R01 MH064547-03/MH/NIMH NIH HHS/ -- R01 MH064547-04/MH/NIMH NIH HHS/ -- R01 MH064547-05/MH/NIMH NIH HHS/ -- R01 MH069359/MH/NIMH NIH HHS/ -- R01 MH069359-01A2/MH/NIMH NIH HHS/ -- R01 MH080647/MH/NIMH NIH HHS/ -- R01 MH080647-11/MH/NIMH NIH HHS/ -- R01 MH081754/MH/NIMH NIH HHS/ -- R01 MH081754-01/MH/NIMH NIH HHS/ -- R01 MH081754-02/MH/NIMH NIH HHS/ -- R01 NS036768/NS/NINDS NIH HHS/ -- R01 NS036768-06/NS/NINDS NIH HHS/ -- R01 NS049261/NS/NINDS NIH HHS/ -- R01 NS049261-01A2/NS/NINDS NIH HHS/ -- U54 MH066673/MH/NIMH NIH HHS/ -- U54 MH066673-01A10001/MH/NIMH NIH HHS/ -- UL1 RR024134/RR/NCRR NIH HHS/ -- UL1 RR024134-01/RR/NCRR NIH HHS/ -- UL1-RR024134-03/RR/NCRR NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2009 May 28;459(7246):528-33. doi: 10.1038/nature07999. Epub 2009 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19404256" target="_blank"〉PubMed〈/a〉
    Keywords: Autistic Disorder/*genetics ; Brain/metabolism ; Cadherins/genetics ; Case-Control Studies ; Cell Adhesion/genetics ; Cell Adhesion Molecules, Neuronal/genetics ; Chromosomes, Human, Pair 5/*genetics ; Cohort Studies ; Genetic Markers/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Genotype ; Humans ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2009-05-22
    Description: Sodium-potassium ATPase is an ATP-powered ion pump that establishes concentration gradients for Na(+) and K(+) ions across the plasma membrane in all animal cells by pumping Na(+) from the cytoplasm and K(+) from the extracellular medium. Such gradients are used in many essential processes, notably for generating action potentials. Na(+), K(+)-ATPase is a member of the P-type ATPases, which include sarcoplasmic reticulum Ca(2+)-ATPase and gastric H(+), K(+)-ATPase, among others, and is the target of cardiac glycosides. Here we describe a crystal structure of this important ion pump, from shark rectal glands, consisting of alpha- and beta-subunits and a regulatory FXYD protein, all of which are highly homologous to human ones. The ATPase was fixed in a state analogous to E2.2K(+).P(i), in which the ATPase has a high affinity for K(+) and still binds P(i), as in the first crystal structure of pig kidney enzyme at 3.5 A resolution. Clearly visualized now at 2.4 A resolution are coordination of K(+) and associated water molecules in the transmembrane binding sites and a phosphate analogue (MgF(4)(2-)) in the phosphorylation site. The crystal structure shows that the beta-subunit has a critical role in K(+) binding (although its involvement has previously been suggested) and explains, at least partially, why the homologous Ca(2+)-ATPase counter-transports H(+) rather than K(+), despite the coordinating residues being almost identical.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinoda, Takehiro -- Ogawa, Haruo -- Cornelius, Flemming -- Toyoshima, Chikashi -- England -- Nature. 2009 May 21;459(7245):446-50. doi: 10.1038/nature07939.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458722" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium-Transporting ATPases/chemistry/metabolism ; Crystallography, X-Ray ; Fluorides/metabolism ; Humans ; Magnesium Compounds/metabolism ; Membrane Proteins/chemistry/metabolism ; Models, Molecular ; Phosphoproteins/chemistry/metabolism ; Phosphorylation ; Potassium/metabolism ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; Salt Gland/enzymology ; Sharks ; Sodium-Potassium-Exchanging ATPase/*chemistry/metabolism ; Swine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Oct 29;461(7268):1174. doi: 10.1038/4611174a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865118" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; *Clinical Trials, Phase III as Topic ; HIV Infections/prevention & control ; Humans ; Peer Review, Research/*standards ; Reproducibility of Results ; Research Personnel/*standards ; Thailand
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-04-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Costi, Maria Paola -- Ferrari, Stefania -- England -- Nature. 2009 Apr 16;458(7240):840-1. doi: 10.1038/458840a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370021" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyuracil Nucleotides/chemistry/metabolism ; Flavin-Adenine Dinucleotide/analogs & derivatives/chemistry/metabolism ; Flavins/chemistry/*metabolism ; Helicobacter pylori/enzymology/genetics ; Humans ; Thermotoga maritima/*enzymology/genetics/*metabolism ; Thymidine Monophosphate/*biosynthesis ; Thymidylate Synthase/antagonists & inhibitors/*genetics/*metabolism ; Uracil/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2009-05-01
    Description: Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shukla, Vipula K -- Doyon, Yannick -- Miller, Jeffrey C -- DeKelver, Russell C -- Moehle, Erica A -- Worden, Sarah E -- Mitchell, Jon C -- Arnold, Nicole L -- Gopalan, Sunita -- Meng, Xiangdong -- Choi, Vivian M -- Rock, Jeremy M -- Wu, Ying-Ying -- Katibah, George E -- Zhifang, Gao -- McCaskill, David -- Simpson, Matthew A -- Blakeslee, Beth -- Greenwalt, Scott A -- Butler, Holly J -- Hinkley, Sarah J -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- England -- Nature. 2009 May 21;459(7245):437-41. doi: 10.1038/nature07992. Epub 2009 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dow AgroSciences, 9330 Zionsville Road, Indianapolis, Indiana 46268, USA. vkshukla@dow.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19404259" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*methods ; Deoxyribonucleases/*chemistry/genetics/*metabolism ; Food, Genetically Modified ; Gene Targeting/*methods ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Herbicide Resistance/genetics ; Herbicides/pharmacology ; Heredity ; Inositol Phosphates/metabolism ; Mutagenesis, Site-Directed/methods ; Plants, Genetically Modified ; Recombination, Genetic/genetics ; Reproducibility of Results ; Zea mays/*genetics ; *Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2009-04-03
    Description: Psychiatric genetics has been hampered by the fact that initially exciting findings from underpowered studies are so often not replicated in larger, more powerful, data sets. Here we show that the claims of Zhou et al. that neuropeptide Y (NPY) diplotype-predicted expression is correlated with trait anxiety (neuroticism) is not replicated in a data set consisting of phenotypically extreme individuals drawn from a large (n = 88,142) non-clinical population. We found no association between NPY diplotype or diplotype-predicted expression and neuroticism. Our reply to Zhou and colleagues forms part of a larger debate (see, for example, http://www.nature.com/news/2008/080709/full/454154a.html) about the efficacy and replicability of candidate driven versus genome wide approaches to psychiatric genetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cotton, Colleen H -- Flint, Jonathan -- Campbell, Thomas G -- England -- Nature. 2009 Apr 2;458(7238):E6; discussion E7. doi: 10.1038/nature07927.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19340021" target="_blank"〉PubMed〈/a〉
    Keywords: Genotype ; Humans ; Neuropeptide Y/*genetics ; Neurotic Disorders/*genetics ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharya, Ananyo -- England -- Nature. 2009 May 7;459(7243):24-7. doi: 10.1038/459024a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424134" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/chemistry ; Crystallography, X-Ray ; Eukaryotic Cells/chemistry ; Humans ; *Models, Molecular ; Nuclear Pore/chemistry ; Proteins/*chemistry ; Receptor, Epidermal Growth Factor/chemistry ; Ribosomes/chemistry ; Spliceosomes/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2009-11-27
    Description: FocA is a representative member of the formate-nitrite transporter family, which transports short-chain acids in bacteria, archaea, fungi, algae and parasites. The structure and transport mechanism of the formate-nitrite transporter family remain unknown. Here we report the crystal structure of Escherichia coli FocA at 2.25 A resolution. FocA forms a symmetric pentamer, with each protomer consisting of six transmembrane segments. Despite a lack of sequence homology, the overall structure of the FocA protomer closely resembles that of aquaporin and strongly argues that FocA is a channel, rather than a transporter. Structural analysis identifies potentially important channel residues, defines the channel path and reveals two constriction sites. Unlike aquaporin, FocA is impermeable to water but allows the passage of formate. A structural and biochemical investigation provides mechanistic insights into the channel activity of FocA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yi -- Huang, Yongjian -- Wang, Jiawei -- Cheng, Chao -- Huang, Weijiao -- Lu, Peilong -- Xu, Ya-Nan -- Wang, Pengye -- Yan, Nieng -- Shi, Yigong -- England -- Nature. 2009 Nov 26;462(7272):467-72. doi: 10.1038/nature08610.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Protein Science Laboratory, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940917" target="_blank"〉PubMed〈/a〉
    Keywords: Aquaporins/*chemistry/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Formates/metabolism ; Liposomes/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Mimicry ; Mutation ; Permeability ; Protein Structure, Quaternary ; Structure-Activity Relationship ; Water/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2009-10-09
    Description: The slicer activity of the RNA-induced silencing complex resides within its Argonaute (Ago) component, in which the PIWI domain provides the catalytic residues governing guide-strand mediated site-specific cleavage of target RNA. Here we report on structures of ternary complexes of Thermus thermophilus Ago catalytic mutants with 5'-phosphorylated 21-nucleotide guide DNA and complementary target RNAs of 12, 15 and 19 nucleotides in length, which define the molecular basis for Mg(2+)-facilitated site-specific cleavage of the target. We observe pivot-like domain movements within the Ago scaffold on proceeding from nucleation to propagation steps of guide-target duplex formation, with duplex zippering beyond one turn of the helix requiring the release of the 3'-end of the guide from the PAZ pocket. Cleavage assays on targets of various lengths supported this model, and sugar-phosphate-backbone-modified target strands showed the importance of structural and catalytic divalent metal ions observed in the crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yanli -- Juranek, Stefan -- Li, Haitao -- Sheng, Gang -- Wardle, Greg S -- Tuschl, Thomas -- Patel, Dinshaw J -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI068776/AI/NIAID NIH HHS/ -- R01 AI068776-04/AI/NIAID NIH HHS/ -- R01 AI068776-05/AI/NIAID NIH HHS/ -- R01 GM068476/GM/NIGMS NIH HHS/ -- R01 GM068476-05/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 8;461(7265):754-61. doi: 10.1038/nature08434.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial-Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812667" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Biocatalysis ; Catalytic Domain/genetics ; Cations, Divalent/metabolism ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism ; *Gene Silencing ; Magnesium/metabolism ; Models, Molecular ; Phosphorylation ; RNA/chemistry/genetics/*metabolism ; RNA-Induced Silencing Complex/*chemistry/genetics/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thermus thermophilus/*enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-03-20
    Description: Thewissen et al. describe new fossils from India that apparently support a phylogeny that places Cetacea (that is, whales, dolphins, porpoises) as the sister group to the extinct family Raoellidae, and Hippopotamidae as more closely related to pigs and peccaries (that is, Suina) than to cetaceans. However, our reanalysis of a modified version of the data set they used differs in retaining molecular characters and demonstrates that Hippopotamidae is the closest extant family to Cetacea and that raoellids are the closest extinct group, consistent with previous phylogenetic studies. This topology supports the view that the aquatic adaptations in hippopotamids and cetaceans are inherited from their common ancestor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geisler, Jonathan H -- Theodor, Jessica M -- England -- Nature. 2009 Mar 19;458(7236):E1-4; discussion E5. doi: 10.1038/nature07776.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Geography and Georgia Southern Museum, Georgia Southern University, Statesboro, Georgia 30460-8149, USA. geislerj@georgiasouthern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Artiodactyla/*classification ; Cetacea/*classification ; Extinction, Biological ; *Phylogeny ; Reproducibility of Results ; Whales/*classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2009-10-23
    Description: As with all spiders, tarantulas spin silk from specialized structures in the abdomen called spinnerets, which are key features unique to the group. Recently Gorb et al. reported that the zebra tarantula Aphonopelma seemanni also secretes silk from its feet, which might improve its ability to climb on vertical surfaces. Here we show that when the spinnerets are experimentally sealed, the zebra tarantula cannot secrete silk or similar threads, disagreeing with previous reports by Gorb et al.. Additional evidence also disagrees with leg secretion of silk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez-Miles, Fernando -- Panzera, Alejandra -- Ortiz-Villatoro, David -- Perdomo, Cintya -- England -- Nature. 2009 Oct 22;461(7267):E9; discussion E9-10. doi: 10.1038/nature08404.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seccion Entomologia, Facultad de Ciencias, Igua 4225, 11400 Montevideo, Uruguay.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847209" target="_blank"〉PubMed〈/a〉
    Keywords: Abdomen/anatomy & histology/physiology ; Animals ; Extremities/anatomy & histology/*physiology ; Hair ; Reproducibility of Results ; Silk/*biosynthesis/*secretion ; Spiders/*anatomy & histology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2009-10-23
    Description: Polyketides are a class of natural products with diverse structures and biological activities. The structural variability of aromatic products of fungal nonreducing, multidomain iterative polyketide synthases (NR-PKS group of IPKSs) results from regiospecific cyclizations of reactive poly-beta-keto intermediates. How poly-beta-keto species are synthesized and stabilized, how their chain lengths are determined, and, in particular, how specific cyclization patterns are controlled have been largely inaccessible and functionally unknown until recently. A product template (PT) domain is responsible for controlling specific aldol cyclization and aromatization of these mature polyketide precursors, but the mechanistic basis is unknown. Here we present the 1.8 A crystal structure and mutational studies of a dissected PT monodomain from PksA, the NR-PKS that initiates the biosynthesis of the potent hepatocarcinogen aflatoxin B(1) in Aspergillus parasiticus. Despite having minimal sequence similarity to known enzymes, the structure displays a distinct 'double hot dog' (DHD) fold. Co-crystal structures with palmitate or a bicyclic substrate mimic illustrate that PT can bind both linear and bicyclic polyketides. Docking and mutagenesis studies reveal residues important for substrate binding and catalysis, and identify a phosphopantetheine localization channel and a deep two-part interior binding pocket and reaction chamber. Sequence similarity and extensive conservation of active site residues in PT domains suggest that the mechanistic insights gleaned from these studies will prove general for this class of IPKSs, and lay a foundation for defining the molecular rules controlling NR-PKS cyclization specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872118/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872118/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crawford, Jason M -- Korman, Tyler P -- Labonte, Jason W -- Vagstad, Anna L -- Hill, Eric A -- Kamari-Bidkorpeh, Oliver -- Tsai, Shiou-Chuan -- Townsend, Craig A -- ES001670/ES/NIEHS NIH HHS/ -- R01 GM076330/GM/NIGMS NIH HHS/ -- R01 GM076330-01A2/GM/NIGMS NIH HHS/ -- R01 GM076330-02/GM/NIGMS NIH HHS/ -- R01 GM076330-03/GM/NIGMS NIH HHS/ -- R01 GM100305/GM/NIGMS NIH HHS/ -- R37 AI014937/AI/NIAID NIH HHS/ -- R37 AI014937-31/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1139-43. doi: 10.1038/nature08475.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Johns Hopkins University, Maryland 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847268" target="_blank"〉PubMed〈/a〉
    Keywords: Aflatoxin B1/biosynthesis ; Anthracenes/metabolism ; Anthraquinones/metabolism ; Aspergillus/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Cyclization ; Models, Molecular ; Oxidation-Reduction ; Palmitic Acid/metabolism ; Polyketide Synthases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Oct 8;461(7265):697. doi: 10.1038/461697a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812627" target="_blank"〉PubMed〈/a〉
    Keywords: Emigration and Immigration/legislation & jurisprudence ; Genetic Testing/*ethics ; Genetics, Population/*ethics/*methods/standards ; Genome, Human/*genetics ; Geography ; Great Britain ; Humans ; *Internationality ; Male ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Refugees/*legislation & jurisprudence ; Reproducibility of Results ; Research Personnel ; Somalia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2009-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waterman, Michael R -- England -- Nature. 2009 Jan 8;457(7226):159-60. doi: 10.1038/457159a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19129840" target="_blank"〉PubMed〈/a〉
    Keywords: Aromatase/*chemistry/*metabolism ; Aromatase Inhibitors/*pharmacology/therapeutic use ; Breast Neoplasms/*drug therapy/*enzymology/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Estrogens/*biosynthesis ; Female ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-02-11
    Description: Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 A resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 A (ref. 2). A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and beta-sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol(-1) of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process probably present in many dsDNA bacteriophage and possibly viruses such as herpesvirus, which share the HK97 subunit fold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gertsman, Ilya -- Gan, Lu -- Guttman, Miklos -- Lee, Kelly -- Speir, Jeffrey A -- Duda, Robert L -- Hendrix, Roger W -- Komives, Elizabeth A -- Johnson, John E -- GM08326/GM/NIGMS NIH HHS/ -- R01 AI040101/AI/NIAID NIH HHS/ -- R01 AI040101-04/AI/NIAID NIH HHS/ -- R01 AI040101-14/AI/NIAID NIH HHS/ -- R01 AI40101/AI/NIAID NIH HHS/ -- R01 GM47795/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 2;458(7238):646-50. doi: 10.1038/nature07686. Epub 2009 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19204733" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/*chemistry/*metabolism ; Capsid Proteins/chemistry/genetics/metabolism ; Crystallography, X-Ray ; Deuterium Exchange Measurement ; Models, Molecular ; Movement ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Siphoviridae/*chemistry/genetics/*growth & development ; Thermodynamics ; *Virus Assembly
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cui, Keming -- England -- Nature. 2009 Jan 22;457(7228):379. doi: 10.1038/457379e.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158767" target="_blank"〉PubMed〈/a〉
    Keywords: China ; Laboratories/*organization & administration ; Reproducibility of Results ; Research Personnel/*organization & administration ; Universities/*organization & administration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2009-01-23
    Description: Haemodynamic signals underlying functional brain imaging (for example, functional magnetic resonance imaging (fMRI)) are assumed to reflect metabolic demand generated by local neuronal activity, with equal increases in haemodynamic signal implying equal increases in the underlying neuronal activity. Few studies have compared neuronal and haemodynamic signals in alert animals to test for this assumed correspondence. Here we present evidence that brings this assumption into question. Using a dual-wavelength optical imaging technique that independently measures cerebral blood volume and oxygenation, continuously, in alert behaving monkeys, we find two distinct components to the haemodynamic signal in the alert animals' primary visual cortex (V1). One component is reliably predictable from neuronal responses generated by visual input. The other component-of almost comparable strength-is a hitherto unknown signal that entrains to task structure independently of visual input or of standard neural predictors of haemodynamics. This latter component shows predictive timing, with increases of cerebral blood volume in anticipation of trial onsets even in darkness. This trial-locked haemodynamic signal could be due to an accompanying V1 arterial pumping mechanism, closely matched in time, with peaks of arterial dilation entrained to predicted trial onsets. These findings (tested in two animals) challenge the current understanding of the link between brain haemodynamics and local neuronal activity. They also suggest the existence of a novel preparatory mechanism in the brain that brings additional arterial blood to cortex in anticipation of expected tasks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705195/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705195/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sirotin, Yevgeniy B -- Das, Aniruddha -- R01 EY013759/EY/NEI NIH HHS/ -- R01 EY013759-01A1/EY/NEI NIH HHS/ -- England -- Nature. 2009 Jan 22;457(7228):475-9. doi: 10.1038/nature07664.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158795" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Auditory Cortex/blood supply/cytology/physiology ; Brain Mapping ; *Cerebrovascular Circulation ; Darkness ; Fixation, Ocular/physiology ; *Hemodynamics ; Macaca mulatta/*physiology ; Magnetic Resonance Imaging ; Models, Neurological ; Neurons/*physiology ; Oxygen Consumption/physiology ; Photic Stimulation ; Reproducibility of Results ; Time Factors ; Visual Cortex/*blood supply/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gewin, Virginia -- England -- Nature. 2009 Aug 20;460(7258):944-6. doi: 10.1038/460944a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693059" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources/*methods ; Ecology/*methods ; Eukaryota/physiology ; Extinction, Biological ; *Models, Biological ; Predatory Behavior/physiology ; Reproducibility of Results ; Rivers ; Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2009-01-09
    Description: Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O(2), 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16alpha-hydroxytestosterone to oestrone, 17beta-oestradiol and 17beta,16alpha-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmark androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme's androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820300/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820300/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, Debashis -- Griswold, Jennifer -- Erman, Mary -- Pangborn, Walter -- GM59450/GM/NIGMS NIH HHS/ -- GM62794/GM/NIGMS NIH HHS/ -- R01 GM062794/GM/NIGMS NIH HHS/ -- R01 GM062794-01A1/GM/NIGMS NIH HHS/ -- R01 GM062794-02/GM/NIGMS NIH HHS/ -- R01 GM062794-03/GM/NIGMS NIH HHS/ -- R01 GM062794-04/GM/NIGMS NIH HHS/ -- R01 GM086893/GM/NIGMS NIH HHS/ -- R01 GM086893-01A1/GM/NIGMS NIH HHS/ -- R21 GM059450/GM/NIGMS NIH HHS/ -- R21 GM059450-01/GM/NIGMS NIH HHS/ -- R21 GM059450-02/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jan 8;457(7226):219-23. doi: 10.1038/nature07614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA. ghosh@hwi.buffalo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19129847" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/*metabolism ; Aromatase/*chemistry/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Estrogens/*biosynthesis ; Female ; Humans ; Lipid Bilayers/metabolism ; Models, Molecular ; Placenta/enzymology ; Protein Binding ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2009-04-03
    Description: Gap junctions consist of arrays of intercellular channels between adjacent cells that permit the exchange of ions and small molecules. Here we report the crystal structure of the gap junction channel formed by human connexin 26 (Cx26, also known as GJB2) at 3.5 A resolution, and discuss structural determinants of solute transport through the channel. The density map showed the two membrane-spanning hemichannels and the arrangement of the four transmembrane helices of the six protomers forming each hemichannel. The hemichannels feature a positively charged cytoplasmic entrance, a funnel, a negatively charged transmembrane pathway, and an extracellular cavity. The pore is narrowed at the funnel, which is formed by the six amino-terminal helices lining the wall of the channel, which thus determines the molecular size restriction at the channel entrance. The structure of the Cx26 gap junction channel also has implications for the gating of the channel by the transjunctional voltage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, Shoji -- Nakagawa, So -- Suga, Michihiro -- Yamashita, Eiki -- Oshima, Atsunori -- Fujiyoshi, Yoshinori -- Tsukihara, Tomitake -- England -- Nature. 2009 Apr 2;458(7238):597-602. doi: 10.1038/nature07869.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, OLABB, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19340074" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Connexins/*chemistry/genetics ; Crystallography, X-Ray ; Gap Junctions/*chemistry ; Humans ; Ion Channel Gating ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary ; Spodoptera/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-03-28
    Description: Human spliceosomal U1 small nuclear ribonucleoprotein particles (snRNPs), which consist of U1 small nuclear RNA and ten proteins, recognize the 5' splice site within precursor messenger RNAs and initiate the assembly of the spliceosome for intron excision. An electron density map of the functional core of U1 snRNP at 5.5 A resolution has enabled us to build the RNA and, in conjunction with site-specific labelling of individual proteins, to place the seven Sm proteins, U1-C and U1-70K into the map. Here we present the detailed structure of a spliceosomal snRNP, revealing a hierarchical network of intricate interactions between subunits. A striking feature is the amino (N)-terminal polypeptide of U1-70K, which extends over a distance of 180 A from its RNA binding domain, wraps around the core domain consisting of the seven Sm proteins and finally contacts U1-C, which is crucial for 5'-splice-site recognition. The structure of U1 snRNP provides insights into U1 snRNP assembly and suggests a possible mechanism of 5'-splice-site recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673513/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673513/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pomeranz Krummel, Daniel A -- Oubridge, Chris -- Leung, Adelaine K W -- Li, Jade -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- U.1051.04.016(78933)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2009 Mar 26;458(7237):475-80. doi: 10.1038/nature07851.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325628" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Protein Folding ; Protein Structure, Tertiary ; RNA Splice Sites ; RNA Splicing ; RNA, Small Nuclear/chemistry ; Ribonucleoprotein, U1 Small Nuclear/*chemistry/metabolism ; Spliceosomes/*chemistry ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2009-10-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wicherts, Jelte -- Bakker, Marjan -- England -- Nature. 2009 Oct 22;461(7267):1053. doi: 10.1038/4611053c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847239" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information/ethics ; *Guidelines as Topic ; *Information Dissemination/ethics ; Psychology/ethics/*standards ; Reproducibility of Results ; Research/*standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, Natasha -- England -- Nature. 2009 Aug 20;460(7258):937. doi: 10.1038/460937a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693048" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Air Pollutants, Occupational/*adverse effects ; China ; Female ; Granuloma/chemically induced ; Humans ; Lung Injury/*chemically induced/pathology ; Middle Aged ; *Nanoparticles/administration & dosage/adverse effects ; Nanotechnology ; Occupational Exposure/*adverse effects ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2009-12-01
    Description: Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 A resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatch between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-d-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861655/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861655/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sobolevsky, Alexander I -- Rosconi, Michael P -- Gouaux, Eric -- F32 NS049767-05/NS/NINDS NIH HHS/ -- R01 NS038631/NS/NINDS NIH HHS/ -- R01 NS038631-06/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Dec 10;462(7274):745-56. doi: 10.1038/nature08624. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19946266" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallization ; Crystallography, X-Ray ; Ion Channel Gating ; Models, Molecular ; Potassium Channels/chemistry/metabolism ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; Rats ; Receptors, AMPA/antagonists & inhibitors/*chemistry/*metabolism ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-09-22
    Description: Polycomb group proteins have an essential role in the epigenetic maintenance of repressive chromatin states. The gene-silencing activity of the Polycomb repressive complex 2 (PRC2) depends on its ability to trimethylate lysine 27 of histone H3 (H3K27) by the catalytic SET domain of the EZH2 subunit, and at least two other subunits of the complex: SUZ12 and EED. Here we show that the carboxy-terminal domain of EED specifically binds to histone tails carrying trimethyl-lysine residues associated with repressive chromatin marks, and that this leads to the allosteric activation of the methyltransferase activity of PRC2. Mutations in EED that prevent it from recognizing repressive trimethyl-lysine marks abolish the activation of PRC2 in vitro and, in Drosophila, reduce global methylation and disrupt development. These findings suggest a model for the propagation of the H3K27me3 mark that accounts for the maintenance of repressive chromatin domains and for the transmission of a histone modification from mother to daughter cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772642/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772642/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Margueron, Raphael -- Justin, Neil -- Ohno, Katsuhito -- Sharpe, Miriam L -- Son, Jinsook -- Drury, William J 3rd -- Voigt, Philipp -- Martin, Stephen R -- Taylor, William R -- De Marco, Valeria -- Pirrotta, Vincenzo -- Reinberg, Danny -- Gamblin, Steven J -- GM064844/GM/NIGMS NIH HHS/ -- GM37120/GM/NIGMS NIH HHS/ -- MC_U117584222/Medical Research Council/United Kingdom -- R01 GM064844/GM/NIGMS NIH HHS/ -- R01 GM064844-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- England -- Nature. 2009 Oct 8;461(7265):762-7. doi: 10.1038/nature08398. Epub 2009 Sep 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, New York University Medical School, 522 First Avenue, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19767730" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Cell Line ; Chromatin/chemistry/*genetics/metabolism ; Crystallography, X-Ray ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/*genetics/growth & development/*metabolism ; Enzyme Activation ; *Gene Silencing ; Histone-Lysine N-Methyltransferase/chemistry/metabolism ; Histones/*chemistry/*metabolism ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Biological ; Models, Molecular ; Nuclear Proteins/metabolism ; Nucleosomes/chemistry/genetics/metabolism ; Polycomb Repressive Complex 2 ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-02-27
    Description: The DNA-binding protein REST (also called NRSF) is a transcriptional repressor that targets many neuronal genes and is abundant in human and mouse pluripotent embryonic stem cells (ESCs). In a recent Letter to Nature, Singh et al. suggested that REST controls the self-renewal and pluripotency of ESCs, because they found that ESCs in which a single REST allele was disrupted (Fig. 1a, beta-geo-stop insertion) had reduced alkaline phosphatase activity and expressed lower levels of several pluripotency-associated genes. Here we show that partial or complete loss of functional REST protein does not abrogate ESC potential as reflected by marker gene expression. These data are consistent with earlier reports, and argue that REST is not required for maintaining ESC pluripotency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, Helle F -- Chen, Zhou-Feng -- Merkenschlager, Matthias -- Fisher, Amanda G -- MC_U120027516/Medical Research Council/United Kingdom -- England -- Nature. 2009 Feb 26;457(7233):E4-5; discussion E7. doi: 10.1038/nature07783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK. helle.jorgensen@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242417" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/metabolism ; Animals ; Embryonic Stem Cells/*cytology/*metabolism ; Gene Knockdown Techniques ; Humans ; Mice ; Pluripotent Stem Cells/*cytology/*metabolism ; Polymerase Chain Reaction ; Repressor Proteins/genetics/*metabolism ; Reproducibility of Results ; Tretinoin/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bouasker, Samir -- Simard, Martin J -- England -- Nature. 2009 Oct 8;461(7265):743-4. doi: 10.1038/461743a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812664" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain/genetics ; Crystallography, X-Ray ; DNA/metabolism ; *Gene Silencing ; Magnesium/metabolism ; RNA/*metabolism ; RNA-Induced Silencing Complex/*chemistry/*metabolism ; Thermus thermophilus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-02-13
    Description: It is generally accepted that the extent of phenotypic change between human and great apes is dissonant with the rate of molecular change. Between these two groups, proteins are virtually identical, cytogenetically there are few rearrangements that distinguish ape-human chromosomes, and rates of single-base-pair change and retrotransposon activity have slowed particularly within hominid lineages when compared to rodents or monkeys. Studies of gene family evolution indicate that gene loss and gain are enriched within the primate lineage. Here, we perform a systematic analysis of duplication content of four primate genomes (macaque, orang-utan, chimpanzee and human) in an effort to understand the pattern and rates of genomic duplication during hominid evolution. We find that the ancestral branch leading to human and African great apes shows the most significant increase in duplication activity both in terms of base pairs and in terms of events. This duplication acceleration within the ancestral species is significant when compared to lineage-specific rate estimates even after accounting for copy-number polymorphism and homoplasy. We discover striking examples of recurrent and independent gene-containing duplications within the gorilla and chimpanzee that are absent in the human lineage. Our results suggest that the evolutionary properties of copy-number mutation differ significantly from other forms of genetic mutation and, in contrast to the hominid slowdown of single-base-pair mutations, there has been a genomic burst of duplication activity at this period during human evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marques-Bonet, Tomas -- Kidd, Jeffrey M -- Ventura, Mario -- Graves, Tina A -- Cheng, Ze -- Hillier, LaDeana W -- Jiang, Zhaoshi -- Baker, Carl -- Malfavon-Borja, Ray -- Fulton, Lucinda A -- Alkan, Can -- Aksay, Gozde -- Girirajan, Santhosh -- Siswara, Priscillia -- Chen, Lin -- Cardone, Maria Francesca -- Navarro, Arcadi -- Mardis, Elaine R -- Wilson, Richard K -- Eichler, Evan E -- HG002385/HG/NHGRI NIH HHS/ -- P51-RR013986/RR/NCRR NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG002385-08/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-06/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Feb 12;457(7231):877-81. doi: 10.1038/nature07744.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington and the Howard Hughes Medical Institute, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212409" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Catarrhini/classification/*genetics ; Chromosome Mapping ; *Evolution, Molecular ; *Gene Duplication ; Genome/*genetics ; Humans ; Polymorphism, Genetic ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...