ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-08-19
    Description: A small molecule called PD 153035 inhibited the epidermal growth factor (EGF) receptor tyrosine kinase with a 5-pM inhibition constant. The inhibitor was specific for the EGF receptor tyrosine kinase and inhibited other purified tyrosine kinases only at micromolar or higher concentrations. PD 153035 rapidly suppressed autophosphorylation of the EGF receptor at low nanomolar concentrations in fibroblasts or in human epidermoid carcinoma cells and selectively blocked EGF-mediated cellular processes including mitogenesis, early gene expression, and oncogenic transformation. PD 153035 demonstrates an increase in potency over that of other tyrosine kinase inhibitors of four to five orders of magnitude for inhibition of isolated EGF receptor tyrosine kinase and three to four orders of magnitude for inhibition of cellular phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fry, D W -- Kraker, A J -- McMichael, A -- Ambroso, L A -- Nelson, J M -- Leopold, W R -- Connors, R W -- Bridges, A J -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1093-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066447" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Transformation, Neoplastic/drug effects ; Epidermal Growth Factor/pharmacology ; Fibroblast Growth Factor 2/pharmacology ; Gene Expression/drug effects ; Humans ; Kinetics ; Mice ; Mitosis/drug effects ; Phosphorylation/drug effects ; Platelet-Derived Growth Factor/pharmacology ; Protein-Tyrosine Kinases/antagonists & inhibitors ; Quinazolines/*antagonists & inhibitors ; Receptor, Epidermal Growth Factor/*antagonists & inhibitors ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 1987-01-01
    Print ISSN: 0021-8820
    Electronic ISSN: 1881-1469
    Topics: Chemistry and Pharmacology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Investigational new drugs 14 (1996), S. 341-347 
    ISSN: 1573-0646
    Keywords: CI-980 ; PD 132183 ; mitotic inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary CI-980, originally synthesized as a potential folate antagonist, is a tubulin-binding mitotic inhibitor currently in pediatric phase I and adult phase II clinical trials. Because of its extensive tissue distribution in animals and its favorable activity against multidrug resistant (MDR) cells compared with other mitotic inhibitors, such as vincristine, we examined the membrane transport properties of CI-980. CI-980 accumulated rapidly in L1210 and CHO/K1 cells, reaching intracellular levels 40- and 8-fold higher, respectively, than those in the extracellular medium. Efflux was also quite rapid, but a small fraction of drug remained associated with the cells in drug-free medium. The uptake of CI-980 was not temperature or energy dependent, nor was it saturable up to an extracellular concentration of 100 μM. Inhibitors of nucleoside transport had no effect on CI-980 uptake. A cell line deficient in the transport of reduced folate was not resistant to CI-980, nor did it exhibit reduced CI-980 uptake. A 100-fold excess of the R-enantiomer inhibited CI-980 uptake by only 50%. These results are consistent with a model of CI-980 uptake involving passive diffusion followed by significant but largely reversible binding to intracellular or membrane components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Investigational new drugs 3 (1985), S. 223-231 
    ISSN: 1573-0646
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary 3-Deazaguanine (dezaguanine, USAN; CI-908) is a new antipurine antimetabolite which is entering Phase I studies in the USA. This compound differs from guanine only in the substitution of a carbon for the 3-nitrogen of guanine. Dezaguanine has an unusual spectrum of activity against experimental rodent tumors; its activity against transplantable rodent leukemias is only modest, but it has significant activity against transplantable rodent solid tumors, particularly mammary adenocarcinomas. Mammary adenocarcinoma models against which this compound is active include slow and fast-growing tumors, hormone sensitive and hormone insensitive tumors, and the subrenal capsule implanted human breast cancer xenograft, MX-1. Dezaguanine must be converted to its nucleotides to be active. Dezaguanine nucleotides inhibit synthesis of guanine nucleotides, and can be incorporated into nucleic acids in place of guanine nucleotides; incorporation into DNA may be particularly important in the cytotoxicity of this compound. Addition of certain purines or purine nucleosides can prevent dezaguanine cytotoxicity in vitro. Preclinical studies suggest that dezaguanine does not undergo deamination to 3-deazaxanthine, and is not metabolized by xanthine oxidase. Therefore, this compound may not be subject to metabolic inactivation in vivo, and active metabolites may have a prolonged half-life. This concept is supported by the prolonged half-life of radiolabelled dezaguanine in rats. Finally, dezaguanine can cross the blood-brain barrier. In summary, the novel biochemical and experimental antitumor properties of dezaguanine indicate that this compound could have better activity against some human solid tumors than currently used purine antimetabolites. Preclinical formulation and toxicology studies are now complete, and Phase I human studies are being initiated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Investigational new drugs 4 (1986), S. 3-10 
    ISSN: 1573-0646
    Keywords: antitumor ; antibiotic ; DNA scission
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary A complex of novel and exceptionally potent antibiotics has been evaluated for antitumor activity in vitro and in vivo and characterized with regard to their ability to cause DNA strand scission. The major component, PD 114,759, was quite active against all in vitro tumor systems including the human tumors, MCF-7 breast, HCT-8 colon, and A549 lung and the murine tumors M16/c mammary, Lewis lung, Pan 02 pancreas and L1210 leukemia. ID50 values ranged from 2–57 pg/ml. In vivo this agent produced significant increases of host life spans in mice bearing L1210 leukemia, B16 melanoma and the M5076 sarcoma. Further, it inhibited growth of subcutaneous implants of the Ridgway osteogenic sarcoma by 80% and growth of the MX-1 human mammary xenograft by 90–95%. PD 114, 759, however, had no activity against the colon adenocarcinoma 11a or mammary adenocarcinoma 16c. Chinese hamster ovary cells exposed for 24 hours to concentrations of PD 114,759 ranging from 18 to 37 pg/ml accumulated in the S and G2 + M phases of the cell cycle with a corresponding decrease in G1. Higher concentrations of drug apparently stopped any progression through the cell cycle. PD 114,759 caused significant DNA single strand breaks in L1210 cells exposed for 1 hour to drug concentrations as low as 20 pg/ml and the frequency of these lesions increased in proportion to the drug concentration. A portion of these DNA breaks appeared to be associated with protein. In contrast, no double strand DNA breaks were detected at the highest drug concentration tested (100 pg/ml).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...