ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (125)
  • Lunar and Planetary Science and Exploration
  • Physics
  • American Association for the Advancement of Science (AAAS)  (126)
  • 2000-2004  (126)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2000  (126)
Collection
Keywords
Publisher
Years
  • 2000-2004  (126)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Year
  • 1
    Publication Date: 2000-01-05
    Description: Mice lacking mCry1 and mCry2 are behaviorally arrhythmic. As shown here, cyclic expression of the clock genes mPer1 and mPer2 (mammalian Period genes 1 and 2) in the suprachiasmatic nucleus and peripheral tissues is abolished and mPer1 and mPer2 mRNA levels are constitutively high. These findings indicate that the biological clock is eliminated in the absence of both mCRY1 and mCRY2 (mammalian cryptochromes 1 and 2) and support the idea that mammalian CRY proteins act in the negative limb of the circadian feedback loop. The mCry double-mutant mice retain the ability to have mPer1 and mPer2 expression induced by a brief light stimulus known to phase-shift the biological clock in wild-type animals. Thus, mCRY1 and mCRY2 are dispensable for light-induced phase shifting of the biological clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okamura, H -- Miyake, S -- Sumi, Y -- Yamaguchi, S -- Yasui, A -- Muijtjens, M -- Hoeijmakers, J H -- van der Horst, G T -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2531-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Brain Science, Kobe University School of Medicine, Kobe 650-0017, Japan. okamurah@kobe-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Feedback ; Flavoproteins/genetics/*physiology ; Gene Expression Regulation ; In Situ Hybridization ; *Light ; Liver/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mutation ; Nuclear Proteins/*genetics ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Polymerase Chain Reaction ; RNA, Messenger/genetics/metabolism ; Receptors, G-Protein-Coupled ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-01-05
    Description: The nematode pharynx has a potassium channel with unusual properties, which allows the muscles to repolarize quickly and with the proper delay. Here, the Caenorhabditis elegans exp-2 gene is shown to encode this channel. EXP-2 is a Kv-type (voltage-activated) potassium channel that has inward-rectifying properties resembling those of the structurally dissimilar human ether-a-go-go-related gene (HERG) channel. Null and gain-of-function mutations affect pharyngeal muscle excitability in ways that are consistent with the electrophysiological behavior of the channel, and thereby demonstrate a direct link between the kinetics of this unusual channel and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, M W -- Fleischhauer, R -- Dent, J A -- Joho, R H -- Avery, L -- HL46154/HL/NHLBI NIH HHS/ -- NS28407/NS/NINDS NIH HHS/ -- R01 HL046154/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2501-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. wdavis@biology.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617464" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Feeding Behavior ; Genes, Helminth ; Genes, Reporter ; Ion Channel Gating ; Kinetics ; Membrane Potentials ; Models, Molecular ; Muscles/metabolism ; Mutation ; Neurons/metabolism ; Oocytes/metabolism ; Pharyngeal Muscles/physiology ; Potassium Channels/chemistry/genetics/*physiology ; Protein Conformation ; RNA, Complementary/genetics ; Recombinant Fusion Proteins/biosynthesis ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2434-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10636797" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Brain/metabolism ; CLOCK Proteins ; Circadian Rhythm/*physiology ; Darkness ; Drosophila/genetics/physiology ; *Drosophila Proteins ; Gene Expression Regulation ; Genes, Insect ; Light ; Mutation ; Neurons/metabolism ; Neuropeptides/genetics/*physiology ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-03-24
    Description: Selective microtubule orientation toward spatially defined cortical sites is critical to polarized cellular processes as diverse as axon outgrowth and T cell cytotoxicity. In yeast, oriented cytoplasmic microtubules align the mitotic spindle between mother and bud. The cortical marker protein Kar9 localizes to the bud tip and is required for the orientation of microtubules toward this region. Here, we show that Kar9 directs microtubule orientation by acting through Bim1, a conserved microtubule-binding protein. Bim1 homolog EB1 was originally identified through its interaction with adenomatous polyposis coli (APC) tumor suppressor, raising the possibility that an APC-EB1 linkage orients microtubules in higher cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korinek, W S -- Copeland, M J -- Chaudhuri, A -- Chant, J -- GM07620-19/GM/NIGMS NIH HHS/ -- GM07620-20/GM/NIGMS NIH HHS/ -- GM49782/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2257-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731146" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Cell Cycle Proteins/genetics/*metabolism ; Cell Nucleus/physiology ; Cytoskeletal Proteins/metabolism ; Microtubule Proteins/genetics/*metabolism ; Microtubule-Associated Proteins/metabolism ; Microtubules/metabolism/*physiology ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phenotype ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/cytology/genetics/*physiology ; *Saccharomyces cerevisiae Proteins ; Spindle Apparatus/*physiology ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-15
    Description: Mutation at the mouse progressive ankylosis (ank) locus causes a generalized, progressive form of arthritis accompanied by mineral deposition, formation of bony outgrowths, and joint destruction. Here, we show that the ank locus encodes a multipass transmembrane protein (ANK) that is expressed in joints and other tissues and controls pyrophosphate levels in cultured cells. A highly conserved gene is present in humans and other vertebrates. These results identify ANK-mediated control of pyrophosphate levels as a possible mechanism regulating tissue calcification and susceptibility to arthritis in higher animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, A M -- Johnson, M D -- Kingsley, D M -- 5T32GM07365/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):265-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, CA 94305-5327, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10894769" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis/*genetics/metabolism/pathology ; Base Sequence ; Biological Transport ; COS Cells ; Calcinosis/*genetics ; Chromosome Mapping ; Cloning, Molecular ; Dna ; Diphosphates/*metabolism ; Durapatite/metabolism ; Gene Expression ; Genetic Complementation Test ; Humans ; Membrane Proteins/*genetics/metabolism/*physiology ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Phenotype ; Phosphate Transport Proteins ; Physical Chromosome Mapping ; Sequence Homology, Nucleic Acid ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-08-01
    Description: The path of the nucleic acids through a transcription elongation complex was tracked by mapping cross-links between bacterial RNA polymerase (RNAP) and transcript RNA or template DNA onto the x-ray crystal structure. In the resulting model, the downstream duplex DNA is nestled in a trough formed by the beta' subunit and enclosed on top by the beta subunit. In the RNAP channel, the RNA/DNA hybrid extends from the enzyme active site, along a region of the beta subunit harboring rifampicin resistance mutations, to the beta' subunit "rudder." The single-stranded RNA is then extruded through another channel formed by the beta-subunit flap domain. The model provides insight into the functional properties of the transcription complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korzheva, N -- Mustaev, A -- Kozlov, M -- Malhotra, A -- Nikiforov, V -- Goldfarb, A -- Darst, S A -- GM30717/GM/NIGMS NIH HHS/ -- GM49242/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 28;289(5479):619-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10915625" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cross-Linking Reagents ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; DNA Primers ; DNA-Directed RNA Polymerases/*chemistry/genetics/metabolism ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/genetics/*metabolism ; Templates, Genetic ; Thermus/enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-24
    Description: The 120-megabase euchromatic portion of the Drosophila melanogaster genome has been sequenced. Because the genome is compact and many genetic tools are available, and because fly cell biology and development have much in common with mammals, this sequence may be the Rosetta stone for deciphering the human genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornberg, T B -- Krasnow, M A -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2218-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731136" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biology ; Cloning, Molecular ; DNA Transposable Elements ; Drosophila melanogaster/*genetics/physiology ; Genes, Insect ; *Genetics, Medical ; *Genome ; *Genome, Human ; Humans ; Mutation ; Physical Chromosome Mapping ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-09-01
    Description: Activation of the transcription factor nuclear factor (NF)-kappaB by proinflammatory stimuli leads to increased expression of genes involved in inflammation. Activation of NF-kappaB requires the activity of an inhibitor of kappaB (IkappaB)-kinase (IKK) complex containing two kinases (IKKalpha and IKKbeta) and the regulatory protein NEMO (NF-kappaB essential modifier). An amino-terminal alpha-helical region of NEMO associated with a carboxyl-terminal segment of IKKalpha and IKKbeta that we term the NEMO-binding domain (NBD). A cell-permeable NBD peptide blocked association of NEMO with the IKK complex and inhibited cytokine-induced NF-kappaB activation and NF-kappaB-dependent gene expression. The peptide also ameliorated inflammatory responses in two experimental mouse models of acute inflammation. The NBD provides a target for the development of drugs that would block proinflammatory activation of the IKK complex without inhibiting basal NF-kappaB activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉May, M J -- D'Acquisto, F -- Madge, L A -- Glockner, J -- Pober, J S -- Ghosh, S -- AI 33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1550-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968790" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemistry/pharmacology ; COS Cells ; Cells, Cultured ; E-Selectin/biosynthesis/genetics ; Endothelium, Vascular/metabolism ; Gene Expression Regulation ; HeLa Cells ; Humans ; I-kappa B Kinase ; Inflammation/drug therapy ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; NF-kappa B/*metabolism ; Peptides/chemistry/*pharmacology ; Point Mutation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-03-31
    Description: The maternal determinant Bicoid (Bcd) represents the paradigm of a morphogen that provides positional information for pattern formation. However, as bicoid seems to be a recently acquired gene in flies, the question was raised as to how embryonic patterning is achieved in organisms with more ancestral modes of development. Because the phylogenetically conserved Hunchback (Hb) protein had previously been shown to act as a morphogen in abdominal patterning, we asked which functions of Bcd could be performed by Hb. By reestablishing a proposed ancient regulatory circuitry in which maternal Hb controls zygotic hunchback expression, we show that Hb is able to form thoracic segments in the absence of Bcd.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wimmer, E A -- Carleton, A -- Harjes, P -- Turner, T -- Desplan, C -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2476-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl Genetik, Universitat Bayreuth, 95447 Bayreuth, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10741965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; DNA-Binding Proteins/genetics/*physiology ; Drosophila/*embryology/genetics ; *Drosophila Proteins ; Embryonic Development ; Female ; Gene Expression Regulation, Developmental ; Genes, Insect ; Homeodomain Proteins/genetics/*physiology ; Insect Proteins/genetics/*physiology ; Male ; Mutation ; Phenotype ; Promoter Regions, Genetic ; Thorax/embryology ; Trans-Activators/genetics/*physiology ; Transcription Factors/genetics/*physiology ; Transgenes ; Zinc Fingers ; Zygote/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sodha, N -- Williams, R -- Mangion, J -- Bullock, S L -- Yuille, M R -- Eeles, R A -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Royal Marsden NHS Trust, Sutton, Surrey SM2 5PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10939935" target="_blank"〉PubMed〈/a〉
    Keywords: Checkpoint Kinase 2 ; Chromosomes, Human, Pair 15/genetics ; DNA Mutational Analysis ; Exons ; Gene Duplication ; Genetic Variation ; Humans ; Li-Fraumeni Syndrome/*genetics ; Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Protein Kinases/*genetics ; *Protein-Serine-Threonine Kinases ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-14
    Description: Model organisms such as yeast have proved exceptionally valuable for revealing new information about the molecular pathways involved in the aging of cells. In her Perspective, Campisi comments on new work showing that caloric restriction increases longevity in yeast by activating the SIR2 gene, which alters the compactness of chromatin and thus regulates gene expression (Lin et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Campisi, J -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2062-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. jcampisi@lbl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032557" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Animals ; Cell Division ; Chromatin/*physiology ; DNA Repair ; DNA Replication ; DNA, Circular/metabolism ; DNA, Fungal/metabolism ; DNA, Ribosomal/metabolism ; *Energy Intake ; *Gene Silencing ; Glucose/metabolism ; Histone Deacetylases/genetics/*metabolism ; Histones/metabolism ; Longevity ; Mutation ; NAD/metabolism ; Reactive Oxygen Species/metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics/*physiology ; *Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Sirtuin 2 ; Sirtuins ; Trans-Activators/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2000-05-29
    Description: Pathogenic mycobacteria, including the agent of tuberculosis, Mycobacterium tuberculosis, must replicate in macrophages for long-term persistence within their niche during chronic infection: organized collections of macrophages and lymphocytes called granulomas. We identified several genes preferentially expressed when Mycobacterium marinum, the cause of fish and amphibian tuberculosis, resides in host granulomas and/or macrophages. Two were homologs of M. tuberculosis PE/PE-PGRS genes, a family encoding numerous repetitive glycine-rich proteins of unknown function. Mutation of two PE-PGRS genes produced M. marinum strains incapable of replication in macrophages and with decreased persistence in granulomas. Our results establish a direct role in virulence for some PE-PGRS proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramakrishnan, L -- Federspiel, N A -- Falkow, S -- AI 32396/AI/NIAID NIH HHS/ -- K08 AI 01400/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 May 26;288(5470):1436-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. lalitar@cmgm.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/chemistry/*genetics ; Cells, Cultured ; Disease Models, Animal ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Glycine/analysis ; Granuloma/*microbiology/pathology ; Humans ; Macrophages/*microbiology ; Mutation ; Mycobacterium Infections, Nontuberculous/*microbiology/pathology ; Mycobacterium marinum/*genetics/growth & development/*pathogenicity ; Mycobacterium tuberculosis/genetics/pathogenicity ; Promoter Regions, Genetic ; Rana pipiens ; Tuberculosis/microbiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-13
    Description: Stromal cells are thought to generate specific regulatory microenviroments or "niches" that control stem cell behavior. Characterizing stem cell niches in vivo remains an important goal that has been difficult to achieve. The individual ovarioles of the Drosophila ovary each contain about two germ line stem cells that maintain oocyte production. Here we show that anterior ovariolar somatic cells comprising three cell types act as a germ line stem cell niche. Germ line stem cells lost by normal or induced differentiation are efficiently replaced, and the ability to repopulate the niche increases the functional lifetime of ovarioles in vivo. Our studies implicate one of the somatic cell types, the cap cells, as a key niche component.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, T -- Spradling, A C -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):328-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA. tgx@stowers-institute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cell Communication ; Cell Differentiation ; Drosophila/*cytology/physiology ; Female ; Germ Cells/*cytology/physiology ; Intercellular Junctions/physiology ; Models, Biological ; Mutation ; Oocytes/*cytology/physiology ; Ovary/cytology ; Stem Cells/*cytology/physiology ; Stromal Cells/cytology/physiology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, H -- Kinzler, K W -- Vogelstein, B -- New York, N.Y. -- Science. 2000 Sep 15;289(5486):1890-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Johns Hopkins Oncology Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11012364" target="_blank"〉PubMed〈/a〉
    Keywords: Genetic Techniques ; *Genetic Testing/methods ; *Genetics, Medical/trends ; Humans ; Mutation ; Sociology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2000-07-06
    Description: A conserved domain in the extracellular region of the 60- and 80-kilodalton tumor necrosis factor receptors (TNFRs) was identified that mediates specific ligand-independent assembly of receptor trimers. This pre-ligand-binding assembly domain (PLAD) is physically distinct from the domain that forms the major contacts with ligand, but is necessary and sufficient for the assembly of TNFR complexes that bind TNF-alpha and mediate signaling. Other members of the TNFR superfamily, including TRAIL receptor 1 and CD40, show similar homotypic association. Thus, TNFRs and related receptors appear to function as preformed complexes rather than as individual receptor subunits that oligomerize after ligand binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, F K -- Chun, H J -- Zheng, L -- Siegel, R M -- Bui, K L -- Lenardo, M J -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2351-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875917" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antigens, CD/chemistry/metabolism ; Apoptosis ; Binding Sites ; Cross-Linking Reagents ; Dimerization ; Energy Transfer ; Fluorescence ; Humans ; Ligands ; Macromolecular Substances ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Tumor Necrosis Factor/*chemistry/*metabolism ; Receptors, Tumor Necrosis Factor, Type I ; Receptors, Tumor Necrosis Factor, Type II ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction ; Succinimides ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2000-11-25
    Description: We generated a mutant of the red fluorescent protein drFP583. The mutant (E5) changes its fluorescence from green to red over time. The rate of color conversion is independent of protein concentration and therefore can be used to trace time-dependent expression. We used in vivo labeling with E5 to measure expression from the heat shock-dependent promoter in Caenorhabditis elegans and from the Otx-2 promoter in developing Xenopus embryos. Thus, E5 is a "fluorescent timer" that can be used to monitor both activation and down-regulation of target promoters on the whole-organism scale.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terskikh, A -- Fradkov, A -- Ermakova, G -- Zaraisky, A -- Tan, P -- Kajava, A V -- Zhao, X -- Lukyanov, S -- Matz, M -- Kim, S -- Weissman, I -- Siebert, P -- 1 RO3 TW01362-01/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1585-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine, Stanford University, Stanford, CA 94305, USA. Alexey.Terskikh@Stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090358" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/embryology/metabolism ; Caenorhabditis elegans/embryology/genetics ; Cell Line ; Color ; Fluorescence ; Gene Expression Profiling/*methods ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Heat-Shock Proteins/genetics ; *Homeodomain Proteins ; Humans ; Luminescent Proteins/*chemistry/*genetics/metabolism ; Mutation ; Nerve Tissue Proteins/genetics ; Otx Transcription Factors ; *Promoter Regions, Genetic ; Temperature ; Time Factors ; Trans-Activators/genetics ; Xenopus laevis/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2000-03-10
    Description: The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tettelin, H -- Saunders, N J -- Heidelberg, J -- Jeffries, A C -- Nelson, K E -- Eisen, J A -- Ketchum, K A -- Hood, D W -- Peden, J F -- Dodson, R J -- Nelson, W C -- Gwinn, M L -- DeBoy, R -- Peterson, J D -- Hickey, E K -- Haft, D H -- Salzberg, S L -- White, O -- Fleischmann, R D -- Dougherty, B A -- Mason, T -- Ciecko, A -- Parksey, D S -- Blair, E -- Cittone, H -- Clark, E B -- Cotton, M D -- Utterback, T R -- Khouri, H -- Qin, H -- Vamathevan, J -- Gill, J -- Scarlato, V -- Masignani, V -- Pizza, M -- Grandi, G -- Sun, L -- Smith, H O -- Fraser, C M -- Moxon, E R -- Rappuoli, R -- Venter, J C -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1809-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710307" target="_blank"〉PubMed〈/a〉
    Keywords: Antigenic Variation ; Antigens, Bacterial/immunology ; Bacteremia/microbiology ; Bacterial Capsules/genetics ; Bacterial Proteins/genetics/physiology ; DNA Transposable Elements ; Evolution, Molecular ; Fimbriae, Bacterial/genetics ; *Genome, Bacterial ; Humans ; Meningitis, Meningococcal/microbiology ; Meningococcal Infections/microbiology ; Molecular Sequence Data ; Mutation ; Neisseria meningitidis/classification/*genetics/*pathogenicity/physiology ; Open Reading Frames ; Operon ; Phylogeny ; Recombination, Genetic ; *Sequence Analysis, DNA ; Serotyping ; Transformation, Bacterial ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2000-08-05
    Description: The circadian oscillator of the cyanobacterium Synechococcus elongatus, like those in eukaryotes, is entrained by environmental cues. Inactivation of the gene cikA (circadian input kinase) shortens the circadian period of gene expression rhythms in S. elongatus by approximately 2 hours, changes the phasing of a subset of rhythms, and nearly abolishes resetting of phase by a pulse of darkness. The CikA protein sequence reveals that it is a divergent bacteriophytochrome with characteristic histidine protein kinase motifs and a cryptic response regulator motif. CikA is likely a key component of a pathway that provides environmental input to the circadian oscillator in S. elongatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, O -- Katayama, M -- Williams, S B -- Kondo, T -- Golden, S S -- GM37040/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):765-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926536" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; *Bacterial Proteins ; *Biological Clocks/genetics/physiology ; *Circadian Rhythm/genetics/physiology ; Cyanobacteria/genetics/*physiology ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Genes, Reporter ; Luminescent Measurements ; Molecular Sequence Data ; Mutation ; Phenotype ; Protein Kinases/chemistry/*genetics/physiology ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, D -- New York, N.Y. -- Science. 2000 May 19;288(5469):1165.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10841732" target="_blank"〉PubMed〈/a〉
    Keywords: *Academies and Institutes/economics ; Animals ; Astronomical Phenomena ; Astronomy ; Chloroplasts/genetics ; Drosophila/genetics ; Interferometry ; *Molecular Biology/economics ; Physical Phenomena ; Physics ; *Research/economics ; Research Support as Topic ; Taiwan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2000-08-26
    Description: Polyadenylate [poly(A)] polymerase (PAP) catalyzes the addition of a polyadenosine tail to almost all eukaryotic messenger RNAs (mRNAs). The crystal structure of the PAP from Saccharomyces cerevisiae (Pap1) has been solved to 2.6 angstroms, both alone and in complex with 3'-deoxyadenosine triphosphate (3'-dATP). Like other nucleic acid polymerases, Pap1 is composed of three domains that encircle the active site. The arrangement of these domains, however, is quite different from that seen in polymerases that use a template to select and position their incoming nucleotides. The first two domains are functionally analogous to polymerase palm and fingers domains. The third domain is attached to the fingers domain and is known to interact with the single-stranded RNA primer. In the nucleotide complex, two molecules of 3'-dATP are bound to Pap1. One occupies the position of the incoming base, prior to its addition to the mRNA chain. The other is believed to occupy the position of the 3' end of the mRNA primer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bard, J -- Zhelkovsky, A M -- Helmling, S -- Earnest, T N -- Moore, C L -- Bohm, A -- R01 GM57218-01A2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1346-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958780" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism ; Hydrogen Bonding ; Manganese/metabolism ; Models, Molecular ; Mutation ; Polynucleotide Adenylyltransferase/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/metabolism ; RNA, Messenger/metabolism ; Ribosomal Protein S6 ; Ribosomal Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2000-11-25
    Description: The endoplasmic reticulum (ER) supports disulfide bond formation by a poorly understood mechanism requiring protein disulfide isomerase (PDI) and ERO1. In yeast, Ero1p-mediated oxidative folding was shown to depend on cellular flavin adenine dinucleotide (FAD) levels but not on ubiquinone or heme, and Ero1p was shown to be a FAD-binding protein. We reconstituted efficient oxidative folding in vitro using FAD, PDI, and Ero1p. Disulfide formation proceeded by direct delivery of oxidizing equivalents from Ero1p to folding substrates via PDI. This kinetic shuttling of oxidizing equivalents could allow the ER to support rapid disulfide formation while maintaining the ability to reduce and rearrange incorrect disulfide bonds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tu, B P -- Ho-Schleyer, S C -- Travers, K J -- Weissman, J S -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1571-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090354" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carboxypeptidases/chemistry/metabolism ; Cathepsin A ; Chemistry, Physical ; Disulfides/chemistry ; Endoplasmic Reticulum/*metabolism ; Flavin-Adenine Dinucleotide/*metabolism ; Glutathione/metabolism ; Glycoproteins/*metabolism ; Microsomes/metabolism ; Mutation ; Oxidation-Reduction ; Oxidoreductases Acting on Sulfur Group Donors ; Physicochemical Phenomena ; Protein Disulfide-Isomerases/genetics/*metabolism ; *Protein Folding ; Ribonuclease, Pancreatic/chemistry/metabolism ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2000 May 12;288(5468):943-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10841707" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks/genetics/*physiology ; CLOCK Proteins ; Cell Cycle Proteins ; Cell Nucleus/metabolism ; Circadian Rhythm/genetics/*physiology ; Cryptochromes ; Drosophila/metabolism ; *Drosophila Proteins ; *Eye Proteins ; Feedback ; Flavoproteins/genetics/*metabolism ; *Gene Expression Regulation ; Mice ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: The telomerase ribonucleoprotein has a phylogenetically divergent RNA subunit, which contains a short template for telomeric DNA synthesis. To understand how telomerase RNA participates in mechanistic aspects of telomere synthesis, we studied a conserved secondary structure adjacent to the template. Disruption of this structure caused DNA synthesis to proceed beyond the normal template boundary, resulting in altered telomere sequences, telomere shortening, and cellular growth defects. Compensatory mutations restored normal telomerase function. Thus, the RNA structure, rather than its sequence, specifies the template boundary. This study reveals a specific function for an RNA structure in the enzymatic action of telomerase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tzfati, Y -- Fulton, T B -- Roy, J -- Blackburn, E H -- GM26259/GM/NIGMS NIH HHS/ -- T32CA09270/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 May 5;288(5467):863-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0414, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797010" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Cloning, Molecular ; DNA, Fungal/biosynthesis ; Genes, Fungal ; Kluyveromyces/*enzymology/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA, Fungal/*chemistry/genetics/*metabolism ; Telomerase/*chemistry/genetics/*metabolism ; Telomere/genetics/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-21
    Description: We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evolution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultes, E A -- Bartel, D P -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903205" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Evolution, Molecular ; Gene Duplication ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Point Mutation ; RNA/metabolism ; RNA, Catalytic/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-15
    Description: Working out how organs form during embryonic development is a fascinating area of research. In a witty Perspective, Jeff Hardin describes new findings (Nishiwaki et al.) that reveal the many intricate steps needed for gonads to form in the worm C. elegans. Two key players, GON-1 and MIG-17, are metalloproteases that may help migration of distal tip cells by degrading extracellular matrix components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardin, J -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2142-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology and Program in Cellular and Molecular Biology, University of Wisconsin, 1117 West Johnson Street, Madison, WI 53706, USA. jdhardin@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10896589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*enzymology/genetics/growth & development ; *Caenorhabditis elegans Proteins ; Cell Movement ; Disintegrins/chemistry/genetics/*metabolism ; Extracellular Matrix/*metabolism ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Gonads/cytology/growth & development/metabolism ; Larva/cytology/enzymology/growth & development ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Morphogenesis ; Muscles/cytology/enzymology ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, C Y -- Lewis, R V -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1477-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA. hayashi@uwyo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688794" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Crossing Over, Genetic ; DNA/genetics ; DNA Replication ; *Evolution, Molecular ; *Exons ; Gene Conversion ; *Genes ; *Introns ; Molecular Sequence Data ; Mutation ; Proteins/chemistry/*genetics ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic ; Species Specificity ; Spiders/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2000-01-05
    Description: Mutations in copper, zinc superoxide dismutase (SOD) have been implicated in the selective death of motor neurons in 2 percent of amyotrophic lateral sclerosis (ALS) patients. The loss of zinc from either wild-type or ALS-mutant SODs was sufficient to induce apoptosis in cultured motor neurons. Toxicity required that copper be bound to SOD and depended on endogenous production of nitric oxide. When replete with zinc, neither ALS-mutant nor wild-type copper, zinc SODs were toxic, and both protected motor neurons from trophic factor withdrawal. Thus, zinc-deficient SOD may participate in both sporadic and familial ALS by an oxidative mechanism involving nitric oxide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Estevez, A G -- Crow, J P -- Sampson, J B -- Reiter, C -- Zhuang, Y -- Richardson, G J -- Tarpey, M M -- Barbeito, L -- Beckman, J S -- R01 HL58209/HL/NHLBI NIH HHS/ -- R01 NS33291/NS/NINDS NIH HHS/ -- R01 NS36761/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2498-500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617463" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/drug therapy/*enzymology/genetics/pathology ; Animals ; *Apoptosis ; Brain-Derived Neurotrophic Factor/pharmacology ; Cells, Cultured ; Chelating Agents/pharmacology ; Copper/metabolism ; Fluoresceins/metabolism ; Liposomes ; Motor Neurons/*cytology/metabolism ; Mutation ; Nitrates/metabolism ; Nitric Oxide/*metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/metabolism ; Nitric Oxide Synthase Type I ; Oxidation-Reduction ; Rats ; Superoxide Dismutase/chemistry/genetics/*metabolism/toxicity ; Superoxides/metabolism ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2431.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10636794" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/chemistry/*pharmacology/therapeutic use ; Cell Division/drug effects ; DNA/metabolism ; Genes, p53 ; Humans ; Mice ; Mutation ; Neoplasms, Experimental/drug therapy/pathology ; *Protein Folding ; Pyrimidines/chemistry/*pharmacology ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonks, N K -- Myers, M P -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2096-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. tonks@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; Membrane Lipids/metabolism ; Models, Biological ; Mutation ; Neoplasms/*etiology/genetics ; PTEN Phosphohydrolase ; Phosphatidylinositol 3-Kinases/chemistry/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphoric Monoester Hydrolases/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2437.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10636799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques ; Cell Cycle ; Cell Line ; *Cloning, Organism ; Embryo, Mammalian/*cytology ; *Mice/embryology/genetics ; Mice, Knockout ; Mice, Mutant Strains ; Mutation ; Nuclear Transfer Techniques ; Stem Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2433-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10636795" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Cycle ; Checkpoint Kinase 2 ; Genes, Tumor Suppressor ; Genes, p53 ; Humans ; Li-Fraumeni Syndrome/enzymology/*genetics/pathology ; Mutation ; Phosphorylation ; *Protein Kinases ; Protein-Serine-Threonine Kinases/*genetics/metabolism ; Signal Transduction ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-06
    Description: All animal cells have a polarity, that is, different proteins are clustered in distinct domains of the plasma membrane and these regions carry out different jobs. As Peifer discusses in a lively Perspective, new work (Bilder et al.) identifies some of the molecular characters that direct proteins to their different cellular destinations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peifer, M -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):67-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA. peifer@unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10928931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; *Cell Division ; Cell Membrane/metabolism ; *Cell Polarity ; Cell Transformation, Neoplastic ; Cytoplasm/metabolism ; Drosophila/cytology/genetics/metabolism ; *Drosophila Proteins ; Epithelial Cells/cytology/metabolism ; Genes, Tumor Suppressor ; Insect Proteins/chemistry/genetics/metabolism ; Intercellular Junctions/metabolism ; Membrane Proteins/chemistry/*metabolism ; Mutation ; Neoplasms/*etiology/metabolism ; Phenotype ; Protein Structure, Tertiary ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2000-09-16
    Description: Double-stranded RNA (dsRNA) inhibits expression of homologous genes by a process involving messenger RNA degradation. To gain insight into the mechanism of degradation, we examined how RNA interference is affected by mutations in the smg genes, which are required for nonsense-mediated decay. For three of six smg genes tested, mutations resulted in animals that were initially silenced by dsRNA but then recovered; wild-type animals remained silenced. The levels of target messenger RNAs were restored during recovery, and RNA editing and degradation of the dsRNA were identical to those of the wild type. We suggest that persistence of RNA interference relies on a subset of smg genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Domeier, M E -- Morse, D P -- Knight, S W -- Portereiko, M -- Bass, B L -- Mango, S E -- 42014/PHS HHS/ -- 5P30CA42014/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 15;289(5486):1928-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute Center for Children and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10988072" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/metabolism ; Alleles ; Animals ; Caenorhabditis elegans/genetics/*metabolism ; *Caenorhabditis elegans Proteins ; Gene Silencing ; Helminth Proteins/genetics/*metabolism ; Mutation ; Myosin Heavy Chains/genetics/metabolism ; Nonmuscle Myosin Type IIB ; Phosphoproteins/genetics/*metabolism ; RNA Stability ; RNA, Double-Stranded/metabolism/pharmacology ; RNA, Helminth/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-07
    Description: Loss of cell polarity and tissue architecture are characteristics of malignant cancers derived from epithelial tissues. We provide evidence from Drosophila that a group of membrane-associated proteins act in concert to regulate both epithelial structure and cell proliferation. Scribble (Scrib) is a cell junction-localized protein required for polarization of embryonic and, as demonstrated here, imaginal disc and follicular epithelia. We show that the tumor suppressors lethal giant larvae (lgl) and discs-large (dlg) have identical effects on all three epithelia, and that scrib also acts as a tumor suppressor. Scrib and Dlg colocalize and overlap with Lgl in epithelia; activity of all three genes is required for cortical localization of Lgl and junctional localization of Scrib and Dlg. scrib, dlg, and lgl show strong genetic interactions. Our data indicate that the three tumor suppressors act together in a common pathway to regulate cell polarity and growth control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilder, D -- Li, M -- Perrimon, N -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA. bilder@rascal.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884224" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Membrane/metabolism ; *Cell Polarity ; Cell Transformation, Neoplastic ; Cytoplasm/metabolism ; Drosophila/*cytology/genetics/growth & development ; *Drosophila Proteins ; Embryo, Nonmammalian/cytology ; Epidermis/embryology/metabolism/ultrastructure ; Epithelial Cells/cytology/metabolism ; Female ; Genes, Insect ; *Genes, Tumor Suppressor ; Insect Proteins/genetics/*metabolism ; Intercellular Junctions/metabolism/ultrastructure ; Membrane Proteins/genetics/*metabolism ; Morphogenesis ; Mutation ; Phenotype ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharp, P A -- Zamore, P D -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2431-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. sharppa@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10766620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics ; *Caenorhabditis elegans Proteins ; *DNA Transposable Elements ; Female ; *Gene Expression Regulation ; *Gene Silencing ; Genes, Helminth ; Helminth Proteins/genetics/physiology ; Male ; Mutation ; RNA, Double-Stranded/*genetics ; RNA, Helminth/*genetics/metabolism ; RNA, Messenger/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-10
    Description: Drosophila exhibits a circadian rest-activity cycle, but it is not known whether fly rest constitutes sleep or is mere inactivity. It is shown here that, like mammalian sleep, rest in Drosophila is characterized by an increased arousal threshold and is homeostatically regulated independently of the circadian clock. As in mammals, rest is abundant in young flies, is reduced in older flies, and is modulated by stimulants and hypnotics. Several molecular markers modulated by sleep and waking in mammals are modulated by rest and activity in Drosophila, including cytochrome oxidase C, the endoplasmic reticulum chaperone protein BiP, and enzymes implicated in the catabolism of monoamines. Flies lacking one such enzyme, arylalkylamine N-acetyltransferase, show increased rest after rest deprivation. These results implicate the catabolism of monoamines in the regulation of sleep and waking in the fly and suggest that Drosophila may serve as a model system for the genetic dissection of sleep.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, P J -- Cirelli, C -- Greenspan, R J -- Tononi, G -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1834-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arylamine N-Acetyltransferase/genetics/metabolism ; Behavior, Animal/drug effects ; Biogenic Monoamines/metabolism ; Caffeine/pharmacology ; Carrier Proteins/genetics/metabolism ; Circadian Rhythm/*physiology ; Cytochrome P-450 Enzyme System/genetics/metabolism ; *Drosophila Proteins ; Drosophila melanogaster/drug effects/genetics/*physiology ; Fatty Acid Synthases/genetics/metabolism ; Female ; Gene Dosage ; Gene Expression Profiling ; Genes, Insect ; HSC70 Heat-Shock Proteins ; *HSP70 Heat-Shock Proteins ; Homeostasis ; Hydroxyzine/pharmacology ; Mutation ; Rest/physiology ; Sleep/drug effects/*physiology ; Transcription, Genetic ; Wakefulness/drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2000-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williamson, T L -- Corson, L B -- Huang, L -- Burlingame, A -- Liu, J -- Bruijn, L I -- Cleveland, D W -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10798964" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*enzymology/genetics/pathology ; Animals ; Apoptosis ; Cells, Cultured ; Copper/metabolism ; Humans ; Mice ; Motor Neurons/metabolism/*pathology ; Mutation ; Neurofilament Proteins/metabolism ; Nitrates/metabolism ; Superoxide Dismutase/*genetics/*metabolism ; Yeasts/cytology/metabolism ; Zinc/*metabolism/toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-01
    Description: Mechanosensory transduction underlies a wide range of senses, including proprioception, touch, balance, and hearing. The pivotal element of these senses is a mechanically gated ion channel that transduces sound, pressure, or movement into changes in excitability of specialized sensory cells. Despite the prevalence of mechanosensory systems, little is known about the molecular nature of the transduction channels. To identify such a channel, we analyzed Drosophila melanogaster mechanoreceptive mutants for defects in mechanosensory physiology. Loss-of-function mutations in the no mechanoreceptor potential C (nompC) gene virtually abolished mechanosensory signaling. nompC encodes a new ion channel that is essential for mechanosensory transduction. As expected for a transduction channel, D. melanogaster NOMPC and a Caenorhabditis elegans homolog were selectively expressed in mechanosensory organs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, R G -- Willingham, A T -- Zuker, C S -- 5T32GM08107/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2229-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Howard Hughes Medical Institute, University of California, San Diego,CA 92093-0649, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10744543" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adaptation, Physiological ; Amino Acid Sequence ; Animals ; Caenorhabditis elegans/genetics/physiology ; Chromosome Mapping ; Cloning, Molecular ; Dendrites/physiology ; *Drosophila Proteins ; Drosophila melanogaster/genetics/*physiology ; Gene Expression Profiling ; Genes, Insect ; Hair Cells, Auditory/physiology ; Insect Proteins/chemistry/genetics/physiology ; Ion Channels/chemistry/*genetics/*physiology ; Mechanoreceptors/*physiology ; Molecular Sequence Data ; Mutation ; Neurons, Afferent/*physiology ; Patch-Clamp Techniques ; Physical Stimulation ; Proprioception ; Sensation/physiology ; Sense Organs/physiology ; Signal Transduction ; Touch ; Transient Receptor Potential Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2000-07-15
    Description: The spindle checkpoint was characterized in meiosis of budding yeast. In the absence of the checkpoint, the frequency of meiosis I missegregation increased with increasing chromosome length, reaching 19% for the longest chromosome. Meiosis I nondisjunction in spindle checkpoint mutants could be prevented by delaying the onset of anaphase. In a recombination-defective mutant (spo11Delta), the checkpoint delays the biochemical events of anaphase I, suggesting that chromosomes that are attached to microtubules but are not under tension can activate the spindle checkpoint. Spindle checkpoint mutants reduce the accuracy of chromosome segregation in meiosis I much more than that in meiosis II, suggesting that checkpoint defects may contribute to Down syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shonn, M A -- McCarroll, R -- Murray, A W -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Department of Physiology, University of California, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10894778" target="_blank"〉PubMed〈/a〉
    Keywords: Biomechanical Phenomena ; Chromosome Segregation/*physiology ; Chromosomes, Fungal ; Down Syndrome/genetics ; Endodeoxyribonucleases ; Esterases/genetics ; Kinetochores/physiology ; Meiosis/genetics/*physiology ; Mutation ; Nondisjunction, Genetic ; Recombination, Genetic ; Saccharomycetales/genetics/*physiology ; Spindle Apparatus/*physiology ; Spores, Fungal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2000-07-06
    Description: Heterozygous mutations encoding abnormal forms of the death receptor Fas dominantly interfere with Fas-induced lymphocyte apoptosis in human autoimmune lymphoproliferative syndrome. This effect, rather than depending on ligand-induced receptor oligomerization, was found to stem from ligand- independent interaction of wild-type and mutant Fas receptors through a specific region in the extracellular domain. Preassociated Fas complexes were found in living cells by means of fluorescence resonance energy transfer between variants of green fluorescent protein. These results show that formation of preassociated receptor complexes is necessary for Fas signaling and dominant interference in human disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegel, R M -- Frederiksen, J K -- Zacharias, D A -- Chan, F K -- Johnson, M -- Lynch, D -- Tsien, R Y -- Lenardo, M J -- NS27177/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875918" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/*chemistry/genetics/*metabolism ; *Apoptosis ; Autoimmune Diseases/physiopathology ; Cell Line ; Cell Membrane/metabolism ; Cross-Linking Reagents ; Fas Ligand Protein ; Humans ; Ligands ; Lymphocytes/cytology ; Lymphoproliferative Disorders/physiopathology ; Macromolecular Substances ; Membrane Glycoproteins/*metabolism ; Mice ; Mutation ; Point Mutation ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction ; Succinimides ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-29
    Description: During meiosis in Saccharomyces cerevisiae, DNA replication occurs 1. 5 to 2 hours before recombination initiates by DNA double-strand break formation. We show that replication and recombination initiation are directly linked. Blocking meiotic replication prevented double-strand break formation in a replication-checkpoint-independent manner, and delaying replication of a chromosome segment specifically delayed break formation in that segment. Consequently, the time between replication and break formation was held constant in all regions. We suggest that double-strand break formation occurs as part of a process initiated by DNA replication, which thus determines when meiotic recombination initiates on a regional rather than a cell-wide basis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borde, V -- Goldman, A S -- Lichten, M -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):806-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, Division of Basic Science, National Cancer Institute, Bethesda, MD 20892-4255, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052944" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Fungal/genetics/metabolism ; DNA Repair ; *DNA Replication ; DNA, Fungal/*metabolism ; Genes, Fungal ; *Meiosis ; Mutation ; *Recombination, Genetic ; Saccharomyces cerevisiae/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rainey, B P -- Moxon, E R -- New York, N.Y. -- Science. 2000 May 19;288(5469):1186-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. prainey@molbiol.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10841739" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Cystic Fibrosis/drug therapy/microbiology ; Drug Resistance, Microbial ; Humans ; Mutation ; Phenotype ; Pseudomonas aeruginosa/drug effects/*genetics/pathogenicity/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2000-10-06
    Description: The signal transducers and activators of transcription (STAT) transcription factors become phosphorylated on tyrosine and translocate to the nucleus after stimulation of cells with growth factors or cytokines. We show that the Rac1 guanosine triphosphatase can bind to and regulate STAT3 activity. Dominant negative Rac1 inhibited STAT3 activation by growth factors, whereas activated Rac1 stimulated STAT3 phosphorylation on both tyrosine and serine residues. Moreover, activated Rac1 formed a complex with STAT3 in mammalian cells. Yeast two-hybrid analysis indicated that STAT3 binds directly to active but not inactive Rac1 and that the interaction occurs via the effector domain. Rac1 may serve as an alternate mechanism for targeting STAT3 to tyrosine kinase signaling complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, A R -- Vikis, H G -- Stewart, S -- Fanburg, B L -- Cochran, B H -- Guan, K L -- GM-54304/GM/NIGMS NIH HHS/ -- K08-HL-03547/HL/NHLBI NIH HHS/ -- P30-DK34928/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pulmonary and Critical Care Division, Tupper Research Institute, New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021801" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; COS Cells ; Cell Line ; Cercopithecus aethiops ; DNA-Binding Proteins/genetics/*metabolism ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Gene Expression Regulation ; Genes, Reporter ; Genetic Vectors ; Guanine Nucleotide Exchange Factors/genetics/metabolism ; Humans ; Janus Kinase 2 ; Mutation ; Neoplasm Proteins ; Phosphorylation ; Phosphoserine/metabolism ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/genetics/metabolism ; *Proto-Oncogene Proteins ; Rats ; STAT3 Transcription Factor ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transfection ; Two-Hybrid System Techniques ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-12-09
    Description: Rhodopsin is essential for photoreceptor morphogenesis; photoreceptors lacking rhodopsin degenerate in humans, mice, and Drosophila. Here we report that transgenic expression of a dominant-active Drosophila Rho guanosine triphosphatase, Drac1, rescued photoreceptor morphogenesis in rhodopsin-null mutants; expression of dominant-negative Drac1 resulted in a phenotype similar to that seen in rhodopsin-null mutants. Drac1 was localized in a specialization of the photoreceptor cortical actin cytoskeleton, which was lost in rhodopsin-null mutants. Thus, rhodopsin appears to organize the actin cytoskeleton through Drac1, contributing a structural support essential for photoreceptor morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H Y -- Ready, D F -- EY10306/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1978-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11110667" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism/ultrastructure ; Animals ; Animals, Genetically Modified ; Drosophila/genetics/growth & development/metabolism ; *Drosophila Proteins ; Microscopy, Confocal ; Microvilli/metabolism/ultrastructure ; Morphogenesis ; Mutation ; Photoreceptor Cells, Invertebrate/*growth & development/ultrastructure ; Rhodopsin/genetics/*metabolism ; rac GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2000-02-26
    Description: The Caenorhabditis elegans Bcl-2-like protein CED-9 prevents programmed cell death by antagonizing the Apaf-1-like cell-death activator CED-4. Endogenous CED-9 and CED-4 proteins localized to mitochondria in wild-type embryos, in which most cells survive. By contrast, in embryos in which cells had been induced to die, CED-4 assumed a perinuclear localization. CED-4 translocation induced by the cell-death activator EGL-1 was blocked by a gain-of-function mutation in ced-9 but was not dependent on ced-3 function, suggesting that CED-4 translocation precedes caspase activation and the execution phase of programmed cell death. Thus, a change in the subcellular localization of CED-4 may drive programmed cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, F -- Hersh, B M -- Conradt, B -- Zhou, Z -- Riemer, D -- Gruenbaum, Y -- Horvitz, H R -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1485-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688797" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Animals, Genetically Modified ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/*cytology/embryology/genetics/*metabolism ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/genetics/*metabolism ; *Caspases ; Cysteine Endopeptidases/genetics/metabolism ; Genes, Helminth ; Helminth Proteins/genetics/*metabolism ; Immunohistochemistry ; Mitochondria/metabolism ; Mutation ; Nuclear Envelope/*metabolism ; Phenotype ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2 ; Repressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: A variety of molecular chaperones and folding enzymes assist the folding of newly synthesized proteins in the endoplasmic reticulum. Here we investigated why some glycoproteins interact with the molecular chaperone BiP, and others with the calnexin/calreticulin pathway. The folding of Semliki forest virus glycoproteins and influenza hemagglutinin was studied in living cells. The initial choice of chaperone depended on the location of N-linked glycans in the growing nascent chain. Direct interaction with calnexin and calreticulin without prior interaction with BiP occurred if glycans were present within about 50 residues of the protein's NH2-terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molinari, M -- Helenius, A -- New York, N.Y. -- Science. 2000 Apr 14;288(5464):331-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Federal Institute of Technology Zurich (ETHZ), Universitatstrasse 16, CH-8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10764645" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; CHO Cells ; Calcium-Binding Proteins/metabolism ; Calnexin ; Calreticulin ; Carrier Proteins/metabolism ; Chemical Precipitation ; Cricetinae ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; *Heat-Shock Proteins ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/*metabolism ; Molecular Chaperones/*metabolism ; Molecular Weight ; Mutation ; Oxidation-Reduction ; Polysaccharides/chemistry ; Protein Conformation ; *Protein Folding ; Ribonucleoproteins/metabolism ; Semliki forest virus ; Viral Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2000-12-09
    Description: Diploid yeast cells repeatedly polarize and bud from their poles, probably because of highly stable marks of unknown composition. Here, Rax2, a membrane protein, was shown to behave as such a mark. The Rax2 protein itself was inherited immutably at the cell cortex for multiple generations, and Rax2 was shown to have a half-life exceeding several generations. The persistent inheritance of cortical protein markers would provide a means to couple a cell's history to the future development of a precise morphogenetic form.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, T -- Hiroko, T -- Chaudhuri, A -- Inose, F -- Lord, M -- Tanaka, S -- Chant, J -- Fujita, A -- GM49782/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1975-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11110666" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Division ; *Cell Polarity ; Fungal Proteins/genetics/*metabolism ; Membrane Proteins/genetics/*metabolism ; Morphogenesis ; Mutation ; Phenotype ; Recombinant Fusion Proteins/metabolism ; Yeasts/*cytology/genetics/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-12
    Description: Molecules that have similar sequences usually adopt the same structures and have the same functions. In his Perspective, Joyce explains that this is not always the case. In a remarkable study (Schultes and Bartel), an RNA sequence has been designed that can adopt two different structures, each with a different catalytic function. Joyce details how this study sheds light on the evolution of enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joyce, G F -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):401-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. gjoyce@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10939951" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; *Evolution, Molecular ; Hepatitis Delta Virus/enzymology/genetics ; Mutation ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2000-09-29
    Description: Cytosolic calcium oscillations control signaling in animal cells, whereas in plants their importance remains largely unknown. In wild-type Arabidopsis guard cells abscisic acid, oxidative stress, cold, and external calcium elicited cytosolic calcium oscillations of differing amplitudes and frequencies and induced stomatal closure. In guard cells of the V-ATPase mutant det3, external calcium and oxidative stress elicited prolonged calcium increases, which did not oscillate, and stomatal closure was abolished. Conversely, cold and abscisic acid elicited calcium oscillations in det3, and stomatal closure occurred normally. Moreover, in det3 guard cells, experimentally imposing external calcium-induced oscillations rescued stomatal closure. These data provide genetic evidence that stimulus-specific calcium oscillations are necessary for stomatal closure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, G J -- Chu, S P -- Schumacher, K -- Shimazaki, C T -- Vafeados, D -- Kemper, A -- Hawke, S D -- Tallman, G -- Tsien, R Y -- Harper, J F -- Chory, J -- Schroeder, J I -- R01 GM60396-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2338-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell and Developmental Biology Section, Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0116, USA. gallen@biomail.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11009417" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/pharmacology ; Arabidopsis/cytology/genetics/*physiology ; Calcium/metabolism ; *Calcium Signaling ; Cell Membrane/metabolism ; Cold Temperature ; Endoplasmic Reticulum/metabolism ; Genes, Plant ; Hydrogen Peroxide/pharmacology ; Membrane Potentials ; Mutation ; Oxidative Stress ; Plant Leaves/cytology/*physiology ; Potassium/metabolism ; Proton-Translocating ATPases/genetics/metabolism ; *Vacuolar Proton-Translocating ATPases ; Vacuoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-06
    Description: There is an intricate network of molecules called cell fate determinants that instruct the cells of the embryo to take on either an anterior or posterior fate. In a lively Perspective, Lehmann and her colleagues discuss new findings in the fruit fly that identify a key protein, PAR-1, which ensures that the cell fate determinants are themselves located in the correct region of the oocyte. In this way, the anterior-posterior axis is set up in the fruit fly egg before fertilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, J -- Lehmann, R -- Navarro, C -- New York, N.Y. -- Science. 2000 Jun 9;288(5472):1759-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Genetics Program, Skirball Institute, Howard Hughes Medical Institute, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10877696" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/physiology ; Animals ; *Body Patterning ; Caenorhabditis elegans/*embryology/genetics/physiology ; Cell Polarity ; Centrosome/physiology ; Drosophila/*embryology/genetics/physiology ; *Drosophila Proteins ; Homeodomain Proteins/genetics/metabolism ; Insect Proteins/genetics/metabolism ; Microtubules/physiology ; Mutation ; Oocytes/physiology ; Protein-Serine-Threonine Kinases/genetics/*physiology ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/genetics/metabolism ; Signal Transduction ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-20
    Description: The transcription factor TFIID contains the TATA box binding protein (TBP) and multiple TBP-associated factors (TAFs). Here, the association of TFIID components with promoters that either are dependent on multiple TAFs (TAFdep) or have no apparent TAF requirement (TAFind) is analyzed in yeast. At TAFdep promoters, TAFs are present at levels comparable to that of TBP, whereas at TAFind promoters, TAFs are present at levels that approximate background. After inactivation of several general transcription factors, including TBP, TAFs are still recruited by activators to TAFdep promoters. The results reveal two classes of promoters: at TAFind promoters, TBP is recruited in the apparent absence of TAFs, whereas at TAFdep promoters, TAFs are co-recruited with TBP in a manner consistent with direct activator-TAF interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, X Y -- Bhaumik, S R -- Green, M R -- GM33977/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 May 19;288(5469):1242-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10817999" target="_blank"〉PubMed〈/a〉
    Keywords: Cross-Linking Reagents ; DNA/chemistry ; DNA-Binding Proteins/genetics/metabolism ; Formaldehyde ; Mutation ; Precipitin Tests ; *Promoter Regions, Genetic ; Saccharomyces cerevisiae/*genetics ; TATA Box ; TATA-Box Binding Protein ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription Factors, TFII/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2000-09-23
    Description: Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in life-span. This extension was not observed in strains mutant for SIR2 (which encodes the silencing protein Sir2p) or NPT1 (a gene in a pathway in the synthesis of NAD, the oxidized form of nicotinamide adenine dinucleotide). These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, S J -- Defossez, P A -- Guarente, L -- 5-F32-AG05857-02/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2126-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11000115" target="_blank"〉PubMed〈/a〉
    Keywords: Cyclic AMP-Dependent Protein Kinases/metabolism ; DNA, Circular/genetics/metabolism ; DNA, Fungal/genetics/metabolism ; DNA, Ribosomal/genetics/metabolism ; *Energy Intake ; Enzyme Activation ; *Gene Silencing ; Glucose/*metabolism ; Histone Deacetylases/genetics/*metabolism ; *Longevity ; Mutation ; NAD/*metabolism ; Pentosyltransferases/genetics/metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics/metabolism/*physiology ; *Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Sirtuin 2 ; Sirtuins ; Trans-Activators/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-19
    Description: When a cell replicates its DNA during S phase of the cell cycle, the sister chromatid pairs must stick together like glue until they are separated to opposite ends of the cell (and hence into separate daughter cells) at anaphase. How the cell achieves this is still unclear but, as Takahashi and Yanagida explain in their Perspective, new findings in yeast have identified one molecule, Trf4p, that may be involved both in DNA replication and sister chromatid cohesion (Wang et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, K -- Yanagida, M -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):735-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10950718" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatids/*metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; *DNA Replication ; DNA-Directed DNA Polymerase/genetics/*metabolism ; Evolution, Molecular ; Fungal Proteins/metabolism ; Genes, Fungal ; Mutation ; *Nuclear Proteins ; *S Phase ; Saccharomycetales/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2000-10-13
    Description: Asymmetric localization of proteins plays a key role in many cellular processes, including cell polarity and cell fate determination. Using DNA microarray analysis, we identified a plasma membrane protein-encoding mRNA (IST2) that is transported to the bud tip by an actomyosin-based process. mRNA localization created a higher concentration of IST2 protein in the bud compared with that of the mother cell, and this asymmetry was maintained by a septin-mediated membrane diffusion barrier at the mother-bud neck. These results indicate that yeast creates distinct plasma membrane compartments, as has been described in neurons and epithelial cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takizawa, P A -- DeRisi, J L -- Wilhelm, J E -- Vale, R D -- 38496/PHS HHS/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):341-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030653" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/metabolism ; Biological Transport ; Cell Compartmentation ; Cell Cycle ; Cell Cycle Proteins/genetics/*metabolism ; Cell Membrane/metabolism ; *Cytoskeletal Proteins ; *DNA-Binding Proteins ; Diffusion ; Fungal Proteins/genetics/*metabolism ; Membrane Proteins/genetics/*metabolism ; Mutation ; *Myosin Heavy Chains ; *Myosin Type V ; Myosins/metabolism ; Oligonucleotide Array Sequence Analysis ; RNA, Fungal/metabolism ; RNA, Messenger/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/cytology/genetics/growth & development/*metabolism ; *Saccharomyces cerevisiae Proteins ; Temperature ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-31
    Description: Messenger RNA levels were measured in actively dividing fibroblasts isolated from young, middle-age, and old-age humans and humans with progeria, a rare genetic disorder characterized by accelerated aging. Genes whose expression is associated with age-related phenotypes and diseases were identified. The data also suggest that an underlying mechanism of the aging process involves increasing errors in the mitotic machinery of dividing cells in the postreproductive stage of life. We propose that this dysfunction leads to chromosomal pathologies that result in misregulation of genes involved in the aging process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ly, D H -- Lockhart, D J -- Lerner, R A -- Schultz, P G -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2486-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10741968" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; Aging/*genetics/pathology ; Biochemical Phenomena ; Cell Division ; Cell Line ; Cell Nucleus/ultrastructure ; Child ; Chromosome Segregation/genetics ; Disease/etiology ; Extracellular Matrix/metabolism ; Female ; Fibroblasts/cytology/*metabolism ; *Gene Expression Profiling ; *Gene Expression Regulation ; Humans ; Male ; Middle Aged ; *Mitosis/genetics ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Progeria/*genetics/pathology ; RNA, Messenger/genetics/metabolism ; Spindle Apparatus/metabolism ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasten, F H -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):56.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10928928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disease Models, Animal ; Humans ; Mice ; *Mice, Mutant Strains ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2000-06-24
    Description: In Caenorhabditis elegans, the gonad acquires two U-shaped arms by the directed migration of its distal tip cells (DTCs) along the body wall basement membranes. Correct migration of DTCs requires the mig-17 gene, which encodes a member of the metalloprotease-disintegrin protein family. The MIG-17 protein is secreted from muscle cells of the body wall and localizes in the basement membranes of gonad. This localization is dependent on the disintegrin-like domain of MIG-17 and its catalytic activity. These results suggest that the MIG-17 metalloprotease directs migration of DTCs by remodeling the basement membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishiwaki, K -- Hisamoto, N -- Matsumoto, K -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2205-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PRESTO, Japan Science and Technology Corporation and Fundamental Research Laboratories, NEC Corporation, Miyukigaoka, Tsukuba 305-8501, Japan.nishiwak@frl.cl.nec.co.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864868" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basement Membrane/enzymology ; Caenorhabditis elegans/cytology/*enzymology/genetics/growth & development ; *Caenorhabditis elegans Proteins ; Cell Movement ; Cloning, Molecular ; Disintegrins/chemistry/genetics/*metabolism ; Extracellular Matrix/*metabolism ; Gene Expression Profiling ; Genes, Helminth ; Glycosylation ; Gonads/cytology/enzymology/growth & development ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Muscles/cytology/enzymology ; Mutation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Alignment ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2000-10-06
    Description: Genes that control the early stages of adipogenesis remain largely unknown. Here, we show that murine GATA-2 and GATA-3 are specifically expressed in white adipocyte precursors and that their down-regulation sets the stage for terminal differentiation. Constitutive GATA-2 and GATA-3 expression suppressed adipocyte differentiation and trapped cells at the preadipocyte stage. This effect is mediated, at least in part, through the direct suppression of peroxisome proliferator-activated receptor gamma. GATA-3-deficient embryonic stem cells exhibit an enhanced capacity to differentiate into adipocytes, and defective GATA-2 and GATA-3 expression is associated with obesity. Thus, GATA-2 and GATA-3 regulate adipocyte differentiation through molecular control of the preadipocyte-adipocyte transition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Q -- Dalgin, G -- Xu, H -- Ting, C N -- Leiden, J M -- Hotamisligil, G S -- DK56894/DK/NIDDK NIH HHS/ -- F32DK09940/DK/NIDDK NIH HHS/ -- R37AI29673/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):134-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021798" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adipocytes/*cytology/*metabolism ; Adipose Tissue/cytology/metabolism ; Adipose Tissue, Brown/cytology/metabolism ; Animals ; Cell Differentiation ; Cells, Cultured ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; GATA2 Transcription Factor ; GATA3 Transcription Factor ; Gene Expression ; Mice ; Mutation ; Obesity/genetics/metabolism ; Promoter Regions, Genetic ; Receptors, Cytoplasmic and Nuclear/genetics/metabolism ; Stem Cells/cytology ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-13
    Description: It has been suggested that sexual reproduction is maintained because it reduces the load imposed by recurrent deleterious mutations. If rates of deleterious mutation per diploid genome per generation (U) exceed 1, and mutations interact synergistically, then sexuals can overcome their inherent twofold disadvantage. We have tested this hypothesis by estimating genomic point mutation rates for protein-coding genes in a range of animal taxa. We find a positive linear relationship between U and generation time. In species with short generation times, U is predicted to be far below 1, suggesting that sex is not maintained by its capacity to purge the genome of deleterious mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keightley, P D -- Eyre-Walker, A -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):331-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK. p.keightley@ed.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/genetics/physiology ; Cats/genetics/physiology ; Cattle/genetics/physiology ; DNA Transposable Elements ; Dogs/genetics/physiology ; Drosophila/genetics/physiology ; Female ; Haplorhini/genetics/physiology ; Humans ; Male ; Mutation ; *Point Mutation ; Proteins/genetics ; Rodentia/genetics/physiology ; *Sex ; Sheep/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-31
    Description: In Caenorhabditis elegans, the introduction of double-stranded RNA triggers sequence-specific genetic interference (RNAi) that is transmitted to offspring. The inheritance properties associated with this phenomenon were examined. Transmission of the interference effect occurred through a dominant extragenic agent. The wild-type activities of the RNAi pathway genes rde-1 and rde-4 were required for the formation of this interfering agent but were not needed for interference thereafter. In contrast, the rde-2 and mut-7 genes were required downstream for interference. These findings provide evidence for germ line transmission of an extragenic sequence-specific silencing factor and implicate rde-1 and rde-4 in the formation of the inherited agent.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grishok, A -- Tabara, H -- Mello, C C -- GM58800/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2494-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, Department of Cell Biology, University of Massachusetts Cancer Center, Two Biotech Suite 213, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10741970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/physiology ; *Caenorhabditis elegans Proteins ; Crosses, Genetic ; DNA Transposable Elements ; Disorders of Sex Development ; Female ; *Gene Silencing ; *Genes, Helminth ; Helminth Proteins/genetics/physiology ; Male ; Mutation ; Phenotype ; RNA, Double-Stranded/*genetics ; RNA, Helminth/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-06
    Description: Malaria is a devastating public health menace, killing over one million people every year and infecting about half a billion. Here it is shown that the protozoan Plasmodium gallinaceum, a close relative of the human malaria parasite Plasmodium falciparum, can develop in the fruit fly Drosophila melanogaster. Plasmodium gallinaceum ookinetes injected into the fly developed into sporozoites infectious to the vertebrate host with similar kinetics as seen in the mosquito host Aedes aegypti. In the fly, a component of the insect's innate immune system, the macrophage, can destroy Plasmodia. These experiments suggest that Drosophila can be used as a surrogate mosquito for defining the genetic pathways involved in both vector competence and part of the parasite sexual cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, D -- Shahabuddin, M -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2376-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA. dschneider@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875925" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/parasitology ; Animals ; Blood ; Chickens ; Drosophila melanogaster/genetics/immunology/*parasitology ; Genes, Insect ; Immunity, Cellular ; Insect Vectors/immunology/parasitology ; Macrophages/immunology ; Malaria, Avian/parasitology/transmission ; Mutation ; Phagocytosis ; Plasmodium gallinaceum/*growth & development/immunology ; RNA, Protozoan/metabolism ; RNA, Ribosomal/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2000-07-07
    Description: The structure of the cytoplasmic assembly of voltage-dependent K+ channels was solved by x-ray crystallography at 2.1 angstrom resolution. The assembly includes the cytoplasmic (T1) domain of the integral membrane alpha subunit together with the oxidoreductase beta subunit in a fourfold symmetric T1(4)beta4 complex. An electrophysiological assay showed that this complex is oriented with four T1 domains facing the transmembrane pore and four beta subunits facing the cytoplasm. The transmembrane pore communicates with the cytoplasm through lateral, negatively charged openings above the T1(4)beta4 complex. The inactivation peptides of voltage-dependent K(+) channels reach their site of action by entering these openings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gulbis, J M -- Zhou, M -- Mann, S -- MacKinnon, R -- GM47400/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):123-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Kv1.1 Potassium Channel ; Kv1.4 Potassium Channel ; Macromolecular Substances ; Models, Molecular ; Mutation ; Oocytes ; Oxidoreductases/chemistry/metabolism ; Patch-Clamp Techniques ; Peptides/metabolism ; Potassium Channels/*chemistry/genetics/*metabolism ; *Potassium Channels, Voltage-Gated ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-12
    Description: Ever since Prusiner first proposed his radical "protein-only" hypothesis to explain how certain infectious proteins (prions) are transmitted from one mammal to another in the absence of DNA or RNA, scientists have been trying to prove him right (or wrong). The study of mammalian prions, such as those causing Creutzfeldt-Jakob disease in humans, scrapie in sheep and mad cow disease in cattle, has been slow to yield answers. However, as Tuite discusses in his Perspective, the Sup35p and Ure2p proteins of yeast that exist in both normal and infectious forms are providing evidence that the "protein-only" hypothesis may be right (Sparrer et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuite, M F -- New York, N.Y. -- Science. 2000 Jul 28;289(5479):556-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences, University of Kent, Canterbury, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10939965" target="_blank"〉PubMed〈/a〉
    Keywords: Biopolymers ; Fungal Proteins/*chemistry/genetics/metabolism ; Glutathione Peroxidase ; Liposomes ; Molecular Weight ; Mutation ; Peptide Termination Factors ; Phenotype ; Prions/*chemistry/genetics/metabolism ; Protein Conformation ; Saccharomyces cerevisiae/*chemistry/genetics/metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2000-02-26
    Description: The Gram-negative bacterium Helicobacter pylori is a causative agent of gastritis and peptic ulcer disease in humans. Strains producing the CagA antigen (cagA(+)) induce strong gastric inflammation and are strongly associated with gastric adenocarcinoma and MALT lymphoma. We show here that such strains translocate the bacterial protein CagA into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island. CagA is tyrosine-phosphorylated and induces changes in the tyrosine phosphorylation state of distinct cellular proteins. Modulation of host cells by bacterial protein translocation adds a new dimension to the chronic Helicobacter infection with yet unknown consequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Odenbreit, S -- Puls, J -- Sedlmaier, B -- Gerland, E -- Fischer, W -- Haas, R -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1497-500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians University Munich, D-80336 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688800" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; *Antigens, Bacterial ; Bacterial Proteins/genetics/*metabolism ; Biological Transport ; Enzyme Inhibitors/pharmacology ; Epithelial Cells/metabolism/microbiology ; Fluorescent Antibody Technique ; Gastric Mucosa/*metabolism/*microbiology ; Genes, Bacterial ; Genetic Complementation Test ; Genistein/pharmacology ; Helicobacter pylori/genetics/*metabolism/pathogenicity ; Humans ; Mutation ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism ; Staurosporine/pharmacology ; Tumor Cells, Cultured ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, V L -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):631-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Carnegie 214, Baltimore, MD 21287, USA. vdawson@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10799001" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Animals, Genetically Modified ; *Disease Models, Animal ; Dopamine/physiology ; *Drosophila melanogaster/genetics ; Gene Expression ; Humans ; Lewy Bodies/ultrastructure ; *Mice/genetics ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Nerve Tissue Proteins/*genetics ; Neurons/ultrastructure ; *Parkinson Disease/genetics/pathology ; Synucleins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-05
    Description: A new study on page 265 of this issue suggests that a genetic defect in mice causes the joint's cartilage cells to pump insufficient amounts of pyrophosphate--a natural water softener--into the joint cleft, and this in turn leads to the formation of bony spurs that eventually stiffen the joints completely. Because humans have an almost identical gene, and disorders such as osteoarthritis also feature an abnormal outgrowth of bones, some arthritis researchers are hopeful that these new findings may point the way toward a new class of pyrophosphate-based drugs similar to the antiscaling chemicals in washing powders and toothpaste. But, as many of the researchers point out, the numerous roads that lead to human joint degradation make a single cure-all unlikely.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):225-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10917836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis/drug therapy/*genetics/metabolism ; Cartilage/metabolism ; Diphosphates/*metabolism/therapeutic use ; Humans ; Joints/metabolism ; Membrane Proteins/genetics/*physiology ; Mice ; Mice, Mutant Strains ; Mutation ; Osteoarthritis/genetics ; Phosphate Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-26
    Description: Contact-mediated axon repulsion by ephrins raises an unresolved question: these cell surface ligands form a high-affinity multivalent complex with their receptors present on axons, yet rather than being bound, axons can be rapidly repelled. We show here that ephrin-A2 forms a stable complex with the metalloprotease Kuzbanian, involving interactions outside the cleavage region and the protease domain. Eph receptor binding triggered ephrin-A2 cleavage in a localized reaction specific to the cognate ligand. A cleavage-inhibiting mutation in ephrin-A2 delayed axon withdrawal. These studies reveal mechanisms for protease recognition and control of cell surface proteins, and, for ephrin-A2, they may provide a means for efficient axon detachment and termination of signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hattori, M -- Osterfield, M -- Flanagan, J G -- EY11559/EY/NEI NIH HHS/ -- HD29417/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1360-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958785" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Axons/*physiology ; Cell Adhesion ; Cell Communication ; Cell Membrane/metabolism ; Cells, Cultured ; Disintegrins/genetics/*metabolism ; *Drosophila Proteins ; Ephrin-A2 ; Gene Expression ; Glycosylphosphatidylinositols/metabolism ; Growth Cones/physiology ; Humans ; Ligands ; Metalloendopeptidases/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Nervous System/embryology/enzymology ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, EphA3 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2000-10-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klenerman, P -- Lechner, F -- Kantzanou, M -- Ciurea, A -- Hengartner, H -- Zinkernagel, R -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK. klener@molbiol.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032545" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Animals ; Genetic Variation ; Hepacivirus/*genetics/immunology ; Hepatitis C/*immunology/virology ; Hepatitis C Antibodies/*immunology ; Humans ; Lymphocytic Choriomeningitis/immunology/virology ; Lymphocytic choriomeningitis virus/genetics/immunology ; Mice ; Mutation ; Neutralization Tests ; T-Lymphocytes, Cytotoxic/*immunology ; Viral Envelope Proteins/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parsons, T J -- Irwin, J A -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):1931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Armed Forces DNA Identification Laboratory, Armed Forces Institute of Pathology, 1413 Research Blvd., Rockville, MD 20886, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10877702" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Mitochondrial/*genetics ; Databases, Factual ; Ethnic Groups/genetics ; Humans ; Linkage Disequilibrium ; Mutation ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-10
    Description: Wnt-Frizzled (Fz) signaling pathways play recurring important roles during the development and homeostasis of vertebrates and invertebrates. Fz receptors can signal through beta-catenin-dependent and -independent pathways. In Drosophila, Fz and Fz2 are redundant receptors for Wg. In addition, Fz conveys signals through a distinct pathway to organize planar polarization of epithelial structures. We demonstrate that the cytoplasmic sequences of Fz2 and Fz preferentially activate the beta-catenin and planar polarity cascade, respectively. Both receptors activate either pathway, but with different efficiencies. Intrinsic differences in signaling efficiency in closely related receptors might be a general mechanism for generating signaling specificity in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boutros, M -- Mihaly, J -- Bouwmeester, T -- Mlodzik, M -- New York, N.Y. -- Science. 2000 Jun 9;288(5472):1825-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Developmental Biology Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10846164" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Armadillo Domain Proteins ; *Body Patterning ; Cytoskeletal Proteins/metabolism ; Drosophila/genetics/growth & development/*metabolism ; *Drosophila Proteins ; Eye/growth & development/metabolism ; Frizzled Receptors ; Insect Proteins ; Larva/growth & development/metabolism ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mutation ; Phenotype ; Phosphoproteins/metabolism ; Photoreceptor Cells, Invertebrate/growth & development/metabolism ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/*metabolism ; Receptors, G-Protein-Coupled ; Receptors, Neurotransmitter/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction ; *Trans-Activators ; Transcription Factors ; Wings, Animal/growth & development/metabolism ; Wnt Proteins ; Wnt1 Protein ; Xenopus ; Xenopus Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2000-03-24
    Description: Human immunodeficiency virus (HIV) enters cells in vitro via CD4 and a coreceptor. Which of 15 known coreceptors are important in vivo is poorly defined but may be inferred from disease-modifying mutations, as for CCR5. Here two single nucleotide polymorphisms are described in Caucasians in CX3CR1, an HIV coreceptor and leukocyte chemotactic/adhesion receptor for the chemokine fractalkine. HIV-infected patients homozygous for CX3CR1-I249 M280, a variant haplotype affecting two amino acids (isoleucine-249 and methionine-280), progressed to AIDS more rapidly than those with other haplotypes. Functional CX3CR1 analysis showed that fractalkine binding is reduced among patients homozygous for this particular haplotype. Thus, CX3CR1-I249 M280 is a recessive genetic risk factor in HIV/AIDS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faure, S -- Meyer, L -- Costagliola, D -- Vaneensberghe, C -- Genin, E -- Autran, B -- Delfraissy, J F -- McDermott, D H -- Murphy, P M -- Debre, P -- Theodorou, I -- Combadiere, C -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2274-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Hopital Pitie-Salpetriere, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731151" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/genetics/*physiopathology/virology ; Case-Control Studies ; Chemokine CX3CL1 ; *Chemokines, CX3C ; Chemokines, CXC/metabolism ; Chromosomes, Human, Pair 3 ; Cohort Studies ; Disease Progression ; European Continental Ancestry Group/genetics ; Genetic Variation ; Genotype ; HIV/physiology ; HIV Infections/genetics/*physiopathology/virology ; Haplotypes ; Homozygote ; Humans ; Leukocytes, Mononuclear/metabolism ; Linkage Disequilibrium ; Membrane Proteins/metabolism ; Mutation ; Polymorphism, Restriction Fragment Length ; *Polymorphism, Single Nucleotide ; Polymorphism, Single-Stranded Conformational ; Receptors, Cytokine/*genetics/*physiology ; Receptors, HIV/*genetics/*physiology ; Survival Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2000-08-01
    Description: Starting with purified, bacterially produced protein, we have created a [PSI(+)]-inducing agent based on an altered (prion) conformation of the yeast Sup35 protein. After converting Sup35p to its prion conformation in vitro, we introduced it into the cytoplasm of living yeast using a liposome transformation protocol. Introduction of substoichiometric quantities of converted Sup35p greatly increased the rate of appearance of the well-characterized epigenetic factor [PSI+], which results from self-propagating aggregates of cellular Sup35p. Thus, as predicted by the prion hypothesis, proteins can act as infectious agents by causing self-propagating conformational changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sparrer, H E -- Santoso, A -- Szoka, F C Jr -- Weissman, J S -- New York, N.Y. -- Science. 2000 Jul 28;289(5479):595-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143-0450, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10915616" target="_blank"〉PubMed〈/a〉
    Keywords: Biopolymers ; Culture Media ; Cytoplasm/chemistry ; Fungal Proteins/*chemistry/genetics/physiology ; Liposomes ; Microscopy, Fluorescence ; Mutation ; Peptide Termination Factors ; Phenotype ; Plasmids ; Prions/*chemistry/genetics/physiology ; Protein Biosynthesis ; Protein Conformation ; Saccharomyces cerevisiae/*chemistry/genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, S -- Hedrick, P -- Dowling, T -- Stoneking, M -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):1931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Arizona State University, Tempe, AZ 85287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10877701" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; DNA, Mitochondrial/*genetics ; Evolution, Molecular ; Haplotypes ; Humans ; *Linkage Disequilibrium ; Mutation ; Phylogeny ; Probability ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-12-09
    Description: Hepatitis C virus (HCV) infection is a global health problem affecting an estimated 170 million individuals worldwide. We report the identification of multiple independent adaptive mutations that cluster in the HCV nonstructural protein NS5A and confer increased replicative ability in vitro. Among these adaptive mutations were a single amino acid substitution that allowed HCV RNA replication in 10% of transfected hepatoma cells and a deletion of 47 amino acids encompassing the interferon (IFN) sensitivity determining region (ISDR). Independent of the ISDR, IFN-alpha rapidly inhibited HCV RNA replication in vitro. This work establishes a robust, cell-based system for genetic and functional analyses of HCV replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blight, K J -- Kolykhalov, A A -- Rice, C M -- AI40034/AI/NIAID NIH HHS/ -- CA57973/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1972-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11110665" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Hepacivirus/drug effects/genetics/*physiology ; Humans ; Interferon-alpha/pharmacology ; Mutation ; Phosphorylation ; Point Mutation ; RNA Replicase/genetics/metabolism ; RNA, Viral/*biosynthesis ; *Replicon ; Sequence Deletion ; Transfection ; Tumor Cells, Cultured ; Viral Nonstructural Proteins/*genetics/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steele, E J -- Blanden, R V -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2318-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10917827" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/genetics ; *Biological Evolution ; *Gene Expression Regulation ; *Genes, Immunoglobulin ; *Germ Cells ; *Lymphocytes/immunology ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2000-07-21
    Description: The terminal step of fruit development in Arabidopsis involves valve separation from the replum, allowing seed dispersal. This process requires the activities of the SHATTERPROOF MADS-box genes, which promote dehiscence zone differentiation at the valve/replum boundary. Here we show that the FRUITFULL MADS-box gene, which is necessary for fruit valve differentiation, is a negative regulator of SHATTERPROOF expression and that constitutive expression of FRUITFULL is sufficient to prevent formation of the dehiscence zone. Our studies suggest that ectopic expression of FRUITFULL may directly allow the control of pod shatter in oilseed crops such as canola.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferrandiz, C -- Liljegren, S J -- Yanofsky, M F -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):436-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903201" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/*growth & development ; DNA-Binding Proteins/*genetics/physiology ; *Gene Expression Regulation, Plant ; *Genes, Plant ; MADS Domain Proteins ; Mutation ; Phenotype ; Plant Proteins ; Plant Structures/growth & development ; Plants, Genetically Modified ; RNA, Plant/genetics/metabolism ; Seeds ; Transcription Factors/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-13
    Description: Many bacterial pathogens encode a multisubunit toxin, termed cytolethal distending toxin (CDT), that induces cell cycle arrest, cytoplasm distention, and, eventually, chromatin fragmentation and cell death. In one such pathogen, Campylobacter jejuni, one of the subunits of this toxin, CdtB, was shown to exhibit features of type I deoxyribonucleases. Transient expression of this subunit in cultured cells caused marked chromatin disruption. Microinjection of low amounts of CdtB induced cytoplasmic distention and cell cycle arrest. CdtB mutants with substitutions in residues equivalent to those required for catalysis or magnesium binding in type I deoxyribonucleases did not cause chromatin disruption. CDT holotoxin containing these mutant forms of CdtB did not induce morphological changes or cell cycle arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lara-Tejero, M -- Galan, J E -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030657" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Toxins/chemistry/genetics/*metabolism/*toxicity ; COS Cells ; *Campylobacter jejuni/genetics/pathogenicity ; Cell Death ; Cell Line ; Cell Nucleus/metabolism ; Chromatin/ultrastructure ; DNA/*metabolism ; *DNA Damage ; Deoxyribonuclease I/chemistry/*metabolism ; *G2 Phase ; Microinjections ; Molecular Sequence Data ; Mutation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-11-04
    Description: We have identified an activity that is required for transcription of downstream promoter element (DPE)-containing core promoters in vitro. The purified factor was found to be the Drosophila homolog of the transcriptional repressor known as NC2 or Dr1-Drap1. Purified recombinant dNC2 activates DPE-driven promoters and represses TATA-driven promoters. A mutant version of dNC2 can activate DPE promoters but is unable to repress TATA promoters. Thus, the activation and repression functions are distinct. These studies reveal that NC2 (Dr1-Drap1) is a bifunctional basal transcription factor that differentially regulates gene transcription through DPE or TATA box motifs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willy, P J -- Kobayashi, R -- Kadonaga, J T -- CA13106/CA/NCI NIH HHS/ -- GM41249/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 3;290(5493):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Molecular Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0347, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11062130" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila/*genetics ; Molecular Weight ; Mutation ; Phosphoproteins/chemistry/genetics/isolation & purification/*metabolism ; *Promoter Regions, Genetic ; Protein Subunits ; Recombinant Proteins/metabolism ; TATA Box ; Transcription Factors/chemistry/genetics/isolation & purification/*metabolism ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-07
    Description: The molecular nature of sweet taste receptors has not been fully explored. Employing a differential screening strategy, we identified a taste receptor gene, Tre1, that controls the taste sensitivity to trehalose in Drosophila melanogaster. The Tre1 gene encodes a novel protein with similarity to G protein-coupled seven-transmembrane receptors. Disruption of the Tre1 gene lowered the taste sensitivity to trehalose, whereas sensitivities to other sugars were unaltered. Overexpression of the Tre1 gene restored the taste sensitivity to trehalose in the Tre1 deletion mutant. The Tre1 gene is expressed in taste sensory cells. These results provide direct evidence that Tre1 encodes a putative taste receptor for trehalose in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishimoto, H -- Matsumoto, A -- Tanimura, T -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):116-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884225" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Blotting, Southern ; Cloning, Molecular ; DNA, Complementary ; *Drosophila Proteins ; Drosophila melanogaster/chemistry/*genetics ; Female ; *Genes, Insect ; In Situ Hybridization, Fluorescence ; Male ; Molecular Sequence Data ; Mutation ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/*genetics/metabolism ; *Receptors, G-Protein-Coupled ; *Taste ; *Trehalose
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, E -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1378.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10722376" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; DNA/chemistry/genetics ; Evolution, Molecular ; *Exons ; *Genes ; Genetic Variation ; *Introns ; Mutation ; Proteins/chemistry/*genetics ; Repetitive Sequences, Nucleic Acid ; Spiders/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkel, E -- New York, N.Y. -- Science. 2000 Jun 2;288(5471):1572-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10858132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Australia ; Chromosome Mapping ; Crosses, Genetic ; Databases, Factual ; Female ; *Genes, Recessive ; Genetic Testing ; Housing, Animal ; Humans ; Male ; Mice ; Mice, Mutant Strains/*genetics ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2000-04-28
    Description: Severe combined immunodeficiency-X1 (SCID-X1) is an X-linked inherited disorder characterized by an early block in T and natural killer (NK) lymphocyte differentiation. This block is caused by mutations of the gene encoding the gammac cytokine receptor subunit of interleukin-2, -4, -7, -9, and -15 receptors, which participates in the delivery of growth, survival, and differentiation signals to early lymphoid progenitors. After preclinical studies, a gene therapy trial for SCID-X1 was initiated, based on the use of complementary DNA containing a defective gammac Moloney retrovirus-derived vector and ex vivo infection of CD34+ cells. After a 10-month follow-up period, gammac transgene-expressing T and NK cells were detected in two patients. T, B, and NK cell counts and function, including antigen-specific responses, were comparable to those of age-matched controls. Thus, gene therapy was able to provide full correction of disease phenotype and, hence, clinical benefit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cavazzana-Calvo, M -- Hacein-Bey, S -- de Saint Basile, G -- Gross, F -- Yvon, E -- Nusbaum, P -- Selz, F -- Hue, C -- Certain, S -- Casanova, J L -- Bousso, P -- Deist, F L -- Fischer, A -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):669-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM Unit 429, Gene Therapy Laboratory, Cell Therapy Laboratory, Unite d'Immunologie et d'Hematologie Pediatriques, Hopital Necker, 75743 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10784449" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD34/analysis ; B-Lymphocytes/immunology ; Gene Transfer Techniques ; *Genetic Therapy ; Genetic Vectors ; Hematopoietic Stem Cell Transplantation ; *Hematopoietic Stem Cells/cytology ; Humans ; Immunoglobulins/blood ; Infant ; Killer Cells, Natural/immunology ; Lymphocyte Activation ; Lymphocyte Count ; Moloney murine leukemia virus/genetics ; Mutation ; Receptors, Antigen, T-Cell/analysis ; Receptors, Interleukin/biosynthesis/*genetics ; Severe Combined Immunodeficiency/genetics/*therapy ; T-Lymphocyte Subsets/immunology ; T-Lymphocytes/immunology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-07
    Description: In Neurospora crassa, white collar 1 (WC-1), a transcriptional activator and positive clock element, is rhythmically expressed from a nonrhythmic steady-state pool of wc-1 transcript, consistent with posttranscriptional regulation of rhythmicity. Mutations in frq influence both the level and periodicity of WC-1 expression, and driven FRQ expression not only depresses its own endogenous levels, but positively regulates WC-1 synthesis with a lag of about 8 hours, a delay similar to that seen in the wild-type clock. FRQ thus plays dual roles in the Neurospora clock and thereby, with WC-1, forms a second feedback loop that would promote robustness and stability in this circadian system. The existence also of interlocked loops in Drosophila melanogaster and mouse clocks suggests that such interlocked loops may be a conserved aspect of circadian timing systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, K -- Loros, J J -- Dunlap, J C -- MH44651/MH/NIMH NIH HHS/ -- R37-GM 34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Dartmouth Medical School, Hanover, NH 03755-3844, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884222" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Circadian Rhythm ; DNA-Binding Proteins/biosynthesis/chemistry/genetics/*metabolism ; Darkness ; Feedback ; Fungal Proteins/genetics/*metabolism ; Gene Expression Regulation, Fungal ; Humans ; Kinetics ; Light ; Molecular Sequence Data ; Mutation ; Neurospora crassa/genetics/metabolism/*physiology ; Phosphorylation ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Sequence Alignment ; Signal Transduction ; Transcription Factors/biosynthesis/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-29
    Description: Events that stall bacterial protein synthesis activate the ssrA-tagging machinery, resulting in resumption of translation and addition of an 11-residue peptide to the carboxyl terminus of the nascent chain. This ssrA-encoded peptide tag marks the incomplete protein for degradation by the energy-dependent ClpXP protease. Here, a ribosome-associated protein, SspB, was found to bind specifically to ssrA-tagged proteins and to enhance recognition of these proteins by ClpXP. Cells with an sspB mutation are defective in degrading ssrA-tagged proteins, demonstrating that SspB is a specificity-enhancing factor for ClpXP that controls substrate choice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levchenko, I -- Seidel, M -- Sauer, R T -- Baker, T A -- AI-16892/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2354-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Howard Hughes Medical Institute, Building 68, Room 523, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11009422" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Bacterial Proteins/genetics/*metabolism ; Endopeptidase Clp ; Escherichia coli/enzymology/*metabolism ; *Escherichia coli Proteins ; Green Fluorescent Proteins ; Luminescent Proteins/metabolism ; Mutation ; Oligopeptides/chemistry/genetics/*metabolism ; Operon ; Ribosomes/metabolism ; Serine Endopeptidases/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-14
    Description: Rather than designing specific inhibitors for closely related proteins, researchers are remodeling the proteins to make them uniquely susceptible to inhibition. As described in the 21 September issue of Nature, the technique involves enlarging the active site of an enzyme so that it can bind an inhibitor that won't fit into the active sites of related--but unaltered--enzymes. Researchers can then insert the gene that encodes the modified enzyme into cells or living animals and turn off that enzyme by feeding them the inhibitor--without affecting other, very similar, enzymes. The technique may have some advantages over other approaches to studying the functions of individual proteins, such as mutating or knocking out the genes that encode them, which may disrupt embryonic development, producing abnormal animals or no animals at all.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2029-31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032551" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Binding Sites ; Cell Cycle ; Cell Division ; Enzyme Inhibitors/metabolism ; Glycine ; Mutation ; *Protein Engineering ; Protein Kinase Inhibitors ; *Protein Kinases/chemistry/genetics/metabolism ; Temperature ; Yeasts/cytology/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2000-08-19
    Description: TR3, an immediate-early response gene and an orphan member of the steroid-thyroid hormone-retinoid receptor superfamily of transcription factors, regulates apoptosis through an unknown mechanism. In response to apoptotic stimuli, TR3 translocates from the nucleus to mitochondria to induce cytochrome c release and apoptosis. Mitochondrial targeting of TR3, but not its DNA binding and transactivation, is essential for its proapoptotic effect. Our results reveal a mechanism by which a nuclear transcription factor translocates to mitochondria to initiate apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Kolluri, S K -- Gu, J -- Dawson, M I -- Cao, X -- Hobbs, P D -- Lin, B -- Chen, G -- Lu, J -- Lin, F -- Xie, Z -- Fontana, J A -- Reed, J C -- Zhang, X -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1159-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947977" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Cell Fractionation ; Cell Nucleus/metabolism ; Cytochrome c Group/*metabolism ; DNA/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Genes, Reporter ; Humans ; Intracellular Membranes/metabolism/physiology ; Mitochondria/*metabolism ; Mutation ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2000-07-21
    Description: The guanosine triphosphatase Rab1 regulates the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi apparatus through interaction with effector molecules, but the molecular mechanisms by which this occurs are unknown. Here, the tethering factor p115 was shown to be a Rab1 effector that binds directly to activated Rab1. Rab1 recruited p115 to coat protein complex II (COPII) vesicles during budding from the endoplasmic reticulum, where it interacted with a select set of COPII vesicle-associated SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) to form a cis-SNARE complex that promotes targeting to the Golgi apparatus. We propose that Rab1-regulated assembly of functional effector-SNARE complexes defines a conserved molecular mechanism to coordinate recognition between subcellular compartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allan, B B -- Moyer, B D -- Balch, W E -- CA58689/CA/NCI NIH HHS/ -- GM 33301/GM/NIGMS NIH HHS/ -- GM42336/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):444-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Cell and Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903204" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/*metabolism ; Intracellular Membranes/metabolism ; Membrane Fusion ; *Membrane Glycoproteins ; Membrane Proteins/*metabolism ; Mutation ; Organelles/metabolism ; Phosphoproteins/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins ; *Saccharomyces cerevisiae Proteins ; *Vesicular Transport Proteins ; Viral Envelope Proteins/metabolism ; rab1 GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: Drosophila offers many advantages as an experimental organism. However, in comparison with yeast and mouse, two other widely used eukaryotic model systems, Drosophila suffers from an inability to perform homologous recombination between introduced DNA and the corresponding chromosomal loci. The ability to specifically modify the genomes of yeast and mouse provides a quick and easy way to generate or rescue mutations in genes for which a DNA clone or sequence is available. A method is described that enables analogous manipulations of the Drosophila genome. This technique may also be applicable to other organisms for which gene-targeting procedures do not yet exist.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rong, Y S -- Golic, K G -- R21GM57792/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2013-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856208" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Blotting, Southern ; Cloning, Molecular ; DNA Damage ; DNA Nucleotidyltransferases/metabolism ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/metabolism ; Drosophila melanogaster/*genetics ; Female ; *Gene Targeting ; *Genes, Insect ; In Situ Hybridization ; Male ; *Mutagenesis ; Mutation ; Point Mutation ; *Recombination, Genetic ; Saccharomyces cerevisiae Proteins ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-28
    Description: Memories are thought to be due to lasting synaptic modifications in the brain. The search for memory traces has relied predominantly on determining regions that are necessary for the process. However, a more informative approach is to define the smallest sufficient set of brain structures. The rutabaga adenylyl cyclase, an enzyme that is ubiquitously expressed in the Drosophila brain and that mediates synaptic plasticity, is needed exclusively in the Kenyon cells of the mushroom bodies for a component of olfactory short-term memory. This demonstrates that synaptic plasticity in a small brain region can be sufficient for memory formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zars, T -- Fischer, M -- Schulz, R -- Heisenberg, M -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):672-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theodor Boveri Institut fur Biowissenschaften, Lehrstuhl fur Genetik, (Biozentrum) Am Hubland, D97074, Wurzburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10784450" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/*metabolism ; Animals ; Avoidance Learning ; Brain/enzymology/physiology ; Brain Mapping ; DNA-Binding Proteins ; Drosophila/enzymology/genetics/*physiology ; Electroshock ; Enhancer Elements, Genetic ; Fungal Proteins/genetics ; *Memory, Short-Term ; Mutation ; *Neuronal Plasticity ; Neurons/enzymology/*physiology ; Olfactory Pathways ; *Saccharomyces cerevisiae Proteins ; Smell ; Synapses/*physiology ; Transcription Factors/genetics ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2000-06-24
    Description: Mammalian kinetochores contain the centromere-specific histone H3 variant CENP-A, whose incorporation into limited chromosomal regions may be important for centromere function and chromosome segregation during mitosis. However, regulation of CENP-A localization and its role have not been clear. Here we report that the fission yeast homolog SpCENP-A is essential for establishing centromere chromatin associated with equal chromosome segregation. SpCENP-A binding to the nonrepetitious inner centromeres depended on Mis6, an essential centromere connector protein acting during G1-S phase of the cell cycle. Mis6 is likely required for recruiting SpCENP-A to form proper connection of sister centromeres.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, K -- Chen, E S -- Yanagida, M -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2215-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CREST Research Project, Japan Science and Technology Corporation, Kyoto, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle ; Cell Cycle Proteins/metabolism ; Centromere/*metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; *Chromosome Segregation ; DNA Replication ; DNA, Fungal/metabolism ; Fungal Proteins/chemistry/genetics/*metabolism ; G1 Phase ; Histones/chemistry/genetics/metabolism ; Mitosis ; Molecular Sequence Data ; Mutation ; Recombinant Fusion Proteins/metabolism ; S Phase ; Schizosaccharomyces/cytology/genetics/*metabolism ; *Schizosaccharomyces pombe Proteins ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-11-04
    Description: To assess the role of BAX in drug-induced apoptosis in human colorectal cancer cells, we generated cells that lack functional BAX genes. Such cells were partially resistant to the apoptotic effects of the chemotherapeutic agent 5-fluorouracil, but apoptosis was not abolished. In contrast, the absence of BAX completely abolished the apoptotic response to the chemopreventive agent sulindac and other nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibited the expression of the antiapoptotic protein Bcl-XL, resulting in an altered ratio of BAX to Bcl-XL and subsequent mitochondria-mediated cell death. These results establish an unambiguous role for BAX in apoptotic processes in human epithelial cancers and may have implications for cancer chemoprevention strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, L -- Yu, J -- Park, B H -- Kinzler, K W -- Vogelstein, B -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA 62924/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Nov 3;290(5493):989-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Oncology Center, and Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11062132" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Inflammatory Agents, Non-Steroidal/*pharmacology ; Anticarcinogenic Agents/pharmacology ; Antimetabolites, Antineoplastic/*pharmacology ; *Apoptosis ; Colorectal Neoplasms/genetics/metabolism/*pathology ; Fluorouracil/*pharmacology ; Genes, p53 ; Humans ; Indomethacin/pharmacology ; Intracellular Membranes/drug effects/physiology ; Membrane Potentials/drug effects ; Mitochondria/drug effects/physiology ; Mutation ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Proto-Oncogenes ; Sulindac/pharmacology ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/metabolism ; bcl-2-Associated X Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-24
    Description: The sequence of the Drosophila melanogaster genome presented in this issue of Science is the latest milestone in nine decades of research on this organism. Genetic and physical mapping, whole-genome mutational screens, and functional alteration of the genome by gene transfer were pioneered in metazoans with the use of this small fruit fly. Here we look at some of the instances in which work on Drosophila has led to major conceptual or technical breakthroughs in our understanding of animal genomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, G M -- Lewis, E B -- HD06331/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2216-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731135" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Chromosome Mapping/history ; Cloning, Molecular ; Computational Biology/history ; Drosophila melanogaster/*genetics ; Genes, Insect ; Genetics/*history ; *Genome ; History, 20th Century ; Mutation ; Nobel Prize ; Physical Chromosome Mapping/history ; Recombination, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-05
    Description: The binding of a ligand to its receptor has always been viewed as the trigger for signal transduction to ensue. However, as Golstein explains in his Perspective, new findings (Chan et al. and Siegel et al.) suggest that the Fas receptor preassembles into trimers without the help of its ligand, and that this preassembly conditions ligand binding, and thus subsequent signal transduction of a death signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golstein, P -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2328-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Case 906, 13288 Marseille Cedex 9, France. golstein@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10917832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/*chemistry/genetics/*metabolism ; *Apoptosis ; Binding Sites ; Cell Membrane/metabolism ; Dimerization ; Fas Ligand Protein ; Humans ; Ligands ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2000-03-10
    Description: The first artery and vein of the vertebrate embryo assemble in the trunk by migration and coalescence of angioblasts to form endothelial tubes. The gridlock (grl) mutation in zebrafish selectively perturbs assembly of the artery (the aorta). Here it is shown that grl encodes a basic helix-loop-helix (bHLH) protein belonging to the Hairy/Enhancer of the split family of bHLH proteins. The grl gene is expressed in lateral plate mesoderm before vessel formation, and thereafter in the aorta and not in the vein. These results suggest that the arterial endothelial identity is established even before the onset of blood flow and implicate the grl gene in assignment of vessel-specific cell fate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhong, T P -- Rosenberg, M -- Mohideen, M A -- Weinstein, B -- Fishman, M C -- R01DK55383/DK/NIDDK NIH HHS/ -- R01RR0888/RR/NCRR NIH HHS/ -- T32HL07208/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1820-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center, Massachusetts General Hospital-Harvard Medical School, 149 13th Street, 4th floor, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710309" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aorta/*embryology/metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Cloning, Molecular ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Endothelium, Vascular/embryology/metabolism ; Gene Expression ; Genotype ; *Helix-Loop-Helix Motifs ; Humans ; Mesoderm/metabolism ; Molecular Sequence Data ; Morphogenesis/genetics ; Mutation ; Phenotype ; Physical Chromosome Mapping ; Proteins/chemistry/*genetics/*physiology ; Sequence Alignment ; Stem Cells/cytology/metabolism ; Zebrafish/embryology/*genetics ; *Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2000-08-11
    Description: Biochemical and crystallographic evidence suggests that 23S ribosomal RNA (rRNA) is the catalyst of peptide bond formation. To explore the mechanism of this reaction, we screened for nucleotides in Escherichia coli 23S rRNA that may have a perturbed pKa (where Ka is the acid constant) based on the pH dependence of dimethylsulfate modification. A single universally conserved A (number 2451) within the central loop of domain V has a near neutral pKa of 7.6 +/- 0.2, which is about the same as that reported for the peptidyl transferase reaction. In vivo mutational analysis of this nucleotide indicates that it has an essential role in ribosomal function. These results are consistent with a mechanism wherein the nucleotide base of A2451 serves as a general acid base during peptide bond formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muth, G W -- Ortoleva-Donnelly, L -- Strobel, S A -- GM54839/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):947-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937997" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/chemistry/*metabolism ; Binding Sites ; Catalysis ; Dimethyl Sulfoxide ; Escherichia coli ; Hydrogen Bonding ; Methylation ; Mutation ; *Peptide Biosynthesis ; Peptidyl Transferases/*chemistry/*metabolism ; Protons ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Ribosomal, 23S/*chemistry/genetics/*metabolism ; Ribosomes/chemistry/*metabolism ; Tubercidin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-23
    Description: How do B cells generate the enormous diversity of antibodies that are able to recognize and bind to whichever antigen a B cell might happen to encounter in the body? Several genetic mechanisms that manipulate different combinations of immunoglobulin genes are known. In their Perspective, Neuberger and Scott, highlight another genetic mechanism called RNA editing now shown to be involved in the production of antibody diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neuberger, M S -- Scott, J -- New York, N.Y. -- Science. 2000 Sep 8;289(5485):1705-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11001738" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Diversity ; B-Lymphocytes/enzymology/*immunology ; Catalysis ; Cytidine Deaminase/chemistry/*genetics/*metabolism ; Evolution, Molecular ; Genes, Immunoglobulin ; Humans ; Immunoglobulin Class Switching ; Lymphocyte Activation ; Mice ; Mutation ; *RNA Editing ; RNA, Messenger/genetics/metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-11-10
    Description: Gene duplication has generally been viewed as a necessary source of material for the origin of evolutionary novelties, but it is unclear how often gene duplicates arise and how frequently they evolve new functions. Observations from the genomic databases for several eukaryotic species suggest that duplicate genes arise at a very high rate, on average 0.01 per gene per million years. Most duplicated genes experience a brief period of relaxed selection early in their history, with a moderate fraction of them evolving in an effectively neutral manner during this period. However, the vast majority of gene duplicates are silenced within a few million years, with the few survivors subsequently experiencing strong purifying selection. Although duplicate genes may only rarely evolve new functions, the stochastic silencing of such genes may play a significant role in the passive origin of new species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynch, M -- Conery, J S -- R01-GM36827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 10;290(5494):1151-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Oregon, Eugene, OR 97403, USA. mlynch@oregon.uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11073452" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Arabidopsis/genetics ; Base Sequence ; Caenorhabditis elegans/genetics ; Chickens/genetics ; Databases, Factual ; Drosophila melanogaster/genetics ; *Evolution, Molecular ; Gene Duplication ; Gene Silencing ; *Genes, Duplicate ; *Genome ; Humans ; Mice ; Models, Genetic ; Mutation ; Oryza/genetics ; Probability ; Proteins/chemistry/genetics ; Saccharomyces cerevisiae/genetics ; Selection, Genetic ; Stochastic Processes ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2000-12-23
    Description: Niemann-Pick type C2 disease (NP-C2) is a fatal hereditary disorder of unknown etiology characterized by defective egress of cholesterol from lysosomes. Here we show that the disease is caused by a deficiency in HE1, a ubiquitously expressed lysosomal protein identified previously as a cholesterol-binding protein. HE1 was undetectable in fibroblasts from NP-C2 patients but present in fibroblasts from unaffected controls and NP-C1 patients. Mutations in the HE1 gene, which maps to chromosome 14q24.3, were found in NP-C2 patients but not in controls. Treatment of NP-C2 fibroblasts with exogenous recombinant HE1 protein ameliorated lysosomal accumulation of low density lipoprotein-derived cholesterol.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naureckiene, S -- Sleat, D E -- Lackland, H -- Fensom, A -- Vanier, M T -- Wattiaux, R -- Jadot, M -- Lobel, P -- DK45992/DK/NIDDK NIH HHS/ -- DK54317/DK/NIDDK NIH HHS/ -- NS37918/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125141" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; CHO Cells ; *Carrier Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; Cholesterol/*metabolism ; Cricetinae ; Culture Media, Conditioned ; Fibroblasts/metabolism ; Glycoproteins/chemistry/*genetics/*metabolism/pharmacology ; Humans ; Lysosomes/*metabolism ; Molecular Sequence Data ; Mutation ; Niemann-Pick Diseases/*genetics/metabolism ; Rats ; Receptor, IGF Type 2/metabolism ; Recombinant Proteins/metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-20
    Description: Triplex-forming oligonucleotides (TFOs) recognize and bind to specific duplex DNA sequences and have been used extensively to modify gene function in cells. Although germ line mutations can be incorporated by means of embryonic stem cell technology, little progress has been made toward introducing mutations in somatic cells of living organisms. Here we demonstrate that TFOs can induce mutations at specific genomic sites in somatic cells of adult mice. Mutation detection was facilitated by the use of transgenic mice bearing chromosomal copies of the supF and cII reporter genes. Mice treated with a supF-targeted TFO displayed about fivefold greater mutation frequencies in the supF gene compared with mice treated with a scrambled sequence control oligomer. No mutagenesis was detected in the control gene (cII) with either oligonucleotide. These results demonstrate that site-specific, TFO-directed genome modification can be accomplished in intact animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vasquez, K M -- Narayanan, L -- Glazer, P M -- CA64186/CA/NCI NIH HHS/ -- CA75723/CA/NCI NIH HHS/ -- F32 CA075723/CA/NCI NIH HHS/ -- GM54731/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 20;290(5491):530-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11039937" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pair Mismatch ; Base Sequence ; DNA/chemistry/*genetics/metabolism ; *Gene Targeting ; Genes, Reporter ; Genes, Suppressor ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Sequence Data ; *Mutagenesis, Site-Directed ; Mutation ; Oligodeoxyribonucleotides/chemistry/*genetics/metabolism ; RNA, Transfer/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-11-04
    Description: Establishment and maintenance of an intracellular niche are critical to the success of an intracellular pathogen. Here, the pore-forming protein listeriolysin O (LLO), secreted by Listeria monocytogenes, was shown to contain a PEST-like sequence (P, Pro; E, Glu; S, Ser; T, Thr) that is essential for the virulence and intracellular compartmentalization of this pathogen. Mutants lacking the PEST-like sequence entered the host cytosol but subsequently permeabilized and killed the host cell. LLO lacking the PEST-like sequence accumulated in the host-cell cytosol, suggesting that this sequence targets LLO for degradation. Transfer of the sequence to perfringolysin O transformed this toxic cytolysin into a nontoxic derivative that facilitated intracellular growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Decatur, A L -- Portnoy, D A -- AI10283/AI/NIAID NIH HHS/ -- AI27655/AI/NIAID NIH HHS/ -- R01 AI027655/AI/NIAID NIH HHS/ -- R37 AI029619/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 3;290(5493):992-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11062133" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Bacterial Toxins/chemistry ; Cell Line ; Cytosol/metabolism ; Heat-Shock Proteins/*chemistry/genetics/*metabolism/toxicity ; Hemolysin Proteins ; L-Lactate Dehydrogenase/metabolism ; Listeria monocytogenes/genetics/metabolism/*pathogenicity ; Listeriosis/microbiology ; Macrophages/microbiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Phagosomes/microbiology ; Phosphorylation ; Sequence Deletion ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...