ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (217)
  • Transfection  (114)
  • Binding Sites  (111)
  • 1990-1994  (217)
  • 1993  (119)
  • 1990  (98)
  • Computer Science  (217)
  • Geography
Collection
  • Articles  (217)
Years
  • 1990-1994  (217)
Year
  • 1
    Publication Date: 1993-07-23
    Description: Transcription initiation factor TFIIB recruits RNA polymerase II to the promoter subsequent to interaction with a preformed TFIID-promoter complex. The domains of TFIIB required for binding to the TFIID-promoter complex and for transcription initiation have been determined. The carboxyl-terminal two-thirds of TFIIB, which contains two direct repeats and two basic residue repeats, is sufficient for interaction with the TFIID-promoter complex. An extra 84-residue amino-terminal region, with no obvious known structural motifs, is required for basal transcription activity. Basic residues within the second basic repeat of TFIIB are necessary for stable interaction with the TFIID-promoter complex, whereas the basic character of the first basic repeat is not. Functional roles of other potential structural motifs are discussed in light of the present study.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamashita, S -- Hisatake, K -- Kokubo, T -- Doi, K -- Roeder, R G -- Horikoshi, M -- Nakatani, Y -- AI27397/AI/NIAID NIH HHS/ -- CA42567/CA/NCI NIH HHS/ -- GM45258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):463-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332911" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; DNA-Binding Proteins/*metabolism ; Drosophila ; Molecular Sequence Data ; Mutation ; *Promoter Regions, Genetic ; Protein Binding ; Transcription Factor TFIIB ; Transcription Factor TFIID ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-08
    Description: Oncogenes discovered in retroviruses such as Rous sarcoma virus were generated by transduction of cellular proto-oncogenes into the viral genome. Several different kinds of junctions between the viral and proto-oncogene sequences have been found in different viruses. A system of retrovirus vectors and a protocol that mimicked this transduction during a single cycle of retrovirus replication was developed. The transduction involved the formation of a chimeric viral-cellular RNA, strand switching of the reverse transcription growing point from an infectious retrovirus to the chimeric RNA, and often a subsequent deletion during the rest of viral DNA synthesis. A short region of sequence identity was frequently used for the strand switching. The rate of this process was about 0.1 to 1 percent of the rate of homologous retroviral recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, J -- Temin, H M -- CA-07175/CA/NCI NIH HHS/ -- CA-22443/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):234-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Cinnamates ; *DNA Replication ; DNA, Viral/chemistry/genetics ; Drug Resistance/genetics ; Genes, Viral ; Genetic Vectors ; Hygromycin B/analogs & derivatives ; Kinetics ; Mice ; Molecular Sequence Data ; Moloney murine leukemia virus/genetics ; Neomycin ; Plasmids ; *Proto-Oncogenes ; RNA, Viral/analysis/genetics ; *Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Retroviridae/*genetics/physiology ; Transfection ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-10-22
    Description: Glycogen storage disease (GSD) type 1a is caused by the deficiency of D-glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high incidence and morbidity, the molecular mechanisms underlying this deficiency have eluded characterization. In the present study, the molecular and biochemical characterization of the human G6Pase complementary DNA, its gene, and the expressed protein, which is indistinguishable from human microsomal G6Pase, are reported. Several mutations in the G6Pase gene of affected individuals that completely inactivate the enzyme have been identified. These results establish the molecular basis of this disease and open the way for future gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lei, K J -- Shelly, L L -- Pan, C J -- Sidbury, J B -- Chou, J Y -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):580-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA, Complementary/genetics ; Exons ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/enzymology/*genetics ; Glycosylation ; Humans ; Liver/enzymology ; Mice ; Molecular Sequence Data ; *Mutation ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-03-12
    Description: Glucagon and the glucagon receptor are a primary source of control over blood glucose concentrations and are especially important to studies of diabetes in which the loss of control over blood glucose concentrations clinically defines the disease. A complementary DNA clone for the glucagon receptor was isolated by an expression cloning strategy, and the receptor protein was expressed in several kidney cell lines. The cloned receptor bound glucagon and caused an increase in the intracellular concentration of adenosine 3', 5'-monophosphate (cAMP). The cloned glucagon receptor also transduced a signal that led to an increased concentration of intracellular calcium. The glucagon receptor is similar to the calcitonin and parathyroid hormone receptors. It can transduce signals leading to the accumulation of two different second messengers, cAMP and calcium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jelinek, L J -- Lok, S -- Rosenberg, G B -- Smith, R A -- Grant, F J -- Biggs, S -- Bensch, P A -- Kuijper, J L -- Sheppard, P O -- Sprecher, C A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1614-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ZymoGenetics Inc., Seattle, WA 98105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384375" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/pharmacology ; Cell Line ; Cloning, Molecular ; Cricetinae ; Cyclic AMP/metabolism ; Glucagon/metabolism/*pharmacology ; Kidney ; Kinetics ; Liver/*metabolism ; Molecular Sequence Data ; Rats ; Receptors, Gastrointestinal Hormone/genetics/metabolism/*physiology ; Receptors, Glucagon ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-04-02
    Description: The human BTF2 basic transcription factor (also called TFIIH), which is similar to the delta factor in rat and factor b in yeast, is required for class II gene transcription. A strand displacement assay was used to show that highly purified preparation of BTF2 had an adenosine triphosphate-dependent DNA helicase activity, in addition to the previously characterized carboxyl-terminal domain kinase activity. Amino acid sequence analysis of the tryptic digest generated from the 89-kilodalton subunit of BTF2 indicated that this polypeptide corresponded to the ERCC-3 gene product, a presumed helicase implicated in the human DNA excision repair disorders xeroderma pigmentosum and Cockayne's syndrome. These findings suggest that transcription and nucleotide excision repair may share common factors and hence may be considered to be functionally related.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaeffer, L -- Roy, R -- Humbert, S -- Moncollin, V -- Vermeulen, W -- Hoeijmakers, J H -- Chambon, P -- Egly, J M -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):58-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPR 6520 (CNRS), Unite 184 (INSERM), Faculte de Medecine, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8465201" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Binding Sites ; Cockayne Syndrome/enzymology/genetics ; DNA/metabolism ; DNA Helicases/metabolism ; *DNA Repair ; Humans ; Immunoblotting ; Peptide Fragments ; Promoter Regions, Genetic ; Protein Kinases/metabolism ; RNA Polymerase II/metabolism ; Recombinant Proteins/metabolism ; Sequence Analysis ; Transcription Factor TFIIH ; Transcription Factors/*metabolism ; *Transcription Factors, TFII ; Transcription, Genetic ; Trypsin/metabolism ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-09-10
    Description: Recent progress in regioselective and enantioselective epoxidations catalyzed by metalloporphyrins is discussed here, with an explanation of the biomimetic antecedents of this area and its relevance to synthetic applications. Classification of the catalysts that have been studied allows useful conclusions to be drawn about the development of this field. In particular, both the most promising biomimetic and practical catalysts have arisen from systems that can be systematically modified by convenient synthetic methodology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collman, J P -- Zhang, X -- Lee, V J -- Uffelman, E S -- Brauman, J I -- 5R37-GM 17880/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1404-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8367724" target="_blank"〉PubMed〈/a〉
    Keywords: Alkenes/chemistry ; Binding Sites ; Catalysis ; Epoxy Compounds/chemistry/*metabolism ; Ethylenediamines/chemistry ; Hydroxylation ; Ligands ; Metalloporphyrins/chemistry/*metabolism ; Molecular Structure ; Oxidation-Reduction ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-08-27
    Description: The Escherichia coli Ada protein repairs methylphosphotriesters in DNA by direct, irreversible methyl transfer to one of its own cysteines. Upon methyl transfer, Ada acquires the ability to bind specific DNA sequences and thereby to induce genes that confer resistance to methylating agents. The amino-terminal domain of Ada, which comprises the methylphosphotriester repair and sequence-specific DNA binding elements, contains a tightly bound zinc ion. Analysis of the zinc binding site by cadmium-113 nuclear magnetic resonance and site-directed mutagenesis revealed that zinc participates in the autocatalytic activation of the active site cysteine and may also function as a conformational switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myers, L C -- Terranova, M P -- Ferentz, A E -- Wagner, G -- Verdine, G L -- New York, N.Y. -- Science. 1993 Aug 27;261(5125):1164-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program for Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8395079" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cadmium ; Cysteine/metabolism ; DNA/*metabolism ; *DNA Repair ; *Escherichia coli Proteins ; Isotopes ; Magnetic Resonance Spectroscopy ; Methylation ; Mutagenesis, Site-Directed ; O(6)-Methylguanine-DNA Methyltransferase ; Protons ; Transcription Factors ; Zinc/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-08-06
    Description: The structure of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase was determined to 2.1-angstrom resolution. Model building suggests that a single cleavage site catalyzes both decarboxylation and transamination by maximizing stereoelectronic advantages and providing electrostatic and general base catalysis. The enzyme contains two binding sites for alkali metal ions. One is located near the active site and accounts for the dependence of activity on potassium ions. The other is located at the carboxyl terminus of an alpha helix. These sites help show how proteins can specifically bind alkali metals and how these ions can exert functional effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toney, M D -- Hohenester, E -- Cowan, S W -- Jansonius, J N -- GM13854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):756-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342040" target="_blank"〉PubMed〈/a〉
    Keywords: Amination ; Amino Acid Sequence ; Binding Sites ; Carboxy-Lyases/*chemistry/metabolism ; Catalysis ; Computer Graphics ; Decarboxylation ; Metals, Alkali/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-14
    Description: Guanosine triphosphate-binding regulatory proteins (G proteins) are key elements in transmembrane signaling and have been implicated as regulators of more complex biological processes such as differentiation and development. The G protein G alpha i2 is capable of mediating the inhibitory control of adenylylcyclase and regulates stem cell differentiation to primitive endoderm. Here an antisense RNA to G alpha i2 was expressed in a hybrid RNA construct whose expression was both tissue-specific and induced at birth. Transgenic mice in which the antisense construct was expressed displayed a lack of normal development in targeted organs that correlated with the absence of G alpha i2. The loss of G alpha i2 expression in adipose tissue of the transgenic mice was correlated with a rise in basal levels of adenosine 3',5'-monophosphate (cAMP) and the loss of receptor-mediated inhibition of adenylylcyclase. These data expand our understanding of G protein function in vivo and demonstrate the necessity for G alpha i2 in the development of liver and fat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moxham, C M -- Hod, Y -- Malbon, C C -- New York, N.Y. -- Science. 1993 May 14;260(5110):991-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, State University of New York (SUNY)/Stony Brook 11794-8651.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493537" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*growth & development/metabolism ; Animals ; Animals, Newborn/growth & development ; Base Sequence ; Body Weight ; GTP-Binding Proteins/biosynthesis/genetics/*physiology ; Growth/drug effects/*physiology ; Kidney/growth & development/metabolism ; Liver/*growth & development/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/genetics ; RNA, Antisense/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-11-05
    Description: B7 delivers a costimulatory signal through CD28, resulting in interleukin-2 secretion and T cell proliferation. Blockade of this pathway results in T cell anergy. The in vivo role of B7 was evaluated with B7-deficient mice. These mice had a 70 percent decrease in costimulation of the response to alloantigen. Despite lacking B7 expression, activated B cells from these mice bound CTLA-4 and GL1 monoclonal antibody, demonstrating that alternative CTLA-4 ligand or ligands exist. These receptors are functionally important because the residual allogenic mixed lymphocyte responses were blocked by CTLA4Ig. Characterization of these CTLA-4 ligands should lead to strategies for manipulating the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freeman, G J -- Borriello, F -- Hodes, R J -- Reiser, H -- Hathcock, K S -- Laszlo, G -- McKnight, A J -- Kim, J -- Du, L -- Lombard, D B -- CA 40216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):907-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694362" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antigens, CD ; Antigens, CD80/genetics/*immunology/metabolism ; Antigens, Differentiation/immunology/*metabolism ; B-Lymphocytes/*immunology ; Base Sequence ; CTLA-4 Antigen ; Cell Line ; *Immunoconjugates ; Interleukin-2/secretion ; Isoantigens/immunology ; Lymphocyte Activation ; Lymphocyte Culture Test, Mixed ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-02-12
    Description: Pyruvate oxidase from Lactobacillus plantarum is a tetrameric enzyme that decarboxylates pyruvate, producing hydrogen peroxide and the energy-storage metabolite acetylphosphate. Structure determination at 2.1 angstroms showed that the cofactors thiamine pyrophosphate (TPP) and flavin adenine dinucleotide (FAD) are bound at the carboxyl termini of six-stranded parallel beta sheets. The pyrophosphate moiety of TPP is bound to a metal ion and to a beta alpha alpha beta unit corresponding to an established sequence fingerprint. The spatial arrangement of TPP and FAD suggests that the oxidation of the oxyethyl intermediate does not occur by hydride displacement but rather by a two-step transfer of two electrons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Y A -- Schulz, G E -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):965-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albert-Ludwigs-Universitat, Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8438155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chemistry, Physical ; Crystallization ; Flavin-Adenine Dinucleotide/metabolism/*pharmacology ; Lactobacillus/*enzymology ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Physicochemical Phenomena ; Protein Structure, Secondary ; Pyruvate Oxidase/*chemistry/metabolism ; Thiamine Pyrophosphate/metabolism/*pharmacology ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-03
    Description: Studies in vivo and in vitro have shown that the packaging of DNA into chromatin can affect gene expression. Here, binding of the yeast transcriptional activator GAL4 to DNA in chromatin has been investigated in vivo with a yeast episome. A positioned nucleosome that is present in cells grown in glucose and contains a single GAL4 binding site is disrupted by GAL4 binding in galactose. GAL4 can also bind to DNA in chromatin when the carboxyl-terminal activation domain of GAL4 is either masked by GAL80 or is absent. These results show that a transcription factor can bind to its site in vivo in what would appear to be a repressive chromatin structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morse, R H -- New York, N.Y. -- Science. 1993 Dec 3;262(5139):1563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248805" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA-Binding Proteins/*metabolism ; Fungal Proteins/*metabolism ; Galactose/metabolism ; Glucose/metabolism ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Plasmids ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Funder, J W -- New York, N.Y. -- Science. 1993 Feb 19;259(5098):1132-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baker Medical Research Institute, Prahran, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8382375" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Gene Expression Regulation ; Glucocorticoids/*physiology ; Mineralocorticoids/*physiology ; Models, Biological ; Molecular Sequence Data ; Receptors, Glucocorticoid/*metabolism ; Receptors, Mineralocorticoid ; Receptors, Steroid/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1993-08-06
    Description: Major histocompatibility complex (MHC) class I molecules present peptides derived from nuclear and cytosolic proteins to CD8+ T cells. These peptides are translocated into the lumen of the endoplasmic reticulum (ER) to associate with class I molecules. Two MHC-encoded putative transporter proteins, TAP1 and TAP2, are required for efficient assembly of class I molecules and presentation of endogenous peptides. Expression of TAP1 and TAP2 in a mutant cell line resulted in the delivery of an 11-amino acid oligomer model peptide to the ER. Peptide translocation depended on the sequence of the peptide, was adenosine triphosphate (ATP)-dependent, required ATP hydrolysis, and was inhibited in a concentration-dependent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neefjes, J J -- Momburg, F -- Hammerling, G J -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):769-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Netherlands Cancer Institute, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342042" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/*metabolism ; Amino Acid Sequence ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Cell Line ; Cell Membrane Permeability ; Endoplasmic Reticulum/metabolism ; Glycosylation ; Histocompatibility Antigens Class II/*metabolism ; Molecular Sequence Data ; Oligopeptides/*metabolism ; Rats ; T-Lymphocytes, Cytotoxic/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-16
    Description: Klenow fragment of Escherichia coli DNA polymerase I, which was cocrystallized with duplex DNA, positioned 11 base pairs of DNA in a groove that lies at right angles to the cleft that contains the polymerase active site and is adjacent to the 3' to 5' exonuclease domain. When the fragment bound DNA, a region previously referred to as the "disordered domain" became more ordered and moved along with two helices toward the 3' to 5' exonuclease domain to form the binding groove. A single-stranded, 3' extension of three nucleotides bound to the 3' to 5' exonuclease active site. Although this cocrystal structure appears to be an editing complex, it suggests that the primer strand approaches the catalytic site of the polymerase from the direction of the 3' to 5' exonuclease domain and that the duplex DNA product may bend to enter the cleft that contains the polymerase catalytic site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beese, L S -- Derbyshire, V -- Steitz, T A -- GM28550/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 16;260(5106):352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469987" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallization ; DNA/chemistry/*metabolism ; DNA Polymerase I/*chemistry/metabolism ; DNA Replication ; DNA, Single-Stranded/chemistry/metabolism ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1993-11-26
    Description: A DNA sequence rich in (A+T), located upstream of the -10, -35 region of the Escherichia coli ribosomal RNA promoter rrnB P1 and called the UP element, stimulates transcription by a factor of 30 in vivo, as well as in vitro in the absence of protein factors other than RNA polymerase (RNAP). When fused to other promoters, such as lacUV5, the UP element also stimulates transcription, indicating that it is a separate promoter module. Mutations in the carboxyl-terminal region of the alpha subunit of RNAP prevent stimulation of these promoters by the UP element although the mutant enzymes are effective in transcribing the "core" promoters (those lacking the UP element). Protection of UP element DNA by the mutant RNAPs is severely reduced in footprinting experiments, suggesting that the selective decrease in transcription might result from defective interactions between alpha and the UP element. Purified alpha binds specifically to the UP element, confirming that alpha acts directly in promoter recognition. Transcription of three other promoters was also reduced by the COOH-terminal alpha mutations. These results suggest that UP elements comprise a third promoter recognition region (in addition to the -10, -35 recognition hexamers, which interact with the sigma subunit) and may account for the presence of (A+T)-rich DNA upstream of many prokaryotic promoters. Since the same alpha mutations also block activation by some transcription factors, mechanisms of promoter stimulation by upstream DNA elements and positive control by certain transcription factors may be related.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ross, W -- Gosink, K K -- Salomon, J -- Igarashi, K -- Zou, C -- Ishihama, A -- Severinov, K -- Gourse, R L -- AI90035/AI/NIAID NIH HHS/ -- GM49242/GM/NIGMS NIH HHS/ -- R01 GM37048/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1407-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248780" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Carrier Proteins/metabolism ; DNA, Bacterial/*metabolism ; DNA-Binding Proteins/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Escherichia coli/enzymology/*genetics ; *Escherichia coli Proteins ; Integration Host Factors ; Molecular Sequence Data ; *Promoter Regions, Genetic ; Transcription Factors/metabolism ; Transcription, Genetic ; *rRNA Operon
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1993-01-29
    Description: The phosphocarrier protein IIIGlc is an integral component of the bacterial phosphotransferase (PTS) system. Unphosphorylated IIIGlc inhibits non-PTS carbohydrate transport systems by binding to diverse target proteins. The crystal structure at 2.6 A resolution of one of the targets, glycerol kinase (GK), in complex with unphosphorylated IIIGlc, glycerol, and adenosine diphosphate was determined. GK contains a region that is topologically identical to the adenosine triphosphate binding domains of hexokinase, the 70-kD heat shock cognate, and actin. IIIGlc binds far from the catalytic site of GK, indicating that long-range conformational changes mediate the inhibition of GK by IIIGlc. GK and IIIGlc are bound by hydrophobic and electrostatic interactions, with only one hydrogen bond involving an uncharged group. The phosphorylation site of IIIGlc, His90, is buried in a hydrophobic environment formed by the active site region of IIIGlc and a 3(10) helix of GK, suggesting that phosphorylation prevents IIIGlc binding to GK by directly disrupting protein-protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Faber, H R -- Worthylake, D -- Meadow, N D -- Roseman, S -- Pettigrew, D W -- Remington, S J -- 5-R37 GM38759/GM/NIGMS NIH HHS/ -- GM 42618-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):673-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430315" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology ; Escherichia coli Proteins ; Glycerol Kinase/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Models, Structural ; Phosphoenolpyruvate Sugar Phosphotransferase System/*chemistry/*metabolism ; *Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: Pectate lyases are secreted by pathogens and initiate soft-rot diseases in plants by cleaving polygalacturonate, a major component of the plant cell wall. The three-dimensional structure of pectate lyase C from Erwinia chrysanthemi has been solved and refined to a resolution of 2.2 angstroms. The enzyme folds into a unique motif of parallel beta strands coiled into a large helix. Within the core, the amino acids form linear stacks and include a novel asparagine ladder. The sequence similarities that pectate lyases share with pectin lyases, pollen and style proteins, and tubulins suggest that the parallel beta helix motif may occur in a broad spectrum of proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoder, M D -- Keen, N T -- Jurnak, F -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1503-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, Riverside 92521.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium ; Crystallography ; Isoenzymes/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Pectobacterium chrysanthemi/enzymology ; Polysaccharide-Lyases/*chemistry ; Protein Structure, Secondary ; *Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lehn, J M -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1762-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College de France, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511582" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chemical Phenomena ; *Chemistry ; *Macromolecular Substances
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1993-06-18
    Description: The biological functions of interleukin-6 (IL-6) are mediated through a signal-transducing component of the IL-6 receptor, gp130, which is associated with the ligand-occupied IL-6 receptor (IL-6R) protein. Binding of IL-6 to IL-6R induced disulfide-linked homodimerization of gp130. Tyrosine kinase activity was associated with dimerized but not monomeric gp130 protein. Substitution of serine for proline residues 656 and 658 in the cytoplasmic motif abolished tyrosine kinase activation and cellular responses but not homodimerization of gp130. The IL-6-induced gp130 homodimer appears to be similar in function to the heterodimer formed between the leukemia inhibitory factor (LIF) receptor (LIFR) and gp130 in response to the LIF or ciliary neurotrophic factor (CNTF). Thus, a general first step in IL-6-related cytokine signaling may be the dimerization of signal-transducing molecules and activation of associated tyrosine kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, M -- Hibi, M -- Nakagawa, N -- Nakagawa, T -- Yasukawa, K -- Yamanishi, K -- Taga, T -- Kishimoto, T -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1808-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511589" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, CD ; Cytokine Receptor gp130 ; Enzyme Activation ; Haptoglobins/biosynthesis ; Humans ; Interleukin-6/*metabolism/pharmacology ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Immunologic/*metabolism ; Receptors, Interleukin-6 ; *Signal Transduction ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1993-09-17
    Description: Staphylococcal nuclease is an enzyme with enormous catalytic power, accelerating phosphodiester bond hydrolysis by a factor of 10(16) over the spontaneous rate. The mechanistic basis for this rate acceleration was investigated by substitution of the active site residues Glu43, Arg35, and Arg87 with unnatural amino acid analogs. Two Glu43 mutants, one containing the nitro analog of glutamate and the other containing homoglutamate, retained high catalytic activity at pH 9.9, but were less active than the wild-type enzyme at lower pH values. The x-ray crystal structure of the homoglutamate mutant revealed that the carboxylate side chain of this residue occupies a position and orientation similar to that of Glu43 in the wild-type enzyme. The increase in steric bulk is accommodated by a backbone shift and altered torsion angles. The nitro and the homoglutamate mutants display similar pH versus rate profiles, which differ from that of the wild-type enzyme. Taken together, these studies suggest that Glu43 may not act as a general base, as previously thought, but may play a more complex structural role during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Judice, J K -- Gamble, T R -- Murphy, E C -- de Vos, A M -- Schultz, P G -- GM 14012-02S1/GM/NIGMS NIH HHS/ -- R01 GM49220/GM/NIGMS NIH HHS/ -- T32GM-08388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 17;261(5128):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8103944" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Aminoadipic Acid/chemistry ; Amino Acids/chemistry ; Aminobutyrates/chemistry ; Arginine/*chemistry ; Binding Sites ; Catalysis ; Glutamates/*chemistry ; Glutamic Acid ; Homocysteine/analogs & derivatives/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Kinetics ; Micrococcal Nuclease/chemistry/genetics/*metabolism ; Mutation ; Plasmids ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1993-01-15
    Description: A variety of tumors are potentially immunogenic but do not stimulate an effective anti-tumor immune response in vivo. Tumors may be capable of delivering antigen-specific signals to T cells, but may not deliver the costimulatory signals necessary for full activation of T cells. Expression of the costimulatory ligand B7 on melanoma cells was found to induce the rejection of a murine melanoma in vivo. This rejection was mediated by CD8+ T cells; CD4+ T cells were not required. These results suggest that B7 expression renders tumor cells capable of effective antigen presentation, leading to their eradication in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Townsend, S E -- Allison, J P -- CA57986/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 15;259(5093):368-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7678351" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD80 ; Antigens, Surface/genetics/*immunology ; CD4-Positive T-Lymphocytes/immunology ; Cross Reactions ; Female ; Gene Expression Regulation ; Genetic Vectors ; Ligands ; *Lymphocyte Activation ; Melanoma/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Nude ; T-Lymphocytes, Regulatory/*immunology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-06
    Description: Endonuclease G (Endo G) is widely distributed among animals and cleaves DNA at double-stranded (dG)n.(dC)n and at single-stranded (dC)n tracts. Endo G is synthesized as a propeptide with an amino-terminal presequence that targets the nuclease to mitochondria. Endo G can also be detected in extranucleolar chromatin. In addition to deoxyribonuclease activities, Endo G also has ribonuclease (RNase) and RNase H activities and specifically cleaves mouse mitochondrial RNA and DNA-RNA substrates containing the origin of heavy-strand DNA replication (OH). The cleavage sites match those found in vivo, indicating that Endo G is capable of generating the RNA primers required by DNA polymerase gamma to initiate replication of mitochondrial DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cote, J -- Ruiz-Carrillo, A -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):765-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research Center, Medical School of Laval University, L'Hotel-Dieu de Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7688144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Nucleus/enzymology ; DNA/genetics ; *DNA Replication ; DNA, Mitochondrial/*metabolism ; Endodeoxyribonucleases/chemistry/genetics/*metabolism ; Genetic Vectors ; Mitochondria/enzymology ; Molecular Sequence Data ; RNA/*metabolism ; Ribonuclease H/metabolism ; Ribonucleases/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1993-12-17
    Description: The interleukin-2 (IL-2) receptor gamma chain (IL-2R gamma) is an essential component of high- and intermediate-affinity IL-2 receptors. IL-2R gamma was demonstrated to be a component of the IL-4 receptor on the basis of chemical cross-linking data, the ability of IL-2R gamma to augment IL-4 binding affinity, and the requirement for IL-2R gamma in IL-4-mediated phosphorylation of insulin receptor substrate-1. The observation that IL-2R gamma is a functional component of the IL-4 receptor, together with the finding that IL-2R gamma associates with the IL-7 receptor, begins to elucidate why deficiency of this common gamma chain (gamma c) has a profound effect on lymphoid function and development, as seen in X-linked severe combined immunodeficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, S M -- Keegan, A D -- Harada, N -- Nakamura, Y -- Noguchi, M -- Leland, P -- Friedmann, M C -- Miyajima, A -- Puri, R K -- Paul, W E -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1880-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Pulmonary and Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266078" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Line, Transformed ; Genetic Linkage ; Humans ; Insulin Receptor Substrate Proteins ; Interleukin-4/metabolism ; L Cells (Cell Line) ; Mice ; Molecular Sequence Data ; Phosphoproteins/metabolism ; Phosphorylation ; Receptors, Interleukin-2/chemistry/genetics/*metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/chemistry/genetics/*metabolism ; Severe Combined Immunodeficiency/genetics/immunology ; Signal Transduction ; Transfection ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1993 May 7;260(5109):750.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8484114" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Antitubercular Agents/*pharmacology ; Drug Resistance, Microbial ; Luciferases/genetics/metabolism ; *Luminescent Measurements ; Microbial Sensitivity Tests/*methods ; Mycobacterium tuberculosis/*drug effects/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, J -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1691-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456293" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA, Viral/*genetics/therapeutic use ; Influenza A virus/*genetics/immunology ; Mice ; Nucleoproteins/genetics/immunology ; Orthomyxoviridae Infections/*prevention & control ; *RNA-Binding Proteins ; Transfection ; Viral Core Proteins/genetics/immunology ; Viral Vaccines/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-14
    Description: Antigen receptor genes are assembled by site-specific DNA rearrangement. The recombination activator genes RAG-1 and RAG-2 are essential for this process, termed V(D)J rearrangement. The activity and stability of the RAG-2 protein have now been shown to be regulated by phosphorylation. In fibroblasts RAG-2 was phosphorylated predominantly at two serine residues, one of which affected RAG-2 activity in vivo. The threonine at residue 490 was phosphorylated by p34cdc2 kinase in vitro; phosphorylation at this site in vivo was associated with rapid degradation of RAG-2. Instability was transferred to chimeric proteins by a 90-residue portion of RAG-2. Mutation of the p34cdc2 phosphorylation site of the tumor suppressor protein p53 conferred a similar phenotype, suggesting that this association between phosphorylation and degradation is a general mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, W C -- Desiderio, S -- CA16519/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 May 14;260(5110):953-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493533" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/metabolism ; Cell Line ; *DNA-Binding Proteins ; *Gene Rearrangement ; Humans ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins ; Phosphorylation ; Proteins/chemistry/genetics/*metabolism ; Receptors, Antigen/*genetics ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1993-01-08
    Description: Synthetic peptides corresponding to microbial epitopes stimulate T cell immunity but their immunogenicity is poor and their half-lives are short. A viral epitope inserted into the complementarity-determining region 3 (CDR3) loop of the heavy chain of a self immunoglobulin (Ig) molecule was generated from the Ig context and was presented by I-Ed class II molecules to virus-specific, CD4+ T cells. Chimeric Ig-peptide was presented 100 to 1000 times more efficiently than free synthetic peptide and was able to prime virus-specific T cells in vivo. These features suggest that antigenized Ig can provide an improved and safe vaccine for the presentation of microbial and other peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaghouani, H -- Steinman, R -- Nonacs, R -- Shah, H -- Gerhard, W -- Bona, C -- AI13013/AI/NIAID NIH HHS/ -- AI18316/AI/NIAID NIH HHS/ -- AI24460/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):224-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7678469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigen-Presenting Cells/*immunology ; Antigens, Viral/*immunology ; Arsenic/immunology ; *Arsenicals ; Base Sequence ; CD4-Positive T-Lymphocytes/immunology ; DNA/genetics ; Epitopes/*immunology ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/genetics/immunology ; Histocompatibility Antigens Class II/immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Immunoglobulin Variable Region/genetics/immunology ; Immunoglobulins/genetics/*immunology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutagenesis ; Receptors, Fc/immunology ; Recombinant Fusion Proteins/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-26
    Description: Protein phosphatases play important roles in the regulation of cell growth and metabolism, yet little is known about their enzymatic mechanism. By extrapolation from data on inhibitors of other types of hydrolases, an inhibitor of prostatic acid phosphatase was designed that is likely to function as a mechanism-based phosphotyrosine phosphatase inactivator. This molecule, 4-(fluoromethyl)phenyl phosphate, represents a useful paradigm for the design of potent and specific phosphatase inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myers, J K -- Widlanski, T S -- R01 GM47918-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1451-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248785" target="_blank"〉PubMed〈/a〉
    Keywords: Acid Phosphatase/*antagonists & inhibitors/metabolism ; Alkylation ; Binding Sites ; Drug Design ; Humans ; Hydrolysis ; Kinetics ; Male ; Organophosphorus Compounds/metabolism/*pharmacology ; Prostate/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1993-09-03
    Description: Annexins are a family of calcium- and phospholipid-binding proteins implicated in mediating membrane-related processes such as secretion, signal transduction, and ion channel activity. The crystal structure of rat annexin V was solved to 1.9 angstrom resolution by multiple isomorphous replacement. Unlike previously solved annexin V structures, all four domains bound calcium in this structure. Calcium binding in the third domain induced a large relocation of the calcium-binding loop regions, exposing the single tryptophan residue to the solvent. These alterations in annexin V suggest a role for domain 3 in calcium-triggered interaction with phospholipid membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Concha, N O -- Head, J F -- Kaetzel, M A -- Dedman, J R -- Seaton, B A -- R01-DK-41740/DK/NIDDK NIH HHS/ -- R01-NS-20357/NS/NINDS NIH HHS/ -- R29-GM-44554/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 3;261(5126):1321-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Boston University School of Medicine, MA 02118.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8362244" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Annexin A5/*chemistry/metabolism ; Binding Sites ; Calcium/*metabolism ; Computer Graphics ; Crystallization ; Humans ; Hydrogen Bonding ; Molecular Sequence Data ; Protein Conformation ; Rats ; Sequence Alignment ; Tryptophan/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1993-11-19
    Description: Humanized antibodies are highly efficient as immunotherapeutic reagents and have many advantages over rodent antibodies. A mouse strain was generated by gene targeting to replace the mouse kappa light chain constant (C) region gene with the human C kappa gene. Mice homozygous for the replacement mutation (C kappa R) produced normal concentrations of serum antibodies, most of which carry chimeric kappa light chains, and mounted normal immune responses to hapten-protein conjugates. This technology provides a feasible option for the generation of high-affinity humanized antibodies by means of the powerful somatic hypermutation-selection mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zou, Y R -- Gu, H -- Rajewsky, K -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1271-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetics, University of Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235658" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Gene Rearrangement ; *Genes, Immunoglobulin ; Humans ; Immunoglobulin Constant Regions/*biosynthesis/genetics ; Immunoglobulin Isotypes/biosynthesis ; Immunoglobulin kappa-Chains/*biosynthesis/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; Recombinant Fusion Proteins/biosynthesis ; Stem Cells ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1993-07-02
    Description: The enhancer for the immunoglobulin mu heavy chain gene (IgH) activates a heterologous gene at the pre-B cell stage of B lymphocyte differentiation. A lymphoid-specific element, microB, is necessary for enhancer function in pre-B cells. A microB binding protein is encoded by the PU.1/Spi-1 proto-oncogene. Another sequence element, microA, was identified in the mu enhancer that binds the product of the ets-1 proto-oncogene. The microA motif was required for microB-dependent enhancer activity, which suggests that a minimal B cell-specific enhancer is composed of both the PU.1 and Ets-1 binding sites. Co-expression of both PU.1 and Ets-1 in nonlymphoid cells trans-activated reporter plasmids that contained the minimal mu enhancer. These results implicate two members of the Ets family in the activation of IgH gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelsen, B -- Tian, G -- Erman, B -- Gregoire, J -- Maki, R -- Graves, B -- Sen, R -- 1K04GM00563/GM/NIGMS NIH HHS/ -- GM38663/GM/NIGMS NIH HHS/ -- GM38925/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 2;261(5117):82-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosenstiel Research Center, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/cytology/*metabolism ; Base Sequence ; Binding Sites ; Cell Differentiation ; Cell Line ; DNA-Binding Proteins/*genetics/metabolism ; *Enhancer Elements, Genetic ; Female ; Genes, Immunoglobulin ; Humans ; Immunoglobulin mu-Chains/*genetics ; Molecular Sequence Data ; Mutation ; Proto-Oncogene Protein c-ets-1 ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-ets ; Retroviridae Proteins, Oncogenic ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schroeder, R -- Streicher, B -- Wank, H -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1443-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology and Genetics, Vienna Biocenter, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502988" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides ; Anti-Bacterial Agents/metabolism/*pharmacology ; Anticodon/genetics ; Binding Sites ; Codon/genetics ; Introns/genetics ; Models, Genetic ; RNA Splicing/*drug effects ; RNA, Catalytic/drug effects ; RNA, Ribosomal/*drug effects/genetics/metabolism ; RNA, Ribosomal, 16S/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1993-12-17
    Description: The interleukin-2 receptor gamma chain (IL-2R gamma) is a necessary component of functional IL-2 receptors. IL-2R gamma mutations result in X-linked severe combined immunodeficiency (XSCID) in humans, a disease characterized by the presence of few or no T cells. In contrast, SCID patients with IL-2 deficiency and IL-2-deficient mice have normal numbers of T cells, suggesting that IL-2R gamma is part of more than one cytokine receptor. By using chemical cross-linking, IL-2R gamma was shown to be physically associated with the IL-7 receptor. The presence of IL-2R gamma augmented both IL-7 binding affinity and the efficiency of internalization of IL-7. These findings may help explain the defects of XSCID. Given its role in more than one cytokine receptor system, the common gamma chain (gamma c) is proposed as the designation for IL-2R gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noguchi, M -- Nakamura, Y -- Russell, S M -- Ziegler, S F -- Tsang, M -- Cao, X -- Leonard, W J -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1877-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Pulmonary and Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266077" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Cell Line ; Genetic Linkage ; Interleukin-7/*metabolism ; L Cells (Cell Line) ; Mice ; Receptors, Interleukin/chemistry/genetics/*metabolism ; Receptors, Interleukin-2/chemistry/genetics/*metabolism ; Receptors, Interleukin-7 ; Severe Combined Immunodeficiency/genetics/immunology ; T-Lymphocytes/immunology ; Transfection ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-02
    Description: Lesions in the transcribed strand block transcription and are repaired more rapidly than lesions in the nontranscribed (coding) strand which do not block RNA polymerase (RNAP). It has been shown previously that in Escherichia coli the mfd (mutation frequency decline) gene is necessary for strand-specific repair. The mfd gene was cloned and sequenced and the Mfd protein was purified and used to reconstitute strand-specific repair in a completely defined system. The mfd gene encodes a protein of 130 kilodaltons and contains the so-called "helicase motifs," a leucine zipper motif, and regions of sequence similarity to UvrB and RecG proteins. The Mfd protein was shown to (i) displace RNAP stalled at a lesion in an adenosine triphosphate-dependent reaction, (ii) bind to the damage recognition subunit (UvrA) of the excision nuclease, and (iii) stimulate the repair of the transcribed strand only when transcription is taking place. Thus, Mfd appears to target the transcribed strand for repair by recognizing a stalled RNAP and actively recruiting the repair enzyme to the transcription blocking lesion as it dissociates the stalled RNAP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selby, C P -- Sancar, A -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):53-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8465200" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*genetics/metabolism ; Base Sequence ; Binding Sites ; Cloning, Molecular ; *DNA Helicases ; DNA Repair/*genetics ; DNA, Bacterial/metabolism ; DNA-Directed RNA Polymerases/metabolism ; Endodeoxyribonucleases/metabolism ; Escherichia coli/*genetics ; *Escherichia coli Proteins ; Leucine Zippers ; Molecular Sequence Data ; Multienzyme Complexes/chemistry/genetics ; Mutation/genetics ; Transcription Factors/chemistry/*genetics/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1993-03-05
    Description: The actions of many hormones and neurotransmitters are mediated by the members of a superfamily of receptors coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins). These receptors are characterized by a highly conserved topographical arrangement in which seven transmembrane domains are connected by intracellular and extracellular loops. The interaction between these receptors and G proteins is mediated in large part by the third intracellular loop of the receptor. Coexpression of the third intracellular loop of the alpha 1B-adrenergic receptor with its parent receptor inhibited receptor-mediated activation of phospholipase C. The inhibition extended to the closely related alpha 1C-adrenergic receptor subtype, but not the phospholipase C-coupled M1 muscarinic acetylcholine receptor nor the adenylate cyclase-coupled D1A dopamine receptor. These results suggest that the receptor-G protein interface may represent a target for receptor antagonist drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luttrell, L M -- Ostrowski, J -- Cotecchia, S -- Kendall, H -- Lefkowitz, R J -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1453-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8383880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cloning, Molecular ; Cyclic AMP/metabolism ; Cytoplasm/metabolism ; GTP-Binding Proteins/*metabolism ; Globins/genetics ; Glutathione Transferase/genetics/metabolism ; Humans ; Inositol Phosphates/metabolism ; Kinetics ; Molecular Sequence Data ; Muscarinic Antagonists ; Oligodeoxyribonucleotides ; Plasmids ; Protein Structure, Secondary ; Receptors, Adrenergic, alpha/genetics/*metabolism ; Receptors, Dopamine D1/antagonists & inhibitors/genetics/*metabolism ; Receptors, Muscarinic/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-06
    Description: Metalloenzymes effect a variety of important chemical transformations, often involving small molecule substrates or products such as molecular oxygen, hydrogen, nitrogen, and water. A diverse array of ions or metal clusters is observed at the active-site cores, but living systems use basic recurring structures that have been modified or tuned for specific purposes. Inorganic chemists are actively involved in the elucidation of the structure, spectroscopy, and mechanism of action of these biological catalysts, in part through a synthetic modeling approach involving biomimetic studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlin, K D -- GM28962/GM/NIGMS NIH HHS/ -- GM45971/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):701-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7688141" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/chemistry/metabolism ; Binding Sites ; Electron Transport ; Enzymes/*chemistry/metabolism ; Hydrolysis ; Iron-Sulfur Proteins/chemistry/metabolism ; Metalloproteins/*chemistry/metabolism ; *Models, Chemical ; Models, Molecular ; Nitric Oxide/metabolism ; Nitric Oxide Synthase ; Oxidation-Reduction ; Peptides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1993-09-10
    Description: Interferons (IFNs) induce antiviral activity in many cell types. The ability of IFN-gamma to inhibit replication of ectromelia, vaccinia, and herpes simplex-1 viruses in mouse macrophages correlated with the cells' production of nitric oxide (NO). Viral replication was restored in IFN-gamma-treated macrophages exposed to inhibitors of NO synthase. Conversely, epithelial cells with no detectable NO synthesis restricted viral replication when transfected with a complementary DNA encoding inducible NO synthase or treated with organic compounds that generate NO. In mice, an inhibitor of NO synthase converted resolving ectromelia virus infection into fulminant mousepox. Thus, induction of NO synthase can be necessary and sufficient for a substantial antiviral effect of IFN-gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karupiah, G -- Xie, Q W -- Buller, R M -- Nathan, C -- Duarte, C -- MacMicking, J D -- CA43610/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1445-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/*biosynthesis/metabolism ; Animals ; Arginine/analogs & derivatives/pharmacology ; Cell Line ; Cells, Cultured ; Ectromelia virus/drug effects/*physiology ; Ectromelia, Infectious/microbiology ; Enzyme Induction ; Female ; Humans ; Interferon-gamma/*pharmacology ; Macrophages/*microbiology ; Mice ; Mice, Inbred C57BL ; Nitric Oxide/metabolism/pharmacology ; Nitric Oxide Synthase ; Simplexvirus/drug effects/physiology ; Transfection ; Vaccinia virus/drug effects/physiology ; *Virus Replication/drug effects ; omega-N-Methylarginine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kassavetis, G A -- Geiduschek, E P -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):944-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California San Diego, La Jolla 92093-0634.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7679800" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Dna ; DNA Polymerase II/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Escherichia coli/enzymology ; Humans ; Hydrolysis ; RNA/biosynthesis/*metabolism ; Templates, Genetic ; Transcription Factors/metabolism/pharmacology ; *Transcription Factors, TFII ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birge, R B -- Hanafusa, H -- New York, N.Y. -- Science. 1993 Dec 3;262(5139):1522-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Oncology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7504323" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Molecular Sequence Data ; Phosphotyrosine ; Proto-Oncogene Proteins pp60(c-src)/*chemistry ; Receptor Protein-Tyrosine Kinases/*metabolism ; Sequence Homology, Amino Acid ; Signal Transduction/physiology ; Structure-Activity Relationship ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aldhous, P -- New York, N.Y. -- Science. 1993 Jul 30;261(5121):546-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8393586" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Anopheles/*genetics/parasitology ; DNA Transposable Elements ; *Genes, Insect ; Genetic Engineering ; Humans ; Insect Vectors/*genetics/parasitology ; Malaria/*prevention & control/transmission ; Plasmodium/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-26
    Description: The RAD51 protein functions in the processes of DNA repair and in mitotic and meiotic genetic recombination in the yeast Saccharomyces cerevisiae. The protein has adenosine triphosphate-dependent DNA binding activities similar to those of the Escherichia coli RecA protein, and the two proteins have 30 percent sequence homology. RAD51 polymerized on double-stranded DNA to form a helical filament nearly identical in low-resolution, three-dimensional structure to that formed by RecA. Like RecA, RAD51 also appears to force DNA into a conformation of approximately a 5.1-angstrom rise per base pair and 18.6 base pairs per turn. As in other protein families, its structural conservation appears to be stronger than its sequence conservation. Both the structure of the protein polymer formed by RecA and the DNA conformation induced by RecA appear to be general properties of a class of recombination proteins found in prokaryotes as well as eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogawa, T -- Yu, X -- Shinohara, A -- Egelman, E H -- GM35269/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1896-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456314" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Binding Sites ; DNA/chemistry/metabolism ; DNA Repair ; DNA, Single-Stranded/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Fourier Analysis ; Fungal Proteins/*chemistry/metabolism ; Meiosis ; Mitosis ; Molecular Structure ; Nucleic Acid Conformation ; Protein Structure, Secondary ; Rad51 Recombinase ; Rec A Recombinases/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1993-03-19
    Description: Interferon-gamma (IFN-gamma) is a pleiotrophic cytokine with immunomodulatory effects on a variety of immune cells. Mice with a targeted disruption of the IFN-gamma gene were generated. These mice developed normally and were healthy in the absence of pathogens. However, mice deficient in IFN-gamma had impaired production of macrophage antimicrobial products and reduced expression of macrophage major histocompatibility complex class II antigens. IFN-gamma-deficient mice were killed by a sublethal dose of the intracellular pathogen Mycobacterium bovis. Splenocytes exhibited uncontrolled proliferation in response to mitogen and alloantigen. After a mixed lymphocyte reaction, T cell cytolytic activity was enhanced against allogeneic target cells. Resting splenic natural killer cell activity was reduced in IFN-gamma-deficient mice. Thus, IFN-gamma is essential for the function of several cell types of the murine immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, D K -- Pitts-Meek, S -- Keshav, S -- Figari, I S -- Bradley, A -- Stewart, T A -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1739-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genentech Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cytotoxicity, Immunologic ; Histocompatibility Antigens Class II/immunology ; *Immunity ; Interferon-gamma/*genetics/physiology ; Isoantigens/immunology ; Killer Cells, Natural/immunology ; Lymphocyte Culture Test, Mixed ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Mycobacterium bovis ; Nitric Oxide/metabolism ; Spleen/cytology/immunology ; T-Lymphocytes/immunology ; Transfection ; Tuberculosis/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1993-08-20
    Description: Single-site mutants in the Cu,Zn superoxide dismutase (SOD) gene (SOD1) occur in patients with the fatal neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). Complete screening of the SOD1 coding region revealed that the mutation Ala4 to Val in exon 1 was the most frequent one; mutations were identified in exons 2, 4, and 5 but not in the active site region formed by exon 3. The 2.4 A crystal structure of human SOD, along with two other SOD structures, established that all 12 observed FALS mutant sites alter conserved interactions critical to the beta-barrel fold and dimer contact, rather than catalysis. Red cells from heterozygotes had less than 50 percent normal SOD activity, consistent with a structurally defective SOD dimer. Thus, defective SOD is linked to motor neuron death and carries implications for understanding and possible treatment of FALS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, H X -- Hentati, A -- Tainer, J A -- Iqbal, Z -- Cayabyab, A -- Hung, W Y -- Getzoff, E D -- Hu, P -- Herzfeldt, B -- Roos, R P -- New York, N.Y. -- Science. 1993 Aug 20;261(5124):1047-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Northwestern University Medical School, Chicago, IL 60611.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8351519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amyotrophic Lateral Sclerosis/enzymology/*genetics ; Base Sequence ; Binding Sites ; Erythrocytes/enzymology ; Exons ; Free Radicals/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Folding ; Protein Structure, Tertiary ; Superoxide Dismutase/blood/chemistry/*genetics/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1993-12-17
    Description: Yin-Yang-1 (YY1) regulates the transcription of many genes, including the oncogenes c-fos and c-myc. Depending on the context, YY1 acts as a transcriptional repressor, a transcriptional activator, or a transcriptional initiator. The yeast two-hybrid system was used to screen a human complementary DNA (cDNA) library for proteins that associate with YY1, and a c-myc cDNA was isolated. Affinity chromatography confirmed that YY1 associates with c-Myc but not with Max. In cotransfections, c-Myc inhibits both the repressor and the activator functions of YY1, which suggests that one way c-Myc acts is by modulating the activity of YY1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shrivastava, A -- Saleque, S -- Kalpana, G V -- Artandi, S -- Goff, S P -- Calame, K -- CA 38571/CA/NCI NIH HHS/ -- GM29361/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1889-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266081" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adenovirus E1A Proteins/metabolism ; Animals ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; Basic-Leucine Zipper Transcription Factors ; DNA-Binding Proteins/antagonists & inhibitors/genetics/*metabolism/pharmacology ; Erythroid-Specific DNA-Binding Factors ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Proto-Oncogene Proteins c-myc/*metabolism/pharmacology ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/antagonists & inhibitors/genetics/*metabolism/pharmacology ; Transfection ; Tumor Cells, Cultured ; Upstream Stimulatory Factors ; YY1 Transcription Factor ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1993-03-19
    Description: Cytotoxic T lymphocytes (CTLs) specific for conserved viral antigens can respond to different strains of virus, in contrast to antibodies, which are generally strain-specific. The generation of such CTLs in vivo usually requires endogenous expression of the antigen, as occurs in the case of virus infection. To generate a viral antigen for presentation to the immune system without the limitations of direct peptide delivery or viral vectors, plasmid DNA encoding influenza A nucleoprotein was injected into the quadriceps of BALB/c mice. This resulted in the generation of nucleoprotein-specific CTLs and protection from a subsequent challenge with a heterologous strain of influenza A virus, as measured by decreased viral lung titers, inhibition of mass loss, and increased survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ulmer, J B -- Donnelly, J J -- Parker, S E -- Rhodes, G H -- Felgner, P L -- Dwarki, V J -- Gromkowski, S H -- Deck, R R -- DeWitt, C M -- Friedman, A -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1745-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456302" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA, Viral/*genetics/therapeutic use ; Gene Expression ; Genetic Vectors ; Histocompatibility Antigens Class I/immunology ; Immunization ; Influenza A virus/*genetics/immunology/isolation & purification ; Lung/microbiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Muscles/metabolism ; Nucleoproteins/*genetics/*immunology ; Orthomyxoviridae Infections/microbiology/*prevention & control ; Plasmids ; *RNA-Binding Proteins ; T-Lymphocytes, Cytotoxic/immunology ; Transfection ; Viral Core Proteins/*genetics/*immunology ; Viral Vaccines/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: Myosin II, which converts the energy of adenosine triphosphate hydrolysis into the movement of actin filaments, is a hexamer of two heavy chains, two essential light chains, and two regulatory light chains (RLCs). Dictyostelium myosin II is known to be regulated in vitro by phosphorylation of the RLC. Cells in which the wild-type myosin II heavy chain was replaced with a recombinant form that lacks the binding site for RLC carried out cytokinesis and almost normal development, processes known to be dependent on functional myosin II. Characterization of the purified recombinant protein suggests that a complex of RLC and the RLC binding site of the heavy chain plays an inhibitory role for adenosine triphosphatase activity and a structural role for the movement of myosin along actin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uyeda, T Q -- Spudich, J A -- GM46551/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1867-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266074" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Ca(2+) Mg(2+)-ATPase/metabolism ; Calcium-Transporting ATPases/metabolism ; Cell Division ; Dictyostelium/cytology/genetics/*metabolism ; Genes, Fungal ; Molecular Sequence Data ; Myosin-Light-Chain Kinase/metabolism ; Myosins/chemistry/genetics/*metabolism ; Phosphorylation ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1993-09-10
    Description: Exposure of mammalian cells to radiation triggers the ultraviolet (UV) response, which includes activation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B). This was postulated to occur by induction of a nuclear signaling cascade by damaged DNA. Recently, induction of AP-1 by UV was shown to be mediated by a pathway involving Src tyrosine kinases and the Ha-Ras small guanosine triphosphate-binding protein, proteins located at the plasma membrane. It is demonstrated here that the same pathway mediates induction of NF-kappa B by UV. Because inactive NF-kappa B is stored in the cytosol, analysis of its activation directly tests the involvement of a nuclear-initiated signaling cascade. Enucleated cells are fully responsive to UV both in NF-kappa B induction and in activation of another key signaling event. Therefore, the UV response does not require a signal generated in the nucleus and is likely to be initiated at or near the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Devary, Y -- Rosette, C -- DiDonato, J A -- Karin, M -- CA50528/CA/NCI NIH HHS/ -- ES04151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1442-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8367725" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Catechols/pharmacology ; Cell Nucleus/*physiology ; Cytosol/metabolism ; Genes, ras ; Genes, src ; HeLa Cells ; Humans ; NF-kappa B/*metabolism/radiation effects ; Nitriles/pharmacology ; PC12 Cells ; Phosphatidylcholines/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins c-jun/metabolism ; Proto-Oncogene Proteins c-raf ; Reactive Oxygen Species/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; *Tyrphostins ; *Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alper, J -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1817.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266067" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Epithelium/microbiology ; Gastric Mucosa/*microbiology ; Helicobacter Infections/microbiology ; Helicobacter pylori/*metabolism ; Humans ; Lewis Blood-Group System/*metabolism ; Sialic Acids/*metabolism ; Stomach Neoplasms/microbiology ; Stomach Ulcer/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-24
    Description: Zinc finger proteins, of the type first discovered in transcription factor IIIA (TFIIIA), are one of the largest and most important families of DNA-binding proteins. The crystal structure of a complex containing the five Zn fingers from the human GLI oncogene and a high-affinity DNA binding site has been determined at 2.6 A resolution. Finger one does not contact the DNA. Fingers two through five bind in the major groove and wrap around the DNA, but lack the simple, strictly periodic arrangement observed in the Zif268 complex. Fingers four and five of GLI make extensive base contacts in a conserved nine base-pair region, and this section of the DNA has a conformation intermediate between B-DNA and A-DNA. Analyzing the GLI complex and comparing it with Zif268 offers new perspectives on Zn finger-DNA recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pavletich, N P -- Pabo, C O -- GM-31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1701-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8378770" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Computer Graphics ; DNA/*chemistry/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oncogene Proteins/*chemistry/genetics/metabolism ; Oncogenes ; Protein Conformation ; Trans-Activators ; Transcription Factors/*chemistry/genetics/metabolism ; X-Ray Diffraction ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brugge, J S -- New York, N.Y. -- Science. 1993 May 14;260(5110):918-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ARIAD Pharmaceuticals, Inc., Cambridge, MA 02139-4234.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388123" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Drug Design ; Growth Substances/metabolism ; Humans ; Peptides/chemistry/*metabolism/therapeutic use ; Proteins/*metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1993-11-05
    Description: Transforming growth factor-beta (TGF-beta) and activin signal primarily through interaction with type I and type II receptors, which are transmembrane serine-threonine kinases. Tsk 7L is a type I receptor for TGF-beta and requires coexpression of the type II TGF-beta receptor for ligand binding. Tsk 7L also specifically bound activin, when coexpressed with the type IIA activin receptor. Tsk 7L could associate with either type II receptor and the ligand binding specificity of Tsk 7L was conferred by the type II receptor. Tsk 7L can therefore act as type I receptor for both activin and TGF-beta, and possibly other ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebner, R -- Chen, R H -- Lawler, S -- Zioncheck, T -- Derynck, R -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):900-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Growth and Development, and Anatomy, University of California at San Francisco 94143-0640.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235612" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors ; Activins ; Base Sequence ; DNA Primers ; Growth Substances/metabolism ; Humans ; Inhibins/*metabolism ; Molecular Sequence Data ; Precipitin Tests ; Protein-Serine-Threonine Kinases/*metabolism ; Receptors, Growth Factor/*metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1993-08-13
    Description: T cell antigen receptor (TCR) activation involves interactions between receptor subunits and nonreceptor protein tyrosine kinases (PTKs). Early steps in signaling through the zeta chain of the TCR were examined in transfected COS-1 cells. Coexpression of the PTK p59fynT, but not p56lck, with zeta or with a homodimeric TCR beta-zeta fusion protein produced tyrosine phosphorylation of both zeta and phospholipase C (PLC)-gamma 1, as well as calcium ion mobilization in response to receptor cross-linking. CD45 coexpression enhanced these effects. No requirement for the PTKZAP-70 was observed. Thus, p59fynT may link zeta directly to the PLC-gamma 1 activation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, C G -- Sancho, J -- Terhorst, C -- AI 15066/AI/NIAID NIH HHS/ -- CA 01486/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 13;261(5123):915-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Beth Israel Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8346442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/analysis ; Base Sequence ; Calcium/*metabolism ; Cell Line ; Cercopithecus aethiops ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism/physiology ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-fyn ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Type C Phospholipases/metabolism ; Tyrosine/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1993-11-12
    Description: Dimerization and oligomerization are general biological control mechanisms contributing to the activation of cell membrane receptors, transcription factors, vesicle fusion proteins, and other classes of intra- and extracellular proteins. Cell permeable, synthetic ligands were devised that can be used to control the intracellular oligomerization of specific proteins. To demonstrate their utility, these ligands were used to induce intracellular oligomerization of cell surface receptors that lacked their transmembrane and extracellular regions but contained intracellular signaling domains. Addition of these ligands to cells in culture resulted in signal transmission and specific target gene activation. Monomeric forms of the ligands blocked the pathway. This method of ligand-regulated activation and termination of signaling pathways has the potential to be applied wherever precise control of a signal transduction pathway is desired.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spencer, D M -- Wandless, T J -- Schreiber, S L -- Crabtree, G R -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1019-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694365" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Carrier Proteins/*metabolism ; Cross-Linking Reagents ; Gene Expression Regulation ; Heat-Shock Proteins/*metabolism ; Ligands ; Membrane Proteins/*metabolism ; Models, Biological ; Molecular Sequence Data ; Polymers ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; T-Lymphocytes/*metabolism ; Tacrolimus/*analogs & derivatives/chemical synthesis/chemistry/metabolism ; Tacrolimus Binding Proteins ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1993-03-12
    Description: PU.1 recruits the binding of a second B cell-restricted nuclear factor, NF-EM5, to a DNA site in the immunoglobulin kappa 3' enhancer. DNA binding by NF-EM5 requires a protein-protein interaction with PU.1 and specific DNA contacts. Dephosphorylated PU.1 bound to DNA but did not interact with NF-EM5. Analysis of serine-to-alanine mutations in PU.1 indicated that serine 148 (Ser148) is required for protein-protein interaction. PU.1 produced in bacteria did not interact with NF-EM5. Phosphorylation of bacterially produced PU.1 by purified casein kinase II modified it to a form that interacted with NF-EM5 and that recruited NF-EM5 to bind to DNA. Phosphopeptide analysis of bacterially produced PU.1 suggested that Ser148 is phosphorylated by casein kinase II. This site is also phosphorylated in vivo. Expression of wild-type PU.1 increased expression of a reporter construct containing the PU.1 and NF-EM5 binding sites nearly sixfold, whereas the Ser148 mutant form only weakly activated transcription. These results demonstrate that phosphorylation of PU.1 at Ser148 is necessary for interaction with NF-EM5 and suggest that this phosphorylation can regulate transcriptional activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pongubala, J M -- Van Beveren, C -- Nagulapalli, S -- Klemsz, M J -- McKercher, S R -- Maki, R A -- Atchison, M L -- AI 30656/AI/NIAID NIH HHS/ -- CA 42909/CA/NCI NIH HHS/ -- GM 42415/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456286" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/genetics/isolation & purification/*metabolism ; Enhancer Elements, Genetic ; Immunoglobulin kappa-Chains/genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Phosphorylation ; Plasmacytoma ; Recombinant Proteins/isolation & purification/metabolism ; Retroviridae Proteins, Oncogenic ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1993 Aug 20;261(5124):986.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8351523" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/enzymology/*genetics ; Binding Sites ; Free Radicals/metabolism ; Genes ; Humans ; Point Mutation ; Protein Folding ; Protein Structure, Tertiary ; Superoxide Dismutase/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-23
    Description: Ribozymes derived from the self-splicing pre-ribosomal RNA of Tetrahymena act as sequence-specific endonucleases. The reaction involves binding an RNA or DNA substrate by base pairing to the internal guide sequence (IGS) to form helix P1. Site-specific photo-crosslinking localized the 5' end of the IGS in helix P1 to the vicinity of conserved bases between helices P4 and P5, supporting a major feature of the Michel-Westhof three-dimensional structure model. The crosslinked ribozyme retained catalytic activity. When not base-paired, the IGS was still specifically crosslinked, but the major site was 37 A distant from the reactive site in the experimentally supported three-dimensional model. The data indicate that a substantial induced-fit conformational change accompanies P1 formation, and they provide a physical basis for understanding the transport of oligonucleotides to the catalytic core of the ribozyme. The ability of RNA to orchestrate large-scale conformational changes may help explain why the ribosome and the spliceosome are RNA-based machines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, J F -- Downs, W D -- Cech, T R -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):504-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7682726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; DNA/chemistry/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; RNA/chemistry/*metabolism ; RNA, Catalytic/chemistry/*metabolism ; RNA, Guide/chemistry/*metabolism ; RNA, Protozoan/chemistry/metabolism ; Tetrahymena/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwall, R -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):696.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430322" target="_blank"〉PubMed〈/a〉
    Keywords: Bone Marrow/*physiology ; Cell Death/drug effects/*physiology ; Cell Division/drug effects ; Cell Survival/drug effects ; Erythropoietin/*pharmacology ; Humans ; Receptors, Erythropoietin/*genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1993-03-26
    Description: Heparin or heparin-like heparan sulfate proteoglycans are obligatory for activity of the heparin-binding fibroblast growth factor (FGF) family. Heparin interacts independently of FGF ligand with a specific sequence (K18K) in one of the immunoglobulin-like loops in the extracellular domain of the FGF receptor tyrosine kinase transmembrane glycoprotein. A synthetic peptide corresponding to K18K inhibited heparin and heparin-dependent FGF binding to the receptor. K18K and an antibody to K18K were antagonists of FGF-stimulated cell growth. Point mutations of lysine residues in the K18K sequence abrogated both heparin- and ligand-binding activities of the receptor kinase. The results indicate that the FGF receptor is a ternary complex of heparan sulfate proteoglycan, tyrosine kinase transmembrane glycoprotein, and ligand.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kan, M -- Wang, F -- Xu, J -- Crabb, J W -- Hou, J -- McKeehan, W L -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. Alton Jones Cell Science Center, Inc. Lake Placid, NY 12946.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Binding Sites ; Fibroblast Growth Factors/metabolism ; Heparan Sulfate Proteoglycans ; Heparin/*metabolism ; Heparitin Sulfate/metabolism ; Humans ; Immunohistochemistry ; Lysine/metabolism ; Metalloendopeptidases/metabolism ; Molecular Sequence Data ; Mutagenesis ; Peptide Fragments/isolation & purification/metabolism ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; Proteoglycans/metabolism ; Receptors, Fibroblast Growth Factor/chemistry/genetics/*metabolism ; Recombinant Proteins/metabolism ; Sodium Chloride/pharmacology ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1993-10-15
    Description: Electrophysiology and structural studies were performed on an annexin V variant containing a mutation of glutamic acid-95 to serine in the center of the pore region. The mutation resulted in a lower single channel conductance for calcium and a strongly increased conductance for sodium and potassium, indicating that glutamic acid-95 is a crucial constituent of the ion selectivity filter. There were only minor differences in the crystal structures of mutant and wild-type annexin V around the mutation site; however, the mutant showed structural differences elsewhere, including the presence of a calcium binding site in domain III unrelated to the mutation. Analysis of the membrane-bound form of annexin V by electron microscopy revealed no differences between the wild type and mutant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berendes, R -- Voges, D -- Demange, P -- Huber, R -- Burger, A -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):427-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biochemie, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7692599" target="_blank"〉PubMed〈/a〉
    Keywords: Annexin A5/*chemistry/genetics/metabolism ; Binding Sites ; Calcium/metabolism ; Computer Graphics ; Crystallography, X-Ray ; Electric Conductivity ; Glutamates/chemistry ; Glutamic Acid ; Humans ; Ion Channels/*metabolism ; Microscopy, Electron ; Mutagenesis, Site-Directed ; Potassium/metabolism ; Protein Structure, Secondary ; Serine/chemistry ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-22
    Description: The bZIP motif is characterized by a leucine zipper domain that mediates dimerization and a basic domain that contacts DNA. A series of transition metal dimerization domains were used to alter systematically the relative orientation of basic domain peptides. Both the affinity and the specificity of the peptide-DNA interaction depend on domain orientation. These results indicate that the precise configuration linking the domains is important; dimerization is not always sufficient for DNA binding. This approach to studying the effect of orientation on protein function complements mutagenesis and could be used in many systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuenoud, B -- Schepartz, A -- New York, N.Y. -- Science. 1993 Jan 22;259(5094):510-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, New Haven, CT 06511-8118.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8424173" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Circular Dichroism ; Cyclic AMP Response Element-Binding Protein/chemistry/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Fungal Proteins/chemistry/*metabolism ; *Leucine Zippers ; Macromolecular Substances ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Protein Kinases/chemistry/*metabolism ; Protein Structure, Secondary ; Proto-Oncogene Proteins c-jun/chemistry/metabolism ; *Saccharomyces cerevisiae Proteins ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1993-04-02
    Description: Point mutations that activate the Ki-ras proto-oncogene are presented in about 50 percent of human colorectal tumors. To study the functional significance of these mutations, the activated Ki-ras genes in two human colon carcinoma cell lines, DLD-1 and HCT 116, were disrupted by homologous recombination. Compared with parental cells, cells disrupted at the activated Ki-ras gene were morphologically altered, lost the capacity for anchorage-independent growth, grew more slowly both in vitro and in nude mice, and showed reduced expression of c-myc. Thus, the activated Ki-ras gene plays a key role in colorectal tumorigenesis through altered cell differentiation and cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirasawa, S -- Furuse, M -- Yokoyama, N -- Sasazuki, T -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Kyushu University, Fukuoka, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8465203" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Differentiation ; Cell Division ; Codon ; Colonic Neoplasms/*genetics/pathology ; Gene Expression Regulation, Neoplastic ; Genes, myc/genetics ; Genes, ras/*genetics ; Humans ; Infant ; Mice ; Mice, Nude ; Molecular Sequence Data ; Mutagenesis, Insertional ; Nucleic Acid Hybridization ; Plasmids ; *Point Mutation ; Polymerase Chain Reaction ; Restriction Mapping ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1993-09-24
    Description: Interferon-gamma (IFN-gamma) stimulates transcription of specific genes by inducing tyrosine phosphorylation of a 91-kilodalton cytoplasmic protein (termed STAT for signal transducer and activator of transcription). Stat91 was phosphorylated on a single site (Tyr701), and phosphorylation of this site was required for nuclear translocation, DNA binding, and gene activation. Stat84, a differentially spliced product of the same gene that lacks the 38 carboxyl-terminal amino acids of Stat91, did not activate transcription, although it was phosphorylated and translocated to the nucleus and bound DNA. Thus, Stat91 mediates activation of transcription in response to IFN-gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuai, K -- Stark, G R -- Kerr, I M -- Darnell, J E Jr -- AI32489-02/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1744-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, Laboratory of Molecular Cell Biology, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690989" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; *Gene Expression Regulation ; Humans ; Interferon-gamma/*pharmacology ; Molecular Sequence Data ; Peptide Fragments/chemistry/metabolism ; Phosphotyrosine ; *Signal Transduction ; Transcription Factors/chemistry/*metabolism ; Transcriptional Activation ; Transfection ; Tyrosine/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1993-02-12
    Description: The ligand for CD40 (CD40L) is a membrane glycoprotein on activated T cells that induces B cell proliferation and immunoglobulin secretion. Abnormalities in the CD40L gene were associated with an X-linked immunodeficiency in humans [hyper-IgM (immunoglobulin M) syndrome]. This disease is characterized by elevated concentrations of serum IgM and decreased amounts of all other isotypes. CD40L complementary DNAs from three of four patients with this syndrome contained distinct point mutations. Recombinant expression of two of the mutant CD40L complementary DNAs resulted in proteins incapable of binding to CD40 and unable to induce proliferation or IgE secretion from normal B cells. Activated T cells from the four affected patients failed to express wild-type CD40L, although their B cells responded normally to wild-type CD40L. Thus, these CD40L defects lead to a T cell abnormality that results in the failure of patient B cells to undergo immunoglobulin class switching.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, R C -- Armitage, R J -- Conley, M E -- Rosenblatt, H -- Jenkins, N A -- Copeland, N G -- Bedell, M A -- Edelhoff, S -- Disteche, C M -- Simoneaux, D K -- A125129/PHS HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):990-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7679801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*metabolism ; Antigens, CD40 ; Antigens, Differentiation, B-Lymphocyte/*metabolism ; Base Sequence ; CD40 Ligand ; DNA/chemistry/genetics ; Humans ; Immunoglobulin M/*blood ; Immunologic Deficiency Syndromes/*genetics/immunology ; Ligands ; Male ; Membrane Glycoproteins/*genetics ; Mice ; Molecular Sequence Data ; *Point Mutation ; Polymerase Chain Reaction ; T-Lymphocytes/*immunology ; Transfection ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1993-07-23
    Description: The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Omichinski, J G -- Clore, G M -- Schaad, O -- Felsenfeld, G -- Trainor, C -- Appella, E -- Stahl, S J -- Gronenborn, A M -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):438-46.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332909" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Chickens ; DNA-Binding Proteins/*chemistry ; Erythroid-Specific DNA-Binding Factors ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Transcription Factors/*chemistry ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1993-03-26
    Description: After synthesis, the alpha chain of the T cell antigen receptor (TCR alpha) can form a complex with other TCR chains and move to the cell surface, or TCR alpha can undergo degradation in the endoplasmic reticulum (ER) if it remains unassembled. The mechanism of translocation and degradation in the ER is unclear. It was found that the putative transmembrane region of TCR alpha (alpha tm) was incompetent on its own to act as a transmembrane region. Molecules that contained alpha tm were translocated into the ER lumen and then underwent either rapid degradation or secretion, depending on the sequence of the cytoplasmic domain. A specific signal for ER degradation within alpha tm does not appear to be present.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, J -- Lee, S -- Strominger, J L -- AI20182/AI/NIAID NIH HHS/ -- CA47554/CA/NCI NIH HHS/ -- GM48961/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1901-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456316" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/chemistry/genetics/metabolism ; Cytoplasm/metabolism ; DNA/genetics ; Endoplasmic Reticulum/*metabolism ; Glycosylation ; HeLa Cells/metabolism ; Humans ; Immunosorbent Techniques ; Lipid Bilayers/metabolism ; Macromolecular Substances ; Mice ; Molecular Sequence Data ; Mutagenesis ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1993-11-12
    Description: A beta-glucoside encoded by a cloned Zea mays complementary DNA (Zm-p60.1) cleaved the biologically inactive hormone conjugates cytokinin-O-glucosides and kinetin-N3-glucoside, releasing active cytokinin. Tobacco protoplasts that transiently expressed Zm-p60.1 could use the inactive cytokinin glucosides to initiate cell division. The ability of protoplasts to sustain growth in response to cytokinin glucosides persisted indefinitely after the likely disappearance of the expression vector. In the roots of maize seedlings, Zm-p60.1 was localized to the meristematic cells and may function in vivo to supply the developing maize embryo with active cytokinin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brzobohaty, B -- Moore, I -- Kristoffersen, P -- Bako, L -- Campos, N -- Schell, J -- Palme, K -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1051-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institut fur Zuchtungsforschung, Koln Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235622" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/metabolism ; Amino Acid Sequence ; Base Sequence ; Cell Division ; Cytokinins/*metabolism ; DNA, Complementary/genetics ; Glucosides/metabolism ; Kinetin ; Molecular Sequence Data ; Plants, Toxic ; Protoplasts/cytology/enzymology ; Tobacco/cytology/enzymology ; Transfection ; Zea mays/enzymology/growth & development/*metabolism ; Zeatin/*metabolism ; beta-Glucosidase/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1993-11-05
    Description: A system for stable transformation of Toxoplasma gondii tachyzoites was developed that exploited the susceptibility of Toxoplasma to chloramphenicol. Introduction of the chloramphenicol acetyltransferase (CAT) gene fused to Toxoplasma flanking sequences followed by chloramphenicol selection resulted in parasites stably expressing CAT. A construct incorporating the tandemly repeated gene, B1, targeted efficiently to its homologous chromosomal locus. Knockout of the single-copy gene, ROP1, was also successful. Stable transformation should permit the identification and analysis of Toxoplasma genes important in the interaction of this opportunistic parasite with its host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, K -- Soldati, D -- Boothroyd, J C -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):911-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235614" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chloramphenicol/pharmacology ; Chloramphenicol O-Acetyltransferase/*genetics ; Drug Resistance ; *Genes, Protozoan ; Genetic Markers ; Multigene Family ; Plasmids ; Recombination, Genetic ; Toxoplasma/drug effects/*genetics ; Transfection ; *Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: Regulation of cell proliferation, differentiation, and metabolic homeostasis is associated with the phosphorylation and dephosphorylation of specific tyrosine residues of key regulatory proteins. The phosphotyrosine phosphatase 1D (PTP 1D) contains two amino terminally located Src homology 2 (SH2) domains and is similar to the Drosophila corkscrew gene product, which positively regulates the torso tyrosine kinase signal transduction pathway. PTP activity was found to be regulated by physical interaction with a protein tyrosine kinase. PTP 1D did not dephosphorylate receptor tyrosine kinases, despite the fact that it associated with the epidermal growth factor receptor and chimeric receptors containing the extracellular domain of the epidermal growth factor receptor and the cytoplasmic domain of either the HER2-neu, kit-SCF, or platelet-derived growth factor beta (beta PDGF) receptors. PTP 1D was phosphorylated on tyrosine in cells overexpressing the beta PDGF receptor kinase and this tyrosine phosphorylation correlated with an enhancement of its catalytic activity. Thus, protein tyrosine kinases and phosphatases do not simply oppose each other's action; rather, they may work in concert to maintain a fine balance of effector activation needed for the regulation of cell growth and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, W -- Lammers, R -- Huang, J -- Ullrich, A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1611-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max-Planck-Institut fur Biochemie, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Chimera ; Drosophila/genetics ; Enzyme Activation ; Genes, src ; Humans ; Kidney ; Luminescent Measurements ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Phosphorylation ; Phosphotyrosine ; Plasmids ; Protein Tyrosine Phosphatases/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-kit ; Proto-Oncogenes ; Receptor, Epidermal Growth Factor/genetics/metabolism ; Receptor, ErbB-2 ; Receptors, Platelet-Derived Growth Factor/genetics/metabolism ; Sequence Homology, Amino Acid ; Signal Transduction ; Transfection ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-24
    Description: Five small nuclear RNAs (U1, U2, U4, U5, and U6) participate in precursor messenger RNA (pre-mRNA) splicing. To probe their interactions within the active center of the mammalian spliceosome, substrates containing a single photoactivatable 4-thiouridine residue adjacent to either splice site were synthesized, and crosslinks were induced during the course of in vitro splicing. An invariant loop sequence in U5 small nuclear RNA contacts exon 1 before and after the first step of splicing because a crosslink between U5 and the last residue of exon 1 appeared in the pre-mRNA and then in the cutoff exon 1 intermediate. Both of these crosslinked species could undergo subsequent splicing, indicating that the crosslinks reflect a functional interaction that is maintained through both reaction steps. The same U5 loop aligns the two exons for ligation since the first residue of exon 2 also became crosslinked to U5 in the lariat intermediate. An invariant sequence in U6 RNA became crosslinked to the conserved second position of the intron within both the lariat intermediate and the lariat intron product. On the basis of these results, several conformational arrangements of small nuclear RNAs within the spliceosomal active center can be distinguished, and additional mechanistic parallels between the spliceosome and self-splicing introns can be drawn.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sontheimer, E J -- Steitz, J A -- GM26514/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):1989-96.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06536-0812.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266094" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics ; Base Sequence ; Binding Sites ; Catalysis ; Exons/genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA Precursors/metabolism ; RNA Splicing/*physiology ; RNA, Small Nuclear/*physiology ; RNA, Viral/physiology ; Spliceosomes/*physiology ; Thiouridine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1993-05-28
    Description: Transforming growth factor-beta (TGF-beta) affects cellular proliferation, differentiation, and interaction with the extracellular matrix primarily through interaction with the type I and type II TGF-beta receptors. The type II receptors for TGF-beta and activin contain putative serine-threonine kinase domains. A murine serine-threonine kinase receptor, Tsk 7L, was cloned that shared a conserved extracellular domain with the type II TGF-beta receptor. Overexpression of Tsk 7L alone did not increase cell surface binding of TGF-beta, but coexpression with the type II TGF-beta receptor caused TGF-beta to bind to Tsk 7L, which had the size of the type I TGF-beta receptor. Overexpression of Tsk 7L inhibited binding of TGF-beta to the type II receptor in a dominant negative fashion. Combinatorial interactions and stoichiometric ratios between the type I and II receptors may therefore determine the extent of TGF-beta binding and the resulting biological activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebner, R -- Chen, R H -- Shum, L -- Lawler, S -- Zioncheck, T F -- Lee, A -- Lopez, A R -- Derynck, R -- New York, N.Y. -- Science. 1993 May 28;260(5112):1344-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Growth and Development, University of California, San Francisco 94143-0640.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388127" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cercopithecus aethiops ; Cloning, Molecular ; Humans ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases ; Quail ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Receptors, Transforming Growth Factor beta ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-22
    Description: The 4-kilodalton amyloid beta protein (A beta), which forms fibrillar deposits in Alzheimer's disease (AD), is derived from a large protein referred to as the amyloid beta protein precursor (beta APP). Human neuroblastoma (M17) cells transfected with constructs expressing wild-type beta APP or a mutant, beta APP delta NL, recently linked to familial AD were compared. After continuous metabolic labeling for 8 hours, cells expressing beta APP delta NL had five times more of an A beta-bearing, carboxyl terminal, beta APP derivative than cells expressing wild-type beta APP and they released six times more A beta into the medium. Thus this mutant beta APP may cause AD because its processing is altered in a way that releases increased amounts of A beta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, X D -- Golde, T E -- Younkin, S G -- AG06656/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 22;259(5094):514-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8424174" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/metabolism ; Amino Acid Sequence ; Amyloid beta-Peptides/*biosynthesis/genetics ; Amyloid beta-Protein Precursor/*genetics/metabolism ; Base Sequence ; Cloning, Molecular ; Humans ; Molecular Sequence Data ; *Mutagenesis, Site-Directed ; Neuroblastoma ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction/methods ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1993-02-12
    Description: Interferon regulatory factor-1 (IRF-1), a transcriptional activator, and IRF-2, its antagonistic repressor, have been identified as regulators of type I interferon and interferon-inducible genes. The IRF-1 gene is itself interferon-inducible and hence may be one of the target genes critical for interferon action. When the IRF-2 gene was overexpressed in NIH 3T3 cells, the cells became transformed and displayed enhanced tumorigenicity in nude mice. This transformed phenotype was reversed by concomitant overexpression of the IRF-1 gene. Thus, restrained cell growth depends on a balance between these two mutually antagonistic transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harada, H -- Kitagawa, M -- Tanaka, N -- Yamamoto, H -- Harada, K -- Ishihara, M -- Taniguchi, T -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):971-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8438157" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells/metabolism ; Animals ; Blotting, Northern ; Cell Transformation, Neoplastic/*genetics ; Chromosome Mapping ; Chromosomes, Human, Pair 5 ; DNA/biosynthesis ; DNA-Binding Proteins/*genetics ; *Gene Expression ; Humans ; Immunosorbent Techniques ; Interferon Regulatory Factor-1 ; Interferon Regulatory Factor-2 ; Mice ; Mice, Nude ; Phenotype ; Phosphoproteins/*genetics ; Promoter Regions, Genetic ; RNA, Messenger/genetics ; *Repressor Proteins ; *Transcription Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1993-05-28
    Description: The retinoblastoma gene product (Rb) is a nuclear phosphoprotein that regulates cell cycle progression. Elf-1 is a lymphoid-specific Ets transcription factor that regulates inducible gene expression during T cell activation. In this report, it is demonstrated that Elf-1 contains a sequence motif that is highly related to the Rb binding sites of several viral oncoproteins and binds to the pocket region of Rb both in vitro and in vivo. Elf-1 binds exclusively to the underphosphorylated form of Rb and fails to bind to Rb mutants derived from patients with retinoblastoma. Co-immunoprecipitation experiments demonstrated an association between Elf-1 and Rb in resting normal human T cells. After T cell activation, the phosphorylation of Rb results in the release of Elf-1, which is correlated temporally with the activation of Elf-1-mediated transcription. Overexpression of a phosphorylation-defective form of Rb inhibited Elf-1-dependent transcription during T cell activation. These results demonstrate that Rb interacts specifically with a lineage-restricted Ets transcription factor. This regulated interaction may be important for the coordination of lineage-specific effector functions such as lymphokine production with cell cycle progression in activated T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, C Y -- Petryniak, B -- Thompson, C B -- Kaelin, W G -- Leiden, J M -- R01 AI29673-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 May 28;260(5112):1330-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493578" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Cycle ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Eye Neoplasms/genetics ; Humans ; Lymphocyte Activation ; Molecular Sequence Data ; Mutation ; Oligodeoxyribonucleotides ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Retinoblastoma/genetics ; Retinoblastoma Protein/*metabolism ; T-Lymphocytes/immunology/*metabolism ; Transcription Factors/chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1993-02-19
    Description: Ligand-gated ion channels gated by glutamate constitute the major excitatory neurotransmitter system in the mammalian brain. The functional modulation of GluR6, a kainate-activated glutamate receptor, by adenosine 3',5'-monophosphate-dependent protein kinase A (PKA) was examined with receptors expressed in human embryonic kidney cells. Kainate-evoked currents underwent a rapid desensitization that was blocked by lectins. Kainate currents were potentiated by intracellular perfusion of PKA, and this potentiation was blocked by co-application of an inhibitory peptide. Site-directed mutagenesis was used to identify the site or sites of phosphorylation on GluR6. Although mutagenesis of two serine residues, Ser684 and Ser666, was required for complete abolition of the PKA-induced potentiation, Ser684 may be the preferred site of phosphorylation in native GluR6 receptor complexes. These results indicate that glutamate receptor function can be directly modulated by protein phosphorylation and suggest that a dynamic regulation of excitatory receptors could be associated with some forms of learning and memory in the mammalian brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, L Y -- Taverna, F A -- Huang, X P -- MacDonald, J F -- Hampson, D R -- New York, N.Y. -- Science. 1993 Feb 19;259(5098):1173-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8382377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Brain/*physiology ; Cells, Cultured ; Concanavalin A/pharmacology ; Evoked Potentials/drug effects ; Humans ; Kainic Acid/*pharmacology ; Kidney ; Kinetics ; Membrane Potentials/drug effects ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Protein Kinases/*metabolism ; Receptors, Glutamate/drug effects/genetics/*physiology ; Receptors, Kainic Acid ; Serine ; Wheat Germ Agglutinins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1993-07-16
    Description: Nerve growth factor (NGF) binding to cellular receptors is required for the survival of some neural cells. In contrast to TrkA, the high-affinity NGF receptor that transduces NGF signals for survival and differentiation, the function of the low-affinity NGF receptor, p75NGFR, remains uncertain. Expression of p75NGFR induced neural cell death constitutively when p75NGFR was unbound; binding by NGF or monoclonal antibody, however, inhibited cell death induced by p75NGFR. Thus, expression of p75NGFR may explain the dependence of some neural cells on NGF for survival. These findings also suggest that p75NGFR has some functional similarities to other members of a superfamily of receptors that include tumor necrosis factor receptors, Fas (Apo-1), and CD40.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabizadeh, S -- Oh, J -- Zhong, L T -- Yang, J -- Bitler, C M -- Butcher, L L -- Bredesen, D E -- AG10671/AG/NIA NIH HHS/ -- NS10928/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332899" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/drug effects ; Cell Line ; Cell Survival/drug effects ; Culture Media, Serum-Free ; Nerve Growth Factors/*metabolism/pharmacology ; Neurons/*cytology/drug effects/metabolism ; PC12 Cells ; Receptors, Nerve Growth Factor/metabolism/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1993-01-08
    Description: The human and Drosophila heat shock transcription factors (HSFs) are multi-zipper proteins with high-affinity binding to DNA that is regulated by heat shock-induced trimerization. Formation of HSF trimers is dependent on hydrophobic heptad repeats located in the amino-terminal region of the protein. Two subregions at the carboxyl-terminal end of human HSF1 were identified that maintain the monomeric form of the protein under normal conditions. One of these contains a leucine zipper motif that is conserved between vertebrate and insect HSFs. These results suggest that the carboxyl-terminal zipper may suppress formation of trimers by the amino-terminal HSF zipper elements by means of intramolecular coiled-coil interactions that are sensitive to heat shock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabindran, S K -- Haroun, R I -- Clos, J -- Wisniewski, J -- Wu, C -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):230-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421783" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; DNA/metabolism ; Drosophila/chemistry ; Heat-Shock Proteins/*chemistry/genetics/metabolism ; Hot Temperature ; Humans ; *Leucine Zippers ; Macromolecular Substances ; Molecular Sequence Data ; Mutagenesis ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1993-08-06
    Description: Regions of Escherichia coli ribonuclease P (RNase P) RNA in proximity to a bound transfer RNA (tRNA) substrate were mapped by photoaffinity. A photoaffinity cross-linking reagent was introduced at specific sites in the interior of the native tRNA structure by modification of the 5' ends of circularly permuted tRNAs (cptRNAs). The polymerase chain reaction was used for the production of cptRNA templates. After the amplification of a segment of a tandemly duplicated tRNA gene, the cptRNA gene was transcribed in vitro to produce cptRNA. Modified cptRNAs were cross-linked to RNase P RNA, and the conjugation sites in RNase P RNA were determined by primer extension. These sites occur in phylogenetically conserved structures and sequences and identify regions of the ribozyme that form part of the tRNA binding site. The use of circularly permuted molecules to position specific modifications is applicable to the study of many inter- and intramolecular interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nolan, J M -- Burke, D H -- Pace, N R -- GM34527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):762-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7688143" target="_blank"〉PubMed〈/a〉
    Keywords: Affinity Labels ; Base Sequence ; Binding Sites ; Endoribonucleases/*chemistry/metabolism ; Escherichia coli/enzymology/genetics ; *Escherichia coli Proteins ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polymerase Chain Reaction ; RNA/chemistry/metabolism ; RNA, Bacterial/*chemistry/genetics/metabolism ; RNA, Catalytic/*chemistry/metabolism ; RNA, Transfer/*chemistry/genetics/metabolism ; Ribonuclease P
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1993-02-12
    Description: To investigate the mechanism of interaction of the toxin colicin E1 with membranes, three cysteine substitution mutants and the wild type of the channel-forming fragment were spin labeled at the unique thiol. Time-resolved interaction of these labeled proteins with phospholipid vesicles was investigated with stopped-flow electron paramagnetic resonance spectroscopy. The fragment interacts with neutral bilayers at low pH, indicating that the interaction is hydrophobic rather than electrostatic. The interaction occurs in at least two distinct steps: (i) rapid adsorption to the surface; and (ii) slow, rate-limiting insertion of the hydrophobic central helices into the membrane interior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, Y K -- Levinthal, C -- Levinthal, F -- Hubbell, W L -- EY05216/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):960-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8382373" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Binding Sites ; Cell Membrane/*metabolism ; Colicins/chemistry/genetics/*metabolism ; Cysteine/genetics ; Electron Spin Resonance Spectroscopy ; Hydrogen-Ion Concentration ; Kinetics ; Lipid Bilayers/metabolism ; *Mutagenesis ; Peptide Fragments/metabolism ; Protein Structure, Secondary ; *Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsou, C L -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):380-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211158" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Creatine Kinase/chemistry/metabolism ; Enzyme Inhibitors ; Enzymes/chemistry/*metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry/metabolism ; Guanidine ; Guanidines/pharmacology ; Papain/chemistry/metabolism ; Protein Conformation ; Protein Denaturation ; Protein Folding ; Ribonuclease, Pancreatic/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1993-03-05
    Description: A molecular docking computer program (DOCK) was used to screen the Fine Chemical Directory, a database of commercially available compounds, for molecules that are complementary to thymidylate synthase (TS), a chemotherapeutic target. Besides retrieving the substrate and several known inhibitors, DOCK proposed putative inhibitors previously unknown to bind to the enzyme. Three of these compounds inhibited Lactobacillus casei TS at submillimolar concentrations. One of these inhibitors, sulisobenzone, crystallized with TS in two configurations that differed from the DOCK-favored geometry: a counterion was bound in the substrate site, which resulted in a 6 to 9 angstrom displacement of the inhibitor. The structure of the complexes suggested another binding region in the active site that could be exploited. This region was probed with molecules sterically similar to sulisobenzone, which led to the identification of a family of phenolphthalein analogs that inhibit TS in the 1 to 30 micromolar range. These inhibitors do not resemble the substrates of the enzyme. A crystal structure of phenolphthalein with TS shows that it binds in the target site in a configuration that resembles the one suggested by DOCK.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoichet, B K -- Stroud, R M -- Santi, D V -- Kuntz, I D -- Perry, K M -- GM24485/GM/NIGMS NIH HHS/ -- GM31497/GM/NIGMS NIH HHS/ -- GM39553/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1445-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8451640" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Benzophenones/chemistry/*pharmacology ; Binding Sites ; *Computers ; Databases, Factual ; Lactobacillus casei/enzymology ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Phenolphthaleins/chemistry/*pharmacology ; Protein Structure, Secondary ; Thymidylate Synthase/*antagonists & inhibitors/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-26
    Description: Eukaryotic cells become committed to proliferate during the G1 phase of the cell cycle. In budding yeast, commitment occurs when the catalytic subunit of a protein kinase, encoded by the CDC28 gene (the homolog of the fission yeast cdc2+ gene), binds to a positively acting regulatory subunit, a cyclin. Related kinases are also required for progression through the G1 phase in higher eukaryotes. The role of cyclins in controlling G1 progression in mammalian cells was tested by construction of fibroblasts that constitutively overexpress human cyclin E. This was found to shorten the duration of G1, decrease cell size, and diminish the serum requirement for the transition from G1 to S phase. These observations show that cyclin levels can be rate-limiting for G1 progression in mammalian cells and suggest that cyclin synthesis may be the target of physiological signals that control cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohtsubo, M -- Roberts, J M -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1908-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/physiology ; Cell Line ; Cloning, Molecular ; Cyclins/genetics/*physiology ; Fibroblasts/*cytology/metabolism ; Flow Cytometry ; G1 Phase/*physiology ; Gene Expression ; Genetic Vectors ; Humans ; Kanamycin Kinase ; Male ; Phosphotransferases/genetics ; Rats ; Recombinant Fusion Proteins/metabolism ; Retroviridae/genetics ; S Phase/physiology ; Time Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1993-10-15
    Description: The cell cycle regulatory protein CksHs2 binds to the catalytic subunit of the cyclin-dependent kinases (Cdk's) and is essential for their biological function. The crystal structure of the protein was determined at 2.1 A resolution. The CksHs2 structure is an unexpected hexamer formed by the symmetric assembly of three interlocked dimers into an unusual 12-stranded beta barrel fold that may represent a prototype for this class of protein structures. Sequence-conserved regions form the unusual beta strand exchange between the subunits of the dimer, and the metal and anion binding sites associated with the hexamer assembly. The two other sequence-conserved regions line a 12 A diameter tunnel through the beta barrel and form the six exposed, charged helix pairs. Six kinase subunits can be modeled to bind the assembled hexamer without collision, and therefore this CksHs2 hexamer may participate in cell cycle control by acting as the hub for Cdk multimerization in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parge, H E -- Arvai, A S -- Murtari, D J -- Reed, S I -- Tainer, J A -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):387-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CDC2-CDC28 Kinases ; Carrier Proteins/*chemistry/physiology ; *Cell Cycle ; *Cell Cycle Proteins ; Computer Graphics ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Protein Folding ; Protein Kinases/metabolism ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-15
    Description: A transfer RNA (tRNA) binding protein present in HeLa cell nuclear extracts was purified and identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Studies with mutant tRNAs indicated that GAPDH recognizes both sequence and structural features in the RNA. GAPDH discriminated between wild-type tRNA and two tRNA mutants that are defective in nuclear export, which suggests that the protein may participate in RNA export. The cofactor nicotinamide adenine dinucleotide disrupted complex formation between tRNA and GAPDH and thus may share a common binding site with the RNA. Indirect immunofluorescence experiments showed that GAPDH is present in the nucleus as well as in the cytoplasm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, R -- Green, M R -- GM35490/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 15;259(5093):365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8420004" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Binding, Competitive ; Cell Nucleus/enzymology ; Cytoplasm/enzymology ; Escherichia coli/genetics ; Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry/immunology/*metabolism ; HeLa Cells ; Humans ; Molecular Sequence Data ; Mutagenesis ; RNA, Transfer, Met/chemistry/*metabolism ; RNA, Transfer, Ser/metabolism ; RNA, Transfer, Tyr/metabolism ; Saccharomyces cerevisiae/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1993-04-02
    Description: Cytotoxic T lymphocytes (CTLs) control viral infections by recognizing viral peptides presented by major histocompatibility complex (MHC) class I molecules. Human leukocyte antigen (HLA)-A11-restricted CTLs that recognize peptide residues 416 to 424 of the Epstein-Barr virus (EBV) nuclear antigen-4 frequently dominate EBV-induced responses in A11+ Caucasian donors. This epitope is conserved in type A EBV strains from Caucasians and central African populations, where A11 is relatively infrequent. However, strains from highly A11+ populations in New Guinea carry a lysine-to-threonine mutation at residue 424 that abrogates CTL recognition and binding of the peptide to nascent A11 molecules. The results suggest that evolution of a widespread and genetically stable virus such as EBV is influenced by pressure from MHC-restricted CTL responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Campos-Lima, P O -- Gavioli, R -- Zhang, Q J -- Wallace, L E -- Dolcetti, R -- Rowe, M -- Rickinson, A B -- Masucci, M G -- 2RO1 CA30264/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):98-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Tumor Biology, Karolinska Institute, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7682013" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Antigens, Viral/genetics/*immunology ; Cell Line, Transformed ; Cell Nucleus/*immunology ; Cell Transformation, Viral ; DNA-Binding Proteins/genetics/*immunology ; Epitopes/genetics/immunology ; Epstein-Barr Virus Nuclear Antigens ; European Continental Ancestry Group ; Gene Frequency ; HLA-A Antigens/genetics/*immunology ; HLA-A11 Antigen ; Herpesvirus 4, Human/*immunology ; Humans ; New Guinea ; Point Mutation ; T-Lymphocytes, Cytotoxic/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1993-02-19
    Description: Mineralocorticoid and glucocorticoid hormones elicit distinct physiologic responses, yet the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) bind to and activate transcription similarly from a consensus simple hormone response element (HRE). The activities of GR and MR at plfG, a 25-base pair composite response element to which both the steroid receptors and transcription factor AP1 can bind, are analyzed here. Under conditions in which GR represses AP1-stimulated transcription from plfG, MR was inactive. With the use of MR-GR chimeras, a segment of the NH2-terminal region of GR (amino acids 105 to 440) was shown to be required for this repression. Thus, the distinct physiologic effects mediated by MR and GR may be determined by differential interactions of nonreceptor factors with specific receptor domains at composite response elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, D -- Yamamoto, K R -- New York, N.Y. -- Science. 1993 Feb 19;259(5098):1161-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8382376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Corticosterone/*pharmacology ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; HeLa Cells ; Humans ; Hydrocortisone/*pharmacology ; Mineralocorticoids/*metabolism ; Plasmids ; Proto-Oncogene Proteins c-jun/*metabolism ; Receptors, Glucocorticoid/genetics/*metabolism ; Receptors, Mineralocorticoid ; Receptors, Steroid/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; *Transcription, Genetic/drug effects ; Transfection ; Zinc Fingers/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-29
    Description: The gamma delta resolvase protein is one of a large family of transposon-encoded site-specific recombinases. It performs recombination in a DNA-protein complex that contains 12 resolvase protomers and two copies of the 120-base pair DNA substrate, res (each with three binding sites for a resolvase dimer). A derivative of resolvase with altered DNA binding specificity was used to show that the role of resolvase at site I, which contains the crossover point, differs from its role at the other two binding sites. The resolvase dimers that initially bind to site I are the only ones that require the residue Ser10, essential for catalysis of DNA breakage. In addition, these site I-bound dimers do not use a specific interaction between dimers that is required elsewhere in the complex for synapsis of the res sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grindley, N D -- New York, N.Y. -- Science. 1993 Oct 29;262(5134):738-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, Bass Center for Molecular and Structural Biology, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235593" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Biopolymers ; Catalysis ; DNA-Binding Proteins/*chemistry ; Molecular Sequence Data ; Mutation ; Nucleoproteins/chemistry ; Nucleotidyltransferases/*chemistry ; Synaptosomes/*chemistry ; Transposases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1993-12-03
    Description: Cell adhesion has an essential role in regulating proliferation during the G1 phase of the cell cycle, and loss of this adhesion requirement is a classic feature of oncogenic transformation. The appearance of cyclin A messenger RNA and protein in late G1 was dependent on cell adhesion in both NRK and NIH 3T3 fibroblasts. In contrast, the expression of Cdc2, Cdk2, cyclin D1, and cyclin E was independent of adhesion in both cell lines. Transfection of NRK cells with a cyclin A complementary DNA resulted in adhesion-independent accumulation of cyclin A protein and cyclin A-associated kinase activity. These transfected cells also entered S phase and complete multiple rounds of cell division in the absence of cell adhesion. Thus, cyclin A is a target of the adhesion-dependent signals that control cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guadagno, T M -- Ohtsubo, M -- Roberts, J M -- Assoian, R K -- GM48224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 3;262(5139):1572-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248807" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; CDC2 Protein Kinase/biosynthesis ; *CDC2-CDC28 Kinases ; Cell Adhesion/*physiology ; Cell Cycle/*physiology ; Cell Line ; Cyclin-Dependent Kinase 2 ; *Cyclin-Dependent Kinases ; Cyclins/*biosynthesis ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Humans ; Mice ; Protein Kinases/biosynthesis ; *Protein-Serine-Threonine Kinases ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: Aminoglycoside inhibitors of translation have been shown previously to inhibit in vitro self-splicing by group I introns. Chemical probing of the phage T4-derived sunY intron shows that neomycin, streptomycin, and related antibiotics protected the N-7 position of G96, a universally conserved guanine in the binding site for the guanosine cofactor in the splicing reaction. The antibiotics also disrupted structural contacts that have been proposed to bring the 5' cleavage site of the intron into proximity to the catalytic core. In contrast, the strictly competitive inhibitors deoxyguanosine and arginine protected only the N-7 position of G96. Parallels between these results and previously observed protection of 16S ribosomal RNA by aminoglycosides raise the possibility that group I intron splicing and transfer RNA selection by ribosomes involve similar RNA structural motifs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Ahsen, U -- Noller, H F -- GM17129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1500-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sinsheimer Laboratories, University of California, Santa Cruz 95064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502993" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides ; Animals ; Anti-Bacterial Agents/metabolism/*pharmacology ; Base Sequence ; Binding Sites ; Introns/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation/drug effects ; RNA Splicing/drug effects ; RNA, Catalytic/chemistry/*drug effects/metabolism ; Tetrahymena/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-15
    Description: The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, S -- Green, M R -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):395-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211160" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 1 ; Activating Transcription Factor 2 ; Base Sequence ; Basic-Leucine Zipper Transcription Factors ; Binding Sites ; Cell Line ; Cell Transformation, Viral ; Cyclic AMP Response Element-Binding Protein/metabolism ; DNA/*metabolism ; DNA-Binding Proteins ; G-Box Binding Factors ; Gene Products, tax/*metabolism ; Leucine Zippers ; Molecular Sequence Data ; Oligodeoxyribonucleotides/*metabolism ; Plant Proteins ; Polymers ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-13
    Description: The peptide alpha 4 is a designed four-helix bundle that contains a highly simplified hydrophobic core composed exclusively of leucine residues; its tertiary structure is therefore largely dictated by hydrophobic forces. This small protein adopts a structure with properties intermediate between those of the native and molten globule states of proteins: it is compact, globular, and has very stable helices, but its apolar side chains are mobile and not as well packed as in many natural proteins. To induce a more native-like state, two Zn(2+)-binding sites were introduced into the protein, thereby replacing some of the non-specific hydrophobic interactions with more geometrically restrictive metal-ligand interactions. In the metal-bound state, this protein has properties that approach those of native proteins. Thus, hydrophobic interactions alone are sufficient to drive polypeptide chain folding nearly to completion, but specific interactions are required for a unique structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Handel, T M -- Williams, S A -- DeGrado, W F -- New York, N.Y. -- Science. 1993 Aug 13;261(5123):879-85.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Du Pont Merck Pharmaceutical Company, Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8346440" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anilino Naphthalenesulfonates/metabolism ; Binding Sites ; Histidine/chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/chemical synthesis/*chemistry/metabolism ; Thermodynamics ; Zinc/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1993-09-17
    Description: Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, L M -- Myers, M G Jr -- Sun, X J -- Aaronson, S A -- White, M -- Pierce, J H -- DK-43808/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 17;261(5128):1591-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8372354" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/drug effects ; Cell Line ; Hematopoietic Stem Cells/*cytology/drug effects ; Insulin/*pharmacology ; Insulin Receptor Substrate Proteins ; Interleukin-4/*pharmacology ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptor, Insulin/metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/metabolism ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1993-05-28
    Description: Transforming growth factor-beta (TGF-beta) is a multifunctional protein that regulates cell proliferation and differentiation and extracellular matrix production. Although two receptor types, the type I and type II receptors, have been implicated in TGF-beta-induced signaling, it is unclear how the many activities of TGF-beta are mediated through these receptors. With the use of cells overexpressing truncated type II receptors as dominant negative mutants to selectively block type II receptor signaling, the existence of two receptor pathways was shown. The type II receptors, possibly in conjunction with type I receptors, mediate the induction of growth inhibition and hypophosphorylation of the retinoblastoma gene product pRB. The type I receptors are responsible for effects on extracellular matrix, such as the induction of fibronectin and plasminogen activator inhibitor I, and for increased JunB expression. Selective inactivation of the type II receptors alters the TGF-beta response in a similar manner to the functional inactivation of pRB, suggesting a role for pRB in the type II, but not the type I, receptor pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, R H -- Ebner, R -- Derynck, R -- New York, N.Y. -- Science. 1993 May 28;260(5112):1335-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Growth and Development, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388126" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/drug effects ; Cell Line ; DNA/biosynthesis ; Down-Regulation ; Fibronectins/biosynthesis ; Plasminogen Activator Inhibitor 1/biosynthesis ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins c-jun/genetics ; Receptors, Cell Surface/genetics/*physiology ; *Receptors, Transforming Growth Factor beta ; Retinoblastoma Protein/metabolism ; Signal Transduction ; Transfection ; Transforming Growth Factor beta/*pharmacology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: A mouse phosphotyrosine phosphatase containing two Src homology 2 (SH2) domains, Syp, was identified. Syp bound to autophosphorylated epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) receptors through its SH2 domains and was rapidly phosphorylated on tyrosine in PDGF- and EGF-stimulated cells. Furthermore, Syp was constitutively phosphorylated on tyrosine in cells transformed by v-src. This mammalian phosphatase is most closely related, especially in its SH2 domains, to the corkscrew (csw) gene product of Drosophila, which is required for signal transduction downstream of the Torso receptor tyrosine kinase. The Syp gene is widely expressed throughout embryonic mouse development and in adult tissues. Thus, Syp may function in mammalian embryonic development and as a common target of both receptor and nonreceptor tyrosine kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, G S -- Hui, C C -- Pawson, T -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1607-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8096088" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line, Transformed ; Cell Transformation, Neoplastic ; Embryo, Mammalian ; Embryonic and Fetal Development ; Epidermal Growth Factor/pharmacology ; *Genes, src ; Humans ; Intracellular Signaling Peptides and Proteins ; Kinetics ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Poly A/isolation & purification/metabolism ; Polymerase Chain Reaction ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; RNA, Messenger/isolation & purification/metabolism ; Rats ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Platelet-Derived Growth Factor/genetics/metabolism ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1993-07-09
    Description: Expression of the myogenic helix-loop-helix (HLH) protein myogenin in muscle cell precursors within somites and limb buds is among the earliest events associated with myogenic lineage determination in vertebrates. Mutations in the myogenin promoter that abolish binding sites for myogenic HLH proteins or myocyte enhancer factor-2 (MEF-2) suppressed transcription of a linked lacZ transgene in subsets of myogenic precursors in mouse embryos. These results suggest that myogenic HLH proteins and MEF-2 participate in separable regulatory circuits leading to myogenin transcription and provide evidence for positional regulation of myogenic regulators in the embryo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, T C -- Wallace, M C -- Merlie, J P -- Olson, E N -- New York, N.Y. -- Science. 1993 Jul 9;261(5118):215-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8392225" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; DNA-Binding Proteins/genetics/metabolism ; Embryo, Mammalian/*metabolism ; Extremities/embryology ; Female ; MEF2 Transcription Factors ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Mice, Transgenic ; Muscle Proteins/*genetics ; Muscles/*embryology/metabolism ; Mutation ; Myogenic Regulatory Factors ; Myogenin ; Promoter Regions, Genetic ; Trans-Activators/*genetics ; Transcription Factors/genetics/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1993-08-06
    Description: Cytochrome P450BM-3, a bacterial fatty acid monoxygenase, resembles the eukaryotic microsomal P450's and their flavoprotein reductase in primary structure and function. The three-dimensional structure of the hemoprotein domain of P450BM-3 was determined by x-ray diffraction and refined to an R factor of 16.9 percent at 2.0 angstrom resolution. The structure consists of an alph and a beta domain. The active site heme is accessible through a long hydrophobic channel formed primarily by the beta domain and the B' and F helices of the alpha domain. The two molecules in the asymmetric unit differ in conformation around the substrate binding pocket. Substantial differences between P450BM-3 and P450cam, the only other P450 structure available, are observed around the substrate binding pocket and the regions important for redox partner binding. A general mechanism for proton transfer in P450's is also proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravichandran, K G -- Boddupalli, S S -- Hasermann, C A -- Peterson, J A -- Deisenhofer, J -- GM43479/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):731-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342039" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins ; Binding Sites ; Computer Graphics ; Crystallization ; Cytochrome P-450 Enzyme System/*chemistry ; Heme/chemistry ; Mixed Function Oxygenases/*chemistry ; Models, Molecular ; Molecular Sequence Data ; NADPH-Ferrihemoprotein Reductase ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1993-03-26
    Description: RecA protein is essential in eubacteria for homologous recombination and promotes the homologous pairing and strand exchange of DNA molecules in vitro. Recombination proteins with weak sequence similarity to bacterial RecA proteins have been identified in bacteriophage T4, yeast, and other higher organisms. Analysis of the primary sequence relationships of DMC1 from Saccharomyces cerevisiae and UvsX of T4 relative to the three-dimensional structure of RecA from Escherichia coli suggests that both proteins are structural homologs of bacterial RecA proteins. This analysis argues that proteins in this group are members of a single family that diverged from a common ancestor that existed prior to the divergence of prokaryotes and eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Story, R M -- Bishop, D K -- Kleckner, N -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1892-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456313" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; *Cell Cycle Proteins ; Conserved Sequence ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; Escherichia coli/chemistry ; Fungal Proteins/chemistry/metabolism ; Membrane Proteins/metabolism ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Structure, Secondary ; Rec A Recombinases/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid ; T-Phages/*chemistry ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1993-07-02
    Description: Muscle contraction consists of a cyclical interaction between myosin and actin driven by the concomitant hydrolysis of adenosine triphosphate (ATP). A model for the rigor complex of F actin and the myosin head was obtained by combining the molecular structures of the individual proteins with the low-resolution electron density maps of the complex derived by cryo-electron microscopy and image analysis. The spatial relation between the ATP binding pocket on myosin and the major contact area on actin suggests a working hypothesis for the crossbridge cycle that is consistent with previous independent structural and biochemical studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rayment, I -- Holden, H M -- Whittaker, M -- Yohn, C B -- Lorenz, M -- Holmes, K C -- Milligan, R A -- New York, N.Y. -- Science. 1993 Jul 2;261(5117):58-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison 53705.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316858" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/metabolism ; Actomyosin/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Binding Sites ; Image Processing, Computer-Assisted ; *Models, Molecular ; *Muscle Contraction ; Myosin Subfragments/*chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1993-07-02
    Description: Directed movement is a characteristic of many living organisms and occurs as a result of the transformation of chemical energy into mechanical energy. Myosin is one of three families of molecular motors that are responsible for cellular motility. The three-dimensional structure of the head portion of myosin, or subfragment-1, which contains both the actin and nucleotide binding sites, is described. This structure of a molecular motor was determined by single crystal x-ray diffraction. The data provide a structural framework for understanding the molecular basis of motility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rayment, I -- Rypniewski, W R -- Schmidt-Base, K -- Smith, R -- Tomchick, D R -- Benning, M M -- Winkelmann, D A -- Wesenberg, G -- Holden, H M -- New York, N.Y. -- Science. 1993 Jul 2;261(5117):50-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison 53705.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316857" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Crystallization ; Image Processing, Computer-Assisted ; Methylation ; *Models, Molecular ; Molecular Sequence Data ; Muscle Contraction ; Myosin Subfragments/*chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1993-03-26
    Description: Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed that allows the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protection analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, W M -- Dausman, J -- Beard, C -- Johnson, C -- Lawrence, J B -- Jaenisch, R -- 5 F32 GM13756-02/GM/NIGMS NIH HHS/ -- 5 R35 CA44339-05/CA/NCI NIH HHS/ -- HG00198-01/HG/NHGRI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1904-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8096090" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism ; Blotting, Southern ; Chromosomes, Fungal ; Collagen/*genetics ; *Gene Expression ; Gene Library ; In Situ Hybridization ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutagenesis, Insertional ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...