ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atlantic_City; DATE/TIME; SeaLevel; Sea level; TGS; Tide gauge station; United States of America; WOCE; World Ocean Circulation Experiment  (183)
  • Mutation  (165)
  • PANGAEA  (183)
  • American Association for the Advancement of Science (AAAS)  (164)
  • Springer  (1)
  • American Geophysical Union
  • Elsevier
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Wiley
  • 2015-2019  (18)
  • 2005-2009  (317)
  • 1975-1979  (13)
  • 1970-1974
  • 2016  (18)
  • 2006  (317)
  • 1979  (12)
  • 1976  (1)
Collection
Keywords
Publisher
  • PANGAEA  (183)
  • American Association for the Advancement of Science (AAAS)  (164)
  • Springer  (1)
  • American Geophysical Union
  • Elsevier
  • +
Years
  • 2015-2019  (18)
  • 2005-2009  (317)
  • 1975-1979  (13)
  • 1970-1974
Year
  • 1
    Publication Date: 2016-01-20
    Description: The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11-base pair (bp) activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits characteristic single-bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Sensory neuron subtypes can therefore evolve through single-bp changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rister, Jens -- Razzaq, Ansa -- Boodram, Pamela -- Desai, Nisha -- Tsanis, Cleopatra -- Chen, Hongtao -- Jukam, David -- Desplan, Claude -- K99EY023995/EY/NEI NIH HHS/ -- R01 EY13010/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1258-61. doi: 10.1126/science.aab3417.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA. ; Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA. cd38@nyu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Drosophila Proteins/*genetics ; Drosophila melanogaster/genetics/growth & development ; *Gene Expression Regulation, Developmental ; Mutation ; Photoreceptor Cells, Invertebrate/*physiology ; Promoter Regions, Genetic/*genetics ; Rhodopsin/*genetics ; Transcription Factors/metabolism ; Vision, Ocular/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-20
    Description: Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD, NDD, and CA but only 2% of patients with isolated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in RBFOX2, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal shared genetic contributions to CHD, NDD, and CA and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Homsy, Jason -- Zaidi, Samir -- Shen, Yufeng -- Ware, James S -- Samocha, Kaitlin E -- Karczewski, Konrad J -- DePalma, Steven R -- McKean, David -- Wakimoto, Hiroko -- Gorham, Josh -- Jin, Sheng Chih -- Deanfield, John -- Giardini, Alessandro -- Porter, George A Jr -- Kim, Richard -- Bilguvar, Kaya -- Lopez-Giraldez, Francesc -- Tikhonova, Irina -- Mane, Shrikant -- Romano-Adesman, Angela -- Qi, Hongjian -- Vardarajan, Badri -- Ma, Lijiang -- Daly, Mark -- Roberts, Amy E -- Russell, Mark W -- Mital, Seema -- Newburger, Jane W -- Gaynor, J William -- Breitbart, Roger E -- Iossifov, Ivan -- Ronemus, Michael -- Sanders, Stephan J -- Kaltman, Jonathan R -- Seidman, Jonathan G -- Brueckner, Martina -- Gelb, Bruce D -- Goldmuntz, Elizabeth -- Lifton, Richard P -- Seidman, Christine E -- Chung, Wendy K -- T32 HL007208/HL/NHLBI NIH HHS/ -- Arthritis Research UK/United Kingdom -- British Heart Foundation/United Kingdom -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1262-6. doi: 10.1126/science.aac9396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. NIHR Cardiovascular Biomedical Research Unit at Royal Brompton & Harefield NHS Foundation and Trust and Imperial College London, London, UK. National Heart & Lung Institute, Imperial College London, London, UK. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Cardiology, University College London and Great Ormond Street Hospital, London, UK. ; Department of Pediatrics, University of Rochester Medical Center, The School of Medicine and Dentistry, Rochester, NY, USA. ; Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Steven and Alexandra Cohen Children's Medical Center of New York, New Hyde Park, NY, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA. ; Department of Neurology, Columbia University Medical Center, New York, NY, USA. ; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA. ; Department of Cardiology, Children's Hospital Boston, Boston, MA, USA. ; Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI, USA. ; Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada. ; Department of Cardiology, Boston Children's Hospital, Boston, MA, USA. ; Department of Pediatric Cardiac Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. ; Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA. ; Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. Cardiovascular Division, Brigham & Women's Hospital, Harvard University, Boston, MA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785492" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/abnormalities/metabolism ; Child ; Congenital Abnormalities/genetics ; Exome/genetics ; Heart Defects, Congenital/*diagnosis/*genetics ; Humans ; Mutation ; Nervous System Malformations/*genetics ; Neurogenesis/*genetics ; Prognosis ; RNA Splicing/genetics ; RNA, Messenger/genetics ; RNA-Binding Proteins/genetics ; Repressor Proteins/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexandrov, Ludmil B -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1175. doi: 10.1126/science.aad7363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM 87545, USA. lba@lanl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785464" target="_blank"〉PubMed〈/a〉
    Keywords: *Computer Simulation ; DNA Mutational Analysis ; Genomics/*methods ; Humans ; *Models, Genetic ; *Mutagenesis ; Mutation ; Neoplasms/classification/*genetics/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1186-7. doi: 10.1126/science.350.6265.1186.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Caloric Restriction ; Death ; Humans ; Hydra/genetics/physiology ; Longevity/genetics/*physiology ; Mice ; Mutation ; Phosphatidylinositol 3-Kinases/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodell, Margaret A -- Rando, Thomas A -- P01 AG036695/AG/NIA NIH HHS/ -- R01 AG047820/AG/NIA NIH HHS/ -- R01 AR062185/AR/NIAMS NIH HHS/ -- R37 AG023806/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1199-204. doi: 10.1126/science.aab3388.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, and Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. goodell@bcm.edu rando@stanford.edu. ; Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA, and Center for Regenerative Rehabilitation, Veterans Administration Palo Alto Health Care System, Palo Alto, CA 94304, USA. goodell@bcm.edu rando@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785478" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*physiology ; Aging/*physiology ; Animals ; Cell Aging ; Epigenesis, Genetic ; Genetic Drift ; *Health ; Humans ; Mice ; Mutation ; Organ Specificity ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-26
    Description: Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Yuan -- Chen, Xiang -- Elsasser, Suzanne -- Stocks, Bradley B -- Tian, Geng -- Lee, Byung-Hoon -- Shi, Yanhong -- Zhang, Naixia -- de Poot, Stefanie A H -- Tuebing, Fabian -- Sun, Shuangwu -- Vannoy, Jacob -- Tarasov, Sergey G -- Engen, John R -- Finley, Daniel -- Walters, Kylie J -- New York, N.Y. -- Science. 2016 Feb 19;351(6275). pii: aad9421. doi: 10.1126/science.aad9421.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Linganore High School, Frederick, MD 21701, USA. ; Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912900" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Binding Proteins/metabolism ; Endopeptidases/metabolism ; Metabolic Networks and Pathways ; Models, Molecular ; Mutation ; Proteasome Endopeptidase Complex/chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Ubiquitin-Specific Proteases/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):440-3. doi: 10.1126/science.351.6272.440.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823410" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Child, Preschool ; DNA Mutational Analysis ; DNA Repair/genetics ; Female ; *Genes, Neoplasm ; *Genetic Predisposition to Disease ; Humans ; Male ; Mutation ; Neoplasms/*genetics/mortality ; Pedigree ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-05
    Description: As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8(+)tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non-small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy-induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGranahan, Nicholas -- Furness, Andrew J S -- Rosenthal, Rachel -- Ramskov, Sofie -- Lyngaa, Rikke -- Saini, Sunil Kumar -- Jamal-Hanjani, Mariam -- Wilson, Gareth A -- Birkbak, Nicolai J -- Hiley, Crispin T -- Watkins, Thomas B K -- Shafi, Seema -- Murugaesu, Nirupa -- Mitter, Richard -- Akarca, Ayse U -- Linares, Joseph -- Marafioti, Teresa -- Henry, Jake Y -- Van Allen, Eliezer M -- Miao, Diana -- Schilling, Bastian -- Schadendorf, Dirk -- Garraway, Levi A -- Makarov, Vladimir -- Rizvi, Naiyer A -- Snyder, Alexandra -- Hellmann, Matthew D -- Merghoub, Taha -- Wolchok, Jedd D -- Shukla, Sachet A -- Wu, Catherine J -- Peggs, Karl S -- Chan, Timothy A -- Hadrup, Sine R -- Quezada, Sergio A -- Swanton, Charles -- 12100/Cancer Research UK/United Kingdom -- 1R01CA155010-02/CA/NCI NIH HHS/ -- 1R01CA182461-01/CA/NCI NIH HHS/ -- 1R01CA184922-01/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1463-9. doi: 10.1126/science.aaf1490. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Francis Crick Institute, London WC2A 3LY, UK. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London (UCL), London WC1E 6BT, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, 1970 Frederiksberg C, Denmark. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; The Francis Crick Institute, London WC2A 3LY, UK. ; Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. Department of Cellular Pathology, UCL, London WC1E 6BT, UK. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium (DKTK), 69121 Heidelberg, Germany. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Hematology/Oncology Division, 177 Fort Washington Avenue, Columbia University, New York, NY 10032, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Department of Internal Medicine, Brigham and Woman's Hospital, Boston, MA 02115, USA. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940869" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/*immunology ; Aged ; Aged, 80 and over ; Antigens, Neoplasm/genetics/*immunology ; Antineoplastic Agents/therapeutic use ; CD4-Positive T-Lymphocytes/*immunology ; CTLA-4 Antigen/immunology ; Carcinoma, Non-Small-Cell Lung/genetics/immunology ; Cell Cycle Checkpoints/immunology ; Female ; Humans ; *Immunologic Surveillance ; Lung Neoplasms/drug therapy/genetics/*immunology ; Lymphocytes, Tumor-Infiltrating/immunology ; Male ; Melanoma/immunology ; Middle Aged ; Mutation ; Programmed Cell Death 1 Receptor/immunology ; Skin Neoplasms/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-26
    Description: Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015, and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. We performed next-generation sequencing to generate seven Brazilian ZIKV genomes sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Results of phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, which we estimated to have occurred between May and December 2013, more than 12 months before the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV-endemic areas, as well as with reported outbreaks in the Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however, no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this correlation does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology of this emerging virus in the Americas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faria, Nuno Rodrigues -- Azevedo, Raimunda do Socorro da Silva -- Kraemer, Moritz U G -- Souza, Renato -- Cunha, Mariana Sequetin -- Hill, Sarah C -- Theze, Julien -- Bonsall, Michael B -- Bowden, Thomas A -- Rissanen, Ilona -- Rocco, Iray Maria -- Nogueira, Juliana Silva -- Maeda, Adriana Yurika -- Vasami, Fernanda Giseli da Silva -- Macedo, Fernando Luiz de Lima -- Suzuki, Akemi -- Rodrigues, Sueli Guerreiro -- Cruz, Ana Cecilia Ribeiro -- Nunes, Bruno Tardeli -- Medeiros, Daniele Barbosa de Almeida -- Rodrigues, Daniela Sueli Guerreiro -- Nunes Queiroz, Alice Louize -- da Silva, Eliana Vieira Pinto -- Henriques, Daniele Freitas -- Travassos da Rosa, Elisabeth Salbe -- de Oliveira, Consuelo Silva -- Martins, Livia Caricio -- Vasconcelos, Helena Baldez -- Casseb, Livia Medeiros Neves -- Simith, Darlene de Brito -- Messina, Jane P -- Abade, Leandro -- Lourenco, Jose -- Carlos Junior Alcantara, Luiz -- de Lima, Maricelia Maia -- Giovanetti, Marta -- Hay, Simon I -- de Oliveira, Rodrigo Santos -- Lemos, Poliana da Silva -- de Oliveira, Layanna Freitas -- de Lima, Clayton Pereira Silva -- da Silva, Sandro Patroca -- de Vasconcelos, Janaina Mota -- Franco, Luciano -- Cardoso, Jedson Ferreira -- Vianez-Junior, Joao Lidio da Silva Goncalves -- Mir, Daiana -- Bello, Gonzalo -- Delatorre, Edson -- Khan, Kamran -- Creatore, Marisa -- Coelho, Giovanini Evelim -- de Oliveira, Wanderson Kleber -- Tesh, Robert -- Pybus, Oliver G -- Nunes, Marcio R T -- Vasconcelos, Pedro F C -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095066/Wellcome Trust/United Kingdom -- 102427/Wellcome Trust/United Kingdom -- MR/L009528/1/Medical Research Council/United Kingdom -- R24 AT 120942/AT/NCCIH NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):345-9. doi: 10.1126/science.aaf5036. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Instituto Adolfo Lutz, University of Sao Paulo, Sao Paulo, Brazil. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. ; Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil. ; Centre of Post Graduation in Collective Health, Department of Health, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil. ; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121, USA. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. ; Laboratorio de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil. ; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada. Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada. ; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. ; Brazilian Ministry of Health, Brasilia, Brazil. ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013429" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/virology ; Americas/epidemiology ; Animals ; *Disease Outbreaks ; Female ; Genome, Viral/genetics ; Humans ; Incidence ; Insect Vectors/virology ; Microcephaly/*epidemiology/virology ; Molecular Epidemiology ; Molecular Sequence Data ; Mutation ; Pacific Islands/epidemiology ; Phylogeny ; Pregnancy ; RNA, Viral/genetics ; Sequence Analysis, RNA ; Travel ; Zika Virus/classification/*genetics/isolation & purification ; Zika Virus Infection/*epidemiology/transmission/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-16
    Description: Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Christopher D -- Siregar, Josephine E -- Mollard, Vanessa -- Vega-Rodriguez, Joel -- Syafruddin, Din -- Matsuoka, Hiroyuki -- Matsuzaki, Motomichi -- Toyama, Tomoko -- Sturm, Angelika -- Cozijnsen, Anton -- Jacobs-Lorena, Marcelo -- Kita, Kiyoshi -- Marzuki, Sangkot -- McFadden, Geoffrey I -- AI031478/AI/NIAID NIH HHS/ -- RR00052/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):349-53. doi: 10.1126/science.aad9279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. gim@unimelb.edu.au deang@unimelb.edu.au. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. ; Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia. ; Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*parasitology ; Antimalarials/*pharmacology/therapeutic use ; Atovaquone/*pharmacology/therapeutic use ; Cell Line ; Cytochromes b/*genetics ; Drug Resistance/*genetics ; Genes, Mitochondrial/genetics ; Humans ; Life Cycle Stages/drug effects/genetics ; Malaria/drug therapy/*parasitology/transmission ; Male ; Mice ; Mitochondria/*genetics ; Mutation ; Plasmodium berghei/*drug effects/genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-03-05
    Description: Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hnisz, Denes -- Weintraub, Abraham S -- Day, Daniel S -- Valton, Anne-Laure -- Bak, Rasmus O -- Li, Charles H -- Goldmann, Johanna -- Lajoie, Bryan R -- Fan, Zi Peng -- Sigova, Alla A -- Reddy, Jessica -- Borges-Rivera, Diego -- Lee, Tong Ihn -- Jaenisch, Rudolf -- Porteus, Matthew H -- Dekker, Job -- Young, Richard A -- AI120766/AI/NIAID NIH HHS/ -- CA109901/CA/NCI NIH HHS/ -- HG002668/HG/NHGRI NIH HHS/ -- MH104610/MH/NIMH NIH HHS/ -- NS088538/NS/NINDS NIH HHS/ -- R01 GM 112720/GM/NIGMS NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 MH104610/MH/NIMH NIH HHS/ -- U01 DA 040588/DA/NIDA NIH HHS/ -- U01 HG007910/HG/NHGRI NIH HHS/ -- U01 R01 AI 117839/AI/NIAID NIH HHS/ -- U54 CA193419/CA/NCI NIH HHS/ -- U54 DK107980/DK/NIDDK NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1454-8. doi: 10.1126/science.aad9024. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Department of Pediatrics, Stanford University, Stanford, CA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. Howard Hughes Medical Institute. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940867" target="_blank"〉PubMed〈/a〉
    Keywords: *Chromosome Aberrations ; Chromosome Mapping ; *Gene Expression Regulation, Leukemic ; HEK293 Cells ; Humans ; Mutation ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Proto-Oncogenes/*genetics ; *Sequence Deletion ; Transcriptional Activation ; *Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-03-26
    Description: Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrera, Luis A -- Vedenko, Anastasia -- Kurland, Jesse V -- Rogers, Julia M -- Gisselbrecht, Stephen S -- Rossin, Elizabeth J -- Woodard, Jaie -- Mariani, Luca -- Kock, Kian Hong -- Inukai, Sachi -- Siggers, Trevor -- Shokri, Leila -- Gordan, Raluca -- Sahni, Nidhi -- Cotsapas, Chris -- Hao, Tong -- Yi, Song -- Kellis, Manolis -- Daly, Mark J -- Vidal, Marc -- Hill, David E -- Bulyk, Martha L -- P50 HG004233/HG/NHGRI NIH HHS/ -- R01 HG003985/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1450-4. doi: 10.1126/science.aad2257. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. ; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Center for Human Genetics Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013732" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Exome/genetics ; *Gene Expression Regulation ; Genetic Diseases, Inborn/*genetics ; Genetic Variation ; Genome, Human ; Humans ; Mutation ; Polymorphism, Single Nucleotide ; Protein Array Analysis ; Protein Binding ; Sequence Analysis, DNA ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-01-02
    Description: Antibiotic treatment has two conflicting effects: the desired, immediate effect of inhibiting bacterial growth and the undesired, long-term effect of promoting the evolution of resistance. Although these contrasting outcomes seem inextricably linked, recent work has revealed several ways by which antibiotics can be combined to inhibit bacterial growth while, counterintuitively, selecting against resistant mutants. Decoupling treatment efficacy from the risk of resistance can be achieved by exploiting specific interactions between drugs, and the ways in which resistance mutations to a given drug can modulate these interactions or increase the sensitivity of the bacteria to other compounds. Although their practical application requires much further development and validation, and relies on advances in genomic diagnostics, these discoveries suggest novel paradigms that may restrict or even reverse the evolution of resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baym, Michael -- Stone, Laura K -- Kishony, Roy -- R01-GM081617/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):aad3292. doi: 10.1126/science.aad3292.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA, USA. ; Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Department of Biology and Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel. rkishony@technion.ac.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26722002" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*pharmacology ; Bacteria/*drug effects/*genetics ; Drug Resistance, Bacterial/*genetics ; *Evolution, Molecular ; Humans ; Mutation ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-03-26
    Description: Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naive B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naive B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Kulp, Daniel W -- Havenar-Daughton, Colin -- Sarkar, Anita -- Briney, Bryan -- Sok, Devin -- Sesterhenn, Fabian -- Ereno-Orbea, June -- Kalyuzhniy, Oleksandr -- Deresa, Isaiah -- Hu, Xiaozhen -- Spencer, Skye -- Jones, Meaghan -- Georgeson, Erik -- Adachi, Yumiko -- Kubitz, Michael -- deCamp, Allan C -- Julien, Jean-Philippe -- Wilson, Ian A -- Burton, Dennis R -- Crotty, Shane -- Schief, William R -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI110657/AI/NIAID NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1458-63. doi: 10.1126/science.aad9195.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Vaccine and Infectious Disease Division, Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. schief@scripps.edu shane@lji.org. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. schief@scripps.edu shane@lji.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013733" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/*immunology/isolation & purification ; Antibodies, Neutralizing/chemistry/*immunology/isolation & purification ; Antibody Affinity ; B-Lymphocytes/immunology ; Cell Separation ; Combinatorial Chemistry Techniques ; Epitopes, B-Lymphocyte/chemistry/genetics/*immunology ; Germ Cells/*immunology ; HIV Antibodies/chemistry/*immunology/isolation & purification ; HIV-1/*immunology ; Humans ; Molecular Sequence Data ; Mutation ; Peptide Library ; Precursor Cells, B-Lymphoid/*immunology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-01-09
    Description: The lung is constantly exposed to environmental atmospheric cues. How it senses and responds to these cues is poorly defined. Here, we show that Roundabout receptor (Robo) genes are expressed in pulmonary neuroendocrine cells (PNECs), a rare, innervated epithelial population. Robo inactivation in mouse lung results in an inability of PNECs to cluster into sensory organoids and triggers increased neuropeptide production upon exposure to air. Excess neuropeptides lead to an increase in immune infiltrates, which in turn remodel the matrix and irreversibly simplify the alveoli. We demonstrate in vivo that PNECs act as precise airway sensors that elicit immune responses via neuropeptides. These findings suggest that the PNEC and neuropeptide abnormalities documented in a wide array of pulmonary diseases may profoundly affect symptoms and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branchfield, Kelsey -- Nantie, Leah -- Verheyden, Jamie M -- Sui, Pengfei -- Wienhold, Mark D -- Sun, Xin -- 5T32AI007635/AI/NIAID NIH HHS/ -- HL097134/HL/NHLBI NIH HHS/ -- HL122406/HL/NHLBI NIH HHS/ -- R01 HL113870/HL/NHLBI NIH HHS/ -- T32 GM007133/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):707-10. doi: 10.1126/science.aad7969. Epub 2016 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA. ; Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA. ; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA. xsun@wisc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26743624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Clodronic Acid/pharmacology ; Lung/cytology/*immunology ; Lung Diseases/genetics/immunology ; Macrophages/drug effects/immunology ; Mice ; Mice, Mutant Strains ; Mutation ; Nerve Tissue Proteins/genetics/*physiology ; Neuroendocrine Cells/*immunology/metabolism ; Neuropeptides/*biosynthesis ; Receptors, Immunologic/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Leslie -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):403. doi: 10.1126/science.352.6284.403. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102460" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/pharmacology/*therapeutic use ; Artemisinins/pharmacology/*therapeutic use ; Drug Resistance/*genetics ; Humans ; Malaria, Falciparum/*drug therapy/epidemiology/*parasitology ; Mutation ; Myanmar/epidemiology ; Plasmodium falciparum/*drug effects/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-01-30
    Description: The "cancerized field" concept posits that cancer-prone cells in a given tissue share an oncogenic mutation, but only discreet clones within the field initiate tumors. Most benign nevi carry oncogenic BRAF(V600E) mutations but rarely become melanoma. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and specifically reexpressed in melanoma. Live imaging of transgenic zebrafish crestin reporters shows that within a cancerized field (BRAF(V600E)-mutant; p53-deficient), a single melanocyte reactivates the NCP state, revealing a fate change at melanoma initiation in this model. NCP transcription factors, including sox10, regulate crestin expression. Forced sox10 overexpression in melanocytes accelerated melanoma formation, which is consistent with activation of NCP genes and super-enhancers leading to melanoma. Our work highlights NCP state reemergence as a key event in melanoma initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaufman, Charles K -- Mosimann, Christian -- Fan, Zi Peng -- Yang, Song -- Thomas, Andrew J -- Ablain, Julien -- Tan, Justin L -- Fogley, Rachel D -- van Rooijen, Ellen -- Hagedorn, Elliott J -- Ciarlo, Christie -- White, Richard M -- Matos, Dominick A -- Puller, Ann-Christin -- Santoriello, Cristina -- Liao, Eric C -- Young, Richard A -- Zon, Leonard I -- HG002668/HG/NHGRI NIH HHS/ -- K08 AR061071/AR/NIAMS NIH HHS/ -- R01 CA103846/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):aad2197. doi: 10.1126/science.aad2197. Epub 2016 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02115, USA. ; Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. ; Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10075, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. ; Research Institute Children's Cancer Center Hamburg and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. ; Harvard Stem Cell Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. zon@enders.tch.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823433" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Carcinogenesis/*genetics ; Embryonic Stem Cells/metabolism ; Enhancer Elements, Genetic ; *Gene Expression Regulation, Developmental ; *Gene Expression Regulation, Neoplastic ; Genes, Reporter ; Green Fluorescent Proteins/genetics ; Melanocytes/metabolism ; Melanoma/*genetics ; Melanoma, Experimental/*genetics ; Mutation ; Nerve Tissue Proteins/genetics ; Neural Crest/*metabolism ; Proto-Oncogene Proteins B-raf/genetics ; SOXE Transcription Factors/genetics ; Skin Neoplasms/*genetics ; Tumor Suppressor Protein p53/genetics ; *Zebrafish ; Zebrafish Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-03-12
    Description: Type IVa pili are filamentous cell surface structures observed in many bacteria. They pull cells forward by extending, adhering to surfaces, and then retracting. We used cryo-electron tomography of intact Myxococcus xanthus cells to visualize type IVa pili and the protein machine that assembles and retracts them (the type IVa pilus machine, or T4PM) in situ, in both the piliated and nonpiliated states, at a resolution of 3 to 4 nanometers. We found that T4PM comprises an outer membrane pore, four interconnected ring structures in the periplasm and cytoplasm, a cytoplasmic disc and dome, and a periplasmic stem. By systematically imaging mutants lacking defined T4PM proteins or with individual proteins fused to tags, we mapped the locations of all 10 T4PM core components and the minor pilins, thereby providing insights into pilus assembly, structure, and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yi-Wei -- Rettberg, Lee A -- Treuner-Lange, Anke -- Iwasa, Janet -- Sogaard-Andersen, Lotte -- Jensen, Grant J -- R01 GM094800B/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):aad2001. doi: 10.1126/science.aad2001. Epub 2016 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA. ; Howard Hughes Medical Institute, Pasadena, CA 91125, USA. ; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany. ; University of Utah, Salt Lake City, UT 84112, USA. ; California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA. jensen@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965631" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Adhesion ; Cryoelectron Microscopy ; Fimbriae, Bacterial/genetics/*ultrastructure ; Microscopy, Electron, Transmission ; Models, Molecular ; Mutation ; Myxococcus xanthus/genetics/physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-11-04
    Description: One hundred years ago a small group of psychiatrists described the abnormal protein deposits in the brain that define the most common neurodegenerative diseases. Over the past 25 years, it has become clear that the proteins forming the deposits are central to the disease process. Amyloid-beta and tau make up the plaques and tangles of Alzheimer's disease, where these normally soluble proteins assemble into amyloid-like filaments. Tau inclusions are also found in a number of related disorders. Genetic studies have shown that dysfunction of amyloid-beta or tau is sufficient to cause dementia. The ongoing molecular dissection of the neurodegenerative pathways is expected to lead to a true understanding of disease pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goedert, Michel -- Spillantini, Maria Grazia -- G0301152/Medical Research Council/United Kingdom -- MC_U105184291/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):777-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 2QH, UK. mg@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082447" target="_blank"〉PubMed〈/a〉
    Keywords: *Alzheimer Disease/genetics/history/metabolism/pathology ; Amyloid beta-Peptides/chemistry/metabolism ; Amyloid beta-Protein Precursor/genetics/metabolism ; Animals ; Apolipoproteins E/genetics ; Brain/pathology ; Brain Chemistry ; History, 20th Century ; Humans ; Mutation ; Neurofibrillary Tangles/chemistry/pathology ; Plaque, Amyloid/chemistry/pathology ; Presenilin-1/genetics/metabolism ; tau Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2006-04-22
    Description: Given the considerable challenges to the rapid development of an effective vaccine against influenza, antiviral agents will play an important role as a first-line defense if a new pandemic occurs. The large-scale use of drugs for chemoprophylaxis and treatment will impose strong selection for the evolution of drug-resistant strains. The ensuing transmission of those strains could substantially limit the effectiveness of the drugs as a first-line defense. Summarizing recent data on the rate at which the treatment of influenza infection generates resistance de novo and on the transmission fitness of resistant virus, we discuss possible implications for the epidemiological spread of drug resistance in the context of an established population dynamic model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regoes, Roland R -- Bonhoeffer, Sebastian -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):389-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Integrative Biology, ETH Zurich, ETH Zentrum CHN K12.1, Universitatsstrasse 16, CH 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627735" target="_blank"〉PubMed〈/a〉
    Keywords: Acetamides/pharmacology/therapeutic use ; Amantadine/pharmacology/therapeutic use ; Antiviral Agents/*pharmacology/*therapeutic use ; Computer Simulation ; Disease Outbreaks ; *Drug Resistance, Viral/genetics ; Humans ; Influenza A virus/*drug effects/genetics/pathogenicity ; Influenza, Human/*drug therapy/epidemiology/*prevention & control/virology ; Mathematics ; Models, Biological ; Mutation ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae/*drug effects/genetics/pathogenicity ; Oseltamivir ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-27
    Description: The allure of the emerging genomic technologies in cancer is their ability to generate new biomarkers that predict how individual cancer patients will respond to various treatments. However, productive implementation of cancer biomarkers into patient care will require fundamental changes in how we consider approvals for cancer indications and how we track patient responses. Here we briefly describe ongoing efforts to identify and to validate cancer biomarkers, discuss the technological hurdles that lie ahead, and then focus on the more pressing political and cultural issues that, if left unheeded, could derail many of the anticipated benefits of biomarker research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, William S -- Friend, Stephen H -- New York, N.Y. -- Science. 2006 May 26;312(5777):1165-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉H. Lee Moffitt Cancer Center, University of South Florida, Tampa, FL 33613, USA. dalton@moffitt.usf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728629" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes ; *Biomarkers, Tumor ; Biotechnology ; Clinical Trials as Topic ; Databases, Factual ; Drug Industry ; Gene Expression Regulation, Neoplastic ; Genomics ; Humans ; Intellectual Property ; Interprofessional Relations ; Mutation ; Neoplasms/genetics/*therapy ; *Patient Care Management ; Private Sector ; Proteomics ; Public Sector
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2006-04-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2006 Mar 31;311(5769):1847.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16574828" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*genetics ; DNA Mutational Analysis ; False Negative Reactions ; Female ; *Genes, BRCA1 ; *Genes, BRCA2 ; *Genetic Testing ; Humans ; Mutation ; Nucleic Acid Amplification Techniques ; Ovarian Neoplasms/*genetics ; Sensitivity and Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2006-04-08
    Description: According to Darwinian theory, complexity evolves by a stepwise process of elaboration and optimization under natural selection. Biological systems composed of tightly integrated parts seem to challenge this view, because it is not obvious how any element's function can be selected for unless the partners with which it interacts are already present. Here we demonstrate how an integrated molecular system-the specific functional interaction between the steroid hormone aldosterone and its partner the mineralocorticoid receptor-evolved by a stepwise Darwinian process. Using ancestral gene resurrection, we show that, long before the hormone evolved, the receptor's affinity for aldosterone was present as a structural by-product of its partnership with chemically similar, more ancient ligands. Introducing two amino acid changes into the ancestral sequence recapitulates the evolution of present-day receptor specificity. Our results indicate that tight interactions can evolve by molecular exploitation-recruitment of an older molecule, previously constrained for a different role, into a new functional complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bridgham, Jamie T -- Carroll, Sean M -- Thornton, Joseph W -- F32-GM074398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):97-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601189" target="_blank"〉PubMed〈/a〉
    Keywords: Aldosterone/chemistry/*metabolism ; Amino Acid Substitution ; Animals ; Bayes Theorem ; Binding Sites ; Desoxycorticosterone/metabolism ; *Evolution, Molecular ; Gene Duplication ; Hagfishes ; Hydrocortisone/metabolism ; Lampreys ; Ligands ; Mutation ; Perciformes ; Phylogeny ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/metabolism ; Receptors, Mineralocorticoid/chemistry/*genetics/*metabolism ; Receptors, Steroid/chemistry/*genetics/*metabolism ; Skates (Fish)
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-03-11
    Description: Crop domestication frequently began with the selection of plants that did not naturally shed ripe fruits or seeds. The reduction in grain shattering that led to cereal domestication involved genetic loci of large effect. The molecular basis of this key domestication transition, however, remains unknown. Here we show that human selection of an amino acid substitution in the predicted DNA binding domain encoded by a gene of previously unknown function was primarily responsible for the reduction of grain shattering in rice domestication. The substitution undermined the gene function necessary for the normal development of an abscission layer that controls the separation of a grain from the pedicel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Changbao -- Zhou, Ailing -- Sang, Tao -- New York, N.Y. -- Science. 2006 Mar 31;311(5769):1936-9. Epub 2006 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16527928" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Amino Acid Substitution ; Biological Evolution ; Chromosome Mapping ; Computational Biology ; Crops, Agricultural/*genetics/growth & development ; Flowers/growth & development ; Gene Expression ; Genes, Plant ; Genotype ; Molecular Sequence Data ; Mutation ; Oryza/cytology/*genetics/growth & development ; Phenotype ; Plant Proteins/chemistry/*genetics ; Plants, Genetically Modified ; Quantitative Trait Loci ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Transcription Factors/chemistry/*genetics ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2006-07-01
    Description: The formation of glutaminyl transfer RNA (Gln-tRNA(Gln)) differs among the three domains of life. Most bacteria employ an indirect pathway to produce Gln-tRNA(Gln) by a heterotrimeric glutamine amidotransferase CAB (GatCAB) that acts on the misacylated Glu-tRNA(Gln). Here, we describe a series of crystal structures of intact GatCAB from Staphylococcus aureus in the apo form and in the complexes with glutamine, asparagine, Mn2+, and adenosine triphosphate analog. Two identified catalytic centers for the glutaminase and transamidase reactions are markedly distant but connected by a hydrophilic ammonia channel 30 A in length. Further, we show that the first U-A base pair in the acceptor stem and the D loop of tRNA(Gln) serve as identity elements essential for discrimination by GatCAB and propose a complete model for the overall concerted reactions to synthesize Gln-tRNA(Gln).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakamura, Akiyoshi -- Yao, Min -- Chimnaronk, Sarin -- Sakai, Naoki -- Tanaka, Isao -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1954-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809541" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Aminoacyltransferases/metabolism ; Ammonia/*metabolism ; Apoenzymes/chemistry/metabolism ; Asparagine/metabolism ; Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; Glutaminase/metabolism ; Glutamine/*chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Magnesium/metabolism ; Manganese/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA, Bacterial/chemistry/metabolism ; RNA, Transfer, Amino Acyl/chemistry/*metabolism ; RNA, Transfer, Gln/*chemistry/metabolism ; Staphylococcus aureus/*enzymology/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2006-06-10
    Description: Horizontal gene transfer plays a major role in microbial evolution. However, newly acquired sequences can decrease fitness unless integrated into preexisting regulatory networks. We found that the histone-like nucleoid structuring protein (H-NS) selectively silences horizontally acquired genes by targeting sequences with GC content lower than the resident genome. Mutations in hns are lethal in Salmonella unless accompanied by compensatory mutations in other regulatory loci. Thus, H-NS provides a previously unrecognized mechanism of bacterial defense against foreign DNA, enabling the acquisition of DNA from exogenous sources while avoiding detrimental consequences from unregulated expression of newly acquired genes. Characteristic GC/AT ratios of bacterial genomes may facilitate discrimination between a cell's own DNA and foreign DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navarre, William Wiley -- Porwollik, Steffen -- Wang, Yipeng -- McClelland, Michael -- Rosen, Henry -- Libby, Stephen J -- Fang, Ferric C -- AI034829/AI/NIAID NIH HHS/ -- AI049417/AI/NIAID NIH HHS/ -- AI052237/AI/NIAID NIH HHS/ -- AI057733/AI/NIAID NIH HHS/ -- AI39557/AI/NIAID NIH HHS/ -- AI48622/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 14;313(5784):236-8. Epub 2006 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16763111" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/*metabolism ; Base Composition ; Binding Sites ; Chromatin Immunoprecipitation ; DNA, Bacterial/*chemistry/*genetics ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; *Gene Silencing ; *Gene Transfer, Horizontal ; Genome, Bacterial ; Helicobacter pylori/genetics ; Models, Genetic ; Mutation ; Oligonucleotide Array Sequence Analysis ; Repressor Proteins/genetics/*metabolism ; Salmonella typhimurium/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2006-03-18
    Description: During development, cells monitor and adjust their rates of accumulation to produce organs of predetermined size. We show here that central nervous system-specific deletion of the essential adherens junction gene, alphaE-catenin, causes abnormal activation of the hedgehog pathway, resulting in shortening of the cell cycle, decreased apoptosis, and cortical hyperplasia. We propose that alphaE-catenin connects cell-density-dependent adherens junctions with the developmental hedgehog pathway and that this connection may provide a negative feedback loop controlling the size of developing cerebral cortex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556178/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556178/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lien, Wen-Hui -- Klezovitch, Olga -- Fernandez, Tania E -- Delrow, Jeff -- Vasioukhin, Valeri -- P41 RR011823/RR/NCRR NIH HHS/ -- P41 RR011823-128171/RR/NCRR NIH HHS/ -- R01 CA098161/CA/NCI NIH HHS/ -- R01 CA098161-01A1/CA/NCI NIH HHS/ -- R01 CA098161-02/CA/NCI NIH HHS/ -- R01 CA098161-03/CA/NCI NIH HHS/ -- R01 CA098161-04/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 17;311(5767):1609-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16543460" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/*physiology/ultrastructure ; Animals ; Apoptosis ; Cell Adhesion ; Cell Count ; Cell Cycle ; Cell Differentiation ; Cell Polarity ; Central Nervous System/embryology ; Cerebral Cortex/cytology/*embryology/pathology/physiology ; Hedgehog Proteins ; Hyperplasia ; Mice ; Mitosis ; Models, Biological ; Mutation ; Neurons/cytology/*physiology/ultrastructure ; Oligonucleotide Array Sequence Analysis ; *Signal Transduction ; Stem Cells/cytology/ultrastructure ; Trans-Activators/*metabolism ; Up-Regulation ; alpha Catenin/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2006-07-15
    Description: Plants have evolved a powerful immune system to defend against infection by most microbial organisms. However, successful pathogens, such as Pseudomonas syringae, have developed countermeasures and inject virulence proteins into the host plant cell to suppress immunity and cause devastating diseases. Despite intensive research efforts, the molecular targets of bacterial virulence proteins that are important for plant disease development have remained obscure. Here, we show that a conserved P. syringae virulence protein, HopM1, targets an immunity-associated protein, AtMIN7, in Arabidopsis thaliana. HopM1 mediates the destruction of AtMIN7 via the host proteasome. Our results illustrate a strategy by which a bacterial pathogen exploits the host proteasome to subvert host immunity and causes infection in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nomura, Kinya -- Debroy, Sruti -- Lee, Yong Hoon -- Pumplin, Nathan -- Jones, Jonathan -- He, Sheng Yang -- New York, N.Y. -- Science. 2006 Jul 14;313(5784):220-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16840699" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/metabolism ; Arabidopsis/*immunology/metabolism/*microbiology ; Arabidopsis Proteins/*metabolism ; Bacterial Proteins/genetics/metabolism ; Brefeldin A/pharmacology ; Glucans/metabolism ; Guanine Nucleotide Exchange Factors/metabolism ; Immunity, Innate ; Mutation ; Plant Diseases/*microbiology ; Plant Leaves/metabolism/microbiology ; Plants, Genetically Modified ; Proteasome Endopeptidase Complex/metabolism ; Protein Transport ; Pseudomonas syringae/genetics/growth & development/*pathogenicity ; Tobacco/metabolism ; Two-Hybrid System Techniques ; Ubiquitins/metabolism ; Virulence Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2006-11-25
    Description: For microbial pathogens, phylogeographic differentiation seems to be relatively common. However, the neutral population structure of Salmonella enterica serovar Typhi reflects the continued existence of ubiquitous haplotypes over millennia. In contrast, clinical use of fluoroquinolones has yielded at least 15 independent gyrA mutations within a decade and stimulated clonal expansion of haplotype H58 in Asia and Africa. Yet, antibiotic-sensitive strains and haplotypes other than H58 still persist despite selection for antibiotic resistance. Neutral evolution in Typhi appears to reflect the asymptomatic carrier state, and adaptive evolution depends on the rapid transmission of phenotypic changes through acute infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roumagnac, Philippe -- Weill, Francois-Xavier -- Dolecek, Christiane -- Baker, Stephen -- Brisse, Sylvain -- Chinh, Nguyen Tran -- Le, Thi Anh Hong -- Acosta, Camilo J -- Farrar, Jeremy -- Dougan, Gordon -- Achtman, Mark -- 076962/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1301-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Infektionsbiologie, Department of Molecular Biology, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124322" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Africa ; Alleles ; Anti-Bacterial Agents/pharmacology/therapeutic use ; Asia ; *Biological Evolution ; Carrier State/*microbiology ; DNA Gyrase/genetics ; Drug Resistance, Bacterial ; Drug Resistance, Multiple, Bacterial ; Fluoroquinolones/pharmacology/therapeutic use ; *Genes, Bacterial ; Genetic Variation ; Haplotypes ; Humans ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Salmonella typhi/drug effects/*genetics ; Selection, Genetic ; Typhoid Fever/drug therapy/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2006-07-22
    Description: The early morphogenetic mechanisms involved in heart formation are evolutionarily conserved. A screen for genes that control Drosophila heart development revealed a cardiac defect in which pericardial and cardial cells dissociate, which causes loss of cardiac function and embryonic lethality. This phenotype resulted from mutations in the genes encoding HMG-CoA reductase, downstream enzymes in the mevalonate pathway, and G protein Ggamma1, which is geranylgeranylated, thus representing an end point of isoprenoid biosynthesis. Our findings reveal a cardial cell-autonomous requirement of Ggamma1 geranylgeranylation for heart formation and suggest the involvement of the mevalonate pathway in congenital heart disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Peng -- Han, Zhe -- Li, Xiumin -- Olson, Eric N -- New York, N.Y. -- Science. 2006 Sep 1;313(5791):1301-3. Epub 2006 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857902" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Animals, Genetically Modified ; Cell Adhesion ; Drosophila melanogaster/*embryology/genetics/metabolism ; Embryo, Nonmammalian/metabolism ; GTP-Binding Proteins/chemistry/genetics/*metabolism ; Heart/*embryology ; Heart Defects, Congenital/etiology ; Hydroxymethylglutaryl CoA Reductases/genetics/metabolism ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology ; Mevalonic Acid/*metabolism ; Models, Animal ; Mutation ; Myocardium/cytology/metabolism ; Pericardium/cytology ; Protein Prenylation ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2006-08-12
    Description: Mutations in the human neurotrypsin gene are associated with autosomal recessive mental retardation. To further understand the pathophysiological consequences of the lack of this serine protease, we studied Tequila (Teq), the Drosophila neurotrypsin ortholog, using associative memory as a behavioral readout. We found that teq inactivation resulted in a long-term memory (LTM)-specific defect. After LTM conditioning of wild-type flies, teq expression transiently increased in the mushroom bodies. Moreover, specific inhibition of teq expression in adult mushroom bodies resulted in a reversible LTM defect. Hence, the Teq pathway is essential for information processing in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Didelot, Gerard -- Molinari, Florence -- Tchenio, Paul -- Comas, Daniel -- Milhiet, Elodie -- Munnich, Arnold -- Colleaux, Laurence -- Preat, Thomas -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):851-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genes et Dynamique des Systemes de Memoire, UMR CNRS 7637, Ecole Superieure de Physique et de Chimie Industrielles, 10 Rue Vauquelin 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Conditioning, Classical ; Drosophila Proteins/chemistry/genetics/*physiology ; Drosophila melanogaster/genetics/*physiology ; Gene Expression ; Gene Expression Regulation ; Humans ; Learning ; *Memory ; Mifepristone/pharmacology ; Models, Animal ; Molecular Sequence Data ; Mushroom Bodies/anatomy & histology/physiology ; Mutation ; Odors ; RNA Interference ; RNA, Messenger/genetics/metabolism ; Serine Endopeptidases/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2006-01-10
    Description: Plants live in fixed locations and survive adversity by integrating growth responses to diverse environmental signals. Here, we show that the nuclear-localized growth-repressing DELLA proteins of Arabidopsis integrate responses to independent hormonal and environmental signals of adverse conditions. The growth restraint conferred by DELLA proteins is beneficial and promotes survival. We propose that DELLAs permit flexible and appropriate modulation of plant growth in response to changes in natural environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Achard, Patrick -- Cheng, Hui -- De Grauwe, Liesbeth -- Decat, Jan -- Schoutteten, Hermien -- Moritz, Thomas -- Van Der Straeten, Dominique -- Peng, Jinrong -- Harberd, Nicholas P -- New York, N.Y. -- Science. 2006 Jan 6;311(5757):91-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉John Innes Centre, Norwich NR4 7UJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16400150" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/metabolism/pharmacology ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism/*physiology ; Ethylenes/metabolism ; Flowers/growth & development ; Genes, Plant ; Gibberellins/metabolism/pharmacology ; Mutation ; Nuclear Proteins/metabolism ; Plant Growth Regulators/*metabolism/pharmacology ; Plant Proteins/genetics/physiology ; Plant Roots/growth & development ; *Signal Transduction ; Sodium Chloride/*pharmacology ; Transcription Factors/genetics/metabolism/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeates, Todd O -- Beeby, Morgan -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1882-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90024-1569, USA. yeates@mbi.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185587" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Evolution, Molecular ; Gene Duplication ; Gene Transfer, Horizontal ; *Metabolic Networks and Pathways ; Mutation ; Protein Binding ; *Protein Interaction Mapping ; Proteins/*chemistry/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2006-04-08
    Description: Aortic aneurysm and dissection are manifestations of Marfan syndrome (MFS), a disorder caused by mutations in the gene that encodes fibrillin-1. Selected manifestations of MFS reflect excessive signaling by the transforming growth factor-beta (TGF-beta) family of cytokines. We show that aortic aneurysm in a mouse model of MFS is associated with increased TGF-beta signaling and can be prevented by TGF-beta antagonists such as TGF-beta-neutralizing antibody or the angiotensin II type 1 receptor (AT1) blocker, losartan. AT1 antagonism also partially reversed noncardiovascular manifestations of MFS, including impaired alveolar septation. These data suggest that losartan, a drug already in clinical use for hypertension, merits investigation as a therapeutic strategy for patients with MFS and has the potential to prevent the major life-threatening manifestation of this disorder.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482474/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482474/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Habashi, Jennifer P -- Judge, Daniel P -- Holm, Tammy M -- Cohn, Ronald D -- Loeys, Bart L -- Cooper, Timothy K -- Myers, Loretha -- Klein, Erin C -- Liu, Guosheng -- Calvi, Carla -- Podowski, Megan -- Neptune, Enid R -- Halushka, Marc K -- Bedja, Djahida -- Gabrielson, Kathleen -- Rifkin, Daniel B -- Carta, Luca -- Ramirez, Francesco -- Huso, David L -- Dietz, Harry C -- K08 HL067056/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):117-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601194" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Antagonists/administration & dosage/therapeutic use ; Angiotensin II Type 1 Receptor Blockers/administration & dosage/*therapeutic use ; Animals ; Antibodies/immunology ; Aorta/pathology ; Aortic Aneurysm/etiology/*prevention & control ; *Disease Models, Animal ; Elastic Tissue/pathology ; Female ; Losartan/administration & dosage/*therapeutic use ; Lung/pathology ; Lung Diseases/drug therapy/pathology ; Marfan Syndrome/complications/*drug therapy/metabolism/pathology ; Mice ; Microfilament Proteins/genetics ; Mutation ; Neutralization Tests ; Pregnancy ; Pregnancy Complications/drug therapy ; Propranolol/administration & dosage/therapeutic use ; Pulmonary Alveoli/pathology ; Receptor, Angiotensin, Type 1/metabolism ; Signal Transduction ; Transforming Growth Factor beta/antagonists & inhibitors/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DiCicco-Bloom, Emanuel -- New York, N.Y. -- Science. 2006 Mar 17;311(5767):1560-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Cell Biology/Pediatrics (Neurology), University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA. diciccem@umdnj.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16543446" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/*physiology/ultrastructure ; Animals ; Brain/cytology/*embryology ; *Cell Adhesion ; Cell Count ; Cell Death ; Cell Differentiation ; Cell Movement ; Cell Proliferation ; Central Nervous System/cytology/embryology ; Cytoskeleton/physiology ; Hedgehog Proteins ; Hyperplasia ; Mice ; Mutation ; Neurons/cytology/*physiology ; Signal Transduction ; Stem Cells/cytology/physiology ; Trans-Activators/*metabolism ; alpha Catenin/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2006-07-29
    Description: The cross-species transmission of lentiviruses from African primates to humans has selected viral adaptations which have subsequently facilitated human-to-human transmission. HIV adapts not only by positive selection through mutation but also by recombination of segments of its genome in individuals who become multiply infected. Naturally infected nonhuman primates are relatively resistant to AIDS-like disease despite high plasma viral loads and sustained viral evolution. Further understanding of host resistance factors and the mechanisms of disease in natural primate hosts may provide insight into unexplored therapeutic avenues for the prevention of AIDS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heeney, Jonathan L -- Dalgleish, Angus G -- Weiss, Robin A -- G8712499/Medical Research Council/United Kingdom -- P01 A148225-01A2/PHS HHS/ -- New York, N.Y. -- Science. 2006 Jul 28;313(5786):462-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Biomedical Primate Research Centre, Rijswijk 2280 GH, Netherlands. heeney@bprc.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16873637" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*immunology/transmission/*virology ; Africa ; Animals ; Disease Progression ; Disease Reservoirs ; *Evolution, Molecular ; HIV Infections/immunology/transmission/virology ; HIV-1/classification/*genetics/physiology ; HIV-2/genetics ; HLA Antigens/genetics/immunology ; Humans ; *Immunity, Innate ; Mutation ; Pan troglodytes/virology ; Primates/virology ; Recombination, Genetic ; Selection, Genetic ; Simian Acquired Immunodeficiency Syndrome/transmission/virology ; Simian Immunodeficiency Virus/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2006-01-28
    Description: The spread of H5N1 avian influenza viruses (AIVs) from China to Europe has raised global concern about their potential to infect humans and cause a pandemic. In spite of their substantial threat to human health, remarkably little AIV whole-genome information is available. We report here a preliminary analysis of the first large-scale sequencing of AIVs, including 2196 AIV genes and 169 complete genomes. We combine this new information with public AIV data to identify new gene alleles, persistent genotypes, compensatory mutations, and a potential virulence determinant.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obenauer, John C -- Denson, Jackie -- Mehta, Perdeep K -- Su, Xiaoping -- Mukatira, Suraj -- Finkelstein, David B -- Xu, Xiequn -- Wang, Jinhua -- Ma, Jing -- Fan, Yiping -- Rakestraw, Karen M -- Webster, Robert G -- Hoffmann, Erich -- Krauss, Scott -- Zheng, Jie -- Zhang, Ziwei -- Naeve, Clayton W -- AI95357/AI/NIAID NIH HHS/ -- CA 21765/CA/NCI NIH HHS/ -- R01 GM061739/GM/NIGMS NIH HHS/ -- R01 GM069916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 17;311(5767):1576-80. Epub 2006 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Computational Biology ; *Genes, Viral ; Genome, Viral ; Humans ; Influenza A Virus, H1N1 Subtype/genetics ; Influenza A Virus, H2N2 Subtype/genetics ; Influenza A Virus, H3N2 Subtype/genetics ; Influenza A Virus, H3N8 Subtype/genetics ; Influenza A Virus, H5N1 Subtype/chemistry/*genetics/pathogenicity ; Influenza A Virus, H5N2 Subtype/genetics ; Influenza A Virus, H7N7 Subtype/genetics ; Influenza A Virus, H9N2 Subtype/genetics ; Influenza A virus/chemistry/*genetics/isolation & purification/pathogenicity ; Influenza in Birds/virology ; Influenza, Human/virology ; Molecular Sequence Data ; Mutation ; Phylogeny ; RNA, Viral/genetics ; Reassortant Viruses/genetics ; Sequence Analysis, DNA ; Viral Nonstructural Proteins/*chemistry/genetics ; Viral Proteins/chemistry/genetics ; Virulence Factors/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2006-08-26
    Description: The ataxia telangiectasia mutated (ATM) protein kinase is a critical component of a DNA-damage response network configured to maintain genomic integrity. The abundance of an essential downstream effecter of this pathway, the tumor suppressor protein p53, is tightly regulated by controlled degradation through COP1 and other E3 ubiquitin ligases, such as MDM2 and Pirh2; however, the signal transduction pathway that regulates the COP1-p53 axis following DNA damage remains enigmatic. We observed that in response to DNA damage, ATM phosphorylated COP1 on Ser(387) and stimulated a rapid autodegradation mechanism. Ionizing radiation triggered an ATM-dependent movement of COP1 from the nucleus to the cytoplasm, and ATM-dependent phosphorylation of COP1 on Ser(387) was both necessary and sufficient to disrupt the COP1-p53 complex and subsequently to abrogate the ubiquitination and degradation of p53. Furthermore, phosphorylation of COP1 on Ser(387) was required to permit p53 to become stabilized and to exert its tumor suppressor properties in response to DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornan, David -- Shimizu, Harumi -- Mah, Angie -- Dudhela, Tanay -- Eby, Michael -- O'rourke, Karen -- Seshagiri, Somasekar -- Dixit, Vishva M -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931761" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/genetics/*metabolism ; Escherichia coli/genetics/metabolism ; Etoposide/pharmacology ; Humans ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA, Small Interfering ; Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics/metabolism ; Tumor Suppressor Proteins/genetics/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2006-07-15
    Description: The electric fields produced in folded proteins influence nearly every aspect of protein function. We present a vibrational spectroscopy technique that measures changes in electric field at a specific site of a protein as shifts in frequency (Stark shifts) of a calibrated nitrile vibration. A nitrile-containing inhibitor is used to deliver a unique probe vibration to the active site of human aldose reductase, and the response of the nitrile stretch frequency is measured for a series of mutations in the enzyme active site. These shifts yield quantitative information on electric fields that can be directly compared with electrostatics calculations. We show that extensive molecular dynamics simulations and ensemble averaging are required to reproduce the observed changes in field.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suydam, Ian T -- Snow, Christopher D -- Pande, Vijay S -- Boxer, Steven G -- New York, N.Y. -- Science. 2006 Jul 14;313(5784):200-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16840693" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Reductase/antagonists & inhibitors/*chemistry/genetics/metabolism ; Binding Sites ; Circular Dichroism ; Computer Simulation ; *Electricity ; Enzyme Inhibitors/metabolism/pharmacology ; Humans ; Models, Molecular ; Mutation ; Nitriles/metabolism/pharmacology ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Spectrophotometry, Infrared ; Spectrum Analysis ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartmann, Anat -- Kislev, Mordechai E -- Weiss, Ehud -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):296; author reply 296-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16869032" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; Archaeology ; Crops, Agricultural/genetics/growth & development/*history ; Edible Grain/genetics/growth & development/history ; History, Ancient ; Hordeum/genetics/growth & development/history ; Mutation ; Time ; Triticum/genetics/growth & development/*history
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2006-06-03
    Description: Checkpoints are evolutionarily conserved signaling mechanisms that arrest cell division and alter cellular stress resistance in response to DNA damage or stalled replication forks. To study the consequences of loss of checkpoint functions in whole animals, checkpoint genes were inactivated in the nematode C. elegans. We show that checkpoint proteins are not only essential for normal development but also determine adult somatic maintenance. Checkpoint proteins play a role in the survival of postmitotic adult cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Anders -- Vantipalli, Maithili C -- Lithgow, Gordon J -- AG21069/AG/NIA NIH HHS/ -- AG22868/AG/NIA NIH HHS/ -- NS050789-01/NS/NINDS NIH HHS/ -- R01 AG021069/AG/NIA NIH HHS/ -- R01 AG021069-04/AG/NIA NIH HHS/ -- R01 AG022868/AG/NIA NIH HHS/ -- R01 AG022868-04/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 2;312(5778):1381-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Buck Institute, 8001 Redwood Boulevard, Novato, CA 94945, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16741121" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics/physiology ; Animals ; Caenorhabditis elegans/cytology/growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/*physiology ; Cell Cycle Proteins/genetics/*physiology ; Cell Survival ; Heat-Shock Proteins/biosynthesis/genetics ; Mitosis/genetics/*physiology ; Mutation ; Protein Kinases/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2006-07-11
    Description: The evolution of new combinations of bacterial properties contributes to biodiversity and the emergence of new diseases. We investigated the capacity for bacterial divergence with a chemostat culture of Escherichia coli. A clonal population radiated into more than five phenotypic clusters within 26 days, with multiple variations in global regulation, metabolic strategies, surface properties, and nutrient permeability pathways. Most isolates belonged to a single ecotype, and neither periodic selection events nor ecological competition for a single niche prevented an adaptive radiation with a single resource. The multidirectional exploration of fitness space is an underestimated ingredient to bacterial success even in unstructured environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maharjan, Ram -- Seeto, Shona -- Notley-McRobb, Lucinda -- Ferenci, Thomas -- New York, N.Y. -- Science. 2006 Jul 28;313(5786):514-7. Epub 2006 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825532" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; *Biological Evolution ; Cell Membrane Permeability ; Culture Media ; *Ecosystem ; Environment ; Escherichia coli/classification/*genetics/growth & development/*physiology ; Gene Expression Regulation, Bacterial ; *Genetic Variation ; Genotype ; Glucose/metabolism ; Mutation ; Phenotype ; Phylogeny ; Selection, Genetic ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-01
    Description: Prehistoric cultivation of wild wheat in the Fertile Crescent led to the selection of mutants with indehiscent (nonshattering) ears, which evolved into modern domestic wheat. Previous estimates suggested that this transformation was rapid, but our analyses of archaeological plant remains demonstrate that indehiscent domesticates were slow to appear, emerging approximately 9500 years before the present, and that dehiscent (shattering) forms were still common in cultivated fields approximately 7500 years before the present. Slow domestication implies that after cultivation began, wild cereals may have remained unchanged for a long period, supporting claims that agriculture originated in the Near East approximately 10,500 years before the present.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanno, Ken-Ichi -- Willcox, George -- New York, N.Y. -- Science. 2006 Mar 31;311(5769):1886.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute for Humanity and Nature, Takashima 335, Kamigyo, 602-0878 Kyoto, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16574859" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; *Archaeology ; Crops, Agricultural/genetics/growth & development/*history ; History, Ancient ; Mutation ; Time ; Triticum/genetics/growth & development/*history ; Turkey
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2006-09-09
    Description: We describe reproductive isolation caused by a gene transposition. In certain Drosophila melanogaster-D. simulans hybrids, hybrid male sterility is caused by the lack of a single-copy gene essential for male fertility, JYAlpha. This gene is located on the fourth chromosome of D. melanogaster but on the third chromosome of D. simulans. Genomic and molecular analyses show that JYAlpha transposed to the third chromosome during the evolutionary history of the D. simulans lineage. Because of this transposition, a fraction of hybrids completely lack JYAlpha and are sterile, representing reproductive isolation without sequence evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masly, John P -- Jones, Corbin D -- Noor, Mohamed A F -- Locke, John -- Orr, H Allen -- New York, N.Y. -- Science. 2006 Sep 8;313(5792):1448-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, Rochester, NY 14627, USA. msly@mail.rochester.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16960009" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Chromosomes/*genetics ; Drosophila/enzymology/*genetics/physiology ; Drosophila melanogaster/enzymology/*genetics/physiology ; Evolution, Molecular ; Female ; Fertility/genetics ; Gene Dosage ; *Genes, Insect ; *Hybridization, Genetic ; Male ; Mutation ; *Recombination, Genetic ; Reproduction/genetics ; Sodium-Potassium-Exchanging ATPase/*genetics ; Sperm Motility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2006-08-12
    Description: In the mouse trigeminal pathway, sensory inputs from distinct facial structures, such as whiskers or lower jaw and lip, are topographically mapped onto the somatosensory cortex through relay stations in the thalamus and hindbrain. In the developing hindbrain, the mechanisms generating such maps remain elusive. We found that in the principal sensory nucleus, the whisker-related map is contributed by rhombomere 3-derived neurons, whereas the rhombomere 2-derived progeny supply the lower jaw and lip representation. Moreover, early Hoxa2 expression in neuroepithelium prevents the trigeminal nerve from ectopically projecting to the cerebellum, whereas late expression in the principal sensory nucleus promotes selective arborization of whisker-related afferents and topographic connectivity to the thalamus. Hoxa2 inactivation further results in the absence of whisker-related maps in the postnatal brain. Thus, Hoxa2- and rhombomere 3-dependent cues determine the whisker area map and are required for the assembly of the whisker-to-barrel somatosensory circuit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oury, Franck -- Murakami, Yasunori -- Renaud, Jean-Sebastien -- Pasqualetti, Massimo -- Charnay, Patrick -- Ren, Shu-Yue -- Rijli, Filippo M -- New York, N.Y. -- Science. 2006 Sep 8;313(5792):1408-13. Epub 2006 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/Universite Louis Pasteur, UMR 7104, BP 10142, Communaute Urbaine de Strasbourg, 67404 Illkirch Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902088" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways ; Animals ; Axons/ultrastructure ; Face/innervation ; Homeodomain Proteins/genetics/*physiology ; Lip/innervation ; Mandible/embryology/innervation ; Mice ; Mice, Transgenic ; Mutation ; Neurons, Afferent/cytology ; Receptor, EphA4/metabolism ; Receptor, EphA7/metabolism ; Rhombencephalon/cytology/*embryology/metabolism ; Somatosensory Cortex/*anatomy & histology/embryology ; Thalamus/embryology/metabolism ; Trigeminal Ganglion/embryology/metabolism ; Trigeminal Nerve/*embryology/physiology ; Ventral Thalamic Nuclei/embryology ; Vibrissae/*innervation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2006-05-27
    Description: The energy that sustains cancer cells is derived preferentially from glycolysis. This metabolic change, the Warburg effect, was one of the first alterations in cancer cells recognized as conferring a survival advantage. Here, we show that p53, one of the most frequently mutated genes in cancers, modulates the balance between the utilization of respiratory and glycolytic pathways. We identify Synthesis of Cytochrome c Oxidase 2 (SCO2) as the downstream mediator of this effect in mice and human cancer cell lines. SCO2 is critical for regulating the cytochrome c oxidase (COX) complex, the major site of oxygen utilization in the eukaryotic cell. Disruption of the SCO2 gene in human cancer cells with wild-type p53 recapitulated the metabolic switch toward glycolysis that is exhibited by p53-deficient cells. That SCO2 couples p53 to mitochondrial respiration provides a possible explanation for the Warburg effect and offers new clues as to how p53 might affect aging and metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matoba, Satoaki -- Kang, Ju-Gyeong -- Patino, Willmar D -- Wragg, Andrew -- Boehm, Manfred -- Gavrilova, Oksana -- Hurley, Paula J -- Bunz, Fred -- Hwang, Paul M -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 16;312(5780):1650-3. Epub 2006 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728594" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Carrier Proteins ; Cell Line, Tumor ; *Cell Respiration ; Cell Survival ; Electron Transport Complex IV/*genetics/metabolism/physiology ; Gene Expression Regulation, Neoplastic ; *Genes, p53 ; Glycolysis ; Humans ; Membrane Proteins/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria/*metabolism ; Mitochondria, Liver/*metabolism ; Mitochondrial Proteins ; Mutation ; Oxygen Consumption ; Proteins/*genetics/physiology ; RNA, Small Interfering ; Recombination, Genetic ; Transcription, Genetic ; Transcriptional Activation ; Tumor Suppressor Protein p53/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2006-02-14
    Description: Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) mediates viral genome attachment to mitotic chromosomes. We find that N-terminal LANA docks onto chromosomes by binding nucleosomes through the folded region of histones H2A-H2B. The same LANA residues were required for both H2A-H2B binding and chromosome association. Further, LANA did not bind Xenopus sperm chromatin, which is deficient in H2A-H2B; chromatin binding was rescued after assembly of nucleosomes containing H2A-H2B. We also describe the 2.9-angstrom crystal structure of a nucleosome complexed with the first 23 LANA amino acids. The LANA peptide forms a hairpin that interacts exclusively with an acidic H2A-H2B region that is implicated in the formation of higher order chromatin structure. Our findings present a paradigm for how nucleosomes may serve as binding platforms for viral and cellular proteins and reveal a previously unknown mechanism for KSHV latency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barbera, Andrew J -- Chodaparambil, Jayanth V -- Kelley-Clarke, Brenna -- Joukov, Vladimir -- Walter, Johannes C -- Luger, Karolin -- Kaye, Kenneth M -- CA82036/CA/NCI NIH HHS/ -- GM067777/GM/NIGMS NIH HHS/ -- GM62267/GM/NIGMS NIH HHS/ -- R01 GM067777/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):856-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469929" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, Viral/*chemistry/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromosomes/metabolism ; Chromosomes, Human/metabolism ; Chromosomes, Mammalian/metabolism ; Crystallography, X-Ray ; Dimerization ; Herpesvirus 8, Human/chemistry/*metabolism ; Histones/chemistry/*metabolism ; Humans ; Models, Molecular ; Mutation ; Nuclear Proteins/*chemistry/*metabolism ; Nucleosomes/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2006-10-07
    Description: A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pagel, Mark -- Venditti, Chris -- Meade, Andrew -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):119-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. m.pagel@rdg.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bayes Theorem ; DNA/*genetics ; DNA, Fungal/genetics ; DNA, Plant/genetics ; *Evolution, Molecular ; Founder Effect ; Fungi/classification/genetics ; *Genetic Speciation ; Genetic Variation ; Likelihood Functions ; Mathematics ; Models, Statistical ; Mutation ; Phylogeny ; Plants/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2006-01-28
    Description: The postsynaptic density (PSD) is a complex assembly of proteins associated with the postsynaptic membrane that organizes neurotransmitter receptors, signaling pathways, and regulatory elements within a cytoskeletal matrix. Here we show that the sterile alpha motif domain of rat Shank3/ProSAP2, a master scaffolding protein located deep within the PSD, can form large sheets composed of helical fibers stacked side by side. Zn2+, which is found in high concentrations in the PSD, binds tightly to Shank3 and may regulate assembly. Sheets of the Shank protein could form a platform for the construction of the PSD complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baron, Marisa K -- Boeckers, Tobias M -- Vaida, Bianca -- Faham, Salem -- Gingery, Mari -- Sawaya, Michael R -- Salyer, Danielle -- Gundelfinger, Eckart D -- Bowie, James U -- R01 CA081000/CA/NCI NIH HHS/ -- R01 GM063919/GM/NIGMS NIH HHS/ -- R01 GM063919-07/GM/NIGMS NIH HHS/ -- R01 GM063919-08/GM/NIGMS NIH HHS/ -- R01 GM075922/GM/NIGMS NIH HHS/ -- R01 GM075922-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):531-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439662" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/analysis/*chemistry/genetics/metabolism ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Hippocampus/chemistry ; Microscopy, Electron ; Models, Molecular ; Mutation ; Nerve Tissue Proteins ; Neurons/chemistry ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Rats ; Recombinant Fusion Proteins/analysis ; Solubility ; Synapses/*chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2006-02-14
    Description: Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldwin, Ian T -- Halitschke, Rayko -- Paschold, Anja -- von Dahl, Caroline C -- Preston, Catherine A -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):812-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knoll Strasse 8, Jena 07745, Germany. baldwin@ice.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469918" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Diffusion ; Gene Expression Regulation, Plant ; Genomics ; Mutation ; Oligonucleotide Array Sequence Analysis ; Organic Chemicals/*metabolism ; Plant Leaves/metabolism ; *Plant Physiological Phenomena ; Plants/*genetics/metabolism ; Signal Transduction ; Volatilization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1086.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Autoimmune Diseases/immunology ; *Autoimmunity ; Caspase 10 ; Caspase Inhibitors ; Caspases/genetics/metabolism ; Dendritic Cells/*immunology/*physiology ; Humans ; Lymphocyte Activation ; Mice ; Mutation ; Viral Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-27
    Description: One of the most exciting developments in cancer research in recent years has been the clinical validation of molecularly targeted drugs that inhibit the action of pathogenic tyrosine kinases. Treatment of appropriately selected patients with these drugs can alter the natural history of their disease and improve survival. The clinical validation of these "first-generation" tyrosine kinase inhibitors has been the prelude to a second wave of advances in molecular targeting that is expected to further change the way we classify and treat cancer. Efforts are now being directed at identifying the tumor subtypes and patients who will benefit the most from these drugs. In addition, new compounds that circumvent acquired resistance to the first-generation tyrosine kinase inhibitors are being tested in patients with refractory disease. Agents directed against new molecular targets are also being explored.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baselga, Jose -- New York, N.Y. -- Science. 2006 May 26;312(5777):1175-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oncology Program, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute, Universidad Autonoma de Barcelona, Barcelona 08035, Spain. jbaselga@vhebron.net〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728632" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/pharmacology/therapeutic use ; Antibodies, Monoclonal, Humanized ; Antineoplastic Agents/*therapeutic use ; Benzamides ; Drug Resistance, Neoplasm ; Fusion Proteins, bcr-abl/antagonists & inhibitors/metabolism ; Humans ; Imatinib Mesylate ; Mutation ; Neoplasms/*drug therapy/enzymology/genetics ; Piperazines/pharmacology/therapeutic use ; Protein Kinase Inhibitors/*therapeutic use ; Protein-Tyrosine Kinases/*antagonists & inhibitors/genetics ; Proto-Oncogene Proteins c-kit/metabolism ; Pyrimidines/pharmacology/therapeutic use ; Receptor, Epidermal Growth Factor/antagonists & inhibitors/metabolism ; Receptor, ErbB-2/antagonists & inhibitors/metabolism ; Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors/metabolism ; Trastuzumab
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2006-01-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, Martin -- New York, N.Y. -- Science. 2006 Jan 20;311(5759):314-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424301" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/blood ; *Disease Outbreaks/veterinary ; Humans ; *Influenza A Virus, H5N1 Subtype/genetics/immunology/pathogenicity ; Influenza in Birds/*epidemiology/virology ; Influenza, Human/*epidemiology/transmission/*virology ; International Cooperation ; Mutation ; Poultry ; Seroepidemiologic Studies ; Turkey/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, Martin -- New York, N.Y. -- Science. 2006 Jan 13;311(5758):161.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16410495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/*virology ; Mutation ; Poultry ; Poultry Diseases/transmission/virology ; Turkey
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2006-02-18
    Description: In the mammalian nervous system, neuronal activity regulates the strength and number of synapses formed. The genetic program that coordinates this process is poorly understood. We show that myocyte enhancer factor 2 (MEF2) transcription factors suppressed excitatory synapse number in a neuronal activity- and calcineurin-dependent manner as hippocampal neurons formed synapses. In response to increased neuronal activity, calcium influx into neurons induced the activation of the calcium/calmodulin-regulated phosphatase calcineurin, which dephosphorylated and activated MEF2. When activated, MEF2 promoted the transcription of a set of genes, including arc and synGAP, that restrict synapse number. These findings define an activity-dependent transcriptional program that may control synapse number during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavell, Steven W -- Cowan, Christopher W -- Kim, Tae-Kyung -- Greer, Paul L -- Lin, Yingxi -- Paradis, Suzanne -- Griffith, Eric C -- Hu, Linda S -- Chen, Chinfei -- Greenberg, Michael E -- AG05870/AG/NIA NIH HHS/ -- HD18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- R01 EY013613/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1008-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Program, Children's Hospital, and Departments of Neurology and Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcium/metabolism ; Cells, Cultured ; Cytoskeletal Proteins/genetics ; Dendrites/physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; GTPase-Activating Proteins/genetics ; Gene Expression Regulation ; Glutamic Acid/metabolism ; Hippocampus/cytology/*physiology ; MEF2 Transcription Factors ; Mutation ; Myogenic Regulatory Factors/genetics/*physiology ; Nerve Tissue Proteins/genetics ; Neurons/*physiology ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; RNA Interference ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Synapses/*physiology ; Synaptic Transmission ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2006-04-08
    Description: Biological responses to histone methylation critically depend on the faithful readout and transduction of the methyl-lysine signal by "effector" proteins, yet our understanding of methyl-lysine recognition has so far been limited to the study of histone binding by chromodomain and WD40-repeat proteins. The double tudor domain of JMJD2A, a Jmjc domain-containing histone demethylase, binds methylated histone H3-K4 and H4-K20. We found that the double tudor domain has an interdigitated structure, and the unusual fold is required for its ability to bind methylated histone tails. The cocrystal structure of the JMJD2A double tudor domain with a trimethylated H3-K4 peptide reveals that the trimethyl-K4 is bound in a cage of three aromatic residues, two of which are from the tudor-2 motif, whereas the binding specificity is determined by side-chain interactions involving amino acids from the tudor-1 motif. Our study provides mechanistic insights into recognition of methylated histone tails by tudor domains and reveals the structural intricacy of methyl-lysine recognition by two closely spaced effector domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Ying -- Fang, Jia -- Bedford, Mark T -- Zhang, Yi -- Xu, Rui-Ming -- DK62248/DK/NIDDK NIH HHS/ -- GM 63718/GM/NIGMS NIH HHS/ -- GM68804/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 May 5;312(5774):748-51. Epub 2006 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601153" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Histones/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Jumonji Domain-Containing Histone Demethylases ; Lysine/metabolism ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Oxidoreductases, N-Demethylating ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Static Electricity ; Transcription Factors/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2006-04-29
    Description: Rice blast is caused by the fungus Magnaporthe grisea, which elaborates specialized infection cells called appressoria to penetrate the tough outer cuticle of the rice plant Oryza sativa. We found that the formation of an appressorium required, sequentially, the completion of mitosis, nuclear migration, and death of the conidium (fungal spore) from which the infection originated. Genetic intervention during mitosis prevented both appressorium development and conidium death. Impairment of autophagy, by the targeted mutation of the MgATG8 gene, arrested conidial cell death but rendered the fungus nonpathogenic. Thus, the initiation of rice blast requires autophagic cell death of the conidium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veneault-Fourrey, Claire -- Barooah, Madhumita -- Egan, Martin -- Wakley, Gavin -- Talbot, Nicholas J -- New York, N.Y. -- Science. 2006 Apr 28;312(5773):580-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biosciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4QG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645096" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Autophagy ; Benomyl/pharmacology ; Cell Nucleus/physiology ; Cell Nucleus Division ; Genes, Fungal ; Hydroxyurea/pharmacology ; Magnaporthe/*cytology/genetics/pathogenicity/*physiology ; Microtubule-Associated Proteins/genetics/physiology ; Mitosis/drug effects ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Oryza/*microbiology ; Plant Diseases/*microbiology ; Spores, Fungal/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2006-06-24
    Description: Organisms ranging from bacteria to humans synchronize their internal clocks to daily cycles of light and dark. Photic entrainment of the Drosophila clock is mediated by proteasomal degradation of the clock protein TIMELESS (TIM). We have identified mutations in jetlag-a gene coding for an F-box protein with leucine-rich repeats-that result in reduced light sensitivity of the circadian clock. Mutant flies show rhythmic behavior in constant light, reduced phase shifts in response to light pulses, and reduced light-dependent degradation of TIM. Expression of JET along with the circadian photoreceptor cryptochrome (CRY) in cultured S2R cells confers light-dependent degradation onto TIM, thereby reconstituting the acute response + of the circadian clock to light in a cell culture system. Our results suggest that JET is essential for resetting the clock by transmitting light signals from CRY to TIM.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767177/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767177/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koh, Kyunghee -- Zheng, Xiangzhong -- Sehgal, Amita -- NS048471/NS/NINDS NIH HHS/ -- R01 NS048471/NS/NINDS NIH HHS/ -- R01 NS048471-02/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1809-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794082" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; *Circadian Rhythm ; Cryptochromes ; Drosophila/chemistry/genetics/physiology ; Drosophila Proteins/chemistry/*genetics/*metabolism/*physiology ; Drosophila melanogaster/chemistry/*genetics/*physiology ; Eye Proteins/metabolism ; F-Box Proteins/chemistry/*genetics/*physiology ; Female ; *Light ; Male ; Models, Biological ; Molecular Sequence Data ; Mutation ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/metabolism ; Transgenes ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2006-12-16
    Description: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrin, Ali A -- Del Vecchio, Catherine -- Tseng, Eva -- Gleason, Megan -- Zarin, Payam -- Tian, Ming -- Alt, Frederick W -- 2P01AI031541-15/AI/NIAID NIH HHS/ -- P01CA092625-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):377-81. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Embryonic Stem Cells ; Gene Targeting ; Genes, Immunoglobulin Heavy Chain ; Hybridomas ; *Immunoglobulin Class Switching ; Immunoglobulin G/biosynthesis/genetics ; Immunoglobulin M/biosynthesis/genetics ; *Immunoglobulin Switch Region ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2006-12-23
    Description: The germinal center (GC) is an important site for the generation and selection of B cells bearing high-affinity antibodies, yet GC cell migration and interaction dynamics have not been directly observed. Using two-photon microscopy of mouse lymph nodes, we revealed that GC B cells are highly motile and extend long cell processes. They transited between GC dark and light zones and divided in both regions, although these B cells resided for only several hours in the light zone where antigen is displayed. GC B cells formed few stable contacts with GC T cells despite frequent encounters, and T cells were seen to carry dead B cell blebs. On the basis of these observations, we propose a model in which competition for T cell help plays a more dominant role in the selection of GC B cells than previously appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, Christopher D C -- Okada, Takaharu -- Tang, H Lucy -- Cyster, Jason G -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):528-31. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185562" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; B-Lymphocytes/*cytology/*immunology/physiology ; Cell Cycle ; Cell Death ; Cell Movement ; Dendritic Cells, Follicular/cytology/physiology ; Germinal Center/cytology/*immunology ; Macrophages/physiology ; Mice ; Mice, Inbred C57BL ; Microscopy/methods ; Models, Immunological ; Mutation ; T-Lymphocytes/cytology/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chaudhuri, Jayanta -- Jasin, Maria -- R01 GM054668/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):335-6. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. chaudhuj@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Formation ; B-Lymphocytes/*immunology ; Cytidine Deaminase/genetics/*metabolism ; DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/*metabolism ; Genes, Immunoglobulin Heavy Chain ; *Immunoglobulin Class Switching ; *Immunoglobulin Switch Region ; Mice ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2006-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2006 Apr 28;312(5773):515.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645062" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastomyces/cytology/enzymology/*genetics/*pathogenicity ; Blastomycosis/microbiology ; Fungal Proteins/genetics/physiology ; Genes, Fungal ; Lung Diseases, Fungal/microbiology ; Mice ; Mutation ; Protein Kinases/*genetics/*physiology ; RNA Interference ; Soil Microbiology ; Spores, Fungal/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-23
    Description: In mammals, odorant receptors (ORs) direct the axons of olfactory sensory neurons (OSNs) toward targets in the olfactory bulb. We show that cyclic adenosine monophosphate (cAMP) signals that regulate the expression of axon guidance molecules are essential for the OR-instructed axonal projection. Genetic manipulations of ORs, stimulatory G protein, cAMP-dependent protein kinase, and cAMP response element-binding protein shifted the axonal projection sites along the anteriorposterior axis in the olfactory bulb. Thus, it is the OR-derived cAMP signals, rather than direct action of OR molecules, that determine the target destinations of OSNs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imai, Takeshi -- Suzuki, Misao -- Sakano, Hitoshi -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):657-61. Epub 2006 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990513" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Axons/*physiology ; Cyclic AMP/*metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; GTP-Binding Protein alpha Subunits, Gs/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Neuropilin-1/genetics/metabolism ; Olfactory Bulb/cytology/*physiology ; Olfactory Receptor Neurons/*physiology ; Oligonucleotide Array Sequence Analysis ; Rats ; Rats, Wistar ; Receptors, Odorant/*metabolism ; *Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2006 Feb 3;311(5761):591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16456043" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animals ; *Biological Evolution ; Genes, Insect ; *Genetic Variation ; Juvenile Hormones/physiology ; Larva/genetics/physiology ; Manduca/*genetics/physiology ; Mutation ; Phenotype ; Pigmentation/*genetics ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2006-04-08
    Description: Intercellular flow of the phytohormone auxin underpins multiple developmental processes in plants. Plant-specific pin-formed (PIN) proteins and several phosphoglycoprotein (PGP) transporters are crucial factors in auxin transport-related development, yet the molecular function of PINs remains unknown. Here, we show that PINs mediate auxin efflux from mammalian and yeast cells without needing additional plant-specific factors. Conditional gain-of-function alleles and quantitative measurements of auxin accumulation in Arabidopsis and tobacco cultured cells revealed that the action of PINs in auxin efflux is distinct from PGP, rate-limiting, specific to auxins, and sensitive to auxin transport inhibitors. This suggests a direct involvement of PINs in catalyzing cellular auxin efflux.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrasek, Jan -- Mravec, Jozef -- Bouchard, Rodolphe -- Blakeslee, Joshua J -- Abas, Melinda -- Seifertova, Daniela -- Wisniewska, Justyna -- Tadele, Zerihun -- Kubes, Martin -- Covanova, Milada -- Dhonukshe, Pankaj -- Skupa, Petr -- Benkova, Eva -- Perry, Lucie -- Krecek, Pavel -- Lee, Ok Ran -- Fink, Gerald R -- Geisler, Markus -- Murphy, Angus S -- Luschnig, Christian -- Zazimalova, Eva -- Friml, Jiri -- New York, N.Y. -- Science. 2006 May 12;312(5775):914-8. Epub 2006 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601150" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/genetics/metabolism ; Arabidopsis/cytology/growth & development/*metabolism/physiology ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport ; Cell Membrane/metabolism ; Cells, Cultured ; Gravitropism ; HeLa Cells ; Humans ; Indoleacetic Acids/*metabolism ; Kinetics ; Membrane Transport Proteins/genetics/*metabolism ; Mutation ; Naphthaleneacetic Acids/metabolism ; Phthalimides/pharmacology ; Plant Roots/physiology ; Saccharomyces cerevisiae/genetics ; Tobacco ; Transfection ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2006-03-25
    Description: Innate immunity against bacterial and fungal pathogens is mediated by Toll and immune deficiency (Imd) pathways, but little is known about the antiviral response in Drosophila. Here, we demonstrate that an RNA interference pathway protects adult flies from infection by two evolutionarily diverse viruses. Our work also describes a molecular framework for the viral immunity, in which viral double-stranded RNA produced during infection acts as the pathogen trigger whereas Drosophila Dicer-2 and Argonaute-2 act as host sensor and effector, respectively. These findings establish a Drosophila model for studying the innate immunity against viruses in animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1509097/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1509097/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiao-Hong -- Aliyari, Roghiyh -- Li, Wan-Xiang -- Li, Hong-Wei -- Kim, Kevin -- Carthew, Richard -- Atkinson, Peter -- Ding, Shou-Wei -- AI052447/AI/NIAID NIH HHS/ -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM068743/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):452-4. Epub 2006 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program for Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16556799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Cell Line ; Drosophila Proteins/genetics/metabolism/physiology ; Drosophila melanogaster/embryology/genetics/*immunology/*virology ; Embryo, Nonmammalian/immunology/virology ; Escherichia coli/physiology ; *Immunity, Innate ; Insect Viruses/genetics/*physiology ; Micrococcus luteus/physiology ; Mutation ; Nodaviridae/*physiology ; RNA Helicases/genetics/metabolism ; *RNA Interference ; RNA Viruses/genetics/physiology ; RNA, Double-Stranded/metabolism ; RNA, Small Interfering/metabolism ; RNA, Viral/genetics/metabolism ; RNA-Binding Proteins/genetics/physiology ; RNA-Induced Silencing Complex/genetics/physiology ; Ribonuclease III ; Signal Transduction ; Toll-Like Receptors/physiology ; Transfection ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2006-07-01
    Description: The clock gene period-4 (prd-4) in Neurospora was identified by a single allele displaying shortened circadian period and altered temperature compensation. Positional cloning followed by functional tests show that PRD-4 is an ortholog of mammalian checkpoint kinase 2 (Chk2). Expression of prd-4 is regulated by the circadian clock and, reciprocally, PRD-4 physically interacts with the clock component FRQ, promoting its phosphorylation. DNA-damaging agents can reset the clock in a manner that depends on time of day, and this resetting is dependent on PRD-4. Thus, prd-4, the Neurospora Chk2, identifies a molecular link that feeds back conditionally from circadian output to input and the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pregueiro, Antonio M -- Liu, Qiuyun -- Baker, Christopher L -- Dunlap, Jay C -- Loros, Jennifer J -- MH44651/MH/NIMH NIH HHS/ -- P01 GM068087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R37GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):644-9. Epub 2006 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle ; Checkpoint Kinase 2 ; *Circadian Rhythm ; Cloning, Molecular ; DNA Damage ; Feedback, Physiological ; Fungal Proteins/chemistry/genetics/metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutation ; Neurospora/*enzymology/genetics ; Neurospora crassa/cytology/*enzymology/*physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2006-11-04
    Description: Nuclear pore complexes permit rapid passage of cargoes bound to nuclear transport receptors, but otherwise suppress nucleocytoplasmic fluxes of inert macromolecules 〉/=30 kilodaltons. To explain this selectivity, a sieve structure of the permeability barrier has been proposed that is created through reversible cross-linking between Phe and Gly (FG)-rich nucleoporin repeats. According to this model, nuclear transport receptors overcome the size limit of the sieve and catalyze their own nuclear pore-passage by a competitive disruption of adjacent inter-repeat contacts, which transiently opens adjoining meshes. Here, we found that phenylalanine-mediated inter-repeat interactions indeed cross-link FG-repeat domains into elastic and reversible hydrogels. Furthermore, we obtained evidence that such hydrogel formation is required for viability in yeast.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frey, Steffen -- Richter, Ralf P -- Gorlich, Dirk -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):815-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), INF 282, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082456" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Motifs ; Amino Acid Sequence ; Biopolymers ; Calcium-Binding Proteins/*chemistry/genetics/*metabolism ; Fluorescence Recovery After Photobleaching ; HeLa Cells ; Humans ; Hydrogels ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nuclear Pore/chemistry/*metabolism ; Nuclear Pore Complex Proteins/*chemistry/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Nucleocytoplasmic Transport Proteins/*metabolism ; Permeability ; Phenylalanine/chemistry ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Saccharomyces cerevisiae/chemistry/physiology ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-21
    Description: The role of constraint in adaptive evolution is an open question. Directed evolution of an engineered beta-isopropylmalate dehydrogenase (IMDH), with coenzyme specificity switched from nicotinamide adenine dinucleotide (NAD) to nicotinamide adenine dinucleotide phosphate (NADP), always produces mutants with lower affinities for NADP. This result is the correlated response to selection for relief from inhibition by NADPH (the reduced form of NADP) expected of an adaptive landscape subject to three enzymatic constraints: an upper limit to the rate of maximum turnover (kcat), a correlation in NADP and NADPH affinities, and a trade-off between NAD and NADP usage. Two additional constraints, high intracellular NADPH abundance and the cost of compensatory protein synthesis, have ensured the conserved use of NAD by IMDH throughout evolution. Our results show that selective mechanisms and evolutionary constraints are to be understood in terms of underlying adaptive landscapes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Stephen P -- Lunzer, Mark -- Dean, Antony M -- GM060611/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):458-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053145" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Isopropylmalate Dehydrogenase/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; *Adaptation, Physiological ; Amino Acid Substitution ; Binding Sites ; Codon ; *Directed Molecular Evolution ; Escherichia coli/*enzymology/growth & development/physiology ; *Evolution, Molecular ; Kinetics ; Mutation ; NAD/metabolism ; NADP/metabolism ; Phenotype ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2006-04-15
    Description: Terrestrial plants lose water primarily through stomata, pores on the leaves. The hormone abscisic acid (ABA) decreases water loss by regulating opening and closing of stomata. Here, we show that phospholipase Dalpha1 (PLDalpha1) mediates the ABA effects on stomata through interaction with a protein phosphatase 2C (PP2C) and a heterotrimeric GTP-binding protein (G protein) in Arabidopsis. PLDalpha1-produced phosphatidic acid (PA) binds to the ABI1 PP2C to signal ABA-promoted stomatal closure, whereas PLDalpha1 and PA interact with the Galpha subunit of heterotrimeric G protein to mediate ABA inhibition of stomatal opening. The results reveal a bifurcating signaling pathway that regulates plant water loss.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mishra, Girish -- Zhang, Wenhua -- Deng, Fan -- Zhao, Jian -- Wang, Xuemin -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):264-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Missouri, St. Louis, MO 63121, USA, and Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614222" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Amino Acid Motifs ; Arabidopsis/genetics/metabolism/*physiology ; Arabidopsis Proteins/genetics/metabolism ; Crosses, Genetic ; GTP-Binding Protein alpha Subunits/metabolism ; Mutation ; Phosphatidic Acids/metabolism ; Phospholipase D/chemistry/genetics/*metabolism ; Phosphoprotein Phosphatases/genetics/metabolism ; Plant Leaves/*physiology ; *Signal Transduction ; Transgenes ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2006-08-26
    Description: The cellular mechanisms underlying organ formation are largely unknown. We visualized early vertebrate eye morphogenesis at single-cell resolution by in vivo imaging in medaka (Oryzias latipes). Before optic vesicle evagination, retinal progenitor cells (RPCs) modulate their convergence in a fate-specific manner. Presumptive forebrain cells converge toward the midline, whereas medial RPCs remain stationary, predetermining the site of evagination. Subsequent optic vesicle evagination is driven by the active migration of individual RPCs. The analysis of mutants demonstrated that the retina-specific transcription factor rx3 determines the convergence and migration behaviors of RPCs. Hence, the migration of individual cells mediates essential steps of organ morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rembold, Martina -- Loosli, Felix -- Adams, Richard J -- Wittbrodt, Joachim -- G0400709/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1130-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931763" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Cell Movement ; Cell Shape ; Central Nervous System/embryology ; Epithelial Cells/cytology/physiology ; Eye/*embryology ; Fish Proteins/genetics/physiology ; Gastrula/cytology ; Homeodomain Proteins/genetics/physiology ; Image Processing, Computer-Assisted ; Microscopy, Confocal ; Morphogenesis ; Mutation ; Oryzias/*embryology/genetics ; Prosencephalon/embryology ; Retina/cytology/*embryology ; Stem Cell Transplantation ; Stem Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2006-07-01
    Description: Germline variants in MC1R, the gene encoding the melanocortin-1 receptor, and sun exposure increase risk for melanoma in Caucasians. The majority of melanomas that occur on skin with little evidence of chronic sun-induced damage (non-CSD melanoma) have mutations in the BRAF oncogene, whereas in melanomas on skin with marked CSD (CSD melanoma) these mutations are less frequent. In two independent Caucasian populations, we show that MC1R variants are strongly associated with BRAF mutations in non-CSD melanomas. In this tumor subtype, the risk for melanoma associated with MC1R is due to an increase in risk of developing melanomas with BRAF mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landi, Maria Teresa -- Bauer, Jurgen -- Pfeiffer, Ruth M -- Elder, David E -- Hulley, Benjamin -- Minghetti, Paola -- Calista, Donato -- Kanetsky, Peter A -- Pinkel, Daniel -- Bastian, Boris C -- K07 CA80700/CA/NCI NIH HHS/ -- P01 CA025874-25-A1/CA/NCI NIH HHS/ -- R01 CA5558/CA/NCI NIH HHS/ -- R01 CA94963/CA/NCI NIH HHS/ -- R33 CA95300/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 28;313(5786):521-2. Epub 2006 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA. landim@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809487" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Alleles ; Case-Control Studies ; Female ; Genetic Predisposition to Disease ; Genetic Variation ; *Germ-Line Mutation ; Humans ; Italy ; Male ; Melanoma/classification/*genetics/pathology ; Middle Aged ; Mutation ; Odds Ratio ; Proto-Oncogene Proteins B-raf/*genetics ; Receptor, Melanocortin, Type 1/*genetics ; Skin/pathology/*radiation effects ; Skin Neoplasms/classification/*genetics/pathology ; Sunlight/*adverse effects ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Stephen M -- Brennecke, Julius -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):65-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Heidelberg, Germany. cohen@embl.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601183" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adenosine/metabolism ; Animals ; Embryo, Nonmammalian/*physiology ; *Embryonic Development ; Female ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; MicroRNAs/*physiology ; Mutation ; Polymers/metabolism ; RNA Stability ; RNA, Messenger/genetics/*metabolism ; Ribonuclease III/metabolism ; Zebrafish/embryology ; Zygote/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2006-11-25
    Description: Canonical cap-dependent translation initiation requires a large number of protein factors that act in a stepwise assembly process. In contrast, internal ribosomal entry sites (IRESs) are cis-acting RNAs that in some cases completely supplant these factors by recruiting and activating the ribosome using a single structured RNA. Here we present the crystal structures of the ribosome-binding domain from a Dicistroviridae intergenic region IRES at 3.1 angstrom resolution, providing a view of the prefolded architecture of an all-RNA translation initiation apparatus. Docking of the structure into cryo-electron microscopy reconstructions of an IRES-ribosome complex suggests a model for ribosome manipulation by a dynamic IRES RNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669756/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669756/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfingsten, Jennifer S -- Costantino, David A -- Kieft, Jeffrey S -- R01 GM072560/GM/NIGMS NIH HHS/ -- R01 GM072560-01/GM/NIGMS NIH HHS/ -- R01 GM072560-02/GM/NIGMS NIH HHS/ -- R01 GM072560-03/GM/NIGMS NIH HHS/ -- R01 GM072560-04/GM/NIGMS NIH HHS/ -- R01 GM072560-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1450-4. Epub 2006 Nov 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Mail Stop 8101, Post Office Box 6511, Aurora, CO 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124290" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; *Protein Biosynthesis ; RNA Viruses/*genetics ; RNA, Viral/*chemistry/genetics/metabolism ; *Regulatory Sequences, Ribonucleic Acid/genetics ; Ribosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2006-04-29
    Description: Wnt proteins function as morphogens that can form long-range concentration gradients to pattern developing tissues. Here, we show that the retromer, a multiprotein complex involved in intracellular protein trafficking, is required for long-range signaling of the Caenorhabditis elegans Wnt ortholog EGL-20. The retromer functions in EGL-20-producing cells to allow the formation of an EGL-20 gradient along the anteroposterior axis. This function is evolutionarily conserved, because Wnt target gene expression is also impaired in the absence of the retromer complex in vertebrates. These results demonstrate that the ability of Wnt to regulate long-range patterning events is dependent on a critical and conserved function of the retromer complex within Wnt-producing cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coudreuse, Damien Y M -- Roel, Giulietta -- Betist, Marco C -- Destree, Olivier -- Korswagen, Hendrik C -- New York, N.Y. -- Science. 2006 May 12;312(5775):921-4. Epub 2006 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory and Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645052" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Caenorhabditis elegans/cytology/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/analysis/genetics/*physiology ; Cell Line ; Gene Expression ; Glycoproteins/analysis/genetics/*physiology ; Humans ; Multiprotein Complexes/*physiology ; Mutation ; Neurons/cytology/physiology ; RNA Interference ; *Signal Transduction ; Transgenes ; Vesicular Transport Proteins/genetics/physiology ; Wnt Proteins/*physiology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2006 Apr 28;312(5773):514-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645061" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors, Type I/chemistry/*genetics/physiology ; Bone Development/genetics ; Bone Morphogenetic Proteins/metabolism ; Humans ; Mutation ; Myositis Ossificans/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2006-05-13
    Description: Bonhoeffer et al. (Reports, 26 November 2004, p. 1547) presented evidence for positive epistasis in a clinical data set of HIV-1 mutants and corresponding fitness values. We demonstrate that biases in the original and simulated data sets may lead to erroneous evidence for epistasis. More rigorous statistical tests must be used to account for such biases before one can infer epistasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kai -- Mittler, John E -- Samudrala, Ram -- GM068152/GM/NIGMS NIH HHS/ -- R01-HL72631/HL/NHLBI NIH HHS/ -- R03-AI055394/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 May 12;312(5775):848; author reply 848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690844" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/pharmacology/therapeutic use ; Bias (Epidemiology) ; *Epistasis, Genetic ; Evolution, Molecular ; Genotype ; HIV Infections/drug therapy/virology ; HIV-1/drug effects/*genetics ; Humans ; Mutation ; Phenotype ; *Recombination, Genetic ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2006-03-04
    Description: The restoration of catalytic activity to mutant enzymes by small molecules is well established for in vitro systems. Here, we show that the protein tyrosine kinase Src arginine-388--〉alanine (R388A) mutant can be rescued in live cells with the use of the small molecule imidazole. Cellular rescue of a viral Src homolog was rapid and reversible and conferred predicted oncogenic properties. Using chemical rescue in combination with mass spectrometry, we confirmed six known Src kinase substrates and identified several new protein targets. Chemical rescue data suggest that cellular Src is active under basal conditions. Rescue of R388A cellular Src provided insights into the mitogen-activated protein kinase pathway. This chemical rescue approach will likely have many applications in cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiao, Yingfeng -- Molina, Henrik -- Pandey, Akhilesh -- Zhang, Jin -- Cole, Philip A -- New York, N.Y. -- Science. 2006 Mar 3;311(5765):1293-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16513984" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Cell Line ; Cell Transformation, Neoplastic ; Fluorescence Resonance Energy Transfer ; Gene Expression Profiling ; Gene Expression Regulation ; Growth Substances/metabolism/pharmacology ; Humans ; Imidazoles/*metabolism/pharmacology ; Kinetics ; Mice ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Nuclear Proteins/metabolism ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Phosphorylation ; Phosphotyrosine/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins pp60(c-src)/*genetics/*metabolism ; Recombinant Proteins/metabolism ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2006-02-14
    Description: Numerous human diseases are associated with the chronic expression of misfolded and aggregation-prone proteins. The expansion of polyglutamine residues in unrelated proteins is associated with the early onset of neurodegenerative disease. To understand how the presence of misfolded proteins leads to cellular dysfunction, we employed Caenorhabditis elegans polyglutamine aggregation models. Here, we find that polyglutamine expansions disrupted the global balance of protein folding quality control, resulting in the loss of function of diverse metastable proteins with destabilizing temperature-sensitive mutations. In turn, these proteins, although innocuous under normal physiological conditions, enhanced the aggregation of polyglutamine proteins. Thus, weak folding mutations throughout the genome can function as modifiers of polyglutamine phenotypes and toxicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gidalevitz, Tali -- Ben-Zvi, Anat -- Ho, Kim H -- Brignull, Heather R -- Morimoto, Richard I -- F32 GM075583-01/GM/NIGMS NIH HHS/ -- T32 GM08061/GM/NIGMS NIH HHS/ -- T32 HL076139/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 10;311(5766):1471-4. Epub 2006 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469881" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins/genetics/metabolism ; Disease Models, Animal ; Dynamin I/genetics/metabolism ; Glutamine/*metabolism ; Humans ; Mutation ; Neurodegenerative Diseases/*metabolism/physiopathology ; Peptides/*metabolism ; *Protein Folding ; Temperature ; Tropomyosin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, Ingrid -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):184-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614188" target="_blank"〉PubMed〈/a〉
    Keywords: Adjuvants, Immunologic ; Animals ; Autoimmune Diseases/drug therapy/*immunology ; Coronary Artery Disease/drug therapy/immunology ; Humans ; Hypersensitivity/drug therapy/*immunology ; *Immunity, Innate ; Infection/drug therapy/*immunology ; Inflammation/drug therapy/*immunology ; Mice ; Mutation ; Sepsis/drug therapy/immunology ; Signal Transduction ; Toll-Like Receptors/antagonists & inhibitors/genetics/*immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2006-07-01
    Description: Mathematical models predict that the future of the multidrug-resistant tuberculosis epidemic will depend on the fitness cost of drug resistance. We show that in laboratory-derived mutants of Mycobacterium tuberculosis, rifampin resistance is universally associated with a competitive fitness cost and that this cost is determined by the specific resistance mutation and strain genetic background. In contrast, we demonstrate that prolonged patient treatment can result in multidrug-resistant strains with no fitness defect and that strains with low- or no-cost resistance mutations are also the most frequent among clinical isolates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagneux, Sebastien -- Long, Clara Davis -- Small, Peter M -- Van, Tran -- Schoolnik, Gary K -- Bohannan, Brendan J M -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1944-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA. sgagneux@systemsbiology.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809538" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antibiotics, Antitubercular/*pharmacology/therapeutic use ; Bacterial Proteins/genetics ; DNA-Directed RNA Polymerases/genetics ; *Drug Resistance, Multiple, Bacterial ; Humans ; Models, Biological ; Mutation ; Mutation, Missense ; Mycobacterium tuberculosis/*drug effects/genetics/*growth & development ; Rifampin/*pharmacology/therapeutic use ; Tuberculosis, Multidrug-Resistant/drug therapy/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2006-01-21
    Description: Scaffold proteins organize signaling proteins into pathways and are often viewed as passive assembly platforms. We found that the Ste5 scaffold has a more active role in the yeast mating pathway: A fragment of Ste5 allosterically activated autophosphorylation of the mitogen-activated protein kinase Fus3. The resulting form of Fus3 is partially active-it is phosphorylated on only one of two key residues in the activation loop. Unexpectedly, at a systems level, autoactivated Fus3 appears to have a negative regulatory role, promoting Ste5 phosphorylation and a decrease in pathway transcriptional output. Thus, scaffolds not only direct basic pathway connectivity but can precisely tune quantitative pathway input-output properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharyya, Roby P -- Remenyi, Attila -- Good, Matthew C -- Bashor, Caleb J -- Falick, Arnold M -- Lim, Wendell A -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):822-6. Epub 2006 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424299" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*chemistry/genetics/*metabolism ; Allosteric Regulation ; Amino Acid Motifs ; Binding Sites ; Crystallography, X-Ray ; Down-Regulation ; Enzyme Activation ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Mutation ; Pheromones/*physiology ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2006-04-22
    Description: Most emerging infectious diseases in humans originate from animal reservoirs; to contain and eradicate these diseases we need to understand how and why some pathogens become capable of crossing host species barriers. Influenza virus illustrates the interaction of factors that limit the transmission and subsequent establishment of an infection in a novel host species. Influenza species barriers can be categorized into virus-host interactions occurring within individuals and host-host interactions, either within or between species, that affect transmission between individuals. Viral evolution can help surmount species barriers, principally by affecting virus-host interactions; however, evolving the capability for sustained transmission in a new host species represents a major adaptive challenge because the number of mutations required is often large.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuiken, Thijs -- Holmes, Edward C -- McCauley, John -- Rimmelzwaan, Guus F -- Williams, Catherine S -- Grenfell, Bryan T -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands. t.kuiken@erasmusmc.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds ; Evolution, Molecular ; Humans ; Immunity, Innate ; Influenza A Virus, H5N1 Subtype/genetics/immunology/*pathogenicity/physiology ; Influenza A virus/genetics/immunology/*pathogenicity/physiology ; Influenza in Birds/transmission/virology ; Influenza, Human/epidemiology/immunology/*transmission/*virology ; Mutation ; Orthomyxoviridae Infections/immunology/transmission/veterinary/virology ; Poultry ; Reassortant Viruses ; Receptors, Virus/metabolism ; Recombination, Genetic ; Species Specificity ; Virus Replication ; Zoonoses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):456.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439635" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/*genetics ; Biological Specimen Banks ; Cell Division ; Facial Bones/abnormalities ; Heart Defects, Congenital/*genetics ; Humans ; MAP Kinase Kinase 1/*genetics ; MAP Kinase Kinase 2/*genetics ; MAP Kinase Signaling System ; Medical Records Systems, Computerized ; Mutation ; Neoplasms/genetics ; Proto-Oncogene Proteins B-raf/*genetics ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2006-09-23
    Description: Sleep is a vital, evolutionarily conserved phenomenon, whose function is unclear. Although mounting evidence supports a role for sleep in the consolidation of memories, until now, a molecular connection between sleep, plasticity, and memory formation has been difficult to demonstrate. We establish Drosophila as a model to investigate this relation and demonstrate that the intensity and/or complexity of prior social experience stably modifies sleep need and architecture. Furthermore, this experience-dependent plasticity in sleep need is subserved by the dopaminergic and adenosine 3',5'-monophosphate signaling pathways and a particular subset of 17 long-term memory genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ganguly-Fitzgerald, Indrani -- Donlea, Jeff -- Shaw, Paul J -- R01-NS051305-01A1/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1775-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92101, USA. transposase@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Chemistry ; Circadian Rhythm ; Cyclic AMP/metabolism ; Dopamine/analysis/metabolism ; Drosophila melanogaster/genetics/growth & development/*physiology ; Female ; Hearing ; Learning ; Male ; Memory ; *Models, Animal ; Mutation ; Sexual Behavior, Animal ; Signal Transduction ; *Sleep ; Smell ; Social Environment ; Social Isolation ; Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-22
    Description: The threat of pandemic human influenza looms as we survey the ongoing avian influenza pandemic and wonder if and when it will jump species. What are the risks and how can we plan? The nub of the problem lies in the inherent variability of the virus, which makes prediction difficult. However, it is not impossible; mathematical models can help determine and quantify critical parameters and thresholds in the relationships of those parameters, even if the relationships are nonlinear and obscure to simple reasoning. Mathematical models can derive estimates for the levels of drug stockpiles needed to buy time, how and when to modify vaccines, whom to target with vaccines and drugs, and when to enforce quarantine measures. Regardless, the models used for pandemic planning must be tested, and for this we must continue to gather data, not just for exceptional scenarios but also for seasonal influenza.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Derek J -- DP1-OD000490-01/OD/NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):392-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. dsmith@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627736" target="_blank"〉PubMed〈/a〉
    Keywords: Antigenic Variation ; Antiviral Agents/administration & dosage/*therapeutic use ; Disease Outbreaks/*prevention & control ; Evolution, Molecular ; Forecasting ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Humans ; Immunization Programs ; Influenza A Virus, H3N2 Subtype/genetics/immunology ; Influenza A Virus, H5N1 Subtype/genetics/immunology/pathogenicity ; Influenza A virus/immunology ; *Influenza Vaccines ; Influenza, Human/epidemiology/*prevention & control/transmission/virology ; Mathematics ; Models, Biological ; Mutation ; Quarantine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1536-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158303" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/pathology/physiopathology ; Brain-Derived Neurotrophic Factor/genetics/metabolism ; Corticotropin-Releasing Hormone/genetics/physiology ; Female ; Gene Silencing ; Humans ; Mental Disorders/genetics ; Methyl-CpG-Binding Protein 2/*genetics/metabolism/*physiology ; Mice ; Mutation ; Neurons/pathology/physiology ; Phosphorylation ; Rett Syndrome/*genetics/pathology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2006-12-02
    Description: Women with mutations in the breast cancer susceptibility gene BRCA1 are predisposed to breast and ovarian cancers. Why the BRCA1 protein suppresses tumor development specifically in ovarian hormone-sensitive tissues remains unclear. We demonstrate that mammary glands of nulliparous Brca1/p53-deficient mice accumulate lateral branches and undergo extensive alveologenesis, a phenotype that occurs only during pregnancy in wild-type mice. Progesterone receptors, but not estrogen receptors, are overexpressed in the mutant mammary epithelial cells because of a defect in their degradation by the proteasome pathway. Treatment of Brca1/p53-deficient mice with the progesterone antagonist mifepristone (RU 486) prevented mammary tumorigenesis. These findings reveal a tissue-specific function for the BRCA1 protein and raise the possibility that antiprogesterone treatment may be useful for breast cancer prevention in individuals with BRCA1 mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poole, Aleksandra Jovanovic -- Li, Ying -- Kim, Yoon -- Lin, Suh-Chin J -- Lee, Wen-Hwa -- Lee, Eva Y-H P -- CA049649/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1467-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Irvine, CA 92697-4037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/metabolism ; Cell Line, Tumor ; Cell Proliferation ; Epithelial Cells/cytology/metabolism ; Estradiol/pharmacology ; Estrous Cycle ; Female ; *Genes, BRCA1 ; Genes, p53 ; Hormone Antagonists/*pharmacology/therapeutic use ; Humans ; Mammary Glands, Animal/cytology/metabolism ; Mammary Neoplasms, Animal/genetics/*prevention & control ; Mice ; Mifepristone/*pharmacology/therapeutic use ; Mutation ; Phosphorylation ; Progesterone/*antagonists & inhibitors/pharmacology ; Proteasome Endopeptidase Complex/metabolism ; RNA, Small Interfering ; Receptors, Estrogen/metabolism ; Receptors, Progesterone/genetics/*metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2006-07-01
    Description: Discrimination between splice sites and similar, nonsplice sequences is essential for correct intron removal and messenger RNA formation in eukaryotes. The 65- and 35-kD subunits of the splicing factor U2AF, U2AF65 and U2AF35, recognize, respectively, the pyrimidine-rich tract and the conserved terminal AG present at metazoan 3' splice sites. We report that DEK, a chromatin- and RNA-associated protein mutated or overexpressed in certain cancers, enforces 3' splice site discrimination by U2AF. DEK phosphorylated at serines 19 and 32 associates with U2AF35, facilitates the U2AF35-AG interaction and prevents binding of U2AF65 to pyrimidine tracts not followed by AG. DEK and its phosphorylation are required for intron removal, but not for splicing complex assembly, which indicates that proofreading of early 3' splice site recognition influences catalytic activation of the spliceosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soares, Luis Miguel Mendes -- Zanier, Katia -- Mackereth, Cameron -- Sattler, Michael -- Valcarcel, Juan -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1961-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Regulacio Genomica, Passeig Maritim 37-49, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Dimerization ; Dinucleoside Phosphates/metabolism ; HeLa Cells ; Humans ; *Introns ; Mutation ; Nuclear Proteins/*metabolism ; Oncogene Proteins/genetics/*metabolism ; Phosphorylation ; Pyrimidines/metabolism ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Ribonucleoprotein, U2 Small Nuclear ; Ribonucleoproteins/*metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2006 May 5;312(5774):673.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675672" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Brain/metabolism ; CLOCK Proteins ; Circadian Rhythm/*genetics ; Gene Expression ; Liver/metabolism ; Mice ; Mice, Knockout ; Mutation ; Nerve Tissue Proteins/metabolism ; Protein Binding ; Trans-Activators/*genetics/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2006-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waterhouse, Peter M -- Fusaro, Adriana F -- New York, N.Y. -- Science. 2006 Jul 7;313(5783):54-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CSIRO Plant Industry, Canberra, ACT 2601, Australia. peter.waterhouse@csiro.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825558" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics/metabolism/*virology ; Arabidopsis Proteins/antagonists & inhibitors/genetics/*metabolism ; Carmovirus/physiology ; Cell Cycle Proteins/antagonists & inhibitors/genetics/*metabolism ; MicroRNAs/metabolism ; Mutation ; Plant Viruses/*physiology ; RNA Interference ; RNA Viruses/physiology ; RNA, Double-Stranded/metabolism ; RNA, Plant/metabolism ; RNA, Small Interfering/*metabolism ; RNA, Viral/*metabolism ; RNA-Induced Silencing Complex/metabolism ; Ribonuclease III/antagonists & inhibitors/genetics/*metabolism ; Ribonucleases/antagonists & inhibitors/genetics/*metabolism ; Viral Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2006-03-18
    Description: The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and other human H1 HAs than to a 1997 duck H5 HA. Glycan microarray analysis of this Viet04 HA reveals an avian alpha2-3 sialic acid receptor binding preference. Introduction of mutations that can convert H1 serotype HAs to human alpha2-6 receptor specificity only enhanced or reduced affinity for avian-type receptors. However, mutations that can convert avian H2 and H3 HAs to human receptor specificity, when inserted onto the Viet04 H5 HA framework, permitted binding to a natural human alpha2-6 glycan, which suggests a path for this H5N1 virus to gain a foothold in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, James -- Blixt, Ola -- Tumpey, Terrence M -- Taubenberger, Jeffery K -- Paulson, James C -- Wilson, Ian A -- AI058113/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- CA55896/CA/NCI NIH HHS/ -- GM060938/GM/NIGMS NIH HHS/ -- GM062116/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):404-10. Epub 2006 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. jstevens@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16543414" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antigenic Variation ; Binding Sites ; Birds ; Carbohydrate Conformation ; Cloning, Molecular ; Crystallography, X-Ray ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza ; Virus/*chemistry/genetics/immunology/*metabolism ; Humans ; Influenza A Virus, H5N1 Subtype/*chemistry/genetics/metabolism/*pathogenicity ; Lung/virology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Polysaccharides/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Receptors, Virus/chemistry/*metabolism ; Respiratory Mucosa/virology ; Sialic Acids/chemistry/metabolism ; Species Specificity ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2006-06-03
    Description: Dominant mutations in superoxide dismutase cause amyotrophic lateral sclerosis (ALS), a progressive paralytic disease characterized by loss of motor neurons. With the use of mice carrying a deletable mutant gene, expression within motor neurons was shown to be a primary determinant of disease onset and of an early phase of disease progression. Diminishing the mutant levels in microglia had little effect on the early disease phase but sharply slowed later disease progression. Onset and progression thus represent distinct disease phases defined by mutant action within different cell types to generate non-cell-autonomous killing of motor neurons; these findings validate therapies, including cell replacement, targeted to the non-neuronal cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boillee, Severine -- Yamanaka, Koji -- Lobsiger, Christian S -- Copeland, Neal G -- Jenkins, Nancy A -- Kassiotis, George -- Kollias, George -- Cleveland, Don W -- MC_U117581330/Medical Research Council/United Kingdom -- NS 27036/NS/NINDS NIH HHS/ -- R37 NS027036/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 2;312(5778):1389-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research and Departments of Medicine and Neuroscience, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16741123" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*enzymology/genetics/pathology/physiopathology ; Animals ; Antigens, CD11b/genetics ; Disease Progression ; Female ; Humans ; Integrases/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia/*metabolism ; Motor Neurons/*metabolism ; Mutation ; Superoxide Dismutase/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2006-02-18
    Description: MicroRNAs (miRNAs) comprise 1 to 3% of all vertebrate genes, but their in vivo functions and mechanisms of action remain largely unknown. Zebrafish miR-430 is expressed at the onset of zygotic transcription and regulates morphogenesis during early development. By using a microarray approach and in vivo target validation, we find that miR-430 directly regulates several hundred target messenger RNA molecules (mRNAs). Most targets are maternally expressed mRNAs that accumulate in the absence of miR-430. We also show that miR-430 accelerates the deadenylation of target mRNAs. These results suggest that miR-430 facilitates the deadenylation and clearance of maternal mRNAs during early embryogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giraldez, Antonio J -- Mishima, Yuichiro -- Rihel, Jason -- Grocock, Russell J -- Van Dongen, Stijn -- Inoue, Kunio -- Enright, Anton J -- Schier, Alexander F -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):75-9. Epub 2006 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA. giraldez@mcb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484454" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adenosine/*metabolism ; Animals ; Embryo, Nonmammalian/*physiology ; *Embryonic Development ; Female ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Genes, Reporter ; Green Fluorescent Proteins/genetics/metabolism ; MicroRNAs/*physiology ; Mutation ; Oligonucleotide Array Sequence Analysis ; Polymers/*metabolism ; Protein Biosynthesis ; RNA Stability ; RNA, Messenger/genetics/*metabolism ; Ribonuclease III/genetics/metabolism ; Transcription, Genetic ; Up-Regulation ; Zebrafish/embryology ; Zygote/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2006-10-21
    Description: Diverse bacterial and viral pathogens induce actin polymerization in the cytoplasm of host cells to facilitate infection. Here, we describe a pathogenic mechanism for promoting dynamic actin assembly in the nucleus to enable viral replication. The baculovirus Autographa californica multiple nucleopolyhedrovirus induced nuclear actin polymerization by translocating the host actin-nucleating Arp2/3 complex into the nucleus, where it was activated by p78/83, a viral Wiskott-Aldrich syndrome protein (WASP)-like protein. Nuclear actin assembly by p78/83 and Arp2/3 complex was essential for viral progeny production. Recompartmentalizing dynamic host actin may represent a conserved mode of pathogenesis and reflect viral manipulation of normal functions of nuclear actin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goley, Erin D -- Ohkawa, Taro -- Mancuso, Joel -- Woodruff, Jeffrey B -- D'Alessio, Joseph A -- Cande, W Zacheus -- Volkman, Loy E -- Welch, Matthew D -- AI054693/AI/NIAID NIH HHS/ -- GM59609/GM/NIGMS NIH HHS/ -- R01 GM059609/GM/NIGMS NIH HHS/ -- R01 GM059609-07/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):464-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053146" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 2-3 Complex/*metabolism ; Actins/*metabolism ; Animals ; Biopolymers/metabolism ; Cell Line ; Cell Nucleus/*metabolism ; Fluorescence Recovery After Photobleaching ; Moths ; Mutation ; Nucleocapsid/metabolism/ultrastructure ; Nucleopolyhedrovirus/genetics/*physiology ; Transfection ; Viral Proteins/chemistry/genetics/isolation & purification/*metabolism ; Virion/ultrastructure ; Virus Replication ; Wiskott-Aldrich Syndrome Protein/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2006-01-21
    Description: The sequence and the structure of DNA methyltransferase-2 (Dnmt2) bear close affinities to authentic DNA cytosine methyltransferases. A combined genetic and biochemical approach revealed that human DNMT2 did not methylate DNA but instead methylated a small RNA; mass spectrometry showed that this RNA is aspartic acid transfer RNA (tRNA(Asp)) and that DNMT2 specifically methylated cytosine 38 in the anticodon loop. The function of DNMT2 is highly conserved, and human DNMT2 protein restored methylation in vitro to tRNA(Asp) from Dnmt2-deficient strains of mouse, Arabidopsis thaliana, and Drosophila melanogaster in a manner that was dependent on preexisting patterns of modified nucleosides. Indirect sequence recognition is also a feature of eukaryotic DNA methyltransferases, which may have arisen from a Dnmt2-like RNA methyltransferase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goll, Mary Grace -- Kirpekar, Finn -- Maggert, Keith A -- Yoder, Jeffrey A -- Hsieh, Chih-Lin -- Zhang, Xiaoyu -- Golic, Kent G -- Jacobsen, Steven E -- Bestor, Timothy H -- New York, N.Y. -- Science. 2006 Jan 20;311(5759):395-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424344" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticodon ; Arabidopsis/genetics/physiology ; Arabidopsis Proteins/genetics ; Catalytic Domain ; Cytosine/metabolism ; DNA (Cytosine-5-)-Methyltransferase/chemistry/genetics/*metabolism ; Drosophila Proteins/genetics ; Drosophila melanogaster/genetics/physiology ; Evolution, Molecular ; Humans ; Mass Spectrometry ; Methylation ; Mice ; Mutation ; NIH 3T3 Cells ; RNA, Plant/metabolism ; RNA, Transfer, Asp/chemistry/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breitkreutz, Ashton -- Tyers, Mike -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):789-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Campbell Family Institute for Breast Cancer Research, Toronto Medical Discovery Tower, Toronto, Canada M5G 1L7. abreitkr@uhnres.utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469909" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/genetics/*metabolism ; Binding Sites ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases ; Mitogen-Activated Protein Kinases/chemistry/*metabolism ; Models, Biological ; Mutation ; Pheromones/physiology ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Kinases/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2006-01-21
    Description: Microbial resistance to antibiotics currently spans all known classes of natural and synthetic compounds. It has not only hindered our treatment of infections but also dramatically reshaped drug discovery, yet its origins have not been systematically studied. Soil-dwelling bacteria produce and encounter a myriad of antibiotics, evolving corresponding sensing and evading strategies. They are a reservoir of resistance determinants that can be mobilized into the microbial community. Study of this reservoir could provide an early warning system for future clinically relevant antibiotic resistance mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉D'Costa, Vanessa M -- McGrann, Katherine M -- Hughes, Donald W -- Wright, Gerard D -- New York, N.Y. -- Science. 2006 Jan 20;311(5759):374-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada, L8N 3Z5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424339" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Anti-Bacterial Agents/metabolism/*pharmacology ; Ciprofloxacin/pharmacology ; Daptomycin/metabolism/pharmacology ; *Drug Resistance, Multiple, Bacterial/genetics ; Erythromycin/metabolism/pharmacology ; Genes, Bacterial ; Ketolides/metabolism/pharmacology ; Macrolides/pharmacology ; Microbial Sensitivity Tests ; Molecular Sequence Data ; Mutation ; Rifampin/metabolism/pharmacology ; *Soil Microbiology ; Streptomyces/*drug effects/enzymology/genetics/isolation & purification ; Trimethoprim Resistance ; Vancomycin Resistance/genetics ; Virginiamycin/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2006-03-11
    Description: A central challenge of genomics is to detect, simply and inexpensively, all differences in sequence among the genomes of individual members of a species. We devised a system to detect all single-nucleotide differences between genomes with the use of data from a single hybridization to a whole-genome DNA microarray. This allowed us to detect a variety of spontaneous single-base pair substitutions, insertions, and deletions, and most (〉90%) of the approximately 30,000 known single-nucleotide polymorphisms between two Saccharomyces cerevisiae strains. We applied this approach to elucidate the genetic basis of phenotypic variants and to identify the small number of single-base pair changes accumulated during experimental evolution of yeast.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gresham, David -- Ruderfer, Douglas M -- Pratt, Stephen C -- Schacherer, Joseph -- Dunham, Maitreya J -- Botstein, David -- Kruglyak, Leonid -- P50 GM071508/GM/NIGMS NIH HHS/ -- R01 GM046406/GM/NIGMS NIH HHS/ -- R37 MH059520/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2006 Mar 31;311(5769):1932-6. Epub 2006 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. dgresham@genomics.princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16527929" target="_blank"〉PubMed〈/a〉
    Keywords: Directed Molecular Evolution ; Genes, Fungal ; *Genome, Fungal ; Genomics ; Mutation ; Nucleic Acid Hybridization ; *Oligonucleotide Array Sequence Analysis ; Phenotype ; Point Mutation ; *Polymorphism, Single Nucleotide ; Saccharomyces cerevisiae/*genetics/physiology ; Sequence Deletion ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...