ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-07-10
    Description: Synaptic vesicles store neurotransmitters that are released during calcium-regulated exocytosis. The specificity of neurotransmitter release requires the localization of both synaptic vesicles and calcium channels to the presynaptic active zone. Two 35-kilodalton proteins (p35 or syntaxins) were identified that interact with the synaptic vesicle protein p65 (synaptotagmin). The p35 proteins are expressed only in the nervous system, are 84 percent identical, include carboxyl-terminal membrane anchors, and are concentrated on the plasma membrane at synaptic sites. An antibody to p35 immunoprecipitated solubilized N-type calcium channels. The p35 proteins may function in docking synaptic vesicles near calcium channels at presynaptic active zones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bennett, M K -- Calakos, N -- Scheller, R H -- 2T32G07365/PHS HHS/ -- New York, N.Y. -- Science. 1992 Jul 10;257(5067):255-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1321498" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Antigens, Surface ; *Calcium-Binding Proteins ; Electrophoresis, Polyacrylamide Gel ; Immunoblotting ; Membrane Glycoproteins/physiology ; Molecular Sequence Data ; Nerve Tissue Proteins/isolation & purification/*physiology ; Oligonucleotide Probes ; Rats ; Sequence Homology, Nucleic Acid ; Synaptic Transmission/physiology ; Synaptic Vesicles/*physiology ; Synaptotagmin I ; Synaptotagmins ; Syntaxin 1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-02-25
    Description: Intracellular vesicles destined to fuse with the plasma membrane and secrete their contents must have a mechanism for specifically interacting with the appropriate target membrane. Such a mechanism is now suggested by the demonstration of specific interaction between vesicular proteins and plasma membrane proteins. The vesicle-associated membrane proteins (VAMPs) 1 and 2 specifically bind the acceptor membrane proteins syntaxin 1A and 4 but not syntaxin 2 or 3. The binding site is within amino acids 194 to 267 of syntaxin 1A, and the approximate equilibrium dissociation constants is 4.7 x 10(-6) molar. These data suggest a physical basis for the specificity of intracellular vesicular transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calakos, N -- Bennett, M K -- Peterson, K E -- Scheller, R H -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1146-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8108733" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface/*metabolism ; Binding Sites ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Haplorhini ; Kinetics ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Nerve Tissue Proteins/*metabolism ; R-SNARE Proteins ; Recombinant Fusion Proteins/metabolism ; Synaptic Vesicles/*metabolism ; Syntaxin 1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...