ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-05-01
    Description: Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shukla, Vipula K -- Doyon, Yannick -- Miller, Jeffrey C -- DeKelver, Russell C -- Moehle, Erica A -- Worden, Sarah E -- Mitchell, Jon C -- Arnold, Nicole L -- Gopalan, Sunita -- Meng, Xiangdong -- Choi, Vivian M -- Rock, Jeremy M -- Wu, Ying-Ying -- Katibah, George E -- Zhifang, Gao -- McCaskill, David -- Simpson, Matthew A -- Blakeslee, Beth -- Greenwalt, Scott A -- Butler, Holly J -- Hinkley, Sarah J -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- England -- Nature. 2009 May 21;459(7245):437-41. doi: 10.1038/nature07992. Epub 2009 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dow AgroSciences, 9330 Zionsville Road, Indianapolis, Indiana 46268, USA. vkshukla@dow.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19404259" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*methods ; Deoxyribonucleases/*chemistry/genetics/*metabolism ; Food, Genetically Modified ; Gene Targeting/*methods ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Herbicide Resistance/genetics ; Herbicides/pharmacology ; Heredity ; Inositol Phosphates/metabolism ; Mutagenesis, Site-Directed/methods ; Plants, Genetically Modified ; Recombination, Genetic/genetics ; Reproducibility of Results ; Zea mays/*genetics ; *Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-28
    Description: Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152293/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152293/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Hojun -- Haurigot, Virginia -- Doyon, Yannick -- Li, Tianjian -- Wong, Sunnie Y -- Bhagwat, Anand S -- Malani, Nirav -- Anguela, Xavier M -- Sharma, Rajiv -- Ivanciu, Lacramiora -- Murphy, Samuel L -- Finn, Jonathan D -- Khazi, Fayaz R -- Zhou, Shangzhen -- Paschon, David E -- Rebar, Edward J -- Bushman, Frederic D -- Gregory, Philip D -- Holmes, Michael C -- High, Katherine A -- P01 HL064190/HL/NHLBI NIH HHS/ -- P01 HL064190-11A1/HL/NHLBI NIH HHS/ -- T32 HL007150/HL/NHLBI NIH HHS/ -- T32 HL007150-35/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jun 26;475(7355):217-21. doi: 10.1038/nature10177.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, CTRB 5000, Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21706032" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line, Tumor ; DNA Breaks, Double-Stranded ; DNA Repair/*genetics ; *Disease Models, Animal ; Endonucleases/chemistry/genetics/metabolism ; Exons/genetics ; Factor IX/analysis/genetics ; Gene Targeting/*methods ; Genetic Therapy/*methods ; Genetic Vectors/genetics ; Genome/*genetics ; HEK293 Cells ; Hemophilia B/*genetics/physiopathology ; *Hemostasis ; Humans ; Introns/genetics ; Liver/metabolism ; Liver Regeneration ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Phenotype ; Sequence Homology ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2011-04-27
    Description: The frog Xenopus, an important research organism in cell and developmental biology, currently lacks tools for targeted mutagenesis. Here, we address this problem by genome editing with zinc-finger nucleases (ZFNs). ZFNs directed against an eGFP transgene in Xenopus tropicalis induced mutations consistent with nonhomologous end joining at the target site, resulting in mosaic loss of the fluorescence phenotype at high frequencies. ZFNs directed against the noggin gene produced tadpoles and adult animals carrying up to 47% disrupted alleles, and founder animals yielded progeny carrying insertions and deletions in the noggin gene with no indication of off-target effects. Furthermore, functional tests demonstrated an allelic series of activity between three germ-line mutant alleles. Because ZFNs can be designed against any locus, our data provide a generally applicable protocol for gene disruption in Xenopus.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...