ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kinetics  (239)
  • Protein Conformation  (228)
  • American Association for the Advancement of Science (AAAS)  (445)
  • American Chemical Society (ACS)
  • 1990-1994  (445)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (445)
  • American Chemical Society (ACS)
  • Springer  (25)
  • Wiley-Blackwell  (21)
Years
Year
  • 1
    Publication Date: 1994-04-01
    Description: The crystal structure of a ternary protein complex has been determined at 2.4 angstrom resolution. The complex is composed of three electron transfer proteins from Paracoccus denitrificans, the quinoprotein methylamine dehydrogenase, the blue copper protein amicyanin, and the cytochrome c551i. The central region of the c551i is folded similarly to several small bacterial c-type cytochromes; there is a 45-residue extension at the amino terminus and a 25-residue extension at the carboxyl terminus. The methylamine dehydrogenase-amicyanin interface is largely hydrophobic, whereas the amicyanin-cytochrome interface is more polar, with several charged groups present on each surface. Analysis of the simplest electron transfer pathways between the redox partners points out the importance of other factors such as energetics in determining the electron transfer rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, L -- Durley, R C -- Mathews, F S -- Davidson, V L -- GM41574/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):86-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8140419" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Computer Graphics ; Cytochrome c Group/*chemistry/metabolism ; Electron Transport ; Hydrogen Bonding ; *Indolequinones ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases Acting on CH-NH Group Donors/*chemistry/metabolism ; Paracoccus denitrificans/*chemistry/enzymology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Quinones/chemistry/metabolism ; Software ; Tryptophan/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-10-21
    Description: The structure of the heterodimeric flavocytochrome c sulfide dehydrogenase from Chromatium vinosum was determined at a resolution of 2.53 angstroms. It contains a glutathione reductase-like flavin-binding subunit and a diheme cytochrome subunit. The diheme cytochrome folds as two domains, each resembling mitochondrial cytochrome c, and has an unusual interpropionic acid linkage joining the two heme groups in the interior of the subunit. The active site of the flavoprotein subunit contains a catalytically important disulfide bridge located above the pyrimidine portion of the flavin ring. A tryptophan, threonine, or tyrosine side chain may provide a partial conduit for electron transfer to one of the heme groups located 10 angstroms from the flavin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z W -- Koh, M -- Van Driessche, G -- Van Beeumen, J J -- Bartsch, R G -- Meyer, T E -- Cusanovich, M A -- Mathews, F S -- GM-20530/GM/NIGMS NIH HHS/ -- GM-21277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):430-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939681" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatium/*enzymology ; Computer Graphics ; Crystallography, X-Ray ; Cytochrome c Group/*chemistry ; Electron Transport ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; Oxidoreductases/*chemistry ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-06-24
    Description: The structure of the leech protein decorsin, a potent 39-residue antagonist of glycoprotein IIb-IIIa and inhibitor of platelet aggregation, was determined by nuclear magnetic resonance. In contrast to other disintegrins, the Arg-Gly-Asp (RGD)-containing region of decorsin is well defined. The three-dimensional structure of decorsin is similar to that of hirudin, an anticoagulant leech protein that potently inhibits thrombin. Amino acid sequence comparisons suggest that ornatin, another glycoprotein IIb-IIIa antagonist, and antistasin, a potent Factor Xa inhibitor and anticoagulant found in leeches, share the same structural motif. Although decorsin, hirudin, and antistasin all affect the blood clotting process and appear similar in structure, their mechanisms of action and epitopes important for binding to their respective targets are distinct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krezel, A M -- Wagner, G -- Seymour-Ulmer, J -- Lazarus, R A -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1944-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8009227" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Hirudins/chemistry ; Invertebrate Hormones/chemistry ; *Leeches ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Oligopeptides/chemistry ; Platelet Membrane Glycoproteins/*antagonists & inhibitors ; Protein Conformation ; Protein Structure, Secondary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-04-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, F E -- Pan, K M -- Huang, Z -- Baldwin, M -- Fletterick, R J -- Prusiner, S B -- New York, N.Y. -- Science. 1994 Apr 22;264(5158):530-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143-0518.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909169" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Mice ; Mice, Transgenic ; Models, Biological ; Mutation ; PrPSc Proteins ; Prion Diseases/*metabolism/transmission ; Prions/*biosynthesis/chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-24
    Description: The basic notions of transition state theory have been exploited in the past to generate highly selective catalysts from the vast library of antibody molecules in the immune system. These same ideas were used to isolate an RNA molecule, from a large library of RNAs, that catalyzes the isomerization of a bridged biphenyl. The RNA-catalyzed reaction displays Michaelis-Menten kinetics with a catalytic rate constant (kcat) of 2.8 x 10(-5) per minute and a Michaelis constant (Km) of 542 microM; the reaction is competitively inhibited by the planar transition state analog with an inhibition constant (Ki) value of approximately 7 microM. This approach may provide a general strategy for expanding the scope of RNA catalysis beyond those reactions in which the substrates are nucleic acids or nucleic acid derivatives.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prudent, J R -- Uno, T -- Schultz, P G -- GM08352A/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1924-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8009223" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biphenyl Compounds/chemistry/metabolism ; Catalysis ; Kinetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleic Acid Denaturation ; Polymerase Chain Reaction ; RNA, Catalytic/chemistry/*metabolism ; Stereoisomerism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-04-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weissmann, C -- New York, N.Y. -- Science. 1994 Apr 22;264(5158):528-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molecularbiologie I, Universitat Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909168" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/analogs & derivatives/metabolism ; Fungal Proteins/chemistry/*genetics ; Genes, Fungal ; Glutathione Peroxidase ; Mutation ; PrPSc Proteins ; Prions/chemistry/genetics ; Protein Conformation ; Saccharomyces cerevisiae/*genetics/metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: Protein tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic signal transducing enzymes that catalyze the dephosphorylation of phosphotyrosine residues and are characterized by homologous catalytic domains. The crystal structure of a representative member of this family, the 37-kilodalton form (residues 1 to 321) of PTP1B, has been determined at 2.8 A resolution. The enzyme consists of a single domain with the catalytic site located at the base of a shallow cleft. The phosphate recognition site is created from a loop that is located at the amino-terminus of an alpha helix. This site is formed from an 11-residue sequence motif that is diagnostic of PTPs and the dual specificity phosphatases, and that contains the catalytically essential cysteine and arginine residues. The position of the invariant cysteine residue within the phosphate binding site is consistent with its role as a nucleophile in the catalytic reaction. The structure of PTP1B should serve as a model for other members of the PTP family and as a framework for understanding the mechanism of tyrosine dephosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barford, D -- Flint, A J -- Tonks, N K -- CA53840/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1397-404.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Tyrosine Phosphatases/*chemistry/isolation & purification/metabolism ; Substrate Specificity ; Tungsten Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-08-19
    Description: A small molecule called PD 153035 inhibited the epidermal growth factor (EGF) receptor tyrosine kinase with a 5-pM inhibition constant. The inhibitor was specific for the EGF receptor tyrosine kinase and inhibited other purified tyrosine kinases only at micromolar or higher concentrations. PD 153035 rapidly suppressed autophosphorylation of the EGF receptor at low nanomolar concentrations in fibroblasts or in human epidermoid carcinoma cells and selectively blocked EGF-mediated cellular processes including mitogenesis, early gene expression, and oncogenic transformation. PD 153035 demonstrates an increase in potency over that of other tyrosine kinase inhibitors of four to five orders of magnitude for inhibition of isolated EGF receptor tyrosine kinase and three to four orders of magnitude for inhibition of cellular phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fry, D W -- Kraker, A J -- McMichael, A -- Ambroso, L A -- Nelson, J M -- Leopold, W R -- Connors, R W -- Bridges, A J -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1093-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066447" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Transformation, Neoplastic/drug effects ; Epidermal Growth Factor/pharmacology ; Fibroblast Growth Factor 2/pharmacology ; Gene Expression/drug effects ; Humans ; Kinetics ; Mice ; Mitosis/drug effects ; Phosphorylation/drug effects ; Platelet-Derived Growth Factor/pharmacology ; Protein-Tyrosine Kinases/antagonists & inhibitors ; Quinazolines/*antagonists & inhibitors ; Receptor, Epidermal Growth Factor/*antagonists & inhibitors ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: The trimeric protein hemagglutinin (HA) of the influenza viral envelope is essential for cell entry. To investigate the interaction of HA with membranes, two 40-residue, cysteine-substituted peptides comprising the loop region and the first part of the coiled-coil stem were synthesized and modified with a nitroxide spin label. Electron paramagnetic resonance analysis revealed that the peptide inserts reversibly into phospholipid vesicles under endosomal pH conditions. This result suggests that some or all of the long coiled-coil trimer of HA may insert into membranes, which could bring the viral and cell membranes closer together and facilitate fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Y G -- King, D S -- Shin, Y K -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):274-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939662" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Electron Spin Resonance Spectroscopy ; Endocytosis ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Lipid Bilayers/*metabolism ; *Membrane Fusion ; Molecular Sequence Data ; Orthomyxoviridae/physiology ; Protein Conformation ; Protein Structure, Secondary ; Temperature ; Viral Envelope Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-09-23
    Description: The functional consequences of single proton transfers occurring in the pore of a cyclic nucleotide-gated channel were observed with patch recording techniques. These results led to three conclusions about the chemical nature of ion binding sites in the conduction pathway: The channel contains two identical titratable sites, even though there are more than two (probably four) identical subunits; the sites are formed by glutamate residues that have a pKa (where K(a) is the acid constant) of 7.6; and protonation of one site does not perturb the pKa of the other. These properties point to an unusual arrangement of carboxyl side-chain residues in the pore of a cation channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Root, M J -- MacKinnon, R -- 5 T32 GM083113/GM/NIGMS NIH HHS/ -- GM47400/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 23;265(5180):1852-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7522344" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcium Channels/metabolism ; Catfishes ; Electric Conductivity ; Hydrogen-Ion Concentration ; Ion Channel Gating ; Ion Channels/chemistry/genetics/*metabolism ; Kinetics ; Molecular Sequence Data ; Mutation ; *Protons ; Sodium/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1994-09-16
    Description: A reverse protocol for measurements of molecular binding and reactivity by excited-state quenching has been developed in which the quencher, held at a fixed concentration, is titrated by a photoexcitable probe molecule whose decay is monitored. The binding stoichiometries, affinities, and reactivities of the electron-transfer complexes between cytochrome c (Cc) and cytochrome c peroxidase (CcP) were determined over a wide range of ionic strengths (4.5 to 118 millimolar) by the study of photoinduced electron-transfer quenching of the triplet excited state of zinc-substituted Cc (ZnCc) by Fe3+CcP. The 2:1 stoichiometry seen for the binding of Cc to CcP at low ionic strength persists at the physiologically relevant ionic strengths and likely has functional significance. Analysis of the stoichiometric binding and rate constants confirms that one surface domain of CcP binds Cc with a high affinity but with poor electron-transfer quenching of triplet-state ZnCc, whereas a second binds weakly but with a high rate of electron-transfer quenching.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, J S -- Hoffman, B M -- HL13531/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1693-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Northwestern University, Evanston, IL 60208-3113.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085152" target="_blank"〉PubMed〈/a〉
    Keywords: Cytochrome c Group/chemistry/*metabolism ; Cytochrome-c Peroxidase/chemistry/*metabolism ; Electron Transport ; Ferric Compounds ; Kinetics ; Osmolar Concentration ; Oxidation-Reduction ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1994-01-28
    Description: As changes in synaptic strength are thought to be critical for learning and memory, it would be useful to monitor the activity of individual identified synapses on mammalian central neurons. Calcium imaging of cortical neurons grown in primary culture was used to visualize the activation of individual postsynaptic elements by miniature excitatory synaptic currents elicited by spontaneous quantal release. This approach revealed that the probability of spontaneous activity differed among synapses on the same dendrite. Furthermore, synapses that undergo changes in activity induced by glutamate or phorbol ester treatment were identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, T H -- Baraban, J M -- Wier, W G -- Blatter, L A -- New York, N.Y. -- Science. 1994 Jan 28;263(5146):529-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7904774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Cells, Cultured ; Cerebral Cortex ; Dendrites/*metabolism ; Glutamates/pharmacology ; Glutamic Acid ; Kinetics ; Microelectrodes ; Neuronal Plasticity ; Neurons/*physiology ; Phorbol Esters/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/physiology ; Synapses/*physiology ; *Synaptic Transmission ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1994-12-09
    Description: AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor channels mediate the fast component of excitatory postsynaptic currents in the central nervous system. Site-selective nuclear RNA editing controls the calcium permeability of these channels, and RNA editing at a second site is shown here to affect the kinetic aspects of these channels in rat brain. In three of the four AMPA receptor subunits (GluR-B, -C, and -D), intronic elements determine a codon switch (AGA, arginine, to GGA, glycine) in the primary transcripts in a position termed the R/G site, which immediately precedes the alternatively spliced modules "flip" and "flop." The extent of editing at this site progresses with brain development in a manner specific for subunit and splice form, and edited channels possess faster recovery rates from desensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lomeli, H -- Mosbacher, J -- Melcher, T -- Hoger, T -- Geiger, J R -- Kuner, T -- Monyer, H -- Higuchi, M -- Bach, A -- Seeburg, P H -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1709-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992055" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Brain/embryology/*metabolism ; Cell Nucleus/metabolism ; Exons ; Glutamic Acid/pharmacology ; Glycine/genetics ; Introns ; Kinetics ; Membrane Potentials ; Molecular Sequence Data ; Oocytes ; PC12 Cells ; Patch-Clamp Techniques ; *RNA Editing ; Rats ; Rats, Wistar ; Receptors, AMPA/*genetics/*metabolism ; Recombinant Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1994-06-10
    Description: Specific protein-ligand interactions are critical for cellular function, and most proteins select their partners with sharp discrimination. However, the oligopeptide-binding protein of Salmonella typhimurium (OppA) binds peptides of two to five amino acid residues without regard to sequence. The crystal structure of OppA reveals a three-domain organization, unlike other periplasmic binding proteins. In OppA-peptide complexes, the ligands are completely enclosed in the protein interior, a mode of binding that normally imposes tight specificity. The protein fulfills the hydrogen bonding and electrostatic potential of the ligand main chain and accommodates the peptide side chains in voluminous hydrated cavities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tame, J R -- Murshudov, G N -- Dodson, E J -- Neil, T K -- Dodson, G G -- Higgins, C F -- Wilkinson, A J -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of York, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8202710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Carrier Proteins/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Lipoproteins/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Oligopeptides/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-18
    Description: Molecular chaperones of the Hsp70 type transiently sequester unfolded segments of proteins and promote their correct folding. Target peptides were labeled with an environmentally sensitive fluorophore so that their binding to the molecular chaperone DnaK of Escherichia coli could be followed in real time. The two-step process was characterized by relaxation times of 27 seconds and 200 seconds with 2 microM DnaK and 0.1 microM ligand at 25 degrees C. In the presence of adenosine triphosphate, the formation of the complex was greatly accelerated and appeared to be a single-exponential process with a relaxation time of 0.4 second. The binding-release cycle of DnaK thus occurs in the time range of polypeptide chain elongation and folding and is too fast to be stoichiometrically coupled to the adenosine triphosphatase activity of the chaperone (turnover number, 0.13 per minute at 30 degrees C).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmid, D -- Baici, A -- Gehring, H -- Christen, P -- New York, N.Y. -- Science. 1994 Feb 18;263(5149):971-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemisches Institut, Universitat Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8310296" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Naphthylamine/analogs & derivatives ; Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/analogs & derivatives/pharmacology ; Amino Acid Sequence ; Aspartate Aminotransferases/metabolism ; Bacterial Proteins/*metabolism ; Binding Sites ; Enzyme Precursors/metabolism ; *Escherichia coli Proteins ; Fluorescent Dyes ; *HSP70 Heat-Shock Proteins ; Heat-Shock Proteins/*metabolism ; Kinetics ; Molecular Sequence Data ; Peptide Fragments/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1994-08-05
    Description: The high-mobility group protein 14 (HMG-14) is a non-histone chromosomal protein that is preferentially associated with transcriptionally active chromatin. To assess the effect of HMG-14 on transcription by RNA polymerase II, in vivo-assembled chromatin with elevated amounts of HMG-14 was obtained. Here it is shown that HMG-14 enhanced transcription on chromatin templates but not on DNA templates. This protein stimulated the rate of elongation by RNA polymerase II but not the level of initiation of transcription. These findings suggest that the association of HMG-14 with nucleosomes is part of the cellular process involved in the generation of transcriptionally active chromatin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, H F -- Rimsky, S -- Batson, S C -- Bustin, M -- Hansen, U -- GM-36667/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):796-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetics, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047885" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/metabolism ; HeLa Cells ; High Mobility Group Proteins/*physiology ; Humans ; Kinetics ; RNA Polymerase II/*metabolism ; Simian virus 40/genetics ; Templates, Genetic ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1994-08-05
    Description: Activation of 2-5A-dependent ribonuclease by 5'-phosphorylated, 2',5'-linked oligoadenylates, known as 2-5A, is one pathway of interferon action. Unaided uptake into HeLa cells of 2-5A linked to an antisense oligonucleotide resulted in the selective ablation of messenger RNA for the double-stranded RNA (dsRNA)-dependent protein kinase PKR. Similarly, purified, recombinant human 2-5A-dependent ribonuclease was induced to selectively cleave PKR messenger RNA. Cells depleted of PKR activity were unresponsive to activation of nuclear factor-kappa B (NF-kappa B) by the dsRNA poly(I):poly(C), which provides direct evidence that PKR is a transducer for the dsRNA signaling of NF-kappa B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maran, A -- Maitra, R K -- Kumar, A -- Dong, B -- Xiao, W -- Li, G -- Williams, B R -- Torrence, P F -- Silverman, R H -- AI 28253/AI/NIAID NIH HHS/ -- AI 34039-02/AI/NIAID NIH HHS/ -- CA 44059/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):789-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Cleveland Clinic Foundation, OH 44195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7914032" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine Nucleotides/chemical synthesis/*pharmacology ; Base Sequence ; Endoribonucleases/metabolism ; Enzyme Activation ; HeLa Cells ; Humans ; Kinetics ; Molecular Sequence Data ; NF-kappa B/*antagonists & inhibitors ; Oligonucleotides, Antisense/chemical synthesis/*pharmacology ; Oligoribonucleotides/chemical synthesis/*pharmacology ; Protein-Serine-Threonine Kinases/*genetics ; RNA, Messenger/drug effects ; Signal Transduction/*drug effects ; eIF-2 Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1994-11-04
    Description: The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, M A -- Choi, K Y -- Zalkin, H -- Brennan, R G -- GM 24658/GM/NIGMS NIH HHS/ -- GM 49244/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):763-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/metabolism ; Base Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; *Escherichia coli Proteins ; Hydrogen Bonding ; Hypoxanthine ; Hypoxanthines/metabolism ; Lac Repressors ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Operator Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1994-07-29
    Description: The Escherichia coli chaperonins GroEL and GroES facilitate protein folding in an adenosine triphosphate (ATP)-dependent manner. After a single cycle of ATP hydrolysis by the adenosine triphosphatase (ATPase) activity of GroEL, the bi-toroidal GroEL formed a stable asymmetric ternary complex with GroES and nucleotide (bulletlike structures). With each subsequent turnover, ATP was hydrolyzed by one ring of GroEL in a quantized manner, completely releasing the adenosine diphosphate and GroES that were tightly bound to the other ring as a result of the previous turnover. The catalytic cycle involved formation of a symmetric complex (football-like structures) as an intermediate that accumulated before the rate-determining hydrolytic step. After one to two cycles, most of the substrate protein dissociated still in a nonnative state, which is consistent with intermolecular transfer of the substrate protein between toroids of high and low affinity. A unifying model for chaperonin-facilitated protein folding based on successive rounds of binding and release, and partitioning between committed and kinetically trapped intermediates, is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todd, M J -- Viitanen, P V -- Lorimer, G H -- New York, N.Y. -- Science. 1994 Jul 29;265(5172):659-66.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. DuPont de Nemours and Company, Central Research and Development Department, Wilmington, DE 19880.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7913555" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Bacterial Proteins/*metabolism ; Binding Sites ; Chaperonin 10 ; Chaperonin 60 ; Heat-Shock Proteins/*metabolism ; Kinetics ; Models, Chemical ; *Protein Folding ; Ribulose-Bisphosphate Carboxylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1994-09-02
    Description: A beta 1-40, a major component of Alzheimer's disease cerebral amyloid, is present in the cerebrospinal fluid and remains relatively soluble at high concentrations (less than or equal to 3.7 mM). Thus, physiological factors which induce A beta amyloid formation could provide clues to the pathogenesis of the disease. It has been shown that human A beta specifically and saturably binds zinc. Here, concentrations of zinc above 300 nM rapidly destabilized human A beta 1-40 solutions, inducing tinctorial amyloid formation. However, rat A beta 1-40 binds zinc less avidly and is immune to these effects, perhaps explaining the scarcity with which these animals form cerebral A beta amyloid. These data suggest a role for cerebral zinc metabolism in the neuropathogenesis of Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bush, A I -- Pettingell, W H -- Multhaup, G -- d Paradis, M -- Vonsattel, J P -- Gusella, J F -- Beyreuther, K -- Masters, C L -- Tanzi, R E -- R01 AG11899-01/AG/NIA NIH HHS/ -- R01 NS30428-03/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 2;265(5177):1464-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics and Aging, Massachusetts General Hospital, Boston.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8073293" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/etiology/*metabolism ; Amyloid beta-Peptides/chemistry/*metabolism ; Animals ; Brain/metabolism ; Edetic Acid/pharmacology ; Humans ; Kinetics ; Mice ; Peptide Fragments/chemistry/*metabolism ; Rats ; Solubility ; Zinc/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carr, C M -- Kim, P S -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):234-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939658" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism/virology ; Endocytosis ; Endosomes/virology ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/chemistry/*physiology ; Hydrogen-Ion Concentration ; *Membrane Fusion ; Models, Biological ; Models, Molecular ; Orthomyxoviridae/immunology/*physiology ; Protein Conformation ; Viral Envelope Proteins/chemistry/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, P H -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):769-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303292" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1994-04-15
    Description: The most frequently occurring resistance of Gram-negative bacteria against tetracyclines is triggered by drug recognition of the Tet repressor. This causes dissociation of the repressor-operator DNA complex and enables expression of the resistance protein TetA, which is responsible for active efflux of tetracycline. The 2.5 angstrom resolution crystal structure of the homodimeric Tet repressor complexed with tetracycline-magnesium reveals detailed drug recognition. The orientation of the operator-binding helix-turn-helix motifs of the repressor is inverted in comparison with other DNA binding proteins. The repressor-drug complex is unable to interact with DNA because the separation of the DNA binding motifs is 5 angstroms wider than usually observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinrichs, W -- Kisker, C -- Duvel, M -- Muller, A -- Tovar, K -- Hillen, W -- Saenger, W -- New York, N.Y. -- Science. 1994 Apr 15;264(5157):418-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Kristallographie, Freie Universitat Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8153629" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA, Bacterial/metabolism ; Helix-Loop-Helix Motifs ; Hydrogen Bonding ; Magnesium/chemistry ; Models, Molecular ; Mutation ; Operator Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism ; Tetracycline/*chemistry/metabolism ; *Tetracycline Resistance/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1994-07-08
    Description: Monoclonal antibodies, induced with a phosphonate diester hapten, catalyzed the coupling of p-nitrophenyl esters of N-acetyl valine, leucine, and phenylalanine with tryptophan amide to form the corresponding dipeptides. All possible stereoisomeric combinations of the ester and amide substrates were coupled at comparable rates. The antibodies did not catalyze the hydrolysis of the dipeptide product nor hydrolysis or racemization of the activated esters. The yields of the dipeptides ranged from 44 to 94 percent. The antibodies were capable of multiple turnovers at rates that exceeded the rate of spontaneous ester hydrolysis. This achievement suggests routes toward creating a small number of antibody catalysts for polypeptide syntheses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirschmann, R -- Smith, A B 3rd -- Taylor, C M -- Benkovic, P A -- Taylor, S D -- Yager, K M -- Sprengeler, P A -- Benkovic, S J -- GM-45611/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jul 8;265(5169):234-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Pennsylvania, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023141" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*metabolism ; Antibodies, Monoclonal/*metabolism ; Binding Sites, Antibody ; Dipeptides/*biosynthesis ; Esters ; Haptens ; Kinetics ; Leucine/analogs & derivatives/metabolism ; Molecular Conformation ; Phenylalanine/analogs & derivatives/metabolism ; Stereoisomerism ; Tryptophan/analogs & derivatives/metabolism ; Valine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flam, F -- New York, N.Y. -- Science. 1994 Mar 18;263(5153):1563-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128241" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Models, Molecular ; Protein Conformation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: Thermodynamic studies have demonstrated the central importance of a large negative heat capacity change (delta C degree assoc) in site-specific protein-DNA recognition. Dissection of the large negative delta C degree assoc and the entropy change of protein-ligand and protein-DNA complexation provide a thermodynamic signature identifying processes in which local folding is coupled to binding. Estimates of the number of residues that fold on binding obtained from this analysis agree with structural data. Structural comparisons indicate that these local folding transitions create key parts of the protein-DNA interface. The energetic implications of this "induced fit" model for DNA site recognition are considered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spolar, R S -- Record, M T Jr -- GM23467/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):777-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303294" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; *Protein Folding ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1994-04-01
    Description: Interleukin-8 (IL-8), a pro-inflammatory protein, has been shown by nuclear magnetic resonance (NMR) and x-ray techniques to exist as a homodimer. An IL-8 analog was chemically synthesized, with the amide nitrogen of leucine-25 methylated to selectivity block formation of hydrogen bonds between monomers and thereby prevent dimerization. This analog was shown to be a monomer, as assessed by analytical ultracentrifugation and NMR. Nevertheless, it was equivalent to IL-8 in assays of neutrophil activation, which indicates that the monomer is a functional form of IL-8.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajarathnam, K -- Sykes, B D -- Kay, C M -- Dewald, B -- Geiser, T -- Baggiolini, M -- Clark-Lewis, I -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):90-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Engineering Network of Centres of Excellence (PENCE), University of Alberta, Edmonton, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8140420" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/metabolism ; Chemotaxis, Leukocyte ; Humans ; Hydrogen Bonding ; Interleukin-8/analogs & derivatives/chemistry/metabolism/*pharmacology ; Leukocyte Elastase ; Models, Chemical ; Neutrophils/drug effects/*physiology ; Pancreatic Elastase/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Interleukin/chemistry/metabolism ; Receptors, Interleukin-8A
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1994-07-15
    Description: The tailspike protein (TSP) of Salmonella typhimurium phage P22 is a part of the apparatus by which the phage attaches to the bacterial host and hydrolyzes the O antigen. It has served as a model system for genetic and biochemical analysis of protein folding. The x-ray structure of a shortened TSP (residues 109 to 666) was determined to a 2.0 angstrom resolution. Each subunit of the homotrimer contains a large parallel beta helix. The interdigitation of the polypeptide chains at the carboxyl termini is important to protrimer formation in the folding pathway and to thermostability of the mature protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinbacher, S -- Seckler, R -- Miller, S -- Steipe, B -- Huber, R -- Reinemer, P -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):383-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biochemie, Abteilung Strukturforschung, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023158" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacteriophage P22 ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Glycoside Hydrolases/*chemistry/genetics ; Models, Molecular ; Point Mutation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Viral Proteins/*chemistry/genetics ; *Viral Tail Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1994-06-10
    Description: Trans-activator (Tat) proteins regulate the transcription of lentiviral DNA in the host cell genome. These RNA binding proteins participate in the life cycle of all known lentiviruses, such as the human immunodeficiency viruses (HIV) or the equine infectious anemia virus (EIAV). The consensus RNA binding motifs [the trans-activation responsive element (TAR)] of HIV-1 as well as EIAV Tat proteins are well characterized. The structure of the 75-amino acid EIAV Tat protein in solution was determined by two- and three-dimensional nuclear magnetic resonance methods and molecular dynamics calculations. The protein structure exhibits a well-defined hydrophobic core of 15 amino acids that serves as a scaffold for two flexible domains corresponding to the NH2- and COOH-terminal regions. The core region is a strictly conserved sequence region among the known Tat proteins. The structural data can be used to explain several of the observed features of Tat proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willbold, D -- Rosin-Arbesfeld, R -- Sticht, H -- Frank, R -- Rosch, P -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Biopolymere, Universitat Bayreuth, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7515512" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Gene Products, tat/*chemistry/metabolism ; Infectious Anemia Virus, Equine/*chemistry ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; RNA/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: The repair of cyclobutane pyrimidine dimers (CPDs), DNA lesions induced by ultraviolet light, was studied at nucleotide resolution. Human fibroblasts were irradiated with ultraviolet light and allowed to repair. The DNA was enzymatically cleaved at the CPDs, and the induced breaks along the promoter and exon 1 of the PGK1 gene were mapped by ligation-mediated polymerase chain reaction. Repair rates within the nontranscribed strand varied as much as 15-fold, depending on nucleotide position. Preferential repair of the transcribed strand began just downstream of the transcription start site but was most pronounced beginning at nucleotide +140 in exon 1. The promoter contained two slowly repaired regions that coincided with two transcription factor binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, S -- Drouin, R -- Holmquist, G P -- CA54773/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1438-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beckman Research Institute of the City of Hope, Department of Biology, Duarte, CA 91010.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128226" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cells, Cultured ; *DNA Repair ; Exons ; *Genes ; HeLa Cells ; Humans ; Kinetics ; Phosphoglycerate Kinase/*genetics ; Promoter Regions, Genetic ; Pyrimidine Dimers/*metabolism ; Skin/metabolism/*radiation effects ; Transcription Factors/metabolism ; Transcription, Genetic ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1994-08-12
    Description: The critical discriminatory event in the activation of T lymphocytes bearing alpha beta T cell receptors (TCRs) is their interaction with a molecular complex consisting of a peptide bound to a major histocompatibility complex (MHC)-encoded class I or class II molecule on the surface of an antigen-presenting cell. The kinetics of binding were measured of a purified TCR to molecular complexes of a purified soluble analog of the murine MHC class I molecule H-2Ld (sH-2Ld) and a synthetic octamer peptide p2CL in a direct, real-time assay based on surface plasmon resonance. The kinetic dissociation rate of the MHC-peptide complex from the TCR was rapid (2.6 x 10(-2) second-1, corresponding to a half-time for dissociation of approximately 27 seconds), and the kinetic association rate was 2.1 x 10(5) M-1 second-1. The equilibrium constant for dissociation was approximately 10(-7) M. These values indicate that TCRs must interact with a multivalent array of MHC-peptide complexes to trigger T cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corr, M -- Slanetz, A E -- Boyd, L F -- Jelonek, M T -- Khilko, S -- al-Ramadi, B K -- Kim, Y S -- Maher, S E -- Bothwell, A L -- Margulies, D H -- New York, N.Y. -- Science. 1994 Aug 12;265(5174):946-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8052850" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biosensing Techniques ; H-2 Antigens/*metabolism ; Histocompatibility Antigen H-2D ; Kinetics ; *Major Histocompatibility Complex ; Mice ; Molecular Sequence Data ; Oligopeptides/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/*metabolism ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: A four-ring tripeptide containing alternating imidazole and pyrrole carboxamides specifically binds six-base pair 5'-(A,T)GCGC(A,T)-3' sites in the minor groove of DNA. The designed peptide has a specificity completely reversed from that of the tripyrrole distamycin, which binds A,T sequences. Structural studies with nuclear magnetic resonance revealed that two peptides bound side-by-side and in an antiparallel orientation in the minor groove. Each of the four imidazoles in the 2:1 ligand-DNA complex recognized a specific guanine amino group in the GCGC core through a hydrogen bond. Targeting a designated four-base pair G.C tract by this synthetic ligand supports the generality of the 2:1 peptide-DNA motif for sequence-specific minor groove recognition of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geierstanger, B H -- Mrksich, M -- Dervan, P B -- Wemmer, D E -- GM-27681/GM/NIGMS NIH HHS/ -- GM-43129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939719" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Computer Graphics ; DNA/chemistry/*metabolism ; Drug Design ; Hydrogen Bonding ; Imidazoles/chemical synthesis/*chemistry/metabolism ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligopeptides/chemical synthesis/*chemistry/metabolism ; Protein Conformation ; Pyrroles/chemical synthesis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1994-04-01
    Description: The crystal structure of a complex between a 24-amino acid peptide from the third variable (V3) loop of human immunodeficiency virus-type 1 (HIV-1) gp 120 and the Fab fragment of a broadly neutralizing antibody (59.1) was determined to 3 angstrom resolution. The tip of the V3 loop containing the Gly-Pro-Gly-Arg-Ala-Phe sequence adopts a double-turn conformation, which may be the basis of its conservation in many HIV-1 isolates. A complete map of the HIV-1 principal neutralizing determinant was constructed by stitching together structures of V3 loop peptides bound to 59.1 and to an isolate-specific (MN) neutralizing antibody (50.1). Structural conservation of the overlapping epitopes suggests that this biologically relevant conformation could be of use in the design of synthetic vaccines and drugs to inhibit HIV-1 entry and virus-related cellular fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghiara, J B -- Stura, E A -- Stanfield, R L -- Profy, A T -- Wilson, I A -- GM-46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7511253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology ; Antigen-Antibody Complex/*chemistry/immunology ; Antigen-Antibody Reactions ; Computer Graphics ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV-1/*chemistry/immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Peptide Fragments/*chemistry/immunology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1994-08-19
    Description: The three-dimensional structure of an unusually active hydrolytic antibody with a phosphonate transition state analog (hapten) bound to the active site has been solved to 2.5 A resolution. The antibody (17E8) catalyzes the hydrolysis of norleucine and methionine phenyl esters and is selective for amino acid esters that have the natural alpha-carbon L configuration. A plot of the pH-dependence of the antibody-catalyzed reaction is bell-shaped with an activity maximum at pH 9.5; experiments on mechanism lend support to the formation of a covalent acyl-antibody intermediate. The structural and kinetic data are complementary and support a hydrolytic mechanism for the antibody that is remarkably similar to that of the serine proteases. The antibody active site contains a Ser-His dyad structure proximal to the phosphorous atom of the bound hapten that resembles two of the three components of the Ser-His-Asp catalytic triad of serine proteases. The antibody active site also contains a Lys residue to stabilize oxyanion formation, and a hydrophobic binding pocket for specific substrate recognition of norleucine and methionine side chains. The structure identifies active site residues that mediate catalysis and suggests specific mutations that may improve the catalytic efficiency of the antibody. This high resolution structure of a catalytic antibody-hapten complex shows that antibodies can converge on active site structures that have arisen through natural enzyme evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, G W -- Guo, J -- Huang, W -- Fletterick, R J -- Scanlan, T S -- DK39304/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1059-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Catalytic/*chemistry/immunology/metabolism ; Binding Sites ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Haptens/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Serine Endopeptidases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1994-02-04
    Description: Age-specific mortality rates in isogenic populations of the nematode Caenorhabditis elegans increase exponentially throughout life. In genetically heterogeneous populations, age-specific mortality increases exponentially until about 17 days and then remains constant until the last death occurs at about 60 days. This period of constant age-specific mortality results from genetic heterogeneity. Subpopulations differ in mean life-span, but they all exhibit near exponential, albeit different, rates of increase in age-specific mortality. Thus, much of the observed heterogeneity in mortality rates later in life could result from genetic heterogeneity and not from an inherent effect of aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, A -- Lithgow, G J -- Johnson, T E -- K04-AG00369/AG/NIA NIH HHS/ -- R01-AG08332/AG/NIA NIH HHS/ -- R01-AG10248/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 4;263(5147):668-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Behavioral Genetics, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303273" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Caenorhabditis elegans/genetics/*physiology ; *Genetic Variation ; Kinetics ; Longevity/genetics ; Mortality
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1994-12-23
    Description: A synthetic combinatorial library containing 52,128,400 D-amino acid hexapeptides was used to identify a ligand for the mu opioid receptor. The peptide, Ac-rfwink-NH2, bears no resemblance to any known opioid peptide. Simulations using molecular dynamics, however, showed that three amino acid moieties have the same spatial orientation as the corresponding pharmacophoric groups of the opioid peptide PLO17. Ac-rfwink-NH2 was shown to be a potent agonist at the mu receptor and induced long-lasting analgesia in mice. Analgesia produced by intraperitoneally administered Ac-rfwink-NH2 was blocked by intracerebroventricular administration of naloxone, demonstrating that this peptide may cross the blood-brain barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dooley, C T -- Chung, N N -- Wilkes, B C -- Schiller, P W -- Bidlack, J M -- Pasternak, G W -- Houghten, R A -- DA-000138/DA/NIDA NIH HHS/ -- DA-02615/DA/NIDA NIH HHS/ -- DA-03742/DA/NIDA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2019-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Torrey Pines Institute for Molecular Studies, San Diego, CA 92121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Analgesics/chemistry/metabolism/*pharmacology ; Animals ; Brain/metabolism ; Dose-Response Relationship, Drug ; Endorphins/pharmacology ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)- ; Enkephalin, D-Penicillamine (2,5)- ; Enkephalins/metabolism ; Guinea Pigs ; Injections, Intraventricular ; Male ; Mice ; Models, Molecular ; Molecular Sequence Data ; Naloxone/administration & dosage/pharmacology ; Opioid Peptides/chemistry/metabolism/*pharmacology ; Pain Measurement ; Protein Conformation ; Rats ; Receptors, Opioid, mu/agonists/metabolism ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1994-12-09
    Description: The crystal structure of a 27-kilodalton methylcobalamin-containing fragment of methionine synthase from Escherichia coli was determined at 3.0 A resolution. This structure depicts cobalamin-protein interactions and reveals that the corrin macrocycle lies between a helical amino-terminal domain and an alpha/beta carboxyl-terminal domain that is a variant of the Rossmann fold. Methylcobalamin undergoes a conformational change on binding the protein; the dimethylbenzimidazole group, which is coordinated to the cobalt in the free cofactor, moves away from the corrin and is replaced by a histidine contributed by the protein. The sequence Asp-X-His-X-X-Gly, which contains this histidine ligand, is conserved in the adenosylcobalamin-dependent enzymes methylmalonyl-coenzyme A mutase and glutamate mutase, suggesting that displacement of the dimethylbenzimidazole will be a feature common to many cobalamin-binding proteins. Thus the cobalt ligand, His759, and the neighboring residues Asp757 and Ser810, may form a catalytic quartet, Co-His-Asp-Ser, that modulates the reactivity of the B12 prosthetic group in methionine synthase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drennan, C L -- Huang, S -- Drummond, J T -- Matthews, R G -- Lidwig, M L -- GM08570/GM/NIGMS NIH HHS/ -- GM16429/GM/NIGMS NIH HHS/ -- GM24908/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1669-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Research Division, University of Michigan, Ann Arbor 48109-1055.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992050" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/*chemistry/metabolism ; Amino Acid Isomerases/chemistry ; Amino Acid Sequence ; Benzimidazoles ; Catalysis ; Computer Graphics ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli/*enzymology ; Histidine/metabolism ; *Intramolecular Transferases ; Ligands ; Methylation ; Methylmalonyl-CoA Mutase/chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Vitamin B 12/*analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1994-01-21
    Description: The structure of the 52-amino acid DNA-binding domain of the prokaryotic Hin recombinase, complexed with a DNA recombination half-site, has been solved by x-ray crystallography at 2.3 angstrom resolution. The Hin domain consists of a three-alpha-helix bundle, with the carboxyl-terminal helix inserted into the major groove of DNA, and two flanking extended polypeptide chains that contact bases in the minor groove. The overall structure displays features resembling both a prototypical bacterial helix-turn-helix and the eukaryotic homeodomain, and in many respects is an intermediate between these two DNA-binding motifs. In addition, a new structural motif is seen: the six-amino acid carboxyl-terminal peptide of the Hin domain runs along the minor groove at the edge of the recombination site, with the peptide backbone facing the floor of the groove and side chains extending away toward the exterior. The x-ray structure provides an almost complete explanation for DNA mutant binding studies in the Hin system and for DNA specificity observed in the Hin-related family of DNA invertases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, J A -- Johnson, R C -- Dickerson, R E -- GM-31299/GM/NIGMS NIH HHS/ -- GM-38509/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 21;263(5145):348-55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8278807" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Composition ; Base Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Nucleotidyltransferases/chemistry/*metabolism ; Helix-Loop-Helix Motifs ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1994-12-16
    Description: The three-dimensional structure of a Staphylococcus aureus superantigen, toxic shock syndrome toxin-1 (TSST-1), complexed with a human class II major histocompatibility molecule (DR1), was determined by x-ray crystallography. The TSST-1 binding site on DR1 overlaps that of the superantigen S. aureus enterotoxin B (SEB), but the two binding modes differ. Whereas SEB binds primarily off one edge of the peptide binding site of DR1, TSST-1 extends over almost one-half of the binding site and contacts both the flanking alpha helices of the histocompatibility antigen and the bound peptide. This difference suggests that the T cell receptor (TCR) would bind to TSST-1:DR1 very differently than to DR1:peptide or SEB:DR1. It also suggests that TSST-1 binding may be dependent on the peptide, though less so than TCR binding, providing a possible explanation for the inability of TSST-1 to competitively block SEB binding to all DR1 molecules on cells (even though the binding sites of TSST-1 and SEB on DR1 overlap almost completely) and suggesting the possibility that T cell activation by superantigen could be directed by peptide antigen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, J -- Urban, R G -- Strominger, J L -- Wiley, D C -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1870-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997880" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Toxins ; Binding Sites ; Crystallography, X-Ray ; Enterotoxins/*chemistry/metabolism ; HLA-DR1 Antigen/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/metabolism ; *Staphylococcus aureus ; Superantigens/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-24
    Description: Formation of a short (less than 2.5 angstroms), very strong, low-barrier hydrogen bond in the transition state, or in an enzyme-intermediate complex, can be an important contribution to enzymic catalysis. Formation of such a bond can supply 10 to 20 kilocalories per mole and thus facilitate difficult reactions such as enolization of carboxylate groups. Because low-barrier hydrogen bonds form only when the pKa's (negative logarithm of the acid constant) of the oxygens or nitrogens sharing the hydrogen are similar, a weak hydrogen bond in the enzyme-substrate complex in which the pKa's do not match can become a strong, low-barrier one if the pKa's become matched in the transition state or enzyme-intermediate complex. Several examples of enzymatic reactions that appear to use this principle are presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cleland, W W -- Kreevoy, M M -- GM 18938/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1887-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Enzyme Research, University of Wisconsin, Madison 53705.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8009219" target="_blank"〉PubMed〈/a〉
    Keywords: Aconitate Hydratase/chemistry/metabolism ; Binding Sites ; Carboxypeptidases/chemistry/metabolism ; *Catalysis ; Citrate (si)-Synthase/chemistry/metabolism ; Enzymes/*metabolism ; *Hydrogen Bonding ; Isomerases/chemistry/metabolism ; Kinetics ; Orotidine-5'-Phosphate Decarboxylase/chemistry/metabolism ; Racemases and Epimerases/chemistry/metabolism ; Thermolysin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1994-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steitz, T A -- Smerdon, S J -- Jager, J -- Joyce, C M -- GM28550/GM/NIGMS NIH HHS/ -- GM39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2022-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7528445" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Polymerase I/*chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; HIV Reverse Transcriptase ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; RNA-Directed DNA Polymerase/*chemistry/metabolism ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1994-10-07
    Description: Para-hydroxybenzoate hydroxylase inserts oxygen into substrates by means of the labile intermediate, flavin C(4a)-hydroperoxide. This reaction requires transient isolation of the flavin and substrate from the bulk solvent. Previous crystal structures have revealed the position of the substrate para-hydroxybenzoate during oxygenation but not how it enters the active site. In this study, enzyme structures with the flavin ring displaced relative to the protein were determined, and it was established that these or similar flavin conformations also occur in solution. Movement of the flavin appears to be essential for the translocation of substrates and products into the solvent-shielded active site during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatti, D L -- Palfey, B A -- Lah, M S -- Entsch, B -- Massey, V -- Ballou, D P -- Ludwig, M L -- GM 11106/GM/NIGMS NIH HHS/ -- GM 16429/GM/NIGMS NIH HHS/ -- GM 20877/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):110-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939628" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoate 4-Monooxygenase ; Binding Sites ; Catalysis ; Computer Graphics ; Flavin-Adenine Dinucleotide/chemistry/metabolism ; Flavins/*chemistry/metabolism ; Hydrogen Bonding ; Mixed Function Oxygenases/*chemistry/metabolism ; Models, Molecular ; Molecular Conformation ; Oxidation-Reduction ; Parabens/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1994-03-11
    Description: Crystal structures of seryl-tRNA synthetase from Thermus thermophilus complexed with two different analogs of seryl adenylate have been determined at 2.5 A resolution. The first complex is between the enzyme and seryl-hydroxamate-AMP (adenosine monophosphate), produced enzymatically in the crystal from adenosine triphosphate (ATP) and serine hydroxamate, and the second is with a synthetic analog of seryl adenylate (5'-O-[N-(L-seryl)-sulfamoyl]adenosine), which is a strong inhibitor of the enzyme. Both molecules are bound in a similar fashion by a network of hydrogen bond interactions in a deep hydrophilic cleft formed by the antiparallel beta sheet and surrounding loops of the synthetase catalytic domain. Four regions in the primary sequence are involved in the interactions, including the motif 2 and 3 regions of class 2 synthetases. Apart from the specific recognition of the serine side chain, the interactions are likely to be similar in all class 2 synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belrhali, H -- Yaremchuk, A -- Tukalo, M -- Larsen, K -- Berthet-Colominas, C -- Leberman, R -- Beijer, B -- Sproat, B -- Als-Nielsen, J -- Grubel, G -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EMBL Grenoble Outstation, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128224" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/chemical synthesis/metabolism ; Adenosine Monophosphate/*analogs & derivatives/chemical synthesis/metabolism ; Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Serine/*analogs & derivatives/chemical synthesis/metabolism ; Serine-tRNA Ligase/*chemistry/metabolism ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-27
    Description: Two major goals for the design of new catalysts are the facilitation of chemical transformations and control of product outcome. An antibody has been induced that efficiently catalyzes a cationic cyclization in which an acyclic olefinic sulfonate ester substrate is converted almost exclusively (98 percent) to a cyclic alcohol. The key to the catalysis of the reaction and the restriction of the product complexity is the use of antibody binding energy to rigidly enforce a concerted mechanism in accord with the design of the hapten. Thus, the ability to direct binding energy allows the experimenter to dictate a reaction mechanism which is an otherwise difficult task in chemistry. New catalysts for cationic cyclization may be of general use in the formation of carbon-carbon and carbon-heteroatom bonds leading to multi-ring molecules including steroids and heterocyclic compounds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, T -- Janda, K D -- Ashley, J A -- Lerner, R A -- GM-43858/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 May 27;264(5163):1289-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute, Department of Molecular Biology, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8191282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/*chemistry ; Antibodies, Monoclonal/chemistry ; Catalysis ; Cations/*chemistry ; Chromatography, Gas ; Cyclization ; Haptens ; Kinetics ; Mice ; Organosilicon Compounds/*chemistry ; Sulfanilic Acids/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-09-16
    Description: Pulse-probe transient Raman spectroscopy, with probe excitation at 230 nanometers, reveals changes in signals arising from tyrosine and tryptophan residues of the hemoglobin molecule as it moves from the relaxed (R) to the tense (T) state after photodeligation. Signals associated with intersubunit contacts in the T state develop in about 10 microseconds but are preceded by quite different signals, which reach maximum amplitude in about 50 nanoseconds. These signals involve the interior tryptophan residues that bridge the A and E helices by means of H bonds between the indole rings and serine or threonine side chains. Alterations of the H bond strengths, as a result of interhelix motions, can account for the signals. A model is proposed here in which loss of the ligand from the heme binding pocket is concerted with inward motion of the adjacent E helix; this motion, along with a complementary motion of the proximal F helix, transmits the energy associated with heme deligation to the subunit interfaces, leading to the T state rearrangement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodgers, K R -- Spiro, T G -- GM 25158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1697-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, North Dakota State University, Fargo 58105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085153" target="_blank"〉PubMed〈/a〉
    Keywords: Carboxyhemoglobin/chemistry ; Heme/chemistry ; Hemoglobins/*chemistry ; Hydrogen Bonding ; Protein Conformation ; Protein Structure, Secondary ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-04
    Description: Any RNA, when in a complex with another oligoribonucleotide known as an external guide sequence (EGS), can become a substrate for ribonuclease P. Simulation of evolution in vitro was used to select EGSs that bind tightly to a target substrate messenger RNA and that increase the efficiency of cleavage of the target by human ribonuclease P to a level equal to that achieved with natural substrates. The most efficient EGSs form transfer RNA precursor-like structures with the target RNA, in which the analog of the anticodon stem has been disrupted, an indication that selection for the optimal substrate for ribonuclease P yields an RNA structure different from that of present-day transfer RNA precursors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Y -- Altman, S -- AI31876/AI/NIAID NIH HHS/ -- GM19422/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 4;263(5151):1269-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Yale University, New Haven, CT 06520.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8122108" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/chemistry/metabolism ; Base Sequence ; Chloramphenicol O-Acetyltransferase/genetics ; Endoribonucleases/*metabolism ; Humans ; Kinetics ; Magnesium/pharmacology ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/*metabolism ; RNA Precursors/chemistry/metabolism ; RNA, Catalytic/*metabolism ; RNA, Guide/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; RNA, Transfer/chemistry/metabolism ; Ribonuclease P ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-12
    Description: The folding pathways of large, highly structured RNA molecules are largely unexplored. Insight into both the kinetics of folding and the presence of intermediates was provided in a study of the Mg(2+)-induced folding of the Tetrahymena ribozyme by hybridization of complementary oligodeoxynucleotide probes. This RNA folds via a complex mechanism involving both Mg(2+)-dependent and Mg(2+)-independent steps. A hierarchical model for the folding pathway is proposed in which formation of one helical domain (P4-P6) precedes that of a second helical domain (P3-P7). The overall rate-limiting step is formation of P3-P7, and takes place with an observed rate constant of 0.72 +/- 0.14 minute-1. The folding mechanism of large RNAs appears similar to that of many multidomain proteins in that formation of independently stable substructures precedes their association into the final conformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrinkar, P P -- Williamson, J R -- New York, N.Y. -- Science. 1994 Aug 12;265(5174):918-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8052848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Introns ; Kinetics ; Magnesium/metabolism/pharmacology ; Models, Chemical ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; RNA, Catalytic/*chemistry/metabolism ; RNA, Protozoan/*chemistry ; Ribonuclease H/metabolism ; Temperature ; Tetrahymena/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1994-03-11
    Description: The crystal structure of Thermus thermophilus seryl-transfer RNA synthetase, a class 2 aminoacyl-tRNA synthetase, complexed with a single tRNA(Ser) molecule was solved at 2.9 A resolution. The structure revealed how insertion of conserved base G20b from the D loop into the core of the tRNA determines the orientation of the long variable arm, which is a characteristic feature of most serine specific tRNAs. On tRNA binding, the antiparallel coiled-coil domain of one subunit of the synthetase makes contacts with the variable arm and T psi C loop of the tRNA and directs the acceptor stem of the tRNA into the active site of the other subunit. Specificity depends principally on recognition of the shape of tRNA(Ser) through backbone contacts and secondarily on sequence specific interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biou, V -- Yaremchuk, A -- Tukalo, M -- Cusack, S -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1404-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Grenoble Outstation, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128220" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Base Composition ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA, Transfer, Amino Acyl/*chemistry/metabolism ; Serine-tRNA Ligase/*chemistry/metabolism ; Substrate Specificity ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1994-03-25
    Description: The three-dimensional structure of a member of the beta subfamily of chemokines, human macrophage inflammatory protein-1 beta (hMIP-1 beta), has been determined with the use of solution multidimensional heteronuclear magnetic resonance spectroscopy. Human MIP-1 beta is a symmetric homodimer with a relative molecular mass of approximately 16 kilodaltons. The structure of the hMIP-1 beta monomer is similar to that of the related alpha chemokine interleukin-8 (IL-8). However, the quaternary structures of the two proteins are entirely distinct, and the dimer interface is formed by a completely different set of residues. Whereas the IL-8 dimer is globular, the hMIP-1 beta dimer is elongated and cylindrical. This provides a rational explanation for the absence of cross-binding and reactivity between the alpha and beta chemokine subfamilies. Calculation of the solvation free energies of dimerization suggests that the formation and stabilization of the two different types of dimers arise from the burial of hydrophobic residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lodi, P J -- Garrett, D S -- Kuszewski, J -- Tsang, M L -- Weatherbee, J A -- Leonard, W J -- Gronenborn, A M -- Clore, G M -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1762-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134838" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemokine CCL4 ; Computer Graphics ; Cytokines/*chemistry ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Interleukin-8/chemistry ; Macrophage Inflammatory Proteins ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Monokines/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-04
    Description: A simple technique has been devised that allows the direct synthesis of native backbone proteins of moderate size. Chemoselective reaction of two unprotected peptide segments gives an initial thioester-linked species. Spontaneous rearrangement of this transient intermediate yields a full-length product with a native peptide bond at the ligation site. The utility of native chemical ligation was demonstrated by the one-step preparation of a cytokine containing multiple disulfides. The polypeptide ligation product was folded and oxidized to form the native disulfide-containing protein molecule. Native chemical ligation is an important step toward the general application of chemistry to proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, P E -- Muir, T W -- Clark-Lewis, I -- Kent, S B -- GM 50969-01/GM/NIGMS NIH HHS/ -- GM48870-03/GM/NIGMS NIH HHS/ -- GM48897-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):776-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Humans ; Interleukin-8/*chemical synthesis/chemistry ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Conformation ; *Protein Folding ; Proteins/*chemical synthesis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-04-08
    Description: Editing reactions are essential for the high fidelity of information transfer in processes such as replication, RNA splicing, and protein synthesis. The accuracy of interpretation of the genetic code is enhanced by the editing reactions of aminoacyl transfer RNA (tRNA) synthetases, whereby amino acids are prevented from being attached to the wrong tRNAs. Amino acid discrimination is achieved through sieves that may overlap with or coincide with the amino acid binding site. With the class I Escherichia coli isoleucine tRNA synthetase, which activates isoleucine and occasionally misactivates valine, as an example, a rationally chosen mutant enzyme was constructed that lacks entirely its normal strong ability to distinguish valine from isoleucine by the initial amino acid recognition sieve. The misactivated valine, however, is still eliminated by hydrolytic editing reactions. These data suggest that there is a distinct sieve for editing that is functionally independent of the amino acid binding site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, E -- Schimmel, P -- GM 15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 8;264(5156):265-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8146659" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Escherichia coli/enzymology ; Isoleucine/*metabolism ; Isoleucine-tRNA Ligase/chemistry/genetics/*metabolism ; Kinetics ; Mutation ; Protein Structure, Secondary ; *RNA Editing ; RNA, Transfer, Ile/metabolism ; Valine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: During transcription elongation, three flexibly connected parts of RNA polymerase of Escherichia coli advance along the template so that the front-end domain is followed by the catalytic site which in turn is followed by the RNA product binding site. The advancing enzyme was found to maintain the same conformation throughout extended segments of the transcribed region. However, when the polymerase traveled across certain DNA sites that seemed to briefly anchor the front-end domain, cyclic shifting of the three parts, accompanied by buildup and relief of internal strain, was observed. Thus, elongation proceeded in alternating laps of monotonous and inchworm-like movement with the flexible RNA polymerase configuration being subject to direct sequence control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nudler, E -- Goldfarb, A -- Kashlev, M -- GM49242/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Public Health Research Institute, New York, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047884" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA-Directed RNA Polymerases/*metabolism ; *Escherichia coli Proteins ; *Models, Genetic ; Molecular Sequence Data ; Movement ; Peptide Elongation Factors/metabolism ; Protein Conformation ; RNA, Messenger/metabolism ; RNA-Binding Proteins/metabolism ; Templates, Genetic ; Transcription Factors/metabolism ; Transcription, Genetic/*physiology ; Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1994-02-25
    Description: Intracellular vesicles destined to fuse with the plasma membrane and secrete their contents must have a mechanism for specifically interacting with the appropriate target membrane. Such a mechanism is now suggested by the demonstration of specific interaction between vesicular proteins and plasma membrane proteins. The vesicle-associated membrane proteins (VAMPs) 1 and 2 specifically bind the acceptor membrane proteins syntaxin 1A and 4 but not syntaxin 2 or 3. The binding site is within amino acids 194 to 267 of syntaxin 1A, and the approximate equilibrium dissociation constants is 4.7 x 10(-6) molar. These data suggest a physical basis for the specificity of intracellular vesicular transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calakos, N -- Bennett, M K -- Peterson, K E -- Scheller, R H -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1146-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8108733" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface/*metabolism ; Binding Sites ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Haplorhini ; Kinetics ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Nerve Tissue Proteins/*metabolism ; R-SNARE Proteins ; Recombinant Fusion Proteins/metabolism ; Synaptic Vesicles/*metabolism ; Syntaxin 1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, C -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066459" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/biosynthesis ; Crystallization ; Crystallography, X-Ray ; Intracellular Membranes/enzymology ; Mitochondria/enzymology ; Models, Molecular ; Protein Conformation ; Proton-Translocating ATPases/*chemistry/metabolism ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-12
    Description: Scalable parallel computer architectures provide the computational performance needed for advanced biomedical computing problems. The National Institutes of Health have developed a number of parallel algorithms and techniques useful in determining biological structure and function. These applications include processing electron micrographs to determine the three-dimensional structure of viruses, calculating the solvent-accessible surface area of proteins to help predict the three-dimensional conformation of these molecules from their primary structures, and searching for homologous DNA or amino acid sequences in large biological databases. Timing results demonstrate substantial performance improvements with parallel implementations compared with conventional sequential systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martino, R L -- Johnson, C A -- Suh, E B -- Trus, B L -- Yap, T K -- New York, N.Y. -- Science. 1994 Aug 12;265(5174):902-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational Bioscience and Engineering Laboratory, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8052847" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Capsid/ultrastructure ; *Computer Simulation ; *Computers ; Databases, Factual ; Image Processing, Computer-Assisted ; National Institutes of Health (U.S.) ; Protein Conformation ; Protein Folding ; *Research ; Sequence Homology, Nucleic Acid ; Simplexvirus/ultrastructure ; Tomography, Emission-Computed ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1373.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128216" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Tyrosine Phosphatases/*chemistry/metabolism ; Tungsten Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1994-11-18
    Description: Solution structures of two Src homology 3 (SH3) domain-ligand complexes have been determined by nuclear magnetic resonance. Each complex consists of the SH3 domain and a nine-residue proline-rich peptide selected from a large library of ligands prepared by combinatorial synthesis. The bound ligands adopt a left-handed polyproline type II (PPII) helix, although the amino to carboxyl directionalities of their helices are opposite. The peptide orientation is determined by a salt bridge formed by the terminal arginine residues of the ligands and the conserved aspartate-99 of the SH3 domain. Residues at positions 3, 4, 6, and 7 of both peptides also intercalate into the ligand-binding site; however, the respective proline and nonproline residues show exchanged binding positions in the two complexes. These structural results led to a model for the interactions of SH3 domains with proline-rich peptides that can be used to predict critical residues in complexes of unknown structure. The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, S -- Chen, J K -- Yu, H -- Simon, J A -- Schreiber, S L -- GM44993/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 18;266(5188):1241-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7526465" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Alanine/chemistry ; Amino Acid Sequence ; Arginine/chemistry ; Binding Sites ; GRB2 Adaptor Protein ; Glycine/chemistry ; Guanine Nucleotide Exchange Factors ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/chemistry/*metabolism ; Peptides/chemistry/metabolism ; Proline/chemistry ; Proline-Rich Protein Domains ; Protein Conformation ; Protein Structure, Secondary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Proteins/chemistry/metabolism ; Proto-Oncogene Proteins pp60(c-src)/chemistry/*metabolism ; src-Family Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-18
    Description: A change in radical pair recombination rates is one of the few mechanisms by which a magnetic field can interact with a biological system. The kinetic parameter Vmax/Km (where Km is the Michaelis constant) for the coenzyme B12-dependent enzyme ethanolamine ammonia lyase was decreased 25 percent by a static magnetic field near 0.1 tesla (1000 gauss) with unlabeled ethanolamine and decreased 60 percent near 0.15 tesla with perdeuterated ethanolamine. This effect is likely caused by a magnetic field-induced change in intersystem crossing rates between the singlet and triplet spin states in the [cob(II)alamin:5'-deoxyadenosyl radical] spin-correlated radical pair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harkins, T T -- Grissom, C B -- ES05728/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 18;263(5149):958-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Utah, Salt Lake City 84112.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8310292" target="_blank"〉PubMed〈/a〉
    Keywords: Deuterium ; Ethanolamine ; Ethanolamine Ammonia-Lyase/*metabolism ; Ethanolamines/metabolism ; Kinetics ; *Magnetics ; Photolysis ; Vitamin B 12/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1993-01-01
    Description: A myelin-associated protein from the central nervous system, the neurite growth inhibitor NI-35, inhibits regeneration of lesioned neuronal fiber tracts in vivo and growth of neurites in vitro. Growth cones of cultured rat dorsal root ganglion neurons arrested their growth and collapsed when exposed to liposomes containing NI-35. Before morphological changes, the concentration of free intracellular calcium ([Ca2+]i) showed a rapid and large increase in growth cones exposed to liposomes containing NI-35. Neither an increase in [Ca2+]i nor collapse of growth cones was detected in the presence of antibodies to NI-35. Dantrolene, an inhibitor of calcium release from caffeine-sensitive intracellular calcium stores, protected growth cones from collapse evoked by NI-35. Depletion of these caffeine-sensitive intracellular calcium stores prevented the increase in [Ca2+]i evoked by NI-35. The NI-35-evoked cascade of intracellular messengers that mediates collapse of growth cones includes the crucial step of calcium release from intracellular stores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bandtlow, C E -- Schmidt, M F -- Hassinger, T D -- Schwab, M E -- Kater, S B -- NS24683/NS/NINDS NIH HHS/ -- NS28323/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 1;259(5091):80-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Research Institute, University of Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8418499" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caffeine/pharmacology ; Calcium/*metabolism ; Cells, Cultured ; Drug Carriers ; Fura-2 ; Ganglia, Spinal/*physiology ; Growth Inhibitors/*pharmacology ; Kinetics ; Liposomes ; Nerve Fibers/drug effects/*physiology/ultrastructure ; Neurons/drug effects/*physiology/ultrastructure ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-08
    Description: Oncogenes discovered in retroviruses such as Rous sarcoma virus were generated by transduction of cellular proto-oncogenes into the viral genome. Several different kinds of junctions between the viral and proto-oncogene sequences have been found in different viruses. A system of retrovirus vectors and a protocol that mimicked this transduction during a single cycle of retrovirus replication was developed. The transduction involved the formation of a chimeric viral-cellular RNA, strand switching of the reverse transcription growing point from an infectious retrovirus to the chimeric RNA, and often a subsequent deletion during the rest of viral DNA synthesis. A short region of sequence identity was frequently used for the strand switching. The rate of this process was about 0.1 to 1 percent of the rate of homologous retroviral recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, J -- Temin, H M -- CA-07175/CA/NCI NIH HHS/ -- CA-22443/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):234-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Cinnamates ; *DNA Replication ; DNA, Viral/chemistry/genetics ; Drug Resistance/genetics ; Genes, Viral ; Genetic Vectors ; Hygromycin B/analogs & derivatives ; Kinetics ; Mice ; Molecular Sequence Data ; Moloney murine leukemia virus/genetics ; Neomycin ; Plasmids ; *Proto-Oncogenes ; RNA, Viral/analysis/genetics ; *Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Retroviridae/*genetics/physiology ; Transfection ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1993-10-22
    Description: Glycogen storage disease (GSD) type 1a is caused by the deficiency of D-glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high incidence and morbidity, the molecular mechanisms underlying this deficiency have eluded characterization. In the present study, the molecular and biochemical characterization of the human G6Pase complementary DNA, its gene, and the expressed protein, which is indistinguishable from human microsomal G6Pase, are reported. Several mutations in the G6Pase gene of affected individuals that completely inactivate the enzyme have been identified. These results establish the molecular basis of this disease and open the way for future gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lei, K J -- Shelly, L L -- Pan, C J -- Sidbury, J B -- Chou, J Y -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):580-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA, Complementary/genetics ; Exons ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/enzymology/*genetics ; Glycosylation ; Humans ; Liver/enzymology ; Mice ; Molecular Sequence Data ; *Mutation ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1993-03-12
    Description: Glucagon and the glucagon receptor are a primary source of control over blood glucose concentrations and are especially important to studies of diabetes in which the loss of control over blood glucose concentrations clinically defines the disease. A complementary DNA clone for the glucagon receptor was isolated by an expression cloning strategy, and the receptor protein was expressed in several kidney cell lines. The cloned receptor bound glucagon and caused an increase in the intracellular concentration of adenosine 3', 5'-monophosphate (cAMP). The cloned glucagon receptor also transduced a signal that led to an increased concentration of intracellular calcium. The glucagon receptor is similar to the calcitonin and parathyroid hormone receptors. It can transduce signals leading to the accumulation of two different second messengers, cAMP and calcium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jelinek, L J -- Lok, S -- Rosenberg, G B -- Smith, R A -- Grant, F J -- Biggs, S -- Bensch, P A -- Kuijper, J L -- Sheppard, P O -- Sprecher, C A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1614-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ZymoGenetics Inc., Seattle, WA 98105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384375" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/pharmacology ; Cell Line ; Cloning, Molecular ; Cricetinae ; Cyclic AMP/metabolism ; Glucagon/metabolism/*pharmacology ; Kidney ; Kinetics ; Liver/*metabolism ; Molecular Sequence Data ; Rats ; Receptors, Gastrointestinal Hormone/genetics/metabolism/*physiology ; Receptors, Glucagon ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1993-11-05
    Description: Hydrogen exchange pulse labeling and stopped-flow circular dichroism were used to establish that the structure of the earliest detectable intermediate formed during refolding of apomyoglobin corresponds closely to that of a previously characterized equilibrium molten globule. This compact, cooperatively folded intermediate was formed in less than 5 milliseconds and contained stable, hydrogen-bonded secondary structure localized in the A, G, and H helices and part of the B helix. The remainder of the B helix folded on a much slower time scale, followed by the C and E helices and the CD loop. The data indicate that a molten globule intermediate was formed on the kinetic folding pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jennings, P A -- Wright, P E -- DK-34909/DK/NIDDK NIH HHS/ -- GM14541/GM/NIGMS NIH HHS/ -- RR04953/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):892-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235610" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/*chemistry ; Circular Dichroism ; Hydrogen/chemistry ; Hydrogen Bonding ; Kinetics ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Myoglobin/*chemistry ; *Protein Conformation ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1993-08-06
    Description: The structure of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase was determined to 2.1-angstrom resolution. Model building suggests that a single cleavage site catalyzes both decarboxylation and transamination by maximizing stereoelectronic advantages and providing electrostatic and general base catalysis. The enzyme contains two binding sites for alkali metal ions. One is located near the active site and accounts for the dependence of activity on potassium ions. The other is located at the carboxyl terminus of an alpha helix. These sites help show how proteins can specifically bind alkali metals and how these ions can exert functional effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toney, M D -- Hohenester, E -- Cowan, S W -- Jansonius, J N -- GM13854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):756-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342040" target="_blank"〉PubMed〈/a〉
    Keywords: Amination ; Amino Acid Sequence ; Binding Sites ; Carboxy-Lyases/*chemistry/metabolism ; Catalysis ; Computer Graphics ; Decarboxylation ; Metals, Alkali/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-10
    Description: An iterative in vitro selection procedure was used to isolate a new class of catalytic RNAs (ribozymes) from a large pool of random-sequence RNA molecules. These ribozymes ligate two RNA molecules that are aligned on a template by catalyzing the attack of a 3'-hydroxyl on an adjacent 5'-triphosphate--a reaction similar to that employed by the familiar protein enzymes that synthesize RNA. The corresponding uncatalyzed reaction also yields a 3',5'-phosphodiester bond. In vitro evolution of the population of new ribozymes led to improvement of the average ligation activity and the emergence of ribozymes with reaction rates 7 million times faster than the uncatalyzed reaction rate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bartel, D P -- Szostak, J W -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1411-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7690155" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biological Evolution ; Catalysis ; Kinetics ; Magnesium/metabolism ; Molecular Sequence Data ; Mutation ; Oligoribonucleotides/metabolism ; RNA/*metabolism ; RNA Ligase (ATP)/chemistry/isolation & purification/metabolism ; RNA, Catalytic/chemistry/*isolation & purification/metabolism ; Temperature ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-18
    Description: During the transition from embryonic to adult skeletal muscle, a decreased mean channel open time and accelerated desensitization of nicotinic acetylcholine (ACh) receptors result from the substitution of an epsilon subunit for gamma. A single ACh receptor channel of the embryonic type, expressed in Xenopus oocytes, interconverts between gating modes of short and long open time, whereas the adult receptor channel resides almost exclusively in the gating mode with short open time. Differences in the fraction of time spent in either gating mode account for the subunit dependence of both receptor open time and desensitization. Therefore, developmental changes in the kinetics of muscle ACh receptors may be imparted through subunit-dependent stabilization of intrinsic gating modes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naranjo, D -- Brehm, P -- NS18205/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1811-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511590" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*pharmacology ; Animals ; Embryo, Nonmammalian ; *Ion Channel Gating ; Kinetics ; Oocytes ; Receptors, Cholinergic/*metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-16
    Description: Klenow fragment of Escherichia coli DNA polymerase I, which was cocrystallized with duplex DNA, positioned 11 base pairs of DNA in a groove that lies at right angles to the cleft that contains the polymerase active site and is adjacent to the 3' to 5' exonuclease domain. When the fragment bound DNA, a region previously referred to as the "disordered domain" became more ordered and moved along with two helices toward the 3' to 5' exonuclease domain to form the binding groove. A single-stranded, 3' extension of three nucleotides bound to the 3' to 5' exonuclease active site. Although this cocrystal structure appears to be an editing complex, it suggests that the primer strand approaches the catalytic site of the polymerase from the direction of the 3' to 5' exonuclease domain and that the duplex DNA product may bend to enter the cleft that contains the polymerase catalytic site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beese, L S -- Derbyshire, V -- Steitz, T A -- GM28550/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 16;260(5106):352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469987" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallization ; DNA/chemistry/*metabolism ; DNA Polymerase I/*chemistry/metabolism ; DNA Replication ; DNA, Single-Stranded/chemistry/metabolism ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1993-12-24
    Description: The elongated proteins of the spectrin family (dystrophin, alpha-actinin, and spectrin) contain tandemly repeated segments and form resilient cellular meshworks by cross-linking actin filaments. The structure of one of the repetitive segments of alpha-spectrin was determined at a 1.8 angstrom resolution. A segment consists of a three-helix bundle. A model of the interface between two tandem segments suggests that hydrophobic interactions between segments may constrain intersegment flexibility. The helix side chain interactions explain how mutations that are known to produce hemolytic anemias disrupt spectrin associations that sustain the integrity of the erythrocyte membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Y -- Winograd, E -- Viel, A -- Cronin, T -- Harrison, S C -- Branton, D -- CA 13202/CA/NCI NIH HHS/ -- HL 17411/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2027-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266097" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallization ; Drosophila ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1993-05-21
    Description: The three-dimensional solution structure of the DNA binding domain (DBD) of the retinoid X receptor alpha (RXR alpha) was determined by nuclear magnetic resonance spectroscopy. The two zinc fingers of the RXR DBD fold to form a single structural domain that consists of two perpendicularly oriented helices and that resembles the corresponding regions of the glucocorticoid and estrogen receptors (GR and ER, respectively). However, in contrast to the DBDs of the GR and ER, the RXR DBD contains an additional helix immediately after the second zinc finger. This third helix mediates both protein-protein and protein-DNA interactions required for cooperative, dimeric binding of the RXR DBD to DNA. Identification of the third helix in the RXR DBD thus defines a structural feature required for selective dimerization of the RXR on hormone response elements composed of half-sites (5'-AGGTCA-3') arranged as tandem repeats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M S -- Kliewer, S A -- Provencal, J -- Wright, P E -- Evans, R M -- New York, N.Y. -- Science. 1993 May 21;260(5111):1117-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388124" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*chemistry/metabolism ; Oligodeoxyribonucleotides ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Cell Surface/*chemistry/metabolism ; *Receptors, Retinoic Acid ; Repetitive Sequences, Nucleic Acid ; Retinoid X Receptors ; *Transcription Factors ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1993-01-15
    Description: Endotoxin [lipopolysaccharide (LPS)], the major antigen of the outer membrane of Gram-negative bacteria, consists of a variable-size carbohydrate chain that is covalently linked to N,O-acylated beta-1,6-D-glucosamine disaccharide 1,4'-bisphosphate (lipid A). The toxic activity of LPS resides in the lipid A structure. The structural features of synthetic peptides that bind to lipid A with high affinity, detoxify LPS in vitro, and prevent LPS-induced cytokine release and lethality in vivo were defined. The binding thermodynamics were comparable to that of an antigen-antibody reaction. Such synthetic peptides may provide a strategy for prophylaxis and treatment of LPS-mediated diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rustici, A -- Velucchi, M -- Faggioni, R -- Sironi, M -- Ghezzi, P -- Quataert, S -- Green, B -- Porro, M -- New York, N.Y. -- Science. 1993 Jan 15;259(5093):361-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biosynth Research Laboratories, Siena, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8420003" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Bordetella pertussis/chemistry ; Escherichia coli/chemistry ; Hydrogen-Ion Concentration ; Limulus Test ; Lipid A/chemistry/*metabolism/toxicity ; Lipopolysaccharides/chemistry/*metabolism/toxicity ; Mice ; Mice, Inbred BALB C ; Micelles ; Microscopy, Electron ; Molecular Sequence Data ; Peptides/chemical synthesis/chemistry/*metabolism ; Polymyxin B/chemistry/*metabolism ; Protein Conformation ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1993-03-05
    Description: The binding and hydrolysis of guanosine triphosphate (GTP) by the small GTP-binding protein Sar1p is required to form transport vesicles from the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. Experiments revealed that an interaction between Sar1p and the Sec23p subunit of an oligomeric protein is also required for vesicle budding. The isolated Sec23p subunit and the oligomeric complex stimulated guanosine triphosphatase (GTPase) activity of Sar1p 10- to 15-fold but did not activate two other small GTP-binding proteins involved in vesicle traffic (Ypt1p and ARF). Activation of GTPase was inhibited by an antibody to Sec23p but not by an antibody that inhibits the budding activity of the other subunit of the Sec23p complex. Also, activation was thermolabile in pure samples of Sec23p that were isolated from two independent sec23 mutant strains. It appears that Sec23p represents a new class of GTPase-activating protein because its sequence shows no similarity to any known member of this family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshihisa, T -- Barlowe, C -- Schekman, R -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1466-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8451644" target="_blank"〉PubMed〈/a〉
    Keywords: COP-Coated Vesicles ; Cloning, Molecular ; Endoplasmic Reticulum/*metabolism/ultrastructure ; Fungal Proteins/genetics/metabolism ; GTP-Binding Proteins/genetics/*metabolism ; GTPase-Activating Proteins ; Genes, Fungal ; Kinetics ; Macromolecular Substances ; *Monomeric GTP-Binding Proteins ; Mutagenesis ; Proteins/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Spheroplasts/metabolism ; Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1993-10-29
    Description: A 24-amino acid peptide designed to solubilize integral membrane proteins has been synthesized. The design was for an amphipathic alpha helix with a "flat" hydrophobic surface that would interact with a transmembrane protein as a detergent. When mixed with peptide, 85 percent of bacteriorhodopsin and 60 percent of rhodopsin remained in solution over a period of 2 days in their native forms. The crystal structure of peptide alone showed it to form an antiparallel four-helix bundle in which monomers interact, flat surface to flat surface, as predicted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafmeister, C E -- Miercke, L J -- Stroud, R M -- GM24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 29;262(5134):734-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235592" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/chemistry ; Crystallography, X-Ray ; Detergents/chemical synthesis/*chemistry ; Drug Design ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemical synthesis/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Rhodopsin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1993-09-17
    Description: Staphylococcal nuclease is an enzyme with enormous catalytic power, accelerating phosphodiester bond hydrolysis by a factor of 10(16) over the spontaneous rate. The mechanistic basis for this rate acceleration was investigated by substitution of the active site residues Glu43, Arg35, and Arg87 with unnatural amino acid analogs. Two Glu43 mutants, one containing the nitro analog of glutamate and the other containing homoglutamate, retained high catalytic activity at pH 9.9, but were less active than the wild-type enzyme at lower pH values. The x-ray crystal structure of the homoglutamate mutant revealed that the carboxylate side chain of this residue occupies a position and orientation similar to that of Glu43 in the wild-type enzyme. The increase in steric bulk is accommodated by a backbone shift and altered torsion angles. The nitro and the homoglutamate mutants display similar pH versus rate profiles, which differ from that of the wild-type enzyme. Taken together, these studies suggest that Glu43 may not act as a general base, as previously thought, but may play a more complex structural role during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Judice, J K -- Gamble, T R -- Murphy, E C -- de Vos, A M -- Schultz, P G -- GM 14012-02S1/GM/NIGMS NIH HHS/ -- R01 GM49220/GM/NIGMS NIH HHS/ -- T32GM-08388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 17;261(5128):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8103944" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Aminoadipic Acid/chemistry ; Amino Acids/chemistry ; Aminobutyrates/chemistry ; Arginine/*chemistry ; Binding Sites ; Catalysis ; Glutamates/*chemistry ; Glutamic Acid ; Homocysteine/analogs & derivatives/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Kinetics ; Micrococcal Nuclease/chemistry/genetics/*metabolism ; Mutation ; Plasmids ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-26
    Description: Protein phosphatases play important roles in the regulation of cell growth and metabolism, yet little is known about their enzymatic mechanism. By extrapolation from data on inhibitors of other types of hydrolases, an inhibitor of prostatic acid phosphatase was designed that is likely to function as a mechanism-based phosphotyrosine phosphatase inactivator. This molecule, 4-(fluoromethyl)phenyl phosphate, represents a useful paradigm for the design of potent and specific phosphatase inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myers, J K -- Widlanski, T S -- R01 GM47918-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1451-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248785" target="_blank"〉PubMed〈/a〉
    Keywords: Acid Phosphatase/*antagonists & inhibitors/metabolism ; Alkylation ; Binding Sites ; Drug Design ; Humans ; Hydrolysis ; Kinetics ; Male ; Organophosphorus Compounds/metabolism/*pharmacology ; Prostate/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1993-09-03
    Description: Annexins are a family of calcium- and phospholipid-binding proteins implicated in mediating membrane-related processes such as secretion, signal transduction, and ion channel activity. The crystal structure of rat annexin V was solved to 1.9 angstrom resolution by multiple isomorphous replacement. Unlike previously solved annexin V structures, all four domains bound calcium in this structure. Calcium binding in the third domain induced a large relocation of the calcium-binding loop regions, exposing the single tryptophan residue to the solvent. These alterations in annexin V suggest a role for domain 3 in calcium-triggered interaction with phospholipid membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Concha, N O -- Head, J F -- Kaetzel, M A -- Dedman, J R -- Seaton, B A -- R01-DK-41740/DK/NIDDK NIH HHS/ -- R01-NS-20357/NS/NINDS NIH HHS/ -- R29-GM-44554/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 3;261(5126):1321-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Boston University School of Medicine, MA 02118.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8362244" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Annexin A5/*chemistry/metabolism ; Binding Sites ; Calcium/*metabolism ; Computer Graphics ; Crystallization ; Humans ; Hydrogen Bonding ; Molecular Sequence Data ; Protein Conformation ; Rats ; Sequence Alignment ; Tryptophan/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-09
    Description: The regulation of transcription requires complex interactions between proteins bound to DNA sequences that are often separated by hundreds of base pairs. As demonstrated by a nuclear ligation assay, the distal enhancer and the proximal promoter regions of the rat prolactin gene were found to be juxtaposed. By acting through its receptor bound to the distal enhancer, estrogen stimulated the interaction between the distal and proximal regulatory regions two- to threefold compared to control values. Thus, the chromatin structure of the prolactin gene may facilitate the occurrence of protein-protein interactions between transcription factors bound to widely separated regulatory elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cullen, K E -- Kladde, M P -- Seyfred, M A -- DK42731/DK/NIDDK NIH HHS/ -- T32HD07048/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 9;261(5118):203-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8327891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Chromatin/*chemistry/metabolism ; DNA/chemistry/metabolism ; Deoxyribonucleases, Type II Site-Specific ; *Enhancer Elements, Genetic ; Estrogens/metabolism ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction ; Prolactin/*genetics ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Rats ; Receptors, Estrogen/metabolism ; Regulatory Sequences, Nucleic Acid ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1993-03-05
    Description: The actions of many hormones and neurotransmitters are mediated by the members of a superfamily of receptors coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins). These receptors are characterized by a highly conserved topographical arrangement in which seven transmembrane domains are connected by intracellular and extracellular loops. The interaction between these receptors and G proteins is mediated in large part by the third intracellular loop of the receptor. Coexpression of the third intracellular loop of the alpha 1B-adrenergic receptor with its parent receptor inhibited receptor-mediated activation of phospholipase C. The inhibition extended to the closely related alpha 1C-adrenergic receptor subtype, but not the phospholipase C-coupled M1 muscarinic acetylcholine receptor nor the adenylate cyclase-coupled D1A dopamine receptor. These results suggest that the receptor-G protein interface may represent a target for receptor antagonist drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luttrell, L M -- Ostrowski, J -- Cotecchia, S -- Kendall, H -- Lefkowitz, R J -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1453-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8383880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cloning, Molecular ; Cyclic AMP/metabolism ; Cytoplasm/metabolism ; GTP-Binding Proteins/*metabolism ; Globins/genetics ; Glutathione Transferase/genetics/metabolism ; Humans ; Inositol Phosphates/metabolism ; Kinetics ; Molecular Sequence Data ; Muscarinic Antagonists ; Oligodeoxyribonucleotides ; Plasmids ; Protein Structure, Secondary ; Receptors, Adrenergic, alpha/genetics/*metabolism ; Receptors, Dopamine D1/antagonists & inhibitors/genetics/*metabolism ; Receptors, Muscarinic/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: The eukaryotic cell exhibits compartmentalization of functions to various membrane-bound organelles and to specific domains within each membrane. The spatial distribution of the membrane chemoreceptors and associated cytoplasmic chemotaxis proteins in Escherichia coli were examined as a prototypic functional aggregate in bacterial cells. Bacterial chemotaxis involves a phospho-relay system brought about by ligand association with a membrane receptor, culminating in a switch in the direction of flagellar rotation. The transduction of the chemotaxis signal is initiated by a chemoreceptor-CheW-CheA ternary complex at the inner membrane. These ternary complexes aggregate predominantly at the cell poles. Polar localization of the cytoplasmic CheA and CheW proteins is dependent on membrane-bound chemoreceptor. Chemoreceptors are not confined to the cell poles in strains lacking both CheA and CheW. The chemoreceptor-CheW binary complex is polarly localized in the absence of CheA, whereas the chemoreceptor-CheA binary complex is not confined to the cell poles in strains lacking CheW. The subcellular localization of the chemotaxis proteins may reflect a general mechanism by which the bacterial cell sequesters different regions of the cell for specialized functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maddock, J R -- Shapiro, L -- GM13929/GM/NIGMS NIH HHS/ -- GM32506/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1717-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, CA 94305-5427.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456299" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Bacterial Proteins/analysis/metabolism ; Carrier Proteins/metabolism ; Cell Membrane/ultrastructure ; Chemoreceptor Cells/physiology/*ultrastructure ; Chemotactic Factors/metabolism ; Chemotaxis/physiology ; Cytoplasm/metabolism ; Escherichia coli/chemistry/physiology/*ultrastructure ; *Escherichia coli Proteins ; Flagella/physiology/ultrastructure ; Fluorescent Antibody Technique ; Maltose-Binding Proteins ; Membrane Proteins/analysis/metabolism ; Microscopy, Immunoelectron ; *Monosaccharide Transport Proteins ; Phosphorylation ; Protein Conformation ; Signal Transduction/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1993-10-15
    Description: Unlike most serine proteases of the chymotrypsin family, tissue-type plasminogen activator (tPA) is secreted from cells as an active, single-chain enzyme with a catalytic efficiency only slightly lower than that of the proteolytically cleaved form. A zymogenic mutant of tPA has been engineered that displays a reduction in catalytic efficiency by a factor of 141 in the single-chain form while retaining full activity in the cleaved form. The residues introduced in the mutant, serine 292 and histidine 305, are proposed to form a hydrogen-bonded network with aspartate 477, similar to the aspartate 194-histidine 40-serine 32 network found to stabilize the zymogen chymotrypsinogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madison, E L -- Kobe, A -- Gething, M J -- Sambrook, J F -- Goldsmith, E J -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):419-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211162" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid/chemistry ; Base Sequence ; Catalysis ; Chymotrypsin/chemistry/metabolism ; Enzyme Precursors/chemistry/*metabolism ; Histidine/chemistry ; Hydrogen Bonding ; Kinetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Plasminogen/metabolism ; Plasminogen Activator Inhibitor 1/metabolism ; Serine/chemistry ; Tissue Plasminogen Activator/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: In mammals, the hydroperoxidation of arachidonic acid by lipoxygenases leads to the formation of leukotrienes and lipoxins, compounds that mediate inflammatory responses. Lipoxygenases are dioxygenases that contain a nonheme iron and are present in many animal cells. Soybean lipoxygenase-1 is a single-chain, 839-residue protein closely related to mammalian lipoxygenases. The structure of soybean lipoxygenase-1 solved to 2.6 angstrom resolution shows that the enzyme has two domains: a 146-residue beta barrel and a 693-residue helical bundle. The iron atom is in the center of the larger domain and is coordinated by three histidines and the COO- of the carboxyl terminus. The coordination geometry is nonregular and appears to be a distorted octahedron in which two adjacent positions are not occupied by ligands. Two cavities, in the shapes of a bent cylinder and a frustum, connect the unoccupied positions to the surface of the enzyme. The iron, with two adjacent and unoccupied positions, is poised to interact with the 1,4-diene system of the substrate and with molecular oxygen during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyington, J C -- Gaffney, B J -- Amzel, L M -- GM36232/GM/NIGMS NIH HHS/ -- R01 GM036232/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1482-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502991" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonate 15-Lipoxygenase/*chemistry/metabolism ; Iron/chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Soybeans/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: Most members of the guanosine triphosphatase (GTPase) superfamily hydrolyze guanosine triphosphate (GTP) quite slowly unless stimulated by a GTPase activating protein or GAP. The alpha subunits (G alpha) of the heterotrimeric G proteins hydrolyze GTP much more rapidly and contain an approximately 120-residue insert not found in other GTPases. Interactions between a G alpha insert domain and a G alpha GTP-binding core domain, both expressed as recombinant proteins, show that the insert acts biochemically as a GAP. The results suggest a general mechanism for GAP-dependent hydrolysis of GTP by other GTPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Markby, D W -- Onrust, R -- Bourne, H R -- 5F32-GM13918/GM/NIGMS NIH HHS/ -- CA54427/CA/NCI NIH HHS/ -- GM27800/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1895-901.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmcology, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266082" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Colforsin/pharmacology ; Cyclic AMP/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/chemistry/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism/pharmacology ; Guanosine Triphosphate/*metabolism ; Hydrolysis ; Kinetics ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1993-05-14
    Description: The CD4 antigen is a membrane glycoprotein of T lymphocytes that interacts with major histocompatibility complex class II antigens and is also a receptor for the human immunodeficiency virus. the extracellular portion of CD4 is predicted to fold into four immunoglobulin-like domains. The crystal structure of the third and fourth domains of rat CD4 was solved at 2.8 angstrom resolution and shows that both domains have immunoglobulin folds. Domain 3, however, lacks the disulfide between the beta sheets; this results in an expansion of the domain. There is a difference of 30 degrees in the orientation between domains 3 and 4 when compared with domains 1 and 2. The two CD4 fragment structures provide a basis from which models of the overall receptor can be proposed. These models suggest an extended structure comprising two rigid portions joined by a short and possibly flexible linker region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, R L -- Dodson, E J -- Dodson, G G -- Lange, G -- Davis, S J -- Williams, A F -- Barclay, A N -- New York, N.Y. -- Science. 1993 May 14;260(5110):979-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of York, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493535" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/*chemistry ; Crystallization ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Rats ; Sequence Alignment ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-24
    Description: Zinc finger proteins, of the type first discovered in transcription factor IIIA (TFIIIA), are one of the largest and most important families of DNA-binding proteins. The crystal structure of a complex containing the five Zn fingers from the human GLI oncogene and a high-affinity DNA binding site has been determined at 2.6 A resolution. Finger one does not contact the DNA. Fingers two through five bind in the major groove and wrap around the DNA, but lack the simple, strictly periodic arrangement observed in the Zif268 complex. Fingers four and five of GLI make extensive base contacts in a conserved nine base-pair region, and this section of the DNA has a conformation intermediate between B-DNA and A-DNA. Analyzing the GLI complex and comparing it with Zif268 offers new perspectives on Zn finger-DNA recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pavletich, N P -- Pabo, C O -- GM-31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1701-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8378770" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Computer Graphics ; DNA/*chemistry/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oncogene Proteins/*chemistry/genetics/metabolism ; Oncogenes ; Protein Conformation ; Trans-Activators ; Transcription Factors/*chemistry/genetics/metabolism ; X-Ray Diffraction ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1993-05-21
    Description: The folding of the all-beta sheet protein, interleukin-1 beta, was studied with nuclear magnetic resonance (NMR) spectroscopy, circular dichroism, and fluorescence. Ninety percent of the beta structure present in the native protein, as monitored by far-ultraviolet circular dichroism, was attained within 25 milliseconds, correlating with the first kinetic phase determined by tryptophan and 1-anilinonaphthalene-8-sulfonate fluorescence. In contrast, formation of stable native secondary structure, as measured by quenched-flow deuterium-hydrogen exchange experiments, began after only 1 second. Results from the NMR experiments indicated the formation of at least two intermediates with half-lives of 0.7 to 1.5 and 15 to 25 seconds. The final stabilization of the secondary structure, however, occurs on a time scale much greater than 25 seconds. These results differ from previous results on mixed alpha helix-beta sheet proteins in which both the alpha helices and beta sheets were stabilized very rapidly (less than 10 to 20 milliseconds).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Varley, P -- Gronenborn, A M -- Christensen, H -- Wingfield, P T -- Pain, R H -- Clore, G M -- New York, N.Y. -- Science. 1993 May 21;260(5111):1110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493553" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Hydrogen Bonding ; Interleukin-1/*chemistry ; Kinetics ; Magnetic Resonance Spectroscopy ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1993-06-25
    Description: Arrestins have been implicated in the regulation of many G protein-coupled receptor signaling cascades. Mutations in two Drosophila photoreceptor-specific arrestin genes, arrestin 1 and arrestin 2, were generated. Analysis of the light response in these mutants shows that the Arr1 and Arr2 proteins are mediators of rhodopsin inactivation and are essential for the termination of the phototransduction cascade in vivo. The saturation of arrestin function by an excess of activated rhodopsin is responsible for a continuously activated state of the photoreceptors known as the prolonged depolarized afterpotential. In the absence of arrestins, photoreceptors undergo light-dependent retinal degeneration as a result of the continued activity of the phototransduction cascade. These results demonstrate the fundamental requirement for members of the arrestin protein family in the regulation of G protein-coupled receptors and signaling cascades in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolph, P J -- Ranganathan, R -- Colley, N J -- Hardy, R W -- Socolich, M -- Zuker, C S -- R01 EY008768/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1910-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, La Jolla, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316831" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; *Arrestins ; Drosophila ; Drosophila Proteins ; Eye Proteins/genetics/*physiology ; Female ; GTP-Binding Proteins/*metabolism ; Genes, Insect ; Kinetics ; Male ; Molecular Sequence Data ; Mutation ; Phosphoproteins/genetics/*physiology ; Photic Stimulation ; Photoreceptor Cells/cytology/*physiology ; Rhodopsin/analogs & derivatives/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perona, J J -- Craik, C S -- Fletterick, R J -- DK-39304/DK/NIDDK NIH HHS/ -- GM13818-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 30;261(5121):620-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342029" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Crystallization ; Hydrogen Bonding ; Protein Conformation ; Serine Endopeptidases/*chemistry ; Trypsin/chemistry ; Water/*analysis ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1993-06-04
    Description: Biological variability of human immunodeficiency virus type-1 (HIV-1) is involved in the pathogenesis of acquired immunodeficiency syndrome (AIDS). Syncytium-inducing (SI) HIV-1 variants emerge in 50 percent of infected individuals during infection, preceding accelerated CD4+ T cell loss and rapid progression to AIDS. The V1 to V2 and V3 region of the viral envelope glycoprotein gp120 contained the major determinants of SI capacity. The configuration of a hypervariable locus in the V2 domain appeared to be predictive for non-SI to SI phenotype conversion. Early prediction of HIV-1 phenotype evolution may be useful for clinical monitoring and treatment of asymptomatic infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenink, M -- Fouchier, R A -- Broersen, S -- Baker, C H -- Koot, M -- van't Wout, A B -- Huisman, H G -- Miedema, F -- Tersmette, M -- Schuitemaker, H -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502996" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/microbiology ; Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Consensus Sequence ; Genetic Variation ; Giant Cells/microbiology ; HIV Envelope Protein gp120/*chemistry ; HIV Seropositivity/microbiology ; HIV-1/*chemistry/*genetics/pathogenicity ; Humans ; Male ; Molecular Sequence Data ; Phenotype ; Protein Conformation ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1993-11-26
    Description: Coiled-coil sequences in proteins consist of heptad repeats containing two characteristic hydrophobic positions. The role of these buried hydrophobic residues in determining the structures of coiled coils was investigated by studying mutants of the GCN4 leucine zipper. When sets of buried residues were altered, two-, three-, and four-helix structures were formed. The x-ray crystal structure of the tetramer revealed a parallel, four-stranded coiled coil. In the tetramer conformation, the local packing geometry of the two hydrophobic positions in the heptad repeat is reversed relative to that in the dimer. These studies demonstrate that conserved, buried residues in the GCN4 leucine zipper direct dimer formation. In contrast to proposals that the pattern of hydrophobic and polar amino acids in a protein sequence is sufficient to determine three-dimensional structure, the shapes of buried side chains in coiled coils are essential determinants of the global fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbury, P B -- Zhang, T -- Kim, P S -- Alber, T -- GM44162/GM/NIGMS NIH HHS/ -- GM48958/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1401-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; *DNA-Binding Proteins ; Fungal Proteins/*chemistry/genetics ; Hydrogen Bonding ; *Leucine Zippers ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Kinases/*chemistry/genetics ; Protein Structure, Secondary ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-05
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Englander, S W -- R01 GM031847/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):848-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6059.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235606" target="_blank"〉PubMed〈/a〉
    Keywords: Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Molecular ; Muramidase/*chemistry ; Myoglobin/*chemistry ; Protein Conformation ; *Protein Folding ; Ribonuclease, Pancreatic/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1993-11-26
    Description: Rhodopsin has been selectively spin-labeled near the cytoplasmic termini of helices C and G. Photoactivation with a light flash induces an electron paramagnetic resonance spectral change in the millisecond time domain, coincident with the appearance of the active metarhodopsin II intermediate. The spectral change is consistent with a small movement near the cytoplasmic termination of the C helix and reverses upon formation of the MIII state. These results provide an important link between the optical changes associated with the retinal chromophore and protein conformational states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farahbakhsh, Z T -- Hideg, K -- Hubbell, W L -- EY05216/EY/NEI NIH HHS/ -- EY07026/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1416-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Electron Spin Resonance Spectroscopy ; Light ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Rhodopsin/*chemistry ; Spin Labels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-22
    Description: Organic reactions are often limited by stereoelectronic constrains that appear along the reaction coordinate. An antibody has been generated that overcomes these constraints and catalyzes a highly disfavored chemical transformation. The antibody facilitates the difficult 6-endo-tet ring closure of an epoxy-alcohol to form a tetrahydropyran. The catalyzed process is in formal violation of what has become known as Baldwin's rules for ring-closure reactions. In addition to controlling the regiochemistry of the disfavored cyclization reaction, these catalytic antibodies resolve enantiomeric substrates to afford a stereochemically pure product. The principles demonstrated in this study may be applicable to other disfavored chemical processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Shevlin, C G -- Lerner, R A -- New York, N.Y. -- Science. 1993 Jan 22;259(5094):490-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8424171" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies/*metabolism ; Catalysis ; Enzymes/metabolism ; Heterocyclic Compounds/*chemistry ; Indicators and Reagents ; Isomerism ; Kinetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benner, S A -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1402-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Organic Chemistry, Eidgenossisiche Technische Hochschule Zentrum, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8367723" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; DNA-Directed RNA Polymerases/metabolism ; Kinetics ; RNA Ligase (ATP)/chemistry/metabolism ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1993-01-29
    Description: A proportion of developing oligodendrocytes undergo natural cell death by apoptosis, and mature oligodendrocytes die, either by apoptosis or necrosis, in response to injurious signals such as cytotoxic cytokines and complement. Ciliary neurotrophic factor (CNTF), a trophic factor found in astrocytes in the central nervous system (CNS), promoted the survival and maturation of cultured oligodendrocytes. This trophic factor also protected oligodendrocytes from death induced by tumor necrosis factors (apoptosis) but not against complement (necrosis). These results suggest that CNTF functions in the survival of oligodendrocytes during development and may lead to therapeutic approaches for degenerative diseases of the CNS that involve oligodendrocyte destruction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Louis, J C -- Magal, E -- Takayama, S -- Varon, S -- NS16349/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):689-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, San Diego, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430320" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/physiology ; Cell Death/*drug effects ; Cell Survival/drug effects ; Cells, Cultured ; Central Nervous System/physiology ; Ciliary Neurotrophic Factor ; Dose-Response Relationship, Drug ; Humans ; Kinetics ; Lymphotoxin-alpha/*pharmacology ; Nerve Growth Factors/*pharmacology ; Nerve Tissue Proteins/*pharmacology ; Oligodendroglia/cytology/drug effects/*physiology ; Recombinant Proteins/pharmacology ; Time Factors ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-08
    Description: The affinity of a flexible ligand that adopts a specific conformation when bound to its receptor should be increased with the appropriate use of conformational restraints. By determining the structure of protein-ligand complexes, such restraints can in principle be designed into the bound ligand in a rational way. A tricyclic variant (TCsA) of the immunosuppressant cyclosporin A (CsA), which inhibits the proliferation of T lymphocytes by forming a cyclophilin-CsA-calcineurin complex, was designed with the known three-dimensional structure of a cyclophilin-CsA complex. The conformational restraints in TCsA appear to be responsible for its greater affinity for cyclophilin and calcineurin relative to CsA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alberg, D G -- Schreiber, S L -- GM-38627/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 8;262(5131):248-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/*metabolism ; Amino Acid Sequence ; Calcineurin ; Calmodulin-Binding Proteins/chemistry/*metabolism ; Carrier Proteins/chemistry/*metabolism ; Cyclosporins/chemical synthesis/chemistry/*metabolism ; *Drug Design ; Ligands ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Phosphoprotein Phosphatases/chemistry/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-01
    Description: When the recognition sequence of a ribozyme is extended beyond a certain length, turnover is slowed and specificity is decreased. Here, it is shown that a protein can help a ribozyme overcome these general limitations on ribozyme activity. Cleavage of an RNA oligonucleotide by a hammerhead ribozyme is enhanced 10- to 20-fold upon addition of a protein derived from the p7 nucleocapsid (NC) protein of human immunodeficiency virus-type 1. The NC protein also enhances the ability of the ribozyme to discriminate between cleavage of RNA oligonucleotides with differing sequences. These catalytic improvements can be attributed to the strand exchange activity of this RNA binding protein. It is conceivable that endogenous or added proteins may provide analogous increases in ribozyme activity and specificity in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsuchihashi, Z -- Khosla, M -- Herschlag, D -- New York, N.Y. -- Science. 1993 Oct 1;262(5130):99-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7692597" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Capsid Proteins ; Catalysis ; DNA, Single-Stranded/metabolism ; Gene Products, gag/*metabolism ; Kinetics ; Molecular Sequence Data ; Oligoribonucleotides/*metabolism ; RNA/*metabolism ; RNA, Catalytic/chemistry/*metabolism ; Substrate Specificity ; *Viral Proteins ; Zinc Fingers ; gag Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1993-07-23
    Description: The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Omichinski, J G -- Clore, G M -- Schaad, O -- Felsenfeld, G -- Trainor, C -- Appella, E -- Stahl, S J -- Gronenborn, A M -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):438-46.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332909" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Chickens ; DNA-Binding Proteins/*chemistry ; Erythroid-Specific DNA-Binding Factors ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Transcription Factors/*chemistry ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1993-02-05
    Description: Recoverin, a calcium ion (Ca2+)-binding protein of vertebrate photoreceptors, binds to photoreceptor membranes when the Ca2+ concentration is greater than 1 micromolar. This interaction requires a fatty acyl residue covalently linked to the recoverin amino (NH2)-terminus. Removal of the acyl residue, either by proteolytic cleavage of the NH2-terminus or by production of nonacylated recoverin, prevented recoverin from binding to membranes. The acylated recoverin NH2-terminus could be cleaved by trypsin only when Ca2+ was bound to recoverin. These results suggest that the hydrophobic NH2-terminus is constrained in Ca(2+)-free recoverin and liberated by Ca2+ binding. The hydrophobic acyl moiety of recoverin may interact with the membrane only when recoverin binds Ca2+.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dizhoor, A M -- Chen, C K -- Olshevskaya, E -- Sinelnikova, V V -- Phillipov, P -- Hurley, J B -- EYO6641/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 5;259(5096):829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430337" target="_blank"〉PubMed〈/a〉
    Keywords: 1,2-Dipalmitoylphosphatidylcholine ; Acylation ; Animals ; Antigens, Neoplasm/isolation & purification/*metabolism ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/isolation & purification/*metabolism ; Cattle ; Cell Membrane/metabolism ; Egtazic Acid/pharmacology ; Electrophoresis, Polyacrylamide Gel ; *Eye Proteins ; Hippocalcin ; Kinetics ; *Lipoproteins ; Liposomes ; Membrane Proteins/isolation & purification/*metabolism ; Molecular Weight ; Myristic Acid ; Myristic Acids/*metabolism ; *Nerve Tissue Proteins ; Peptide Fragments/isolation & purification ; Phosphatidylserines ; Protein Binding ; Recoverin ; Rod Cell Outer Segment/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1993-11-12
    Description: Structures of the protein-chromophore complex and the apoprotein form of neocarzinostatin were determined at 1.8 angstrom resolution. Neocarzinostatin is composed of a labile chromophore with DNA-cleaving activity and a stabilizing protein. The chromophore displays marked nonlinearity of the triple bonds and is bound noncovalently in a pocket formed by the two protein domains. The chromophore pi-face interacts with the phenyl ring edges of Phe52 and Phe78. The amino sugar and carbonate groups of the chromophore are solvent exposed, whereas the epoxide, acetylene groups, and carbon C-12, the site of nucleophilic thiol addition during chromophore activation, are unexposed. The position of the amino group of the chromophore carbohydrate relative to C-12 supports the idea that the amino group plays a role in thiol activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, K H -- Kwon, B M -- Myers, A G -- Rees, D C -- CA47148/CA/NCI NIH HHS/ -- GM45162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1042-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235619" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry ; Computer Graphics ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Zinostatin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-03
    Description: Cyclic adenosine diphosphoribose (cADPR), a recently discovered metabolite of nicotinamide adenine dinucleotide (NAD), is a potent calcium-releasing agent postulated to be a new second messenger. An enzyme that catalyzes the synthesis of cADPR from NAD and the hydrolysis of cADPR to ADP-ribose (ADPR) was purified to homogeneity from canine spleen microsomes. The net conversion of NAD to ADPR categorizes this enzyme as an NAD glycohydrolase. NAD glycohydrolases are ubiquitous membrane-bound enzymes that have been known for many years but whose function has not been identified. The results presented here suggest that these enzymes may function in the regulation of calcium homeostasis by the ability to synthesize and degrade cADPR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, H -- Jacobson, E L -- Jacobson, M K -- CA43894/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 3;261(5126):1330-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of North Texas Health Science Center at Fort Worth 76107.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8395705" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/*analogs & derivatives/biosynthesis/metabolism ; Animals ; Calcium/metabolism ; Cyclic ADP-Ribose ; Dogs ; Hydrolysis ; Kinetics ; NAD/metabolism ; NAD+ Nucleosidase/isolation & purification/*metabolism ; Spleen/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1993-01-22
    Description: The mechanism of interleukin-1 (IL-1) signaling is unknown. Tumor necrosis factor-alpha uses a signal transduction pathway that involves sphingomyelin hydrolysis to ceramide and stimulation of a ceramide-activated protein kinase. In intact EL4 thymoma cells, IL-1 beta similarly stimulated a rapid decrease of sphingomyelin and an elevation of ceramide, and enhanced ceramide-activated protein kinase activity. This cascade was also activated by IL-1 beta in a cell-free system, demonstrating tight coupling to the receptor. Exogenous sphingomyelinase, but not phospholipases A2, C, or D, in combination with phorbol ester replaced IL-1 beta to stimulate IL-2 secretion. Thus, IL-1 beta signals through the sphingomyelin pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mathias, S -- Younes, A -- Kan, C C -- Orlow, I -- Joseph, C -- Kolesnick, R N -- R0-1-CA-42385/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 22;259(5094):519-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Signal Transduction, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8424175" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell-Free System ; Ceramides/*metabolism ; Dose-Response Relationship, Drug ; Interleukin-1/*pharmacology ; Interleukin-2/biosynthesis ; Kinetics ; Mice ; Molecular Sequence Data ; Protein Kinases/metabolism ; Signal Transduction/*drug effects ; Sphingomyelin Phosphodiesterase/pharmacology ; Sphingomyelins/*metabolism ; Substrate Specificity ; Thymoma ; Thymus Neoplasms ; Tumor Cells, Cultured ; Type C Phospholipases/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...